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Immune rejection poses a challenge in stem cell therapy, especially with
allogeneic embryonic stem cells (ESCs). Non-human primates offer a promis-
ing avenue for developing genetically matched ESCs for regenerative medi-
cine. Here, we successfully derive three live monkeys and their genetically
matched autologous ESCs (aESCs) using embryo splitting. Additionally, from
fibroblasts of one of these monkeys, we generate induced pluripotent stem
cells (iPSCs) and nuclear transfer embryonic stem cells (ntESCs), creating a set
of genetically matched aESCs, iPSCs, and ntESCs. Single-cell RNA-seq analysis
reveals that aESCs potentially exhibit reduced heterogeneity, lower tran-
scriptional noise, and enhanced genomic stability compared to iPSCs and
ntESCs. Furthermore, we successfully derive ESCs from human split embryos,
highlighting the potential for obtaining human aESCs. Collectively, our study
offers an avenue for establishing autologous pluripotent stem cells and pro-
vides the theoretical basis as well as research model for further application of
aESCs in human regenerative medicine.

Embryonic stem cells (ESCs) and induced pluripotent stem cells barrier, and involves complex and inefficient techniques®”'°. These

(iPSCs) represent promising sources for cell-based therapies'™.
Genetically matched cells, such as iPSCs and nuclear transfer
embryonic stem cells (ntESCs), carry reduced risk of tissue rejection
and can be engineered to deliver or express therapeutic agents*”.
However, both cell types face significant safety concerns and technical
limitations. The process of somatic cell reprogramming is associated
with the risk of acquisition of undesired gene mutations, genomic
imprinting, and incomplete reprogramming, all of which can affect the
functionality and safety of the resulting iPSCs**®. The derivation of
ntESCs requires the use of oocytes, a significant ethical and practical

challenges slow down progress in the development of therapeutic
methods and hinder the application of both iPSCs and ntESCs.
Genetically matched ESCs remain of high scientific interest for
regenerative medicine, but their derivation from non-human primates
and humans poses technical and ethical challenges. Embryo splitting is
a promising strategy to address these issues. This technique mimics
the natural process of forming monozygotic twins by separating a
single embryo into identical embryos during the cleavage and blas-
tocyst stages. It has been successfully applied in veterinary medicine
for over 30 years to generate monozygotic twins with favored genetic
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characteristics in sheep, horses, goats, pigs, and cows" ™. However,
twinning experiments in non-human primates have yielded poor
outcomes'®®, and data on human split embryos are limited'*%, indi-
cating the need for technical improvements and ethical considera-
tions. Should such barriers be overcome, embryo splitting technology
might be applied in studies of reproductive biology and disease, to
treat infertility and for embryo donations if ethically permitted.

ESC lines have also been successfully derived from single blas-
tomeres in mice and humans, but this method has the limited effi-
ciency and incomplete characterization?°. Currently, blastocyst-
derivation of ESCs remains the most effective method”, with various
pluripotent states reported, including primed?, naive’’, and other
distinct pluripotent states’®*’. However, it remains unclear whether
ESCs can be derived from blastocysts of split embryos in monkeys, and
what their characteristics would be.

To extend the boundaries of our knowledge about the develop-
mental potential of the early embryo, we here set out to establish a
method for embryo splitting. Through this technological advance-
ment, we derived primate autologous ESCs (aESCs) and successfully
derived ESCs from human split embryos. We also derived iPSCs and
ntESCs from fibroblasts harvested from a newborn monkey, thereby
establishing the non-human primate genetically matched ESCs, iPSCs,
and ntESCs (Fig. 1a). Using single-cell RNA sequencing (scRNA-seq)
analysis, we reveal that aESCs and ntESCs show less heterogeneity in
differentiation potential on a feeder layer than iPSCs, with feeder-free
culture conditions effectively reducing this heterogeneity. Notably,
aESCs potentially maintain better genomic stability and display lower
levels of transcriptional noise than iPSCs and ntESCs.

Results

Monkey split embryos show normal developmental potential
in vitro

In this study, we used healthy 4-cell and 8-cell stage monkey embryos
obtained via intracytoplasmic sperm injection for embryo splitting
experiments. Specifically, we symmetrically split a total of 95 cyno-
molgus and 38 rhesus monkey 4-cell stage embryos. However, seven
cynomolgus and two rhesus monkey 4-cell stage embryos experienced
single or more blastomere breakages due to enzymatic or mechanical
damage. Consequently, we successfully reconstituted 176 cynomolgus
and 72 rhesus monkey 2/4th embryos (Supplementary Fig. 1a). Among
these, 93 (53%) cynomolgus monkey and 33 (46%) rhesus monkey split
embryos developed to the blastocyst stage. Of these, 56 cynomolgus
(28 pairs, 60%) and 22 rhesus (11 pairs, 67%) were identical split
embryos. We also used 8-cell stage embryos to conduct asymmetric
embryo splitting (3/8 and 5/8, respectively) (Supplementary Fig. 1b and
Supplementary Movie 1). In all, we successfully split eighty-one 8-cell
embryos (46 cynomolgus and 35 rhesus monkeys), resulting in a total of
162 split embryos (92 cynomolgus and 70 rhesus monkeys). Of these,
we detected successful progression to the blastocyst stage in forty-four
3/8th embryos (22 cynomolgus, 48% and 22 rhesus monkeys, 63%) and
fifty-four 5/8th embryos (31 cynomolgus, 67% and 23 rhesus monkeys,
66%). Within this cohort, 40 cynomolgus monkey (20 pairs, 43%) and 42
rhesus monkey (21 pairs, 60%) were identical split embryos. Split
embryos were no different from normal embryos in terms of develop-
mental time, morphology (Fig. 1b, ¢), and blastocyst rate (Fig. 1g, h,
Supplementary Fig. le, f), irrespective of whether symmetric or asym-
metric embryo splitting was employed. The rate in which pairs of 8-cell
split embryos developed into blastocysts resembled the normal embryo
developmental rate (47.7%) (Fig. 1h and Supplementary Fig. 1f) but was
lower in pairs of 4-cell split embryos (30.2%) (Fig. 1g and Supplementary
Fig. 1e). This may be because division at the 8-cell stage prevents
selecting only developmentally restricted vegetal blastomeres®. How-
ever, it remains unclear whether a similar phenomenon occurs in
monkeys. Additionally, the inherent heterogeneity among blastomeres
may also play a role in these observed differences® .

To evaluate the developmental potential of split in vitro-cultured
embryos, we investigated the expression patterns of the lineage-specific
markers OCT4 (epiblast, Epi), CDX2 (trophoblast), and GATA6 (hypo-
blast, Hypo) in preimplantation and post-implantation stages. At day
6-10 post-fertilization (d.p.f. 6-10), the developmental morphology of
split embryos was similar to controls (Fig. 1d), as evidenced by formation
of the inner cell mass (ICM), marked by OCT4 at d.p.f.8 (Fig. le, ), and
normal expression patterns of lineage-specific markers (Supplementary
Fig. 1c, d)”’. However, the total number of Epi and Hypo cells, as well as
the number of Epi cells alone in split embryos at d.p.f.8, were sig-
nificantly lower than those in controls (Fig. 1i, j, Supplementary Fig. 1j, I).
Notably, we observed larger variations in numbers of Epi cells (12-51)
and Hypo cells (11-74) in split embryos than in controls (Supplementary
Fig. 1g, h). Moreover, the number of Epi cells differed between geneti-
cally matched split embryos at d.p.f.8 (Fig. 1i, j). However, we did not
observe any significant differences in the number of Hypo cells between
genetically matched 2/4th embryos (Supplementary Fig. 1i). In contrast,
the number of Hypo cells in 3/8th embryos was significantly lower
compared to 5/8th embryos at d.p.f.8 (Supplementary Fig. 1k). When
comparing the Epi cell number in split embryos at d.p.f.8, we found that
5/8th embryos have comparable Epi cell counts to 2/4th embryos with
higher Epi cell numbers, while 3/8th embryos have similar Epi cell counts
to 2/4th embryos with lower Epi cell numbers (Fig. 1k).

In summary, our data support that the blastocyst rate, develop-
mental timeline, and expression patterns of lineage-specific markers
were comparable between split embryos and control embryos during
d.p.f.6-10. However, the cell numbers of both Epi and Hypo were
significantly lower in split embryos.

Establishment of ESCs and generation of live monkeys from split
embryos

To explore the feasibility of deriving ESCs from split blastocysts in
monkeys, we assessed a total of 25 2/4th blastocysts and twenty-six 3/8th
blastocysts, and derived ESCs following established protocols®,
Among these, twelve 2/4th blastocysts and thirteen 3/8th blastocysts
formed ICM outgrowths, which gave rise to a total of 25 ESC lines (49%)
(Fig. 2a and Supplementary Fig. 2d). Relative to controls, there were no
differences in the efficiency of blastocyst attachment and ESC derivation
(Fig. 2b, c). In ESCs derived from split blastocysts, dubbed spESCs, we
observed a normal karyotype in three examined cell lines after 15 or
more passages (Fig. 2f and Supplementary Fig. 2c). The spESC lines
expressed pluripotency markers (OCT4, SOX2, and NANOG) (Fig. 2d,
Supplementary Fig. 2a, and 2e) and differentiated into the three germ
layers in vivo when injected into severe combined immune deficiency
(SCID) mice (Fig. 2e and Supplementary Fig. 2b). To gain insight into the
transcriptomes of spESCs, we conducted bulk RNA-sequencing (RNA-
seq) analyses of 3 spESC and 3 ESC lines derived from control blas-
tocysts. To ensure data reliability, we also analyzed publicly available
RNA-seq datasets from cynomolgus monkey primed ESCs®. Notably, we
found that the expression levels of pluripotency-related genes*** were
similar between spESCs and ESCs (Fig. 2g). Furthermore, in correlation
analysis of gene expression patterns, we observed a strong correlation
between spESCs and ESCs (Fig. 2h and Supplementary Fig. 2f). These
results demonstrate that pluripotency characteristics, differentiation
potential, and transcriptional signatures are highly similar between
SpESCs and ESCs derived from control blastocysts.

To assess the developmental potential of split embryos in vivo, we
transferred 10 rhesus monkey 2/4th embryos into 5 rhesus monkey
surrogates and 27 cynomolgus monkey 2/4th embryos into 16 cyno-
molgus monkey surrogates, respectively. Additionally, we transferred
9 thawed rhesus and 4 thawed cynomolgus monkey 5/8th embryos to
corresponding surrogates (Fig. 3a). After 25 days, we confirmed
pregnancy (11 singleton fetuses) by ultrasound examination in 3 rhesus
and 8 cynomolgus monkey surrogates (Fig. 3b). The rates of preg-
nancy, implantation, and live birth were comparable between split and
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control embryos. (Fig. 3a). Nine offspring were successfully born.
However, two cynomolgus pregnancies were aborted at 100 and
124 days of gestation (Supplementary Fig. 2h). Among the births, 6
babies were born by cesarean section at full term (3 females and 3
males) and others by natural labor (2 females and 1 male) (Supple-
mentary Fig. 2h). In comparison with newborn monkeys obtained by
transferring control embryos, we observed a normal growth rates in
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body weight and height in these monkeys (Fig. 3¢, d). So far, 9 monkeys
have survived and are growing healthily under human care. Among
them, seven monkeys are four years old, while one is two years old and
another one is more than one year old (Supplementary Fig. 2g).

In conclusion, these findings validate that split embryos have
similar capacities to control embryos in establishing ESC lines and
generating viable offspring.
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Fig. 1| Construction and in vitro development of split embryos. a Schematic
diagram of the generation of aESCs and comparative analysis of genetically mat-
ched aESCs, iPSCs, and ntESCs. b, ¢ Representative bright-field analysis of in vitro
developmental progression showing that compaction and blastocyst cavity for-
mation in split embryos occurs synchronously with that of control embryos. The 2/
4th embryo refers to an embryo reconstructed from any two blastomeres of a 4-cell
stage embryo. Similarly, the 5/8th and 3/8th embryos denote embryos recon-
structed from any five blastomeres and the remaining three blastomeres of an 8-cell
stage embryo, respectively. Similar results were obtained in no less than three
independently repeated experiments. Scale bar, 100 um. d Representative bright-
field images of in vitro-split embryos developing from d.p.f.7 to d.p.f.10. Similar
results were obtained in no less than three independently repeated experiments.
e, fldentical split embryos and control embryos at d.p.f.8 were stained for lineage-
specific markers (OCT4, CDX2, and GATA®). Yellow arrowheads represent Hypo
cells (GATA6-positive, OCT4-negative, CDX2-negative). Scale bar, 100 um. The scale
bar in the magnified image represents 50 um. g Percentage of 2/4th embryos that
developed into blastocysts with a well-defined cavity at d.p.f.6 (cynomolgus mon-
key 2/4th embryos, n =176; identical pairs, n = 56; controls, n =169). Mean + SEM
presented for n = 11 independent experiments. Unpaired two-tailed Student’s
t-test. h Percentage of 3/8th and 5/8th embryos that developed into blastocysts.

(cynomolgus monkey 3/8th and 5/8th embryos, n =92; identical pairs, n=40;
controls, n =53). The data for the split embryos and controls represent the mean of
5 and 3 independent experiments, respectively. Results are shown as mean + SEM.
The statistical analysis utilized the unpaired two-tailed Student’s t-test.

i Comparison of OCT4" cell numbers between genetically matched 2/4th embryos
and control embryos at d.p.f.8. (2/4th embryos, n=18, 9 pairs; controls, n=13).
Data from three independent experiments. Paired two-tailed Student’s t-test
without adjustment. j Comparison of OCT4" cell numbers between genetically
matched 3/8th embryos and 5/8th embryos at d.p.f.8. (3/8th embryos and 5/8th
embryos, n=18, 9 pairs; controls, n =13). Data from three independent experi-
ments. The statistical analysis utilized the paired two-tailed Student’s t-test without
adjustment. k Comparison of OCT4" cell numbers among 2/4th embryos, 3/8th
embryos, 5/8th embryos, and controls at d.p.f.8. Each dot represents one embryo
for (i-k). (cynomolgus monkey 2/4th embryos, n =18, 9 pairs; 3/8th embryos and 5/
8th embryos, n =18, 9 pairs; controls, n=13). Data from three independent
experiments are shown as mean + SEM. The upper and lower edges of the box
represent the maxima and minima, respectively, while the thick lines in the middle
indicate the mean of each sample. The statistical analysis utilized the unpaired two-
tailed Student’s t-test without adjustment. Source data are provided as a Source
Data file.

Derivation of autologous ESCs from split embryos

Prompted by the above findings, our next goal was to obtain a live
monkey and a matching aESC line from a single embryo through
embryo splitting. To achieve this, we conducted both symmetric and
asymmetric embryo splitting (Fig. 4a). We transferred a total of twenty-
two 2/4th embryos at d.p.f.6-14 female surrogates, and used the
remaining matching twenty-two 2/4th embryos for ESC derivation. As a
result, six surrogates became pregnant with singletons, and we
obtained twelve spESC lines. Of these, one spESC line was genetically
matched with a 2/4th embryo-derived newborn monkey (Supple-
mentary Fig. 3¢). In short-tandem repeat (STR) analysis, we found that
17 STR loci (originated from the parents) were identical between the 2/
4th embryo-derived newborn monkey and the spESC line (Fig. 4e).
These results demonstrate that a rhesus monkey (sp-monkey #1) along
with its aESC line were indeed successfully established from a 2/4th
embryo (Fig. 4b). Currently, the sp-monkey #1 is three years old and
growing healthily under human care.

As shown above, we observed a significant difference in the
number of Epi cells in genetically matched 2/4th embryos at d.p.f.8
(Fig. 1i), and an insufficient number of Epi cells in split mouse embryos
(less than four) is known to hinder fetal development®?, while rhesus
monkey blastocysts with a higher cell number are more likely to suc-
cessfully initiate pregnancy*’. Hence, the low efficiency in obtaining
aESCs may be due to the unintended selection of 2/4th embryos with
lower Epi cell counts for transfer within genetically matched pairs.
Conversely, asymmetric embryo splitting allows the selection of 5/8th
embryos for transfer, characterized by a profile similar to 2/4th
embryos that contain a greater number of Epi cells (Fig. 1k).

Hence, we cryopreserved a total of twenty-six 5/8th embryos at
d.p.f. 5-6 for transplantation and used the remaining twenty-six mat-
ched 3/8th embryos at d.p.f. 7-8 for ESC derivation, ultimately estab-
lishing 13 spESC lines. The cryopreserved 5/8th blastocysts
corresponding to the 13 spESC lines were transplanted into 13 monkey
surrogates (Supplementary Fig. 3c¢). Three surrogate monkeys were
confirmed to be pregnant (Supplementary Fig. 3a-c). One rhesus (sp-
monkey #2) and one cynomolgus (sp-monkey #3) monkey were suc-
cessfully born (Fig. 4b). However, one cynomolgus pregnancy was
aborted at 100 days of gestation. Currently, two monkeys have sur-
vived and are growing healthily under human care. Among them, sp-
monkey #3 is three months old while sp-monkey #2 is six months old.
As expected, the STR analyses demonstrated that the 5/8th embryo-
derived newborn monkeys and the matching spESCs from 3/8th
embryos are derived from the same embryos, respectively (Fig. 4f and
Supplementary Fig. 3d).

The aESCs expressed key pluripotency markers (OCT4, SOX2,
NANOG) (Fig. 4c and Supplementary Fig. 3a), maintained normal
female monkey karyotypes after 15 or more passages (Supplementary
Fig. 3e), and demonstrated differentiation into the three germ layers
in vivo (Fig. 4d). Hence, through both symmetric and asymmetric
embryo splitting in non-human primates, we successfully established
three live monkeys and matching aESC lines.

Establishment of iPSCs and ntESCs genetically matching aESCs
In order to establish iPSCs and ntESCs with the identical genetic
background as aESCs, we derived primary fibroblasts from the ear skin
of sp-monkey #1 (Fig. 5A and Supplementary Fig. 3f). Subsequently, we
successfully established two iPSC lines (Fig. 5B). To derive ntESCs, we
followed previously established protocols for performing somatic cell
nuclear transfer (SCNT)*. We successfully generated a total of twenty-
six SCNT embryos derived from monkey fibroblasts, seven of which
developed into blastocysts at d.p.f.6 (Supplementary Fig. 3g). Among
these, six expanded or hatching SCNT blastocysts were used for
ntESCs derivation, which gave rise to one ntESC line (Fig. 5B). The
iPSCs and ntESCs expressed pluripotency genes (Fig. 5C), differ-
entiated into three germ layers in vivo (Supplementary Fig. 3h), and
maintained normal karyotypes after 15 or more passages (Supple-
mentary Fig. 3i).

Consequently, we successfully generated genetically matched
monkey iPSCs, ntESCs, and aESCs.

aESCs and ntESCs exhibit less heterogeneity in differentiation
potentials compared to iPSCs

To compare the single-cell transcriptome characteristics of aESCs,
iPSCs, and ntESCs with the same genetic background, we performed
scRNA-seq on these PSCs cultured on feeder layers and feeder-free
layers (Fig. 6a). After strict quality control, we obtained a total of
20,415 single cells from PSCs cultured on feeder layers (6788 aESCs,
5471 iPSCs, and 8156 ntESCs) and 19,727 single cells from PSCs
cultured on feeder-free layers (5942 aESCs, 8735 iPSCs and 5050
ntESCs) (Supplementary Fig. 4a-c). Using uniform manifold
approximation and projection (UMAP) analysis, we identified 11 and
3 cell clusters in PSCs cultured on feeder layers and feeder-free
layers, respectively (Supplementary Fig. 4d, e). We confirmed that
all cells were PSCs by checking that known pluripotency genes were
expressed in cell clusters (Supplementary Fig. 4d, e)*** and com-
paring them with Epi from cynomolgus monkey embryos cultured
in vitro at d.p.f.10-14 using Pearson’s correlation analysis (Supple-
mentary Fig. 4f, g)**.
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teratomas formed by spESCs demonstrated their ability to differentiate into the
three germ layers in vivo. Similar results were obtained in no less than three
independently repeated experiments. f Karyotype analysis of the spESCs showed a
normal karyotype. g Heatmap showing the expression of pluripotency genes in
spESCs, ESCs, and CES (previously reported primed cynomolgus monkey ESCs)*.
The ESCs were derived from control blastocysts in our laboratory. h Heatmap of the
correlation coefficient showing a high correlation between spESCs and ESCs based
on co-expressed genes in all cells. See also Supplementary Fig. 2f. Source data are
provided as a Source Data file.

We further defined the states of these cell clusters through cor-
relation analysis between our data and a human gastrula Carnegie
stage 7 (CS7) dataset*’, marker genes analysis, and lineage bias prob-
abilities calculated by FatelD (See Materials and Methods)*¢. Most cell
clusters were annotated as “Epi” cells, with a few cell clusters annotated
as PSCs with differentiation propensity (DPR). Taken together, we
identified a total of seven distinct cell populations in the feeder layer-
cultured PSCs, including Epil, Epi2, endoderm (Endo) DPR, mesoderm
(Meso) DPR, neural ectoderm (NE) DPR, non-neural ectoderm (NNE)
DPR, and extraembryonic mesenchyme (EXE mech) DPR (Fig. 6b, d and
Supplementary Fig. 5d). Conversely, only two cell populations were
annotated in the feeder-free layer-cultured PSCs comprising Epi and
EXE mech DPR (Fig. 6c¢, e, and Supplementary Fig. 5k).

By comparing the proportions of Epi cells and PSC with DPR, we
observed that more than 80% of aESCs and ntESCs cultured on feeder
layers were Epi cells without DPR. In contrast, 60% of iPSCs were Epi
cells without DPR and an increased proportion of PSC showing

different DPR (Fig. 6f). However, we did not observe any differences in
cell type proportions among aESCs, iPSCs, and ntESCs cultured on
feeder-free layers, with a negligible percentage of PSC cells with DPR
(Fig. 6g). The findings suggest that both aESCs and ntESCs show
reduced heterogeneity in differentiation potentials than iPSCs when
cultured on a feeder layer. In contrast, the feeder-free culture condi-
tions are more effective in reducing heterogeneity in differentiation
potentials for all three types of aESCs, iPSCs, and ntESCs.

Transcriptomic signatures of aESCs, iPSCs, and ntESCs

Next, we compared the transcriptional signatures of iPSCs and ntESCs
to those of aESCs using Epi cells without DPR. Compared to aESCs, we
detected a greater number of differentially expressed genes (DEGs) in
iPSCs than ntESCs under two culture conditions (Fig. 6h and Supple-
mentary Data 3), suggesting a large difference between iPSCs and
aESCs. Moreover, the number of DEGs in PSCs cultured under feeder-
free conditions was significantly reduced relative to PSCs cultured on
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Fig. 3 | Generation of healthy monkeys from split embryos. a Post-implantation
development of monkey control and split embryos. b An ultrasound image showing
a surrogate uterus with a gestational sac containing a representative 25-day-old
fetus (indicated by the yellow dashed box). The white arrowhead points to the
fetus. Scale bar, 1 cm. ¢, d The height and weight of newborn cynomolgus monkeys
derived from split embryos were continuously monitored from birth until 360 days
of age. Data are displayed as mean + SEM. White and black dashed lines indicate the

mean values of split embryos and control embryos, respectively. The shaded area
represents the 95% confidence interval, reflecting the variability of the data (split
embryos, n=5; controls, n=7). The upper and lower edges of the shaded area
represent the maxima and minima, respectively. The statistical analysis utilized
multiple two-tailed t-tests without adjustment. *p value < 0.05, **p value < 0.01.
Source data are provided as a Source Data file.

feeder layers (Fig. 6h, Supplementary Fig. 6a, b, and Supplementary
Data 3). These results suggest that feeder-free culture conditions
reduce the differences between iPSCs and aESCs, as well as ntESCs and
aESCs. Relative to aESCs, DEGs in iPSCs in the feeder layer culture
system (fold change (FC) >1 or <1 and p-value < 0.05) were associated
with maintenance of genomic stability, such as DNA duplex unwinding,
DNA geometric change, DNA replication, and initiation of DNA repli-
cation (Fig. 6i). In addition, when assessing genomic instability by gene
expression scoring of associated gene sets, including double-stranded
break (DSB) repair, other repair pathways, replication, checkpoint, and
messenger ribonucleoprotein (MRNP) biogenesis*’, we noted higher
scores for replication, DSB repair, and other repair pathways in iPSCs
and ntESCs cultured on feeder layers compared to aESCs. However,
checkpoint and mRNP biogenesis scores were lower in iPSCs and
ntESCs (Supplementary Fig. 6¢). When cultured on feeder-free layers,
ntESCs exhibited higher scores for DSB repair and other repair path-
ways compared to aESCs. In contrast, iPSCs showed no significant
difference in scores for DSB repair and other repair pathways but
differed significantly from aESCs in terms of scores for replication,
checkpoint, and mRNP biogenesis pathways (Supplementary Fig. 6c).
Beyond assessing genomic instability via gene expression scoring, we
also inferred copy number variations (CNVs) using the inferCNV
method. The results revealed that aESCs consistently exhibited the
lowest CNV levels under both culture conditions (Fig. 6j). Collectively,
these findings imply that aESCs potentially maintain genomic stability
better than iPSCs and ntESCs.

Previous studies have shown that transcriptional noise in cells
tends to increase with aging*®*°. Additionally, elevated transcriptional
noise is associated with exit from pluripotency®®. To assess the tran-
scriptional noise in aESCs, iPSCs, and ntESCs, we employed a pre-
viously reported method*®. We found that the lowest levels of
transcriptional noise under two culture conditions are consistently

found in aESCs (Fig. 6k). Furthermore, when we compared the coeffi-
cients of variation of the top 100 genes contributing to transcriptional
noise across the three types of PSCs, the results further support that
aESCs had the lowest levels of transcriptional noise (Supplementary
Fig. 6d). Notably, the ntESCs showed a similar pattern to the iPSCs
(Fig. 6j and Supplementary Fig. 6d). Functional enrichment analysis
suggests the conserved function and importance of these genes
(Supplementary Fig. 6e). In summary, the results may suggest that
aESCs exhibited the lowest levels of transcriptional noise under two
culture conditions.

In conclusion, our findings reveal a closer transcriptional simi-
larity between ntESCs and aESCs compared to iPSCs. Notably, feeder-
free culture conditions further diminish these transcriptional dis-
crepancies. Furthermore, aESCs may maintain genomic stability more
effectively and exhibit lower transcriptional noise compared to iPSCs
and ntESCs, but further investigation is needed to confirm these
potential differences.

Derivation of human ESCs from split embryos

Given our successful generation of monkey aESCs, we investigated the
feasibility of deriving human ESCs (hESCs) from human split embryos.
Thus, we thawed a total of nine 8- to 16-cell human embryos at d.p.f.3
and separated these into 18 split embryos by symmetric embryo
splitting, 13 of which developed into blastocysts at d.p.f.5 (Supple-
mentary Fig. 7a, g). The developmental process in split embryos,
involving compaction and morula formation at d.p.f.4, followed by
blastocyst formation at d.p.f.5, was consistent with that observed in
control embryos (Fig. 7a)”. Subsequently, when we performed IF
analysis to determine the number of ICM cells and total cells in split
embryos at d.p.f.6 (Fig. 7b), we documented significant differences
compared to control embryos (Fig. 7c and Supplementary Fig. 7f).
However, there were no significant differences in the proportion of
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Fig. 4 | Generation of aESCs and monkey from single embryos. a Schematic
diagram illustrating the experimental procedures. b Images of 2/4th and 3/8th
embryos giving rise to newborn monkeys at 150 and 20 days after birth, respec-
tively. Representative bright-field images of aESCs derived from 2/4th embryos and
3/8th embryos. Similar results were obtained in no less than three independently
repeated experiments. ¢ Representative IF images of aESCs from 2/4th and 3/8th
embryos were stained for pluripotency markers OCT4, SOX2, and NANOG. Similar
results were obtained in no less than three independently repeated experiments.

d Histological analyses of teratomas formed by the aESCs revealed their potential
to differentiate into all three germ layers in vivo. Similar results were obtained in no
less than three independently repeated experiments. e, f Genetic analysis based on
STRs examination shows that the nuclear DNA of the three-year-old and six-month-
old monkey is consistent with that of aESCs but different from that of surrogate
monkeys. The nuclear DNA of the newborn monkey and aESCs originated from
their parents. All scale bar, 100 um.

OCT4 and NANOG-positive cells relative to total cells between split
embryos and control embryos at d.p.f.6 (Fig. 7d, e). These results
indicate that the split embryos were able to develop into blastocysts
and form ICM with only a proportional reduction in the number
of cells.

To derive ESCs from split embryos, we cultured a total of four
pairs of eight split embryos at d.p.f.6 on mouse embryonic fibro-
blast (MEF) feeders (Supplementary Fig. 7b). On the second day, all
split embryos had successfully attached, and we observed out-
growth in three split embryos derived from distinct embryos,
resulting in the establishment of three hESC lines (Fig. 7f and Sup-
plementary Fig. 7c). These hESC lines expressed key pluripotency

marker genes, including OCT4, SOX2, and NANOG (Fig. 7g and
Supplementary Fig. 7d), and maintained normal karyotypes after 15
or more passages (Supplementary Fig. 7e). Additionally, bulk RNA-
seq analysis revealed the expression of 50 known pluripotency
genes at levels comparable to published human ESCs
(Fig. 7h)*731494 Moreover, in correlation analysis of gene expres-
sion patterns, we found a robust correlation between the three
hESCs and previously published hESCs**™!, indicating a high degree
of similarity in gene expression profiles (Fig. 7i).

In conclusion, we successfully derived and characterized hESCs
from human split embryos, providing evidence for the feasibility of
establishing autologous hESCs through embryo splitting.
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feeder-free layers and stained for pluripotency markers OCT4, SOX2, and NANOG.
Similar results were obtained in no less than three independently repeated
experiments. All scale bar, 100 um.

Discussion

In this study, we successfully generated monkey aESCs and demon-
strated the potential application of embryo splitting technology to
human embryos. The aESCs had the same genetic background as the
individual monkeys from the same embryonic origin and exhibited
highly similar developmental characteristics to ESCs derived from nor-
mal embryos. Previous studies comparing ESCs and iPSCs have been
challenged by genetic background variability™”>’. Here we report the
derivation of three PSCs with consistent genetic backgrounds and con-
duct a comparative analysis of their transcriptomic characteristics at the
single-cell level under different culture conditions. Our approach enables
a comprehensive comparison among the three types of PSCs in primates,
eliminating genetic background and culture condition influences.

We observed that iPSCs, compared to aESCs and ntESCs, exhib-
ited a higher degree of heterogeneity and a tendency for differentia-
tion, indicative of abnormal epigenomics’****°, This phenomenon is
notably conspicuous in the feeder culture condition, which sustains
the cells in a primed state®**°. In our detailed comparison of the epi-
blast cell population, we found that iPSCs exhibited more substantial
differences in transcriptomic characteristics compared to aESCs under
both culture conditions. The majority of DEGs were associated with
critical processes such as DNA replication, genomic stability, and cell
cycle regulation. Within iPSCs, genes like NNAT, IGFBP2, SLC2A1, and
BNIP3 showed significant differences in both culture conditions com-
pared to aESCs. Previous studies have suggested these genes are
directly associated with the maintenance and rejuvenation of plur-
ipotency in stem cells®**. However, further research is necessary to

elucidate the functional differences among these three types of PSCs.
In addition to differential expression analysis, CNV analysis revealed
that aESCs consistently exhibited the lowest CNV levels across both
culture conditions. Overall, aESCs maintain better genomic stability
compared to iPSCs and ntESCs. Furthermore, transcriptome noise
analysis within the epiblast cell group among the three PSC types
revealed that aESCs possessed the lowest levels of transcriptome
noise. ESCs offer a number of advantages, including differentiation
efficiency, genetic stability, epigenetic memory, and reproducibility.
Our study data confirm that aESCs (spESCs) closely resemble ESCs
derived from normal blastocysts. However, aESCs are currently unable
to fully replace the significant advantages of iPSCs. Furthermore, the
future clinical application of aESCs as autologous stem cell replace-
ment requires additional support through further differentiation and
in vivo studies, including safety assessments, immune rejection eva-
luations and efficacy investigations.

In this study, we used 4-cell and 8-cell monkey embryos for
embryo splitting experiments. Although both methods yielded blas-
tocyst development rates consistent with normal embryos, we
observed a discrepancy in the numbers of Epi cells in the 2/4th blas-
tocysts derived from the same embryo, with one having fewer Epi cells.
This discrepancy might explain the reduced efficiency in obtaining
aESCs using this method (1/22, 4.5%), underscoring that Epi cell count
is a crucial determinant for successful implantation®*2, When imple-
menting the 3:5 ratio splitting method at the 8-cell stage, we again
observed a disparity in Epi numbers between two split blastocysts.
Consequently, we prioritized blastocysts with a higher Epi count for
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embryo transfer and used those with a lower Epi count for establishing
ESCs. This strategic approach increased the efficiency of obtaining
aESCs (3/26, 11.5%). Such heterogeneity in the early embryo
may help explain inconsistent Epi numbers observed in 2/4th
blastocysts®* 5%, but further investigation is warranted to validate
stronger conclusions in monkeys. Moreover, deriving ESCs from split
embryos with fewer blastomeres or from individual blastomeres™ %,

and transplanting split embryos matched to these ESCs, may poten-
tially further enhance the differentiation efficiency of aESCs. However,
the comparability between ESCs derived from single blastomeres and
those from normal blastocysts requires thorough evaluation, as the
former have not undergone blastocyst formation.

In conclusion, our study not only presents an innovative approach
to generate autologous pluripotent stem cells from split embryos but
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Fig. 6 | Maintenance of stem cell characteristics and genomic stability across
aESCs, iPSCs, and ntESCs. a Schematic diagram of experiment. b UMAP visuali-
zation showing seven different cell types in PSCs cultured on a feeder layer, each
represented by a distinct color. Each stem cell type is shown separately on the right.
¢ UMAP visualization showing two cell types in PSCs feeder-free PSC, cultured on
the feeder-free layer, each represented by a distinct color. Each stem cell type is
shown separately on the right. d, e Violin plots depicting expression levels of key
lineage-associated genes across seven cell types in the feeder layer and two cell
types in the feeder-free layer, respectively. Endo differentiation propensity (DPR)
expressed genes associated with endoderm development, including FOXA2, SOX17,
and CERI****. Meso DPR exhibited elevated expression of genes related to meso-
derm formation, such as RSPO3, HANDI, and TBX3****. NE DPR expressed early
neural cell lineage markers FEZF1”’’® and genes promoting stem cell differentiation
into neural cells, such as SOX21 and SOX97°%2, NNE DPR upregulated non-
neuroectoderm genes TFAP2C, GATA3, DLXS, and CLDN10*. EXE mech DPR upre-
gulated EXE mech genes TIMPI, FN1, and COLIA2*%**, d seven cell types are
represented: Epil (n = 14864 cells), Epi2 (n = 650 cells), Endo DPR (n = 949 cells),
Meso DPR (n = 567 cells), NE DPR (n = 1162 cells), NNE DPR (n = 1607 cells), and
ExE mech DPR (n = 616 cells). These data are from one biological replicate of iPSCs,
aESCs, and ntESCs. e two cell types are shown: Epi (n = 19669 cells) and EXE mech
DPR (n = 57 cells), derived from one biological replicate of iPSCs, aESCs, and
ntESCs. For the box plots, the central line represents the median, the box bound-
aries correspond to the 25th and 75th percentiles. The length of the whiskers
indicates 1.5 times the interquartile range from the first and third quartiles.

f, g Comparison of heterogeneity in constituent cell types among aESCs, iPSCs, and
ntESCs cultured on feeder layers and feeder-free layers, respectively. h The number
of up- and down-regulated DEGs with FC >1 or <1 and p-value < 0.05, as well as
FC>1.50or < 0.67 and p-value < 0.05, in iPSCs and ntESCs cultured with and without
feeder layers, compared to aESCs. Red and blue values on the bars represent the
number of up- and down-regulated DEGs. Gene expression differences were com-
pared using two-sided Wilcoxon Rank-Sum test. Due to the small number of DEGs, p
values were not adjusted using the Benjamini-Hochberg method. i The top 10 Gene
Ontology (GO) terms and KEGG pathways were identified through functional
enrichment analysis, based on DEGs (FC >1 or <1 and p-value < 0.05). For GO terms,
p-values were adjusted using the Benjamini-Hochberg method. For KEGG path-
ways, due to the small number of DEGs, p-values were not adjusted using the
Benjamini-Hochberg method. j, k Violin plots showing the differences in CNV level
and transcriptional noise in Epi cells derived from the three PSC types (aESCs,
iPSCs, and ntESCs). For feeder layer, n = 5301 cells from one biological replicate of
aESCs, n = 3038 cells from one biological replicate of iPSCs, n = 6525 cells from
one biological replicate of ntESCs. For feeder-free, n = 5929 cells from one biolo-
gical replicate of aESCs, n = 8733 cells from one biological replicate of iPSCs,

n = 5007cells from one biological replicate of ntESCs. The differences in CNV level
and transcriptional noise were compared by two-sided Wilcoxon Rank-Sum test,
with p <0.0001 indicated by ****. For the box plots, the central line represents the
median, the box boundaries correspond to the 25th and 75th percentiles. The
length of the whiskers indicates 1.5 times the interquartile range from the first and
third quartiles.

also offers valuable insights into the characteristics of aESCs compared
to iPSCs and ntESCs. These findings highlight the potential of aESCs in
developing stem cell therapies, paving the way for further investiga-
tion into their therapeutic applications. However, limitations such as
applicability to IVF offspring, cost-effectiveness, and safety risks of
transferring split versus intact embryos must be addressed. Notably,
we propose an approach of completely separating and reassembling
blastomeres into two split embryos. This method may offer potential
advantages in rearranging spatial structure and ensuring proper gene
expression, enabling the split embryos to follow a normal develop-
mental clock to reach the blastocyst stage successfully. Consequently,
hESCs can be derived from human split embryos at d.p.f.6 successfully.
This successful derivation suggests that it might be feasible in the
future to obtain human aESCs through assisted reproductive tech-
nologies and cryopreserve these for possible future therapeutic use,
with careful consideration of ethical concerns.

This study has limitations that should be acknowledged. First,
despite advancements in asymmetric embryo splitting, the derivation
of monkey aESCs remains challenging, with room for increased effi-
ciency. This optimization may broaden the applicability of our find-
ings. Second, the scRNA-seq analysis was conducted with a limited
number of cell lines. Although it provides valuable insight into the
transcriptomic signatures of three cell types, individual differences
may affect the results. Therefore, future studies should prioritize
additional biological replicates to strengthen the robustness of con-
clusions. Third, the preliminary data from the study does not fully
support our hypothesis on the comparative advantages of aESCs over
ntESCs and iPSCs in terms of genetic stability and transcriptional noise.
This highlights the need for future research to explore these aspects
more comprehensively, which could lead to a clearer understanding of
the distinct benefits associated with each cell type. Lastly, while live
births and trophectoderm (TE) marker expression confirm partial
functionality of split embryo-derived TE cells, their capacity to form
functional trophoblast stem cells (TSCs) and support full placental
development requires validation through TSCs isolation experiments.

Methods

Ethics statement

In this study, the use of human embryos was approved by the Medicine
Ethics Committee of The First People’s Hospital of Yunnan Province
(KHLL2020-KY064). The process of obtaining informed consent for

embryo donation followed the 2016/2021 guidelines set by the Inter-
national Society for Stem Cell Research (ISSCR) and the 2003 Ethical
Guidelines for Human Embryonic Stem Cell Research jointly issued by
China’s Ministry of Science and Technology and Ministry of Health. All
donating couples voluntarily signed consent forms to donate their
surplus embryos for research purposes. No financial inducements
were provided for the donations.

The ethical treatment of primates during all procedures involving
non-human primates was conducted following the guidelines estab-
lished by the Association for Assessment and Accreditation of
Laboratory Animal Care International (AAALAC). The ethics applica-
tion was approved by the State Key Laboratory of Primate Biomedical
Research (LPBR202001018).

Monkeys

Healthy rhesus monkeys (Macaca mulatta) and cynomolgus monkeys
(Macaca fascicularis), ranging in age from 5-12 years with body weights
of 4-8 kg, were selected for use in this study. All animals were housed
at the State Key Laboratory of Primate Biomedical Research.

Semen collection

Healthy male cynomolgus and rhesus monkeys were anesthetized with
an intramuscular injection of ketamine hydrochloride (4 mg/kg). Their
penises and scrotums were washed with saline. Two aluminum foil
strip electrodes, wrapped in defatted cotton and soaked in saline, were
placed at both ends of the penis. Semen was collected using a semen
collector (Grass, S44) through intermittent stimulation. After 30 min-
utes of liquefaction at 37 °C, the semen was centrifuged at 150 x g for
3 minutes to remove the seminal plasma. The resulting samples were
stored at room temperature for future use.

Oocyte collection, ICSI, embryo culture, and embryo
transplantation

In brief, 20 healthy female rhesus monkeys and 20 healthy female
cynomolgus monkeys aged 5-12 years with regular menstrual cycles
were selected as oocyte donors for superovulation, which was per-
formed by intramuscular injection with rhFSH (Merck Serono,
recombinant human follitropin alpha, GONAL-F) for 8 days, then rhCG
(Merck Serono, recombinant human chorionic gonadotropin alpha,
OVIDREL) was injected on day 9. Oocytes were collected by laparo-
scopic follicular aspiration 32-35hours after rhCG administration.
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Follicular contents were placed in Hepes-buffered Tyrode’s albumin
lactate pyruvate (TALP) medium containing 0.3% BSA at 37 °C. Oocytes
were stripped of cumulus cells by pipetting after a brief exposure
(<1 min) to hyaluronidase (0.5 mg/ml) in TALP-Hepes to allow visual
selection of nuclear maturity metaphase Il (MII; first polar body pre-
sent) oocytes. The mature oocytes were subjected to intracytoplasmic
sperm injection (ICSI) immediately and then cultured in CMRL-1066
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(Gibco, 11530037) containing 10% fetal bovine serum (FBS) at 37 °C in
5% CO2. Fertilization was confirmed by the presence of the second
polar body and two pronuclei. Zygotes were then cultured in the
chemically defined hamster embryo culture medium-9 (HECM-9)
containing 10% fetal bovine serum at 37 °C in 5% CO, to allow embryo
development. The culture medium was replaced every other day until
the blastocyst stage. The embryos were cultured up to d.p.f.10 using
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Fig. 7 | Characterization of hESCs derived from split embryos. a Representative
bright-field developmental progression of human split embryos in vitro. Similar
results were obtained in no less than three independently repeated experiments.
Scale bar, 100 um. b Representative IF images of identical split embryos at

d.p.f.6 stained for CDX2, OCT4, NANOG, and DAPI (split embryos, n=5; controls,
n = 3). Scale bar, 50 um (long) and 100 um (short). ¢ The number of ICM cells
compared across split embryos and controls at d.p.f.6, with each dot representing
one blastocyst (split embryos, n =5; controls, n = 3). Data from 3 independent
experiments are shown as mean + SEM. The upper and lower edges of the box
represent the maxima and minima, respectively, while the thick lines in the middle
indicate the mean of each sample. The statistical analysis utilized the unpaired two-
tailed Student’s t-test without adjustment. d, e The percentage of OCT4" and
NANOG' cells out of the total number of cells (DAPI) (split embryos, n = 5; controls,
n =3). Data from 3 independent experiments are shown as mean + SEM. The upper
and lower edges of the box represent the maxima and minima, respectively, while
the thick lines in the middle indicate the mean of each sample. The statistical

analysis utilized the unpaired two-tailed Student’s t-test without adjustment.

f Representative images showing the derivation process of hESCs from split blas-
tocyst. Similar results were obtained in no less than three independently repeated
experiments. g Representative IF images of hESCs were stained for pluripotency
markers OCT4, SOX2, and NANOG. Similar results were obtained in no less than
three independently repeated experiments. Scale bar, 100 um. h Heatmap showing
the expression of pluripotency genes in hESCs and other human PSCs from pre-
vious works. The following datasets were used: human conventional ESCs
(H9_hESC1, H9 hESCL, H9 hESC3, Chan_hESCL, Chan_hESC2, and Chan_hESC3)%,
human naive ESCs (WIBR2, WIBR3 _cl 12, WIBR3 _cl 16, WIN1_1 and WIN1 2)*°, human
other PSCs (AIC-h1-M, AIC-h1-M, 4i_hESCI, and 4i hESC2)***', Brown-marked cells
were generated in our lab. i Heatmap of the correlation coefficient showing a high
correlation between hESCs derived from split embryos and other hPSCs mentioned
above, based on co-expressed genes in all cells. Brown-marked cells were generated
in our lab. Source data are provided as a Source Data file.

the methods described in previously published articles®”*’. For embryo
transplantation, the female monkeys, aged 5-10 years, chosen as sur-
rogate recipients had appropriate levels of estradiol and progesterone.
Each recipient received one or two embryos and ultrasound was used
around day 25 after transfer to confirm pregnancy and determine the
number of fetuses by detecting fetal cardiac activity and yolk sac
presence.

Human embryos acquisition and culture

Human embryos used in this research were excess cryopreserved
embryos from couples who had previously undergone successful in vitro
fertilization therapy and conceived a healthy child. Donating these
embryos did not affect their subsequent in vitro fertilization cycles.
Human embryos at d.p.f.3 were thawed following the instructions pro-
vided in the thawing media kit (Kitazato Corporation, VT102) and then
cultured in equilibrated G-2 culture medium (Vitrolife, 10132). The cul-
ture medium was replaced every other day until the blastocyst stage.

Construction of monkey split embryos

The 4-cell embryos were divided using symmetric embryo splitting,
while the 8-cell embryos were divided using asymmetric embryo
splitting in a ratio of 3:5. Specifically, the empty zona pellucida (ZP)
obtained from discarded germinal vesicle (GV) oocytes were cultured
in HECM-9 supplemented with 10% FBS at 37 °C and 5% CO2 until
further use. To separate blastomeres, 4- or 8-cell embryos were briefly
exposed (<40 seconds) to BSA-free TH3 medium containing 5 mg/ml
protease (Sigma, P8811) to remove ZP. Immediately, the embryos were
washed six times in TH3 medium until the ZP disappeared completely.
The embryos were then transferred to Ca**/Mg?-free and BSA-free TH3
with 0.025% Trypsin-EDTA (Thermo Fisher Scientific, 15400-054) at
37 °C for five minutes to facilitate blastomere separation before being
washed six more times in TH3 medium to clean any residue. The ZP-
free embryos were exposed to TH3 with 5pug/ml of cytochalasin B
(Sigma, C6762) for 5 minutes and then repeatedly aspirated and blown
into a 100 pm inside diameter pipette until the blastomeres separated.
The blastomeres and empty ZP were transferred to a manipulation
droplet of TH3 with 5ug/ml of cytochalasin B (Sigma, C6762) on the
center of dishes covered with 3 ml mineral oil (Sigma, 8042-47-5). The
blastomeres were aspirated into a 50 pm injection pipette with a 30-
degree oblique mouth, and then an empty ZP was held with a holding
pipette. Meanwhile, the ZP was ablated using a single laser pulse, and
the injection pipette containing blastomeres was immediately inserted
into the hole. Next, the blastomeres were placed inside the empty ZP.
The assembled embryos were washed 6 times in HECM-9 medium and
then transferred to a 3.5cm micro well group culture dish (Vitrolife,
16606) containing 16 microwells with HECM-9 medium. The embryos
were cultured until they reached the blastocyst stage for ESC deriva-
tion and embryo transfer.

Construction of human split embryos

Frozen-thawed human embryos should be cultured in the medium for
a minimum of one hour before they are ready for embryo splitting.
Subsequently, the embryos were briefly exposed (<40 seconds) to
Tyrode’s solution to remove ZP. They were then transferred into Ca*/
Mg?*-free PBS with 0.025% Trypsin-EDTA (Thermo Fisher Scientific,
15400-054) at 37 °C for 40 seconds to facilitate blastomere separation
before being washed six more times in G-MOPS medium (Vitrolife,
10130) to clean any residue. The embryos were repeatedly aspirated
and blown into a pipette with an inside diameter of 100 pm to separate
the blastomeres. Following the same procedure as employed for
monkey embryo splitting, the isolated blastomeres were transferred
into empty human ZP and cultured in G-2 medium until reaching the
blastocyst stage.

Derivation and culture of spESCs and ESCs

The control blastocysts at d.p.f.7 were transiently treated with 0.5%
protease to remove the ZP, and the 2/4th blastocysts at d.p.f.7-8 were
hatched from the ZP. They were then cultured on feeders in feeder-
cultured PSCs medium supplemented with 10 uM Y27632 (Selleck,
S1049)*. Fresh feeder-cultured PSCs medium containing 5 uM Y27632
was added when the blastocysts attached to the feeder layer, and it was
subsequently replaced every two days until ESC-like outgrowth
became visible. Typically, ESC-like outgrowth appears within
7-14 days. After a brief treatment with Collagenase type IV (1 mg/ml)
for approximately 10 minutes, the outgrowth is manually picked, dis-
sociated into small clusters, and placed on a new feeder layer in PSCs
supplemented with Y27632 (5uM). Within 3-5 days, the outgrowth
exhibits characteristic conventional ESC colony morphology and can
be further passaged and expanded. The feeder-cultured PSCs medium
was composed of DMEM/F12 (Thermo Fisher Scientific, 10565018), 15%
knockout serum replacement (KSR, Thermo Fisher Scientific,
A3181502), 1% nonessential amino acids (Thermo Fisher Scientific,
11140050), 0.1mM B-mercaptoethanol (Sigma, M7522), and supple-
mented with 5 ng/ml bFGF (Millipore, GFOO3AF). Subsequently, it was
mixed with hPSC XF (BI, 05-100-1 A) at a ratio of 1:4.

The 3/8th blastocysts at d.p.f.7-8 were hatched from the ZP and
then seeded on feeders in feeder-free-cultured PSCs medium?. After
48 hours, the whole attached blastocysts were incubated with accutase
for 10-15 minutes at 37 °C. All dissociated single cells were scattered
onto feeders. After 3-5 days, obvious ESC colonies can be observed.
Then, the colonies were dissociated into single cells using Accutase
and passaged onto culture dishes coated with 50 pg/ml vitronectin.
The feeder-free-cultured PSCs medium was changed daily, and the
newly established ESC lines were passaged every 3-4 days at a split
ratio of 1:4 to 1:10. Y-27632 or Clone R (STEMCELL, 5888) is necessary
for the initial passaging and culturing. Feeder-free-cultured PSCs
medium was composed of Essential 8 (Gibco, A2656101), 1 x
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Chemically Defined Lipid Concentrate (Gibco, 11905031), 1 x Glutamax
(Gibco, 35050061), 1.94 mg/I L-Glutathione reduced (Sigma, G4251),
100 ug/l of Nodal (Bio-Techne, 3218-ND-025), 2 uM IWR-1 (Selleck,
S7086) and 10 ng/ml of activin A (Peprotech, 120-14E). Prepared
feeder-free medium could be kept at 4 °C for up to 1 week.

Derivation and culture of aESCs from monkey split blastocysts
For symmetric embryo splitting, one of the two 2/4th blastocysts
derived from the same embryo was used to establish ESCs using the
SpESCs derivation method. Meanwhile, the matched 2/4th blastocyst
was utilized for embryo transfer to obtain animals. For asymmetric
embryo splitting, genetically matched 3/8th and 5/8th blastocysts
were used. The 3/8th blastocyst was employed for establishing ESCs
using the spESCs derivation method, while the 5/8th blastocyst was
cryopreserved following the instructions provided by reagent kit
(Kitazato Corporation, VT101). Once ESCs were successfully derived
from the 3/8th blastocyst, the thawing process of the cryopreserved 5/
8th blastocyst was carried out according to the instructions provided
by reagent kit (Kitazato Corporation, VT102), followed by its sub-
sequent transfer to obtain animals.

Primary monkey fibroblast isolation and culture

In brief, the two-month-old rhesus monkey ear skin samples were
sterilized with 75% ethyl alcohol, washed with PBS, and then cut into
pieces. After removing the hair and fat tissues, the pieces were adhered
to the culture dish. Fibroblasts were cultured in DMEM supplemented
with 10% FBS and 1% penicillin/streptomycin.

Monkey SCNT

The procedure of SCNT was carried out following previously estab-
lished protocols®. Briefly, the MIl oocytes were treated with TH3
containing 5 pg/ml cytochalasin B at 37 °C for 5 minutes, followed by
the removal of the spindle using the spindle viewer system. After a
brief incubation of donor fibroblasts with Sendai virus (GenomONE,
ISK-CF-001-EX), the donor cells were inserted into the perivitelline
space of the enucleated oocytes using a laser perforation system. The
fusion was completed after 1.5 to 2 hours. For chemical activation, the
reconstructed oocytes were treated with HECM-9 containing 5 pM
calcium ionophore for 5 minutes, followed by incubation in HECM-9
containing 2 mM 6-dimethylaminopurine (Sigma-Aldrich, D2629) and
10 nM trichostatin A (Sigma-Aldrich, T8552) for 5 hours. After being
activated for 6 hours, the mRNA of H3K9me3 demethylase KDM4D
(1000 ng/ul, 10 pl) was injected. The SCNT embryos were cultured to
the blastocyst stage and utilized for establishing ESC lines.

Generation and culture of iPSCs and ntESCs from primary
fibroblasts

The iPSC lines were generated using the Sendai Reprogramming Kit
(Thermo Fisher Scientific, A16518) according to the manufacturer’s
instructions. Subsequently, the iPSCs were cultured using established
feeder layers culture system as previously described®. The SCNT
blastocysts at d.p.f.7 were transiently treated with 0.5% protease to
remove the ZP, and cultured on feeders in feeder-cultured PSCs
medium supplemented with 10 uM Y27632 (Selleck, S1049). Following
the same procedure as ESCs derivation from 2/4th blastocysts, the
ntESCs were cultured using established feeder layers culture system as
previously described®.

Conversion of feeder-cultured PSCs into feeder-free-

cultured PSCs

The feeder layer medium was removed and washed twice with feeder-
free-cultured PSCs medium. Monkey PSCs were dissociated using
Accutase (Gibco, A1110501) and seeded onto Vitronectin XF (STEM-
CELL, 07180)-coated plates in an appropriate volume based on cell
lines and growth ratio. For the first three passages, passaging was

performed at high density (1:1, 2 ratio) to increase viability and pro-
liferation rate. After 5-10 passages, stable growth of PSCs in feeder-
free-cultured PSCs medium was achieved.

Derivation and culture of hESCs from human split blastocysts
The procedure for culturing feeder-dependent hESCs was conducted
according to previously described methods®. Briefly, the human
blastocysts were hatched from the ZP at d.p.f.6 and then seeded onto a
feeder layer in XF hEPS medium. After 48 hours, the entire attached
blastocysts were incubated with Accutase at 37 °C for 10-15 minutes to
dissociate into single cells. These dissociated cells were then scattered
onto a culture dish coated with Laminin 521 (Thermo Fisher Scientific,
A29248). The medium was refreshed every 2 days.

Embryo immunofluorescent staining

Embryos were fixed with 4% paraformaldehyde and 0.1% polyvinyl
pyrrolidone (PVP) for 15 minutes at room temperature and washed
three times with PBS, and then incubated overnight with 0.3% Triton
X-100 and 0.1% PVP at 4 °C. After washing with PBS three times,
embryos were blocked for 2 hours in block buffer (3% bovine serum
albumin + 10% fetal bovine serum + 0.1% PVP). Then, embryos were
incubated overnight at 4 °C with mouse anti-OCT4 antibody (Santa
Cruz, sc-5279) diluted with 1:200, rabbit anti-CDX2 antibody 1:200
(Abcam, ab76541), goat anti-GATA6 antibody 1:400 (R&D Systems,
AF1700) and goat anti-NANOG antibody 1:200 (R&D Systems, AF1997).
The next day, the embryos were washed three times with PBS con-
taining 0.01% Tween-20 and 0.1% PVP and incubated in blocking buffer
with anti-rabbit antibody (Thermo Fisher Scientific, A-21447), anti-
mouse antibody (Thermo Fisher Scientific, A-31570) and anti-goat
antibody (Thermo Fisher Scientific, A-31572) for 2hours at room
temperature. Nuclei were stained with DAPI for 30 minutes at room
temperature. Finally, the stained embryos were washed with PBS
containing 0.01% Tween-20 and 0.1% PVP three times (10 minutes
each) before taking a picture under a microscope.

Microsatellite parentage analysis of genomic DNA employing
short tandem repeat (STR)

DNA from the oocyte donor, sperm donor, surrogate, newborn mon-
key, and aESCs was extracted using the Wizard Genomic DNA Pur-
ification Kit (Promega, Al125) following the manufacturer’s
instructions. Total seventeen microsatellites (STRs: D2S102, D5S820,
D6S2741, D6S311, D7S1827, D8SI1106, D10S1432, D12S86, D13S765,
D14S3306, D15S644, D165415, D17S1290, D18S536, D19S255, D21S1256
and DXS8043) were selected to detect genotype of aESCs and infant.
Locus-specific primers each containing a fluorescent dye (FAM/
TAMRA/JOE) were used for PCR amplification in batches. The touch-
down PCR conditions for each STR locus are set up (from 65 °C, down
to 58 °C, and amplified 30 cycles at 58 °C). Amplification products were
run on an ABI 3130XL sequencer following the manufacturer’s
recommendations, and the Liz 500 (Applied Biosystems, Foster City,
CA) size standards were included to establish allele size. The results
were analyzed by the software GeneMapper v4.0.

Bulk RNA sequencing (RNA-seq) and transcriptomic analysis

Total RNA was extracted from spESCs, ESCs, and hESCs using the
TRIzol™ reagent (Thermo Fisher Scientific, 15596018) according to the
manufacturer’s instructions. Subsequently, an RNA library was gener-
ated using the NEBNext® Ultra RNA Library Prep Kit for Illumina® (NEB
England BiolLabs, E7530L), and sequencing was performed on the
HiSeq X Ten platform. Raw reads were subjected to adaptor trimming
and filtering of low-quality reads by fastp (v0.21.4)*°. Qualified reads
were mapped to the corresponding reference genome (Macaca_fasci-
cularis_5.0 for Macaca fascicularis, and GRCh38 for Homo sapiens)
using Hisat2 (v2.2.1)’°. Gene expression was quantified from the refined
BAM files using StringTie (v2.0.4)"" and is reported as transcripts per
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million (TPM). Integration and analysis of data from this study and
published sources identified co-expressed genes across all cells®.
Correlation heatmaps were plotted using pheatmap packages (version
1.0.12). Notes: one spESCs did not meet the quality control standards
and was excluded from subsequent experiments.

scRNA-seq library preparation, sequencing, and pre-processing
After dissociating PSCs using IV collagenases, the cells were treated
with TrypLE Express Enzyme to maintain a single-cell state. Subse-
quently, the cells were loaded onto the 10 x Genomics Chromium
system and prepared for library construction following the manu-
facturer’s instructions. The raw data were aligned to the Macaca
mulatta reference genome (Mmul_10) and quantified using CellRanger
software (Version 6.0.2). Genes expressed in fewer than three cells
were excluded from the analysis. Additionally, doublet detection and
removal were performed using the R packages DoubletFinder and
Seurat. Subsequently, cells with gene count below 1800 and above
7500 were excluded, which may indicate low quality or non-single
cells. For detailed quality control criteria, please refer to Supplemen-
tary Fig. 4. The downstream analysis, including data normalization,
identification of highly variable genes (HVGs), dimensionality reduc-
tion, and clustering of cells was conducted utilizing the Seurat R
packages (https://satijalab.org/seurat).

DEGs identification and cell cluster annotation
We determined the overlap between the expressed genes in all cell
clusters and the known pluripotency genes*®*'. Then, we computed
the mean expression levels and cell expression proportions of the top
30 pluripotency genes in each cell cluster and visualized them by the
“DotPlot” function of Seurat. Next, we integrated our data with scCRNA-
sequencing data from in vitro cynomolgus embryos** and in vivo CS7
human embryos®, enabling the identification of Epi cells.
Correlation analysis between our scRNA-seq dataset and a
Carnegie stage 7 (CS7) human gastrula dataset revealed that most
cell clusters of PSCs grown in two different conditions maintained a
pluripotent state without differentiation propensity (DPR)*, which
we annotated as “Epi”. However, a few cell clusters may exhibit
different DPR (Supplementary Fig. 5a, i). This prompted us to
hypothesize that while these cell populations are PSCs, they might
have initiated the expression of certain genes associated with dif-
ferentiated cell types in the transcriptome. To test this hypothesis,
we initially compared each cell cluster with Epi to analyze DEGs. The
Seurat package’s FindMarkers function was used to identify DEGs
between each cell cluster (excluding Epi) and the Epi cell cluster,
with a p-value < 0.05 as gene set A. Then, gene set B (Marker genes
for each cluster) was identified by the “FindAllMarkers” function
with the cutoff of p value < 0.05. The intersection of gene set A and
gene set B was taken to obtain the collection of significant and
specific DEGs for each cell cluster (Supplementary Fig. 5b and
Supplementary Data 1). Using these DEGs in combination with
known signature genes, five cell populations with different DPR
were annotated in PSCs cultured on feeder layers, each highly
expressing some specific genes (Supplementary Fig. 5b). Addition-
ally, there is a cell population (cluster 10) that exhibits tran-
scriptomic similarity to the defined Epi. Therefore, we evaluated
these two cell populations based on known pluripotency genes and
designated them as “Epi2” according to the scoring results (Sup-
plementary Fig. 5¢). In contrast, for the PSCs cultured on feeder-free
layers, besides Epi cells, only EXE mech DPR was annotated, which
expressed EXE mech specific genes such as FNI, COLIA2, COL1AI,
and TIMP3 (Supplementary Fig. 5k and Supplementary Data 2).
After excluding stem cells with DPR, we compared gene expres-
sion between iPSCs and aESCs, as well as ntESCs and aESCs. We iden-
tified the genes with p value < 0.05 and different FC thresholds (FC>1
or <1 and FC =15 or <0.67) as DEGs.

Cell fate prediction

The FateID method uses an iterative random forest classification
strategy to quantify bias towards specific cell fates in single-cell tran-
scriptome datasets and calculate the pre-existing probability of each
progenitor cell for one or more alternative terminal fates*. We inte-
grate our single-cell transcriptomic data with published articles to
identify cell differential biases using the integrated expression matrix
and reference cells, including Meso****, Endo****, NNE*, EXE mech®"**,
and NPCs”. After excluding the reference cell types, we compute each
cell’s fate bias using the FatelD package and define cell types based on
the probability values of the fate bias. The results further validate the
cell-type annotation (Supplementary Fig. 5e-h, j).

Gene functional enrichment analyses for DEGs

The DEGs (p-value<0.05 and FC>1 or <1) were subjected to gene
functional enrichment analysis using clusterProfiler (v4.0.2)”> based on
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) pathways. Then, we calculated the proportion of up- and
down-regulated genes enriched in each term and used ggplot2 (v3.4.3)
to visualize the results.

Gene expression scoring for the gene sets associated with
genomic instability

The gene sets mentioned in the previous work were used to evaluate
the genomic instability of the Epi cells in the three types of PSCs using
the Addmodulescore function of the Seurat package’. To compare
genomic stability differences among the Epi cells in the three types of
PSCs, we conducted a rank-sum test using the wilcox test function
from rstatix package (v0.7.2) and adjusted the p-value for multiple
testing using the false discovery rate (FDR) method.

Copy number variation inference

The initial CNVs for each Epi cell from each type of PSCs were esti-
mated using the inferCNV package of R (version 1.8.1)"*. The CNV
matrix was calculated using the ‘run’ function, where each value in the
CNV matrix is adjusted by subtracting one to represent the CNV score
for each cell. The CNV level of each cell is defined as the mean of the
absolute values of the CNV scores for all genes within that cell. Dif-
ferences in CNV levels of Epi cells among the three types of PSCs were
compared using the rank-sum test via wilcox_test function, with the p-
values adjusted using the FDR method.

Estimation of transcriptional noise

The methodology described in previous work was used to quantify
transcriptional noise in the gene expression®. First, all cells were
downsampled to have equal total UMI counts. Then, the number of
cells was further downsampled to ensure an equal number of Epi cells
from each type of PSCs for subsequent comparative calculations. Next,
the genes were categorized into 10 equally sized bins according to
their mean expression levels, excluding the first and last bins. The
genes with the lowest 10% coefficient of variation in each bin
were selected as the minimal fluctuation gene set. Based on this gene
set, the downsampled raw count matrix was subsetted and subjected
to square root transformation. Next, the Euclidean distance between
the expression of each cell and the average expression of all cells
within the same types of PSCs was calculated as a measure of tran-
scriptional noise for each cell. To statistically evaluate the differences
in transcriptional noise among different types of PSCs in the Epi cells,
we performed a rank-sum test using the wilcox_test function and
adjusted the p-values for multiple testing using the FDR method.

We also performed functional enrichment analysis on the minimal
fluctuation gene set using clusterProfiler (v4.0.2)”. Additionally, pair-
wise rank-sum tests were conducted on the top 100 genes with mini-
mal changes to assess transcriptional noise differences among Epi cells
from three types of PSCs.
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Statistics and reproducibility

The statistical differences in Fig. 1g (cynomolgus monkey 2/4th
embryos, n=176; identical pairs, n=56; controls, n=169), Fig. 1h
(cynomolgus monkey 3/8th and 5/8th embryos, n = 92; identical pairs,
n =40; controls, n =53), Fig. 1k (controls, n =13; 2/4th embryos, n =18,
9 pairs; 3/8th embryos and 5/8th embryos, n=18, 9 pairs), Supple-
mentary Fig. 1e (rhesus monkey 2/4th embryos, n = 72; identical pairs,
n=22; controls, n=77), Supplementary Fig. 1f (rhesus monkey 3/8th
and 5/8th embryos, n=70; identical pairs, n=42; controls, n=44),
Fig. 2b (2/4th blastocysts, n=25, 3/8th blastocysts, n=26; controls,
n=45), Fig. 2c (3/8th blastocysts, n=26; controls, n =45), 7c-e (split
embryos, n=5; controls, n=3), and Supplementary Fig. 7f (split
embryos, n=5; controls, n=3) were analyzed by unpaired two-tailed
Student’s t-test. The statistical differences in Fig. 1i (2/4th embryos,
n=18, 9 pairs; controls, n=13), Fig. 1j (3/8th embryos and 5/8th
embryos, n=18, 9 pairs; controls, n=13), and Supplementary Fig. 1li-1
(controls, n=13, 2/4th embryos, n =18, 9 pairs; 3/8th embryos and 5/
8th embryos, n=18, 9 pairs) were analyzed by paired two-tailed Stu-
dent’s t-test. Multiple t-tests were used to analyze the weight and body
length comparison between split embryos (n=35) and controls (n=35)
shown in Fig. 3c, d. GraphPad Prism 6 software was used for analyzing
data. The statistical differences in Fig. 6j, k, Supplementary Fig. 5c, and
6c were analyzed with the unpaired Wilcoxon test function from the
rstatix package in R (version: 0.7.2), while Supplementary Fig. 6d was
analyzed with the paired Wilcoxon test. Source data are provided with
this paper.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw data generated in this study have been deposited in the
Genome Sequence Archive” in National Genomics Data Center’,
China National Center for Bioinformation / Beijing Institute of Geno-
mics, Chinese Academy of Sciences database under accession code
CRA013609 and HRA006090. Source data are provided with
this paper.
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