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In eukaryotic cells, reactive oxygen species (ROS) serve as crucial signaling

components. ROS are potentially toxic, so constant adjustments are needed to
maintain cellular health. Here we describe a single-cell, mass cytometry-based
method that we call signaling network under redox stress profiling (SN-ROP) to
monitor dynamic changes in redox-related pathways during redox stress. SN-
ROP quantifies ROS transporters, enzymes, oxidative stress products and
associated signaling pathways to provide information on cellular redox reg-
ulation. Applied to diverse cell types and conditions, SN-ROP reveals unique
redox patterns and dynamics including coordinated shifts in CD8" T cells upon
antigen stimulation as well as variations in CAR-T cell persistence. Further-
more, SN-ROP analysis uncovers environmental factors such as hypoxia and T
cell exhaustion for influencing redox balance, and also reveals distinct features
in patients on hemodialysis. Our findings thus support the use of SN-ROP to

elucidate intricate redox networks and their implications in immune cell
function and disease.

Eukaryotic cells use oxygen as an energy source and must con-
currently manage the reactive oxygen species (ROS) that are
byproducts of the energy extraction process'’. ROS are capable
of reacting with various subcellular structures and can precipitate
a range of cellular outcomes®. ROS are double-edged swords:
These molecules serve as crucial mediators of signaling but are
potentially toxic or stress inducing*. The impact of ROS on cel-
lular destiny hinges on a delicate equilibrium between their levels
and the prevailing cellular conditions. Achieving a detailed
understanding of oxidative stress regulation necessitates simul-
taneous examination of ROS production and elimination systems

as well as their downstream effectors within the spatial and
temporal confines of the cell*”’.

Cells regulate ROS levels through mechanisms that localize ROS
production and by elimination through the action of antioxidant sys-
tems. ROS molecules include the superoxide anion (02™) and hydro-
gen peroxide (H,0,®. Although 02" is generated in various cellular
compartments, primarily by enzymes such as NADPH oxidases and
mitochondrial electron transport chains, 02" levels are kept low due
to its rapid conversion to H,0, by superoxide dismutases (SODs),
which exist in cytosolic, extracellular, and mitochondrial forms. H,0,
is generated by various oxidases in multiple subcellular locations,
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including the endoplasmic reticulum and peroxisomes’. The decom-
position of H,0, is catalyzed by antioxidants like catalase, glutathione
peroxidase, and peroxiredoxins to ensure the balance between ROS
production and elimination®. The H,0, balance is impacted by the
transport of H,0, across subcellular compartments through aqua-
porins and by activities of transcription factors, such as NRF2 and
phosphorylated pNFkB (pNFkB), which induce synthesis of anti-
oxidant defense proteins that are crucial for redox homeostasis and
signaling™.

ROS regulate vital cellular processes including growth factor sig-
naling, the DNA damage response, stress adaptation, proliferation, and
apoptosis'. For example, the binding of extracellular growth factors to
receptor tyrosine kinases triggers a surge in ROS levels, leading to the
oxidation of specific cysteine residues of protein tyrosine phospha-
tases, which abolishes their enzymatic activities and amplifies receptor
tyrosine kinase-mediated signaling'?. High ROS levels can harm bio-
molecules. Oxidative damage to DNA bases, which can lead to repli-
cation stress, is primarily repaired through the base excision repair
pathway, initiated by a DNA glycosylase that removes damaged bases,
followed by the recruitment of the apurinic/apyrimidinic endonu-
clease APEI”. Notably, APEl-mediated redox signaling facilitates
binding of essential antioxidant transcription factors like pNFkB. This
highlights the intricate relationships involved in redox homeostasis
and emphasizes the importance of studying multiple redox pathways
at the single-cell level for a detailed understanding of the redox reg-
ulation network.

Conventional proteomics techniques, such as mass spectrometry,
can identify broad protein alterations resulting from ROS exposure but
do not provide single-cell level resolution. Recent advancements in
single-cell mass spectrometry offer a promising alternative, albeit with
challenges in throughput™. Single-cell mass cytometry and advanced
multiplexed imaging techniques have the potential to overcome these
limitations. These methods can simultaneously assess intracellular
conditions and surface immunophenotypes, offering a more detailed
view of cellular states®. For instance, single-cell metabolic regulome
profiling on antibody-based proteomic platforms allows quantification
of the metabolic characteristics of individual cells'*”. Despite these
advances, achieving a complete single-cell profile that encompasses
the entire oxidative stress response—including the identification of
ROS sources, scavengers, affected targets, and the signaling pathways
involved—remains an unmet challenge.

In this study, we utilize multi-parameter, single-cell mass cyto-
metry to map redox-associated signaling networks within individual
cells. To develop the signaling network under redox stress profiling
(SN-ROP) approach, we conduct a comprehensive screening of more
than 100 antibodies targeting redox-related proteins to identify those
suitable for single-cell profiling. The SN-ROP approach enables us to
trace key redox dynamics involved in T cell activation and to identify
significant alterations within the ROS network. We apply SN-ROP to
analyze chimeric antigen receptor T (CAR-T) cells and other immune
cells derived from patients with conditions including chronic hemo-
dialysis and hepatocellular carcinoma, uncovering previously unrec-
ognized signaling profiles associated with clinical outcomes or specific
cellular environments. In summary, SN-ROP serves as a high-resolution
platform for investigating redox-associated signaling adaptations at
the single-cell level and provides new insights into immune regulation
and disease pathophysiology.

Results

SN-ROP: A multiplexed tool for single-cell analysis of redox-
associated signaling

The regulation of redox homeostasis is akin to the metabolic reg-
ulome’s control over metabolic states. Both involve complex networks
of regulatory elements and signaling pathways that manage produc-
tion, neutralization, and cellular responses to stimuli’. To investigate

the interconnected signaling pathways involved in redox regulation,
we aimed to simultaneously quantify the abundances of ROS trans-
porters, pivotal ROS-generating and ROS-scavenging enzymes and
their regulatory modifications (e.g., phosphorylation), products of
prolonged oxidative stress (e.g., sulfonic oxidation modification of
proteins), and the transcription factors and signaling molecules that
drive specific redox programs. Collectively, these elements form a
redox-associated signaling network, which we systematically mapped
using our SN-ROP platform.

To identify the most useful markers of redox-associated sig-
naling networks, we exposed six distinct cell types, macrophage
Raw264.7 cells, neuroblastoma SY5Y cells, endothelial HUVECs,
cardiomyocyte HL-1 cells, Jurkat T cells, and microglial SM826 cells,
to varying concentrations and durations of H,O, treatment to
simulate different ROS challenges. We evaluated 103 commercial
antibodies to redox-associated factors under each of these condi-
tions (Supplementary Table 1). By leveraging a fluorescent cell bar-
coding technique’, we streamlined the analysis of 72 different
experimental setups (six cell types, three H,O, concentrations, and
four time points) into a single flow cytometry assay for the equiva-
lent of over 7,000 staining experiments (Fig. 1a and Supplementary
Figs. 1a, 2a). This approach enabled the characterization of redox-
regulated signaling adaptations across diverse cell types and
conditions.

To select the most relevant antibodies for our SN-ROP panel, we
first filtered out the antibodies that did not show any significant
responses under any conditions compared to the 0-h baseline. We
then grouped the remaining 72 antibodies into seven modules based
on their co-regulation patterns (Supplementary Fig. 1b). Within each
module, we calculated a weighted average score to assess the relative
importance of each antibody and ranked them accordingly. To capture
both redox and broader signaling aspects, we included eight anti-
bodies targeting signaling pathways critical to redox balance, mTOR,
HIFla, pNFkB, phospho-S6 (pS6), c-JUN, phospho-AKT (pAKT),
phospho-ERK (pERK), and phospho-p38MAPK. These antibodies were
used in combination with antibodies against markers of phenotypic
state to generate six panels that were used to analyze different sample
types, disease models, and clinical cohorts using mass cytometry
(Fig. 1b). A complete list of all signaling and phenotypic antibodies
used in SN-ROP panels is provided in Supplementary Table 2. By
simultaneously profiling 33 ROS-related proteins, SN-ROP captures
cell-type-specific and pathway-specific redox responses (Supplemen-
tary Fig. 3 and 4), distinguishing it from traditional bulk ROS
measurements.

Given the widespread use of mass spectrometry for redox status
assessment, we verified our antibody-based SN-ROP mass cytometry
method against this technique. We first applied SN-ROP to blood cells
from ten healthy individuals and compared these findings with data
from a mass spectrometry-based quantitative proteome dataset from
four donors” (Supplementary Fig. 2b). There was a notable con-
cordance between the SN-ROP and mass spectrometry-based datasets
including a high correlation between Catalase and Ref/APElL
levels (Fig. 1c).

Next, we assessed the robustness of SN-ROP by analyzing redox
network behaviors in CD8* T cells from OT-1 mice following antigen-
specific peptide stimulation. Specifically, CytoScore, which measures
the average expression of key redox markers in the cytoplasm, and
MitoScore, which quantifies mitochondrial-specific redox markers,
both exhibited highly correlated trends over time (Fig. 1d, Supple-
mentary Fig. 2c). This strong correlation underscores the capability of
SN-ROP to capture dynamic redox regulation at the single-cell level
across different cellular compartments. Additionally, we compared the
SN-ROP profiling results with previously reported RNA-seq measure-
ments in Jurkat cells®®, which further validated the relationship
between RNA and protein expression levels in response to oxidative
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stress (Supplementary Fig. 5 and Supplementary Table 3). These
observations highlight the methodological soundness of SN-ROP.

We then used SN-ROP to explore the redox profiles of various
immune subpopulations under diverse conditions. First, we analyzed
whole blood from healthy individuals (Supplementary Tables 4, 5).
This analysis revealed that each cell type has a unique redox pattern
(Fig. 1e). Specifically, markers such as Ref/APE1 are primarily associated
with T and B cells, whereas NNT and PCYXL are significantly enriched
in neutrophils. These findings align with our dimension reduction

analysis: The UMAP plot, based on solely redox-related features,
revealed distinct segregation of the six major immune cell categories
(Fig. 1f). Interestingly, we observed a group of cells composed of mixed
lineages, which may be transitional cells with overlapping redox
characteristics, as indicated by the differential cellular composition of
effector T cells and memory T cells (Supplementary Fig. 6).

To further validate the relationship between the SN-ROP profile
and immune cell phenotypes, we employed a machine learning strat-
egy. Algorithms were trained with the SN-ROP profiles from eight
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Fig. 1| Development and validation of the SN-ROP platform. a Overview of the
fluorescence cell barcoding strategy. Created with BioRender.com and used with
permission under an Academia Sinica institutional publication license. b Overview
of the targets of 25 ROS-related antibodies and 8 signaling-related antibodies,
collectively referred to as the SN-ROP panel. Antibodies were conjugated with
heavy metal isotopes for CyTOF analysis. Created with BioRender.com and used
with permission under an Academia Sinica institutional publication license.

¢ Pearson correlation analysis comparing marker expression in immune popula-
tions from healthy human donors determined using SN-ROP to data from a mass
spectrometry-based quantitative proteome dataset®. Each circle represents the
mean of one of the 18 immune cell subsets, distinguished by colors. CyTOF data
(ASINH transformed) were collected from 10 donors, and mass spectrometry data
(logl0 transformed) were obtained from 4 samples. The solid line indicates the
fitted linear regression; the shaded area represents the 95% confidence interval. The
Pearson correlation coefficient (R) and exact two-sided P values are indicated.

d Pearson correlation analysis comparing CytoScore and MitoScore, which

represent the overall redox states of cytoplasmic and mitochondrial compart-
ments, respectively. Circles represent mean population values for each activated
CDS8" T cells from OT-1 mice, colored by experimental day. Each data point repre-
sents triplicate measurements from CyTOF data, with ASINH-transformed expres-
sion data analyzed exclusively by mass cytometry. The solid line indicates the fitted
linear regression; the shaded area represents the 95% confidence interval. The
Pearson correlation coefficient (R) and exact two-sided P values are indicated.

e Heatmap of ASINH transformed mean expression levels of all evaluated SN-ROP
markers across various immune cell lineages. f UMAP-based dimensionality
reduction of SN-ROP data from 10 healthy donors. Colors indicate lineage identity
defined by the surface markers. g Sensitivity versus specificity for training and test
data. A subset of donors (n=8) was used to train supervised machine learning
algorithms to classify different immune cell types utilizing ROS markers as features.
The trained models were subsequently tested on a separate set of donors (n=2).
h Mean average impacts of SN-ROP components in definition of immune cells,
colored by immune cell types.

healthy donors, and the predictive model was tested using SN-ROP
data from two additional donors. The results demonstrated prediction
accuracies exceeding 95% for the six main immune subsets based on
redox features only (Fig. 1g). Importantly, each marker within the SN-
ROP panel played a unique role in lineage identification (Fig. 1h). For
example, CD36 contributes to the definition of monocytes, and the
glutathione peroxidase GPX4 is important for the definition of neu-
trophils. In summary, these experiments confirmed that the SN-ROP
method accurately detects redox patterns associated with cell lineage.

SN-ROP uncovers dynamic redox shifts in CD8" T cells post-
stimulation

To investigate whether T cells exhibit distinct redox regulatory net-
works under conditions with different functional and bioenergetic
demands, we activated CD8" T cells from OT-1 mice with antigen-
specific peptides and monitored the samples over time (from day O to
day 5) using SN-ROP. Utilizing UMAP for dimensionality reduction and
focusing on redox regulators, we noted distinct separations among
samples from various time points (Fig. 2a and Supplementary Table 6).
As indicated by the clustering of cells from identical collection inter-
vals, there was a shift in the redox regulatory landscape during T cell
activation and dynamic changes in expression levels of all 33 SN-ROP
markers (Fig. 2b).

To further elucidate the temporal dynamics of the redox changes,
we employed SCORPIUS to construct a pseudotime axis that mirrors
the cellular phenotypic and redox states (Fig. 2c and Supplementary
Figs. 7, 8). The dynamic changes of redox-related markers were
visualized as the rate of change in expression levels of each marker
over pseudotime (Fig. 2d). Through this analysis, two transition points
where marker modulation was coordinated were identified. The initial
transition phase (pseudotime 0.3) was marked by the decrease in
acetylation of SOD2 at K68 (SOD2(K68Ac)), signaling the initiation of
mitochondrial dismutase activity”. This was accompanied by an
increase in ribosomal protein pS6 and molecular chaperone HSP70,
indicating that biosynthetic processes like mRNA translation and
protein folding are upregulated soon after T cell stimulation. Following
this phase, an increase in proteins associated with anti-oxidative redox
homeostasis was observed, potentially reflecting the need for ROS
scavenger activities resulting from increased ROS production that
accompanies biosynthesis and bioenergetic shifts upon T cell
activation”’. Notable components of this upregulation include anti-
oxidants (GPX4, Catalase), NADPH production (the nicotinamide
nucleotide transhydrogenase NNT), protein folding (QSOX1), and
redox signaling (p38MAPK and pNFkB). During this coordinated redox
transition, expression of TCF1/7, a transcription factor that is a marker
of T cell stemness®, was elevated.

At the second transition point (pseudotime around 0.7), a
reduction in anti-oxidation activities was observed, including

decreases in pNFkB, the glutathione reductase GR, and GPX4 levels,
suggesting a shift in the redox buffering balance. There were also
upticks in the levels of oxidized protein tyrosine phosphatases
(oxPTPs), which are associated with sustained oxidative stress within
the cell’*. At the second transition point, we also detected reductions
in TCF1/7 and increases of EOMES and TIM3, indicative of a progres-
sion of the T cells into a terminally exhausted state. These findings
highlight the dynamic interplay between redox regulation and T cell
exhaustion, offering new insights into the molecular processes driving
T cell dysfunction in chronic conditions.

SN-ROP analysis also revealed dynamic changes across various
subcellular compartments and molecular pathways (Fig. 2e). For
instance, after stimulation, there was a notable increase in the
expression levels of plasma membrane receptors CD36 and OLR1,
which are involved in recognizing oxidized low-density lipoproteins®.
These levels peaked between the initial and subsequent transition
phases. Similarly, Catalase and ACOX3 (two enzymes located in per-
oxisomes) and the nuclear DNA damage-associated molecules p53 and
53bpl exhibited synchronized increases from the start of stimulation
until the second transition point. This trend of coordinated expression
was also evident in proteins engaged in the same biological functions
but situated in different subcellular locales such as QSOX1, which is
localized to the Golgi apparatus, and ERO1B, which is found in the
endoplasmic reticulum; both these proteins are involved in disulfide
bond formation**?’. We also observed distinct redox responses in
various subcellular compartments suggestive of a sequential pattern
of redox signal transduction. For example, the increase in oxidation of
the mitochondrial protein DJ1 preceded the rise in oxidation of cyto-
solic PTP. Furthermore, there was a gradual augmentation in Ref/APE1
and its subsequent redox effector pNFkB (Fig. 2e), highlighting the
complex and coordinated intracellular redox network that spans
pathways and cellular compartments to maintain redox balance.

A correlation matrix across all redox regulators identified four
distinct groups of features with analogous correlation patterns
(Fig. 2f). Among these, a cassette enriched with protein translation and
folding elements, including pS6, HSP70 and GR, the latter crucial for
maintaining a reductive environment conducive to proper protein
folding, was observed. This grouping also contained transcription
factors TCF1/7 and Ref/APEl, suggesting a link between protein
synthesis and folding with the fates of activated CD8" T cells. Another
cassette was enriched with kinase signaling, marked by upregulation of
oxPTP and downstream receptor tyrosine kinases such as pERK and
factors related to terminal exhaustion like EOMES and TIM3. A DNA
damage and peroxidation cassette encompassing the aquaporin AQPS,
Catalase, and ACOX3 as well as DNA damage marker 53bpl and T cell
activation markers CD137 and PD1 was also identified. Finally, an anti-
oxidation cassette that included anti-oxidation regulators such as
pNFkB, KEAP1, oxidized DJ1 (oxDJ1), and GPX4 and disulfide bond
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formation molecules QSOX1 and EROI1B was delineated. Intriguingly,
levels of checkpoint receptors like LAG3 and CTLA4, which are acti-
vated upon persistent stimulation, were correlated with anti-oxidation
modules, demonstrating the temporal integration among diverse
biological processes. A plot of redox parameters along the pseudotime
axis revealed the sequential activation of pathways in response to
antigen stimulation (Fig. 2g).

To probe the association between redox patterns revealed by
SN-ROP analysis of CD8" T cells activated in vitro with in vivo
data, we adopted a machine learning framework to devise a
model capable of inferring in vivo activation extent from in vitro
redox signatures. As an in vivo system, we analyzed CD8' T cells
from the MC38 colorectal cancer mouse model using SN-ROP

in vitro day low high

(Supplementary Fig. 2d and Supplementary Table 7). CD8" T cells
isolated 7 days after tumor introduction closely matched the early
activation phases predicted by the model, whereas cells collected at
the 14-day mark were aligned with more advanced stages of acti-
vation (Fig. 2h). We also observed significant increases in the
expression of late-stage T cell activation markers such as TOX, TIM3,
PD1, and LAG3 and a decrease in TCF1/7 expression in cells cate-
gorized into later activation stages (Fig. 2i). These findings suggest
that the dynamic shifts in the redox landscape observed in vitro
faithfully replicate those observed in CD8" T cells in vivo. These
results highlight the effectiveness of the SN-ROP technique in
revealing dynamic and coordinated redox molecular details at the
single-cell level upon T cell activation.
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Fig. 2 | SN-ROP reveals remodeling of ROS signaling networks in CD8' T cells.
a UMAP projection of SN-ROP from pooled CD8' T cells from OT-I mice at days 0-5
of OVA stimulation colored to show the distribution of cells across different time
points. b Box plots displaying 99™ percentile normalized SN-ROP expression pro-
files for each CD8" T cell activation time point (n =3 independent samples). Each
box represents the distribution of single-cell expression values. Box plots show the
median (center line), interquartile range (IQR; box limits), and whiskers extending
to L.5XIQR; outliers beyond this range are shown as individual points. The plots are
colored based on protein function or subcellular localization. No statistical com-
parisons were performed. ¢ Pseudotime values calculated using the SCORPIUS
package plotted in a heatmap along with the 99" percentile normalized data, which
was smoothed using a window size of 100 (n =3 independent samples, data from
one representative sample shown). d Slope (first derivative) heatmap of protein
expression across pseudotime. The vertical dashed lines indicate significant
inflection points (n =3 independent samples, data from one representative sample
shown). e Examples of expression of SN-ROP markers in organelles as a function of
pseudotime. Data shown are the 99'" percentile normalized values for a repre-
sentative sample (n = 3) smoothed using a window size of 1000. The vertical dashed

lines indicate inflection times. f ASINH transformed data of CD8' T cells from OT-I
mice annotated with GO biological processes. Red represents a positive correlation,
and blue represents a negative correlation (n =3 independent samples, data from
one representative sample shown). The features are grouped into four categories
based on their functional roles: kinase signaling (EOMES, TIM3, oxPTP, pERK);
protein synthesis/translation (HSP70, TCF1/7, REF/APEL, and GR); DNA damage/
peroxidation (NNT, 53bpl, AQPS8, PD1, CD137, Catalase, and ACOX3); and anti-
oxidation (CD62L, oxDJ1, pNFkB, ERO1B, CTLA4, QSOXI, LAG3, KEAP1, and GPX4).
g Pseudotime heat map with biological processes of the ROS functions divided into
six pathways based on membership in one or more functional GO modules or
pathways. h The percentage of CD8" T cells from MC38 tumors at in vivo day 7
(early, blue) and day 14 (late, gold) distributed across in vitro time points (n=3
biologically independent MC38 tumor-bearing mice per group). Bars represent the
mean, and error bars indicate + standard error of the mean (SEM). Statistical sig-
nificance was assessed using a two-sided permutation t-test. i Mean expression
levels of five late-stage activation markers in CD8" T cells from MC38 tumors pro-
jected onto the in vitro timeline (n=3).

Redox shifts revealed by SN-ROP are correlated with CAR-T cell
persistence

To verify that the dynamic and coordinated redox responses in T cells
upon activation in mice revealed by SN-ROP analysis are relevant to
humans, we conducted SN-ROP analyses of samples taken from seven
patients with CD19" lymphoid leukemia who were undergoing CAR-T
therapy (Supplementary Tables 8, 9). Peripheral blood samples col-
lected at multiple time points (0, 7, 14, 21, 28, and 90 days after
treatment) were analyzed (Fig. 3a and Supplementary Fig. 2e). Our
analysis focused on CAR-positive T cells. These cells were categorized
into 15 clusters based on their redox profiles using FlowSOM (Sup-
plementary Fig. 9). Two distinct types of redox responses were
observed: an active type characterized by high redox activity as indi-
cated by markers such as oxPTP, PDI, and Ref/APEI (clusters 1,2, 3, 4, 5,
6, 8,11, and 13) and a basal type with low redox activity (clusters 7,9, 10,
12, 14, and 15) (Fig. 3b, ¢ and Supplementary Figs. 9, 10).

Further investigation into the temporal dynamics between
these clusters and the proportion of CAR-positive T cells revealed
two highly correlated patterns, distinguished by their dominance
in either the active or basal subsets as a function of time after
treatment initiation (Fig. 3d). Intriguingly, the percentage of CAR-
positive T cells at day 90 was predominantly associated with the
basal subset module. An analysis of active-type CAR-positive
T cells over time for each patient showed that a significant por-
tion of CAR-T cells in patients were initially the active type but
that this proportion decreased over time in those with higher
frequencies of CAR-positive T cells at day 90 (Fig. 4a). Two
clusters classified as basal type showed strong correlations with
CAR-positive T cells at day 90 (clusters 9 and 12: R*=0.9171 and
0.8713, respectively); in contrast, active-type clusters exhibited
negative correlations (clusters 3 and 5: R?=0.692 and 0.8214,
respectively) (Fig. 4b and Supplementary Fig. 11). PDI and ERO1B
were expressed at low levels in T cells at day 28 post-infusion in
patients with high CAR-T persistence (e.g., patient 1908) and at
high levels in patients with low CAR-T persistence (e.g., patient
1903) (Fig. 4c). These findings demonstrate that there is dynamic
and coordinated regulation of redox responses post antigen-
specific activation in T cells from both humans and mice. More
importantly, our method revealed a strong correlation between
temporal fluctuations in redox activity and in vivo CAR-T persis-
tence, suggesting the potential of redox activity as a biomarker.

Environmental perturbations influence redox patterns and T
cell exhaustion

In tumor environments, oxygen availability crucially influences redox
states, which in turn affect the functionality of immune cells®®. To

explore how oxygen levels impact cellular redox dynamics, we acti-
vated CD8" T cells from OT-1 mice under 20% oxygen (normoxia) and
1.5% oxygen (hypoxia). We collected cells after short (day 2) and long
(day 4) periods of hypoxia and analyzed samples with SN-ROP and with
pimonidazole staining as a proxy for cellular hypoxia levels (Supple-
mentary Figs. 2c, 12). The consistency of our SN-ROP analysis was
underscored by the reproducible patterns observed across multiple
biological replicates (Supplementary Fig. 13). A comparative redox
profile analysis between hypoxically and normoxically cultured CD8*
T cells highlighted the pronounced impact of reduced oxygen tension
on redox balance, especially after long hypoxic exposure (Fig. 5a, b and
Supplementary Figs. 14, 15 and Supplementary Table 10). Critical
antioxidants like peroxiredoxin PRDX4, glutathione peroxidase GPX4,
and key transcription factors NRF2 and pNFkB were increased in
response to hypoxic stress (Fig. 5a). Despite upregulation of these
factors, the rise in oxidative stress indicators like oxPTP and the
diminished functional activity of SOD2(K68Ac) indicated that redox
buffering capacity was compromised under hypoxic stress (Fig. 5a-c).
Furthermore, these redox adjustments were correlated with typical
signs of T cell exhaustion, including elevated PD1 and TIM3 and
reduced TCF1/7 expression (Fig. 5c).

Pathway analysis revealed a gradual intensification in the cellular
response to ROS as hypoxia was prolonged, whereas the protein
folding and translation pathways were increased at day 2 of hypoxia
but were similar at day 4 in normoxic and hypoxic conditions
(Fig. 5¢, d). These results imply that there is a predisposition in the
redox response of CD8' T cells toward antioxidation that likely serves
as a compensatory mechanism against persistent hypoxic stress and
the advancement of T cell exhaustion. We applied conditional Density-
Rescaled Visualization (DREVI) to map the interaction between
hypoxia levels and redox or T cell differentiation signals (Supple-
mentary Fig. 16). The conditional density plot identified a distinct
hypoxic threshold beyond which there was a coordinated increase in
antioxidant and T cell exhaustion markers (Fig. 5e). In contrast, mar-
kers associated with protein folding, translation (HSP70 and pSé6), and
progenitor cell status (TCF1/7) were suppressed upon hypoxic
stress (Fig. Se).

To determine if these redox pathways are similarly modulated by
hypoxia in human CD8" T cells in vivo, we examined dissociated CD8*
T cells from the border, core, and unaffected areas of tumors in two
patients with hepatocellular carcinoma (Supplementary Fig. 2f and
Supplementary Tables 11, 12). Hypoxic stress was significant in the
cancer core region as indicated by elevated HIFla expression com-
pared to that in the junction and normal regions (Fig. 5f). In addition,
T cells from the tumor core mirrored the redox response of hypoxia-
exposed mouse CD8" T cells, but cells from the tumor border and
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Fig. 3 | Early SN-ROP-defined redox patterns distinguish CAR-T cell states
across time. a Diagram of the experimental protocol. Blood was sampled from
leukemia patients (n = 7) undergoing CAR-T therapy on days 0, 7, 14, 21, 28, and 90
after CAR-T infusion. CD8" T cells were subsequently isolated and analyzed using
SN-ROP. Created with BioRender.com and used with permission under an Acade-
mia Sinica institutional publication license. b tSNE plot of CAR-positive T cells,
clustered based on their redox profiles using FlowSOM. ¢ ASINH-transformed
expression levels of SN-ROP markers for active (yellow) and basal (red) clusters.
Each box represents the distribution of single-cell expression values derived from 7

dusters 488

biologically independent CAR-T cell patient samples. Box plots display the median
(center line), interquartile range (IQR; box limits), and whiskers extending to
1.5xIQR. Minima and maxima beyond the whiskers are shown as individual points
(outliers). No statistical comparisons were performed. d Correlation heatmap of all
clusters across all sample collection time points. Upper square marks the correlated
basal type and the lower right square denotes the active type detected at the 90-day
time point. Blue squares highlight biotin® (i.e., CAR-T-positive) cells at 90 days post-
infusion.

Nature Communications | (2025)16:5600


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-60727-z

cluster 9
100

[ 3 15
80 4 ; j 12

R?=0.9171
p=0.0007

Active metacluster population (%)

(o ’
cluster 12 Patient 1908
day 28
2.1%
~ [s2]
a Q
o o
5‘0 ERO1B Biotin(CAR)
Patient 1903
cluster 5
day 28 day 90
15 .
F0.0040" 69.2% 2.3%
@) |5

oo T T

12p
9
6
°
3
0

0 T T T T T 1 0 T T T T 1
0 5 10 15 20 25 30 10 20 30 40 50
day
cluster 3
Patient 1903
Patient 1904 = "7 Re=06920
Patient 1906]] < o P700203
Patient 1909) 2
©
Patient 19071 3 °
Patient 1905| § 64 N
Patient 1908% 2
s 3
=)
0 10 20 30 40 50 (3}
P - 0 T T T T 1
day90 CD3*Biotin* cell (CAR-T) 0 10 20 30 40 50

percentage (%)
CD3" Biotin-positive (%)

Fig. 4 | Persistent SN-ROP activation patterns correlate with long-term CAR-T
cell persistence. a Upper: Percentages of active-type T cell clusters as a function of
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correlation coefficients (R?) and exact two-sided P values are shown in the plots.
Results for additional clusters are provided in Supplementary Fig. 11. ¢ Contour
plots of PDI versus ERO1B expression at day 28 post-infusion (left) and CAR-T cells
versus all T cells (right) in samples from patients 1908 and 1903 at day 90 post-
infusion.

normal regions did not (Fig. 5f). This pattern included the increased
expression of antioxidant molecules such as Catalase and NRF2 as well
as signs of inadequate redox buffering including SOD2 acetylation and
increased oxPTP. In sum, our investigations of both murine models
and human hepatocellular carcinoma samples revealed that distinct
redox shifts in CD8" T cells are triggered by hypoxic environmental
conditions.

Recent studies have revealed that modulating intracellular ROS
levels in T cells can significantly impact the progression of T cell
exhaustion®**. To explore the cellular mechanisms that influence this
effect during T cell activation, we activated T cells from OT-1 mice
in vitro with or without N-acetylcysteine (N-AC), an antioxidant known
to decrease intracellular ROS levels™, and conducted SN-ROP. Under
hypoxia, redox alterations were most apparent in late in the time
course, but N-AC treatment caused significant changes immediately
(Fig. 6a, b and Supplementary Fig. 2c, 17). On day 1, we observed ele-
vated expression of molecules related to protein translation and
folding (pS6, ERO1B, and QSOX1) and of components of antioxidant
system such as GPX4, KEAP1, and pNFkB (Fig. 6b), suggesting that
without the antioxidant reinforcement from N-AC, these redox-
sensitive pathways are intensified to counteract the ROS generated
upon T cell activation. The immediate impact of N-AC treatment was
further corroborated by pathway analyses, which revealed upregula-
tion in nearly all redox-related pathways by day 1, particularly those
related to anti-oxidation and protein translation and folding (Fig. 6¢).
Interestingly, despite the reduced redox differences between control
and N-AC-treated groups later in the time course, the continuous
suppression of exhaustion markers and oxidation byproducts (oxPTP)
along with a noticeable increase in the stemness markers (TCF1/7) in
the N-AC-treated group persisted throughout the time course
(Fig. 6b, d).

To validate these findings in a physiological context, we utilized
the well-established in vivo T cell exhaustion model of chronic lym-
phocytic choriomeningitis virus (LCMV) infection. In the acute LCMV
model, mice are infected with the LCMV Armstrong strain, leading to a
robust and transient immune response®. The virus is cleared rapidly,
within 7-10 days, and T cell activation levels return to baseline. The

chronic LCMV model utilizes the LCMV clone 13 strain, which induces a
prolonged and persistent infection that results in sustained T cell
activation and eventual exhaustion®’. SN-ROP analyses of samples from
both models indicated that chronic infection was characterized by
elevated oxidative byproducts (oxPTP), diminished functional activity
of SOD2(K68Ac), increased exhaustion markers (PD1 and TIM3), and
reduced stemness markers (TCF1/7) over time (Fig. 6d, Supplementary
Figs. 2d, 18, and Supplementary Table 13). These results are similar to
those observed in vitro.

To further elucidate the causal link between the early redox
equilibrium and T cell effector functions, we analyzed the effector
responses of in vitro antigen stimulated T cells from OT-1 mice in the
presence of APX2009, an inhibitor targeting the Ref/APE1 pathway,
which acts upstream of pNFkB, a key regulator of antioxidant
mechanisms*(Supplementary Fig. 2g). We observed a significant
decrease in the proportion of TNFa- and IFNy-producing CD8" T cells
in the APX2009 treatment group compared to the controls (Fig. 5e).
Importantly, the addition of exogenous N-AC counteracted this
reduction (Fig. 5e), demonstrating that the effects of APX2009 on T
cell functionality are redox dependent.

To gain deeper mechanistic insights into how Ref/APE1-mediated
early redox equilibrium impacts T cell exhaustion, we applied the SN-
ROP platform to compare APX2009-treated cells, N-AC-treated cells,
and cells treated with the combination. APX2009 treatment disrupted
key redox correlation networks as we observed the loss of connections
between Ref/APEI-ERO1B and GPX4-ERO1B-pNFkB (Supplementary
Fig. 19). Interestingly, these disrupted links were restored by the
addition of N-AC, suggesting that APX2009 interferes with the coor-
dination of redox signaling, particularly interactions between the
endoplasmic reticulum and mitochondrial components such as GPX4.
Consistent with this, mitochondrial fitness, measured using Mito-
Tracker Deep Red, was reduced following APX2009 treatment (Fig. 5f),
indicating that disrupting Ref/APEl-mediated redox equilibrium
impairs mitochondrial function and drives T cell exhaustion. These
findings underscore the indispensable role of a coordinated redox
response in T cell function and affirm the value of investigating the
redox response through advanced single-cell analysis techniques.
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Fig. 5 | SN-ROP analysis of CD8" T cells under normal and hypoxic conditions
reveals correlations between redox patterns and T cell exhaustion. a ASINH
ratio heatmap of SN-ROP marker expression in CD8" T cells from OT-1 mice cul-
tured in hypoxic versus normoxic conditions. The markers are grouped by six GO
pathway terms. Results show the average effect sizes across replicates (n=3 per
condition and time point). b UMAP of individual time points for CD8" T cells under
normoxic and hypoxic conditions. The input features used are from the SN-ROP
markers only, and the plots are colored to distinguish different conditions. Plotted
is a representative result of 2000 cells from one of the triplicate experiments.

c Histograms of exhaustion and SN-ROP markers at days 0, 2, and 4. The histograms
are colored to indicate normoxia or hypoxia and are from one of the triplicate
experiments. d Loess scatter plot of ASINH ratios in hypoxia over normoxia
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conditions in a representative sample. Each point represents a different GO term.
The black dashed line represents ASINH ratio of 0. The solid line represents a locally
weighted regression (LOESS) fit; the shaded area indicates the 95% confidence
interval around the fitted curve. e DREVI plot with the density estimate renorma-
lized to visualize the abundance of the SN-ROP markers under hypoxia (as observed
by pimonidazole). Each plot depicts the distribution of densities, with dark red
indicating higher density within that specific slice. The orange dashed line indicates
the coordinated transition hypoxic time point. f Heatmap of ratios of expression
patterns of the SN-ROP markers in CD8" T cells in normal versus junction regions,
cancerous regions versus normal regions, and cancerous regions versus junction
regions from two hepatocellular carcinoma patients. ASINH ratios are grouped by
GO term.

SN-ROP reveals distinct redox features in hemodialysis patients
To further demonstrate the applicability of the SN-ROP approach under
disease conditions, we obtained peripheral blood samples from hemo-
dialysis patients (n=33) and age-matched healthy controls (n=6)
(Supplementary Tables 5, 14) and employed the SN-ROP for simulta-
neous redox state evaluation and immunophenotyping. Utilizing phe-
notypic marker-based manual gating, we delineated 18 unique immune
cell populations (Supplementary Fig. 2b). Examination of the distribu-
tion of these immune subsets between healthy subjects and those
undergoing hemodialysis revealed that only B cells differed significantly
(Fig. 7a and Supplementary Fig. 20). However, a detailed analysis of

redox markers for each immune subset, totaling 453 cell-type-specific
redox attributes, identified 36 redox features that significantly sepa-
rated healthy participants from hemodialysis patients following
adjustments for multiple comparisons (Fig. 7b). We used these sig-
nificant redox features to re-cluster the individuals and compared this
to the immunophenotyping only. No distinction was observed through
immunophenotyping alone, whereas SN-ROP correctly clustered heal-
thy and diseased subjects (Fig. 7c, d). This analysis revealed that despite
the similarity in peripheral blood cell populations between healthy
individuals and hemodialysis patients, the underlying cellular redox
pattern is significantly altered in patients undergoing hemodialysis.
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Fig. 6 | SN-ROP analysis of N-AC-treated CD8' T cells during activation reveal
the immediate effects of anti-oxidation treatment in modulating redox path-
ways. a UMAP plots of CD8" T cells from OT-1 mice after 1 and 5 days with and
without antioxidant N-AC treatment (n = 2, data for a representative sample shown)
generated using SN-ROP data as input. b Heatmap of effect sizes of exhaustion
levels in untreated versus N-AC-treated CD8" T cells (n = 2). Markers are grouped by
GO terms. ¢ Loess scatter plot of the ASINH ratio of exhaustion levels in untreated
versus N-AC-treated CD8" T cells (n = 2). Each point represents a different GO term.
The black dashed line represents ASINH ratio = 0. The solid line represents a locally
weighted regression (LOESS) fit; the shaded area indicates the 95% confidence
interval around the fitted curve. d Histogram of average intensities of immune
checkpoint inhibitors and SN-ROP markers in CD8" T cells from OT-1 mice cultured

with (dark blue) and without (light blue) N-AC at days O, 3, and 5 (n =2, data from
representative samples shown) and in T cells isolated at day 28 from acute (light
green) and chronic (dark green) LCMV models (n =3, data from representative
samples shown). e Left: Biaxial plots of IFNy versus TNFa after re-stimulation of
T cells from OT-1 mice with PMA and ionomycin without or with APX2009, N-AC, or
the combination of APX2009 and N-AC (n = 2, biologically independent mice; data
for a representative sample shown). Right: Bar plots showing the percentage of
TNFa'IFNy* CD8" T cells from individual samples. No statistical comparisons were
performed due to limited sample size (n = 2). f Histogram of MitoTracker Deep Red
fluorescence intensity in T cells form OT-1 mice treated with APX2009 (black
dashed line), APX2009 and N-AC (blue), N-AC (green), or untreated (gray).

We also investigated whether differential redox states could be
detected among hemodialysis patients. We utilized SN-ROP data from
20 hemodialysis patients to train a model that predicts duration from
the onset of hemodialysis treatment and assessed its accuracy on the
remaining 13 patients. There was a strong correlation between the
predicted and actual durations of therapy (Fig. 7e). A significant cor-
relation between the occurrence of sepsis during patient follow-up and

a specific coordinate (coordinate 3) was also identified through mul-
tidimensional scaling analysis with an area under receiver operating
characteristics curve (AUROC) value of 0.78 (95% Cl: 0.6-0.92; Sup-
plementary Fig. 21). Among the redox features analyzed, 43 showed
significant correlations with coordinate 3 (Supplementary Table 15).
We then applied elastic net logistic regression to identify potential
biomarkers of sepsis risk in hemodialysis patients. There were strong
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Fig. 7| SN-ROP identifies redox features that differ in hemodialysis patients and
healthy controls. a Quantification of the proportion of 18 immune cell types in
healthy control individuals (n = 6) and hemodialysis patients (n = 33). Box plots
show the median (center line), the interquartile range (IQR; box limits), and whis-
kers extending to 1.5 x IQR. Outliers beyond this range are shown as individual
points. Statistical significance was assessed using a one-way ANOVA; *P < 0.05.

b ASINH-transformed expression levels of 36 redox-related features across immune
subsets in healthy and hemodialysis subjects. Each box represents the distribution
of single-cell expression values across samples. Box plots show the median (center
line), IQR (box limits), and whiskers extending to 1.5 x IQR; outliers are shown as
individual dots. Statistical significance was calculated using two-sided tests with
Benjamini-Hochberg correction; *adjusted P < 0.05. ¢ Clustering diagram gener-
ated using only immunophenotyping features for healthy control individuals (blue)
and hemodialysis patients (brown). d Clustering diagram generated using LASSO
focusing on significant ROS features with a false discovery rate (FDR) < 0.2 for
healthy control individuals (blue) and hemodialysis patients (brown). e Spearman

correlation plot utilizing 18 immune cell types and SN-ROP markers to evaluate the
predicted time on hemodialysis (HD) versus the actual time on hemodialysis. Data
on two-thirds of the hemodialysis patients (20 patients) were used for training, and
data on the remaining one-third (13 patients) constituted the test set. Each dot
represents an individual in the test group. The solid line represents the fitted linear
regression, and the shaded area indicates the 95% confidence interval. The Spear-
man correlation coefficient (p) and two-sided P value are shown in the plot. f Beta
coefficients of the four ROS features significantly associated with coordinate 3 of
the multidimensional scaling plot. g Predictive scores derived from elastic net
models for hemodialysis patients who developed sepsis (n=9) or did not (n=24)
during follow-up. Box plots show the median, interquartile range (IQR), and whis-
kers extending to 1.5 x IQR. Outliers beyond the whiskers are shown as individual
points. Statistical significance was assessed using a two-sided Mann-Whitney U
test; *P < 0.001. h AUROC assessment of the performance of the predictive score in
evaluating the risk of sepsis.
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associations between sepsis events and the expression levels of GPX4
in classical and alternative monocytes, as well as PRDX4 in naive CD4"
T cells and GR in naive CD8" T cells (Fig. 7f, g). The combined AUROC
for predicting sepsis events using these four features was 0.9 (95% CI:
0.75-1; Fig. 7h). These results collectively indicate that extended
hemodialysis significantly impacts the redox balance in immune cells,
potentially compromising infection control. Moreover, our findings
underscore the effectiveness of the SN-ROP method in uncovering
redox information across various immune subpopulations at the
single-cell level.

Discussion

Within cells, the landscape of redox processes is both highly dynamic
and heterogeneous, and these processes are pivotal in the regulation
of metabolism, signaling pathways, and the cellular defense against
oxidative stress. Previously observed temporal and spatial redox het-
erogeneity underscores the need for high-dimensional, single-cell
approaches to decode the complex redox behavior***. In this study,
we validated SN-ROP, a novel technique that leverages highly multi-
plexed antibody-based mass cytometry to directly assess redox reg-
ulation by quantifying the expression of key markers linked to redox
homeostasis. SN-ROP provided an in-depth view of redox states and
facilitated a detailed analysis of CD8" T cell redox reactions following
antigen exposure, under hypoxic conditions, and in the presence of
exogenous antioxidants.

Through our SN-ROP analysis, we identified two critical coordi-
nated transition points in redox regulation. As cells shifted from
catabolic to anabolic metabolism upon initial antigen stimulation, we
detected a marked increase in the activity of mitochondrial superoxide
dismutase, a key enzyme in mitigating oxidative stress. This surge was
closely followed by redox-related mechanisms involving protein
synthesis, folding, and disulfide bond creation, processes that are
inherently linked to the generation of ROS that can subsequently
trigger enhanced antioxidant responses to preserve redox equili-
brium. With continuous antigen stimulation, however, there was a
reduction in the efficacy of antioxidant mechanisms and the build-up
of oxidized protein byproducts, even when antioxidant protein levels
were elevated. The observed impairments in redox regulation within
chronically stimulated T cells may be linked to mitochondrial dys-
functions, such as those previously documented in both human
exhausted hepatitis B virus-specific CD8" T cells and in mice chroni-
cally exposed to antigen®**’. Mitochondrial ROS production is a crucial
signaling element in T cell activation, and an antioxidative glutathione
response is indispensable for the metabolic reprogramming post-T cell
activation®®*, The molecular details of the mechanism by which
mitochondria modulate T cell differentiation through metabolic
reprogramming and redox signals remain to be elucidated.

The traditional view posits that ROS directly oxidize MAPKs (e.g.,
ERK*° and p38*), leading to their rapid activation. However, the delay
in MAPK activation observed in our study suggests that this process is
regulated through indirect mechanisms, such as secondary signaling
pathways, post-translational modifications, or redox-sensitive inter-
mediaries, rather than through immediate oxidative modifications.
This temporal dissociation indicates that metabolic reprogramming
and mitochondrial redox signals may play more critical roles in mod-
ulating MAPK activity than previously thought. Our results highlight
the complexity of redox signaling in immune cells and suggest that the
classical model of MAPK activation should be reassessed. Further work
will be needed to elucidate the mechanism that drives the interplay
between mitochondrial redox dynamics and T cell signaling pathways.

Using pimonidazole as a surrogate marker for cellular oxygen
levels and our SN-ROP method for analysis of the ROS signaling net-
work components revealed a distinct boundary between coordinated
transition stages in redox regulation. This suggests that cellular oxy-
gen levels initiate metabolic and redox alterations linked to T cell

exhaustion, aligning with research indicating that HIF1a facilitates the
onset of terminal T cell exhaustion*’. Notably, variations in con-
centrations of TCF1 and TCF7, which are critical regulators of T cell
differentiation*’, were observed during these redox transitions,
implying the involvement of redox signaling in adjusting the flexible
and reversible functionality of these transcription factors. Future
investigations should concentrate on uncovering the molecular pro-
cesses that facilitate redox signal through TCF1/7. Work should also
focus on protein biosynthesis and Ref/APEL, as their co-expression was
observed within the same correlated expression cassette as TCF1/7 in
our SN-ROP analysis. The connection between Ref/APE1 and proteos-
tasis has been previously reported: Ref/APEl is induced by stress-
mediated activation of the unfolded protein responses**. Interestingly,
both endoplasmic reticulum stress and the unfolded protein response
are implicated in T cell exhaustion®™*. Given the sensitivity of Ref/
APEl, protein folding, and the unfolded protein response to redox
changes*®**, elucidating the molecular mechanisms that connect these
pathways will be important for understanding how T cells adapt to the
increased demand for new protein synthesis in response to antigen
stimulation and how disruption of these pathways might contribute to
T cell exhaustion.

Durable remissions are often achieved with CD19-targeting CAR-
T cells, but remission is contingent upon the sustained presence of
these cells*®. We examined the redox states of CAR-T cells over time in
patients with hematologic malignancies and discovered a significant
correlation between CAR-T cell persistence and their redox activities.
As shown in previous transcriptomic analyses®, infusion products
displayed early activation patterns, likely stemming from in vitro sti-
mulation during manufacturing. However, distinctive redox profiles
emerged in CAR-T cells over time. These profiles categorized patients
into groups showing either continual redox activity or a decrease in the
redox markers, notably impacting molecules crucial for protein
synthesis and folding like EROIB and PDI. Although the redox-active
group showed increased expression of antioxidants, indicators of
oxidative stress such as oxPTP and reduced functional performance of
SOD2(K68Ac) suggested impaired redox regulation. Notably, our
findings revealed a negative correlation between CAR-T cell persis-
tence and the prevalence of redox-active cells, indicating that CAR-T
cells must dynamically adapt to environmental stressors and maintain
intracellular redox balance for long-term effectiveness. This aligns with
recent literature identifying the gene encoding HMOX1 as one of the
top genes enriched in persisting CAR-T cells® and also suggests that
adjusting redox activities shortly after infusion could be a promising
approach to enhance CAR-T cell persistence.

End-stage kidney disease impacts more than two million indivi-
duals worldwide, with a 5-year survival rate ranging from 41% to 60%
for those initiating hemodialysis*. Cardiovascular disease is the lead-
ing cause of mortality in these patients, trailed closely by sepsis and
infection®*. Using SN-ROP, we identified several redox-specific char-
acteristics in T cells that are notably associated with sepsis during
patient follow-up. These findings are consistent with recent research
utilizing single-cell RNA sequencing and chromatin accessibility pro-
filing that revealed dysregulation in T cells and monocytes in these
patients®™. Further investigation is warranted to elucidate the
mechanisms underlying the dysregulated redox states in T cells from
patients undergoing hemodialysis, with a focus on understanding how
uremic toxins disrupt T cell metabolism and redox homeostasis, ulti-
mately leading to sepsis®®”. Future studies with larger cohorts and
extended follow-up periods may uncover additional immuno-redox
features correlated with cardiovascular diseases, offering valuable
insights into disease pathogenesis and potential therapeutic targets.

In summary, SN-ROP allows precise assessment of redox respon-
ses at the single-cell level. As demonstrated here, SN-ROP provides
insights into cellular redox dynamics in cell-based systems, mouse
models, and human subjects. Its adaptability to diverse cell types
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makes it applicable across various organ systems. Its versatility will
make it applicable to a wide range of biological systems, and it could
be employed to aid in the identification of biomarkers and therapeutic
targets across diseases. It is important to note that in addition to
markers of oxidative stress, SN-ROP also captures broader cellular
signaling dynamics that may be influenced by other factors, including
metabolic status and environmental conditions. Several limitations of
this study should be acknowledged. Redox processes are inherently
dynamic and context-dependent, which introduces challenges in
capturing the full spectrum of oxidative stress responses. The redox
state can be influenced by various factors, including environmental
conditions, cell type, and metabolic status, contributing to variability
in the observed results. Additionally, although antibody-based detec-
tion methods like SN-ROP offer specificity and sensitivity, variability
can result from differences in antibody affinity, epitope accessibility,
and cross-reactivity. Given these challenges, further validation across
various biological contexts will be necessary to confirm the relation-
ship between the redox responses and oxidative stress in specific
disease models. Despite these limitations, we believe that SN-ROP will
be a valuable platform for future investigations into redox regulation
that will significantly impact our understanding of disease mechanisms
and therapeutic approaches.

Methods

Cells

Raw264.7, SM826, and SH-SY5Y cells were generously provided by Li
Chia-Wei, Yang Kai-Chien, Wang Shu-Ping, and Chern Yi-Juang’s
laboratory at Academia Sinica, Taipei, Taiwan. Raw264.7, SM826, and
SH-SY5Y cells were cultured in DMEM (Gibco, 11965092) supple-
mented with 10% fetal bovine serum (FBS, SH30071.03) and 1% peni-
cillin/streptomycin (Gibco, 15140122). Additionally, SH-SY5Y cells
required supplementation with 5ug/ml blasticidin (Thermo Fisher,
Al1113903) and 200 ug/ml hygromycin (Thermo Fisher, 10687010).
Jurkat cells were cultured in RPMI-1640 medium (Gibco, 11875093)
supplemented with 10% FBS and 1% penicillin/streptomycin. HUVEC
cells were cultured in Endothelial Cell Growth Medium (PromoCell, C-
22010), and HL-1 cells were cultured in Claycomb Medium (Sigma,
51800 C) supplemented with 0.1 mM norepinephrine. All cells were
incubated at 37 °C in a 5% CO, environment. The cells were stimulated
with H,0, at concentrations of 0, 10, and 100 pM for 0, 0.5, 4, and 48 h.
The cells were divided into two groups for analysis. The first group of
cells were analyzed using flow cytometry after staining with LIVE/DEAD
Fixable Violet Dead Cell Stain (Invitrogen, L34963) diluted 1:1000 in
PBS for 30 min at room temperature. The cells were then washed once
with PBS and fixed using 1.6% paraformaldehyde (PFA; Electron
Microscopy Sciences, 15710) in PBS for 10 min at room temperature.
After fixation, the cells were washed and stored in 100 pl aliquots in a
1:10 solution of DMSO (Sigma, D2650) in PBS and stored in =80 °C until
flow cytometry analysis. The remaining cells were analyzed by CyTOF
according to the staining and acquisition procedures outlined in the
Pre-processing and staining of cells for CyTOF section.

Mice

OT-1 mice (C57BL/6-Tg(TcraTcrb)1100Mjb/J) were purchased from
The Jackson Laboratory (Jax 003831). B6 mice (C57BL/6JNarl) were
purchased from the Taiwan National Laboratory Animal Center
(RMRC 11109). Mice were housed in specific pathogen-free (SPF)
facilities at the Academia Sinica SPF Animal Facility, maintained
under a 12-h light/dark cycle at an ambient temperature of 22 +2°C
and 55+10% humidity. Experimental and control animals were
housed in separate cages throughout the study. The protocols for
the mouse experiments were approved by the Institutional Animal
Care and Use Committee of Academia Sinica (Protocol No. 19-01-
1279). All mice used in this study were male and 8-10 weeks old at the
time of experiment.

Human specimens

All patient-related protocols were reviewed and approved by the
Institutional Review Boards (IRBs) at the corresponding medical
institutes. Samples were collected after obtaining informed consent.
Hepatocellular carcinoma patients and healthy donors for the lineage
analyses were recruited at the National Taiwan University Hospital,
Taipei, Taiwan (IRB No. 201912040RINA). Hemodialysis patients were
recruited at Kaohsiung Medical University Hospital (IRB No. KMUHIRB-
E(1)-20200109). CAR-T patient samples were collected at the National
Taiwan University Cancer Center as part of two interventional clinical
trials registered at ClinicalTrials.gov  (NCT04943016 and
NCT03624686). The studies were approved by the Institutional Review
Board of the National Taiwan University Hospital (IRB No.
202103150MIPC and 201711021RIND), and written informed consent
was obtained from all participants.

Metal conjugation of antibodies for CyTOF analysis

Primary conjugates of mass cytometry antibodies were generated
using the Maxpar X8 Antibody Labeling Kit (Fluidigm, 201300) fol-
lowing the manufacturer’s instructions. After labeling, the antibodies
were diluted to a final stock concentration of 0.5 mg/ml in Candor PBS
Antibody Stabilization Solution (Candor Bioscience GmbH, 131050)
containing 0.02% NaN; (Sigma, S2002) and stored at 4 °C for long-
term use. Each antibody clone and lot was titrated to determine opti-
mal staining concentrations using appropriate positive and negative
controls.

Pre-processing and staining of cells for CyTOF

Frozen cells were thawed. For pre-processing, cells from each study
were first washed once with 1 ml of serum-free RPMI medium (Gibco,
11875093). Then, the cells were stained with cisplatin (Sigma, P4394) at
a final concentration of 25 pM for 1 min at room temperature to label
dead cells. The stain was quenched by adding 1 ml of RPMI medium
with 10% FBS (Cytiva, SH30071.03) for 3 min. The cells were then fixed
in 1.6% PFA (Electron Microscopy Sciences, 15710) in PBS (Corning, 46-
013-CM) at room temperature for 10 min. Following fixation, the cells
were washed three times with CSM (PBS with 0.5% protease-free
bovine serum albumin [Sigma, A3059] and 0.02% NaN; [Sigma,
$2002]). Finally, the cells were stored by freezing them in a 1:10 solu-
tion of DMSO (Sigma, D2650) in PBS in 100-pl aliquots.

Palladium barcoding was performed using the Cell-ID 20-Plex Pd
Barcoding Kit (Fluidigm, Fluidigm, 201060) following the manu-
facturer’s protocol*®. Briefly, individual samples were incubated with
unique palladium-based barcodes in barcode perm buffer for 30 min
at room temperature, then washed twice with CSM. Samples were
combined for processing. The cell surface antibody cocktail mix in
CSM was filtered through a pre- wetted 0.1-um spin-column (Millipore,
UFC30VV00) to remove antibody aggregates and was added to the
combined samples. After incubating at room temperature for 1h, the
cells were washed with CSM. For intracellular staining, the cells were
permeabilized with ice-cold methanol (Fisher Scientific, A454-4),
washed to remove residual methanol, and then incubated with the
intracellular antibody cocktail mix at room temperature for 1 h. After
another wash with CSM, the cells were suspended and stained with
Cell-ID Intercalator-Ir (*'Ir and *Ir; Fluidigm, 201192B) at final con-
centrations of 125 nM in 500 pL 4% fresh PFA diluted in PBS overnight
at 4 °C to stain DNA. The cells were washed with CSM and filtered,
resuspended in a solution containing EQ Four Element Calibration
Beads (Fluidigm, 201078), and analyzed using a CyTOF2 mass cyt-
ometer (Fluidigm).

Antibody screening and validation

Samples of cells collected at indicated times points after stimulation
were thawed, washed once with PBS (Corning, 46-013-CM), and stained
using a live-cell amine-reactive fluorescent labeling protocol®. Briefly,
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the cells were stained using amine-reactive fluorescent dyes, specifi-
cally Pacific Orange (Thermo Fisher, P30016) and DyLight 350
(Thermo Fisher, 46426), at concentrations of 0, 0.1, or 1pg/ml. Some
samples were labeled with Alexa Fluor 546 (Invitrogen, A-20102) at
concentrations of 0, 0.1, or 1 ug/ml and Alexa Fluor 700 (Invitrogen, A-
20010) at concentrations of 0, 0.01, 0.07, or 1pg/ml. The antibodies
were detected using Alexa Fluor 488-conjugated secondary anti-
bodies. The data were acquired using an LSRIl HTS cytometer (BD
Biosciences) and analyzed using FlowJo software (FlowJo, LLC, https://
www.flowjo.com/). Analysis was performed based on fluorescence
minus one or biological comparison controls for accurate gating and
interpretation of the results. For the selection of antibodies to con-
struct the SN-ROP panel, the ASINH- transformed mean fluorescence
intensity at O h—averaged across three independent replicates—served
as the baseline for each antibody. Antibodies that showed more than a
10% deviation from this baseline under any condition (72 out of 103)
were selected for further analysis. A correlation matrix was con-
structed to examine the relationships among these 72 antibodies, and
they were grouped into seven modules based on their co-regulation
patterns (Supplementary Fig. 1b). Within each module, antibodies were
ranked according to a weighted average score reflecting their relative
contribution. This weighted score determined how many were selec-
ted, ensuring that the most responsive antibodies were included while
maintaining an appropriate balance across the modules. All antibodies
used in the screening were stained at a 1:100 dilution.

Isolation and stimulation of CD8" T cells from OT-1 mice
Single-cell suspensions were prepared from the spleens of OT-I mice
(Jackson, 003831). The cells were cultured at a concentration of 1 x 106
cells per ml in RPMI-1640 medium (Gibco, 11875093) supplemented
with 10% FBS (Cytiva, SH30071.03), 2 mM L-glutamine (Thermo Fisher,
A2916801), 50 uM B-mercaptoethanol (Sigma, SI-M3148), 20 ng/ml IL-2
(PeproTech, 212-12), 5 ng/ml IL-7 (PeproTech, 217-17), and 5 ng/ml IL-15
(PeproTech, 210-15) in the presence of 10 ng/ml SIINFEKL peptide
(InvivoGen, OVA 257-264) for 48 h. For short-term treatment, the
SIINFEKL peptide was not added after the initial 48-h stimulation, and
medium was replaced with RPMI-1640 medium containing 10% FBS, 2
mM L-glutamine, and 5pM [-mercaptoethanol, supplemented with
10 ng/ml IL-2, 5ng/ml IL-7, and 5ng/ml IL-15 at a concentration of
1x106 T cells per ml. For longer treatment, 1 uM SIINFEKL was added
to the medium. The T cells were passaged into fresh co-cultures every
48 h until the end of the experiment. N-AC (Sigma, A7250) was dis-
solved in water and used at a concentration of 10 mM. APX2009
(Sigma, SML1887) was dissolved in DMSO (Sigma, D2650) and used at a
concentration of 1uM. For experiments under normoxic or hypoxic
conditions, cells were cultured in normoxic (20% oxygen) or hypoxic
(1.5% oxygen) chambers at 37 °C. Cells were cultured with 200 mM
pimonidazole (Hypoxyprobe, Inc., HP10-1000mg) for a duration of 4 h
and then stained with a biotin-conjugated antibody, which is included
in the Hypoxyprobe Kit, at a dilution of 1:500 in PBS (Corning, 46-013-
CM) for 10 min. Subsequently, the cells were washed with PBS and then
subjected to cisplatin staining, fixation, and storage as outlined in the
Pre-processing and staining of cells for CyTOF section.

MC38 tumor-infiltrating lymphocyte dissociation

B6 mice were injected subcutaneously with 1x10° MC38 colon ade-
nocarcinoma cells (a gift from Dr. Hu Che-Ming, Academia Sinica).
Tumor growth was monitored every 2-3 days using digital calipers,
and tumor volume was calculated using the formula: (length x width?)/
2. Mice were euthanized by CO, inhalation followed by cervical dis-
location on day 7 or day 14 after tumor injection or earlier if tumors
reached 1.5 cm in diameter or if signs of ulceration, impaired mobility,
or severe distress were observed. All procedures were conducted in
accordance with the guidelines of the Institutional Animal Care and
Use Committee (IACUC) of Academia Sinica (Protocol No. 19-01-1279),

and no tumors exceeded the permitted size limits. Tumor tissues were
collected and dissociated in RPMI medium (Gibco, 11875093) supple-
mented with 10% FBS (Cytiva, SH30071.03), collagenase IV (Wor-
thington Biochemical, LS004188; 1mg/ml), and DNase | (Roche,
11284932001; 0.1 mg/ml) to dissociate the tumor cells. The dissociated
cells were analyzed by CyTOF according to the procedures described
in the Pre-processing and staining of cells for CyTOF section.

Human sample preparation

For the healthy donor lineage analysis, human whole blood samples
from healthy donors were collected using an EDTA anticoagulant (BD,
PS8-7525). The collected blood samples were then diluted 1:10 in
1x ACK lysing buffer (Gibco, A10492-01) to lyse red blood cells. After
5min, cells were washed with PBS (Corning, 46-013-CM). For the
hemodialysis patient study, whole blood samples were collected from
6 healthy control donors and 33 patients. The samples were frozen
immediately. Red blood cells were lysed as per the protocol from
CYTODELICS.

For the CAR-T study, peripheral blood mononuclear cells (PBMCs)
from CAR-T patients were isolated using density gradient centrifuga-
tion with Ficoll-Paque PLUS (GE Healthcare, 17-1440-02). The isolated
PBMCs were then frozen and stored. Once all the time-course samples
were collected, the frozen cells were thawed and stained with a 1:50
human CD19 CAR Detection Reagent (Miltenyi Biotec, 130-115-965) in
PBS for 30 min on ice to label the CAR-T cells. After staining, the cells
were washed and fixed in 1.6% PFA (Electron Microscopy Sciences,
15710) in PBS at room temperature for 10 min, then washed three times
with CSM. Cells were then pre-processed, barcoded, and stained with
the CyTOF ROS panel according to the procedures detailed in the Pre-
processing and staining of cells for CyTOF section.

Immune cell isolation from the liver tissue

Liver tissues from patients with hepatocellular carcinoma were dis-
sected in the operating room. The normal, border, and tumor core
regions were visually confirmed and separated. Fresh tissues were
dissociated into small pieces in a Petri dish containing a small amount
of MACS buffer (PBS [Corning, 46-013-CM], 2% FBS [Cytiva,
SH30071.03], 2mM EDTA [BD, PS8-7525]). The tissues were trans-
ferred onto a 70-um cell strainer (Falcon) affixed on top of a 50-ml
centrifuge tube. A 5-ml syringe was used to press and mince the tissue.
MACS buffer was added to facilitate the flow-through of the dis-
sociated cells into the centrifuge tube. The dissociated cells were
centrifuged at 500 rpm for 2 min to pellet the hepatocytes. To collect
the immune cells, the supernatant was aspirated and transferred to a
new centrifuge tube. The immune cell-containing solution was cen-
trifuged again at 1500 rpm for 10 min. The supernatant was discarded,
and the cell pellet was washed twice with PBS. The cells were then
prepared for CyTOF.

LCMV infections

For acute LCMV infections, C57BL/6 (B6) mice were injected intra-
peritoneally with 2 x 10° plaque-forming units (PFUs) of the LCMV
Armstrong strain 53b. For chronic infections, B6 mice received an
intravenous injection of 2 x 10¢ PFUs of the LCMV Clone 13 strain. Viral
titers were measured in the spleen, kidneys, and blood. Organ sus-
pensions were prepared from these tissues and used to infect Vero
cells (ATCC CCL-81), with viral loads quantified through an LCMV
focus-forming assay. This infection model is commonly used to induce
acute or chronic viral infection and to study T cell activation and
exhaustion dynamics in vivo®°.

MitoTracker staining

To assess mitochondrial membrane potential and mass, cells were
incubated with 10 nM MitoTracker Deep Red (Thermo Fisher Scien-
tific, M22425) in RPMI medium (Gibco, 11875093) supplemented with
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2% FBS (Cytiva, SH30071.03). The staining was performed for 15 min at
37 °C. After incubation, the cells were washed and analyzed using a
LSRII flow cytometer (BD Biosciences) with BD FACSDiva software
(v8.0.1). Data were analyzed using FlowJo software (FlowJo, LLC).

Trajectory analysis of ROS remodeling

In each condition, a random subsample of 2000 cells were selected
from each day. The subsampling and subsequent analysis were per-
formed using UMAP from Cytobank (https://www.cytobank.org/), a
platform for high-dimensional cytometry data analysis. Pseudotime
analysis was conducted using the SCORPIUS algorithms®’. The result-
ing pseudotime values were scaled from O to 1. Resting cells (day 0)
and cells from day 5 were included in the trajectory calculation to
identify starting and ending points, but the focus of interest was pri-
marily on the intermediate time points (pseudotime 0.1-0.9).

For visualization purposes, the pseudotime heatmap data were
99" percentile normalized and were plotted using Morpheus (https://
software.broadinstitute.org/morpheus/). The derivative pseudotime
heatmap was then calculated by determining the slope from the
pseudotime heatmap. The pseudotime line chart was generated using
the data from the pseudotime heatmap, smoothed using a window size
of1000. Lastly, the pseudotime pathway heatmap was generated using
the data from the pseudotime heatmap, with calculations performed
for different pathways and smoothing applied using a window
size of 100.

Gene ontology enrichment analyses

Annotations were obtained from UniProt (https://www.uniprot.org/),
which provides information on GO terms, biological processes, and
pathways. The SN-ROP data were categorized and assigned to relevant
functional modules or pathways based on the following annotations:
DNA damage and repair (53bpl, MTH]I, p53, Ref/APE1, and mTOR); lipid
biosynthesis and homeostasis (ACOX3 and OLR1); cellular response to
ROS and metabolic (AQP8, Catalase, GPX4, GR, HO1, KEAP1, NNT,
NRF2, PCYXL, PRDX4, SOD2(K68Ac), oxDJ1, HIF1a, pNFkB, c-Jun, and
pAkt); scavenger receptor (CD163 and CD36); protein folding and
translation (ERO1B, HSP70, PDI, QSOX1, and pSé6); and MAP kinase
activity (oxPTP, pERK, and p38MAPK).

Machine learning methods

The machine learning models for the blood cell lineage prediction
were developed using Python 3.9.5 and the following libraries: scikit-
learn 1.2.1, xgboost 1.6.2, and Catboost. Several supervised machine
learning algorithms were tested for classifying different immune cell
types using ROS markers as features. The algorithms included Random
Forest, 3-Layer Feed-forward Neural Network, Quadratic Discriminant
Analysis Classifier, AdaBoost, Naive Bayes Classifier, Decision Tree,
K-Nearest Neighbors, XGB Classifier, and CatBoost Classifier. The most
accurate algorithm, Catboost, was selected as the main algorithm for
training the model (Supplementary Table 16). Specifically, we
employed 10-fold cross-validation with 10 runs, using different ran-
dom states for each run. This allowed us to evaluate the robustness and
consistency of the model across multiple random states. The dataset
was divided into two groups: 80% for training and 20% for testing. To
test the generalizability of the model, interindividual variability of ROS
markers was assumed to be negligible. In the case of healthy donor
samples, data from eight donors were used to train the model, and
data from the remaining two donors were used for testing. For the
in vivo versus in vitro timeline projection study, 80% of the cells were
used for training, and the remaining 20% were used for testing.

To build a prediction model for the hemodialysis duration using
the ROS features, the dataset was split into a training set and a testing
set in a 2:1 ratio. The ROS features were standardized through Z
transformation with means and standard deviations of the respective
variables. We used an elastic-net model to perform feature selection.

We optimized the parameter by conducting 10-fold cross-validation on
the training set, selecting the one with the smallest mean squared
error. To evaluate the performance of the prediction model, we cal-
culated the Spearman correlation coefficient between the predicted
dialysis time (in months) and the actual dialysis time on the testing set.
We aimed to determine if the ROS features more effectively differ-
entiate between dialysis patients and healthy controls than immuno-
phenotyping features. To achieve this, we visualized the classification
outcomes using heatmaps and average-link hierarchical clustering
based on the distance matrices of pairwise squared ranking differences
between features. Lasso regression was utilized to select relevant ROS/
immunophenotyping features for classification and visualization. All
analyses were conducted using R 4.3.1. The multidimensional scaling
analysis was performed using the cmdscale() function in R on the
distance matrix derived from the selected features, followed by prin-
cipal coordinate plotting to assess group-wise differences®.

DREVI plot generation

DREVI was used to visualize the stochastic function that represents
the influence of hypoxic cells (identified by pimonidazole labeling)
on the SN-ROP data. DREVI was used to plot the distribution of SN-
ROP values for each hypoxic cell condition. The DREVI plot was
generated by analyzing individual FCS files using the software tools
available at (https://www.cytobank.org/). During the analysis, doub-
lets, debris, and dead cells were excluded based on criteria such as
cell length, DNA content, and cisplatin staining. All surface markers
were taken into account for gating out purified CD8" T cells. The
resulting data were exported for DREVI plot generation using the
software  package accessible at (www.c2b2.columbia.edu/
danapeerlab/html/dremi.html).

Replication and ASINH ratio calculation

The replication heatmap visualizes the ASINH-transformed results of
replicated data using the pheatmap package in R language, incorpor-
ating unsupervised hierarchical clustering. The ASINH ratio was cal-
culated using the ASINH-transformed data. First, the average of each
condition and time point for the replicated pairs was computed. Then,
the control was subtracted from the treatment group for each pair (for
example, data for hypoxic conditions at day O minus data for normoxic
conditions at day 0). This process was repeated for all pairs. The ASINH
ratio analysis was performed using the pheatmap package in R.

Measurement of cytokine production

T cells were stimulated with 50 ng/ml phorbol 12-myristate 13-acetate
(PMA; Sigma, P8139) and 500 ng/ml ionomycin (Sigma, 10634), toge-
ther with 1:1500 dilutions of brefeldin A (Invitrogen, 00-4506-51) and
monensin (Invitrogen, 00-4505-51) in complete medium. After 4 h of
incubation, cells were washed and fixed in 1.6% paraformaldehyde
(Electron Microscopy Sciences, 15710) in PBS for 10 min at room
temperature. Following fixation, cells were washed and permeabilized
using the eBioscience™ Intracellular Fixation & Permeabilization Buffer
Set (Thermo Fisher, 00-5523-00) for 15 min. Cells were subsequently
washed and stained with surface and intracellular antibodies, including
anti-CD3 (BioLegend, 100249; clone 17A2; BV785; 1:200 dilution), anti-
CD8a (BioLegend, 100712; clone 53-6.7; APC; 1:200 dilution), anti-IFNy
(BioLegend, 505808; clone XMG1.2; PE; 1:25 dilution), and anti-TNFx
(BioLegend, 506313; clone MP6-XT22; Alexa Fluor 488; 1:50 dilution),
for 40 min at room temperature. Following staining, cells were washed
twice with PBS and analyzed using an LSRII flow cytometer (BD Bios-
ciences). Mean fluorescence intensity (MFI) values were quantified
using FlowJo software (v10.0; Flowjo, LLC).

Validation experiments
Mass spectrometry data were obtained from a publicly available pro-
teomic resource (http://www.immprot.org/), and RNA-seq data for the
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Jurkat cell line were obtained from a public database (https://www.
tandfonline.com). LoglO values were calculated for each SN-ROP
marker in 18 immune cell subsets. Mass cytometry results were ana-
lyzed using Cytobank and are depicted as ASINH-transformed
expressions within the 18 immune cell subsets. Pearson correlation
coefficients were calculated. RNA-seq data were analyzed to calculate
the fold change between H,O,-treated cells (48h, 100 uM) and
untreated cells (0 h, 0 uM). CytoScore is the average localization of SN-
ROP components HSP70, KEAP1, oxPTP, MTH1, and GR in the cyto-
plasm, whereas MitoScore is the average expression of mitochondria-
related antibodies oxDJ1, SOD2(K68Ac), NNT, and GPX4.

Visualization and statistical analyses

Line-and-box plots were prepared using GraphPad Prism. Fitting of
generalized linear models and visualization were performed using R
packages including SCORPIUS, ggplot2, and pheatmap. P<0.05 was
taken as statistically significant. Schematic representations were cre-
ated using BioRender.com under an Academia Sinica - Life Science
Library license with publishing rights. The final figures were prepared
using Adobe lllustrator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Mass cytometry data sets for SN-ROP analysis of healthy human, CAR-
T, hepatocellular carcinoma, and hemodialysis patient whole blood
populations, OT-I T cells, and MC38 mouse tissues are publicly avail-
able at Zenodo via the https://doi.org/10.5281/zenodo.11541294. All
data are included in the Supplementary Information or available from
the authors upon reasonable request, including unique reagents used
in this Article. The raw numbers for all charts and graphs are available
in the Source Data file whenever possible. Source data are provided
with this paper.

Code availability

The machine learning-based ROS analysis code used in this study is
publicly available on GitHub at [https://github.com/SYChenLab/ROS].
To ensure reproducibility and long-term accessibility, a versioned
snapshot has also been published on Code Ocean with [https://doi.org/
10.24433/C0.4463135.v1]. The capsule includes the full execution
environment and instructions for replicating the key analyses in this
study. Additionally, code specific to the hemodialysis sepsis prediction
model has been deposited on Zenodo (https://doi.org/10.5281/
zenodo.11541294) and is accompanied by comprehensive doc-
umentation. All code is available under a permissive open-source
license.
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