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Large-scale predictions of alternative protein
conformations by AlphaFold2-based
sequence association

Myeongsang Lee 1,3, Joseph W. Schafer1,3, Jeshuwin Prabakaran1,
Devlina Chakravarty1, Madeleine F. Clore 1 & Lauren L. Porter 1,2

The many successes of AlphaFold2 (AF2) have inspired methods to predict
multiple protein conformations, many of which have biological significance.
These methods often assume that AF2 relies on evolutionary couplings to
predict alternative protein conformations, but they perform poorly on fold-
switching proteins, which remodel their secondary structures and modulate
their functions in response to cellular stimuli. Here we present a method
designed to leverage AF2’s learning of protein structure more than evolu-
tionary couplings. This method–called CF-random–outperforms other meth-
ods for predicting alternative conformations of not only fold switchers but
also dozens of other proteins that undergo rigid body motions and local
conformational rearrangements. It also enables predictions of fold-switched
assemblies unpredicted by AlphaFold3. Several lines of evidence suggest that
CF-random sometimes works by sequence association: relating patterns from
homologous sequences to a learned structural landscape. Through a blind
search of thousands of Escherichia coli proteins, CF-random suggests that up
to 5% switch folds.

Alternative protein conformations can play critical roles in protein
function and regulation1–3. These alternative conformations can be
accessed by rigid body reorientations, local fluctuations, or remodel-
ing secondary and/or tertiary structure (fold switching)4. Physics-
based methods, such as molecular dynamics (MD) simulations, have
successfully modeled alternative conformations5–8, but they require
toomuch computational power to predict conformational changes on
a large scale. Furthermore, some conformational changes, such as fold
switching, occur on a timescale of seconds9–11, prohibitively long for
MD to reasonably access alternative conformations if they were not
known previously. Recently, artificial intelligence (AI)-based protein
structure predictors–particularly AlphaFold2 (AF2)12–have offered
another way to predict large numbers of alternative protein
conformations13–17: modifying or subsampling the inputted multiple
sequence alignment (MSA), from which AF2 may infer evolutionarily

coupled residue pairs used to predict structure15. These MSA mod-
ifications are hypothesized to diminish dominant residue-residue
couplings13,18 while sometimes enhancing the couplings of conforma-
tional alternatives16,17. However, a recent study found that these
methods usually fail on the alternative conformations of 92 experi-
mentally characterized fold-switching proteins likely in AF2’s training
set with individual false negative failure rates from 80-93%19.

Here, we present CF-random20, an alternative strategy to predict
alternative protein conformations. This strategy leverages ColabFold21

(CF)–an efficient-yet-accurate implementation of AF2–to predict
alternative conformations by randomly subsampling input MSAs at
depths too shallow for robust coevolutionary inference. While CF-
randomwas shown to performwell on eight fold-switching proteins20,
its generalizability was not tested, its inner-workings were not
explained, and its implementation was not automated. Here, we
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address all three of these issues by (1) testing CF-random on 92 fold-
switching proteins and 37 other proteins that undergo local con-
formational fluctuations and rigid body motions, (2) showing that CF-
random sometimes works by sequence association: relating patterns
fromhomologous sequences to a learned structural landscape, and (3)
providing an automatic implementation. We find that CF-random
outperforms allmethods reported previously. Compared to the 7−20%
success rates of other individual methods for fold-switching proteins,
CF-random achieved a 35% success rate while generating 6x fewer
structures overall. Further, CF-random captured rigid body reor-
ientations and local conformational fluctuations of the 37 other pro-
teinswith a 95%success rate and considerably less sampling thanother
methods. Encouraged by its success, we develop CF-random to per-
form blind searches for alternative conformations and run it on >2000
proteins from Escherichia coli. These predictions suggest that up to 5%
of E. coli proteins switch folds. We present CF-random as a tool for
community use, specifying its strengths and limitations.

Results
CF-random outperforms other AF-based predictors of fold
switching
CF-random is a ColabFold-based pipeline that generates putative con-
formational ensembles by combining predictions from deep and
shallow MSA sampling (Fig. 1, Methods). AF2-based methods, such as
ColabFold, are known to generate one dominant conformation of fold-
switching proteins from deepMSAs22. Thus, the challenge is to sample
the alternative conformation. CF-random aims to overcome this chal-
lenge by sampling very shallow random input MSAs with as few as 3
sequences. Shallow sampling directs the AF2 network to predict
structures from sparse sequence information insufficient for robust
coevolutionary inference, setting it apart from previously proposed
methods that used a minimum of 24 sequences14,23. Because some
predictions are not well folded at shallow MSA sampling depths, CF-
random also explores deeper depths. Typically, shallow sampling
occurs at seven depths including between 3 and 192 sequences.
Templatemodeling (TM)-scores24 of the fold-switching regions of each
prediction are compared to their experimentally determined struc-
tures, since this has been shown to discriminate between fold switch-
ers better than overall TM-score19, though the overall score is
considered also. We report sampling depth with the following nota-
tion: x:y, where x is the value assigned to ColabFold’s –max-seq

argument (the number of sequences randomly selected as cluster
centers) and y is the value assigned to –max-extra-seq, the number of
extra sequences randomly sampled from the clusters is defined by
–max-seq. The total number of sequences inputted into ColabFold at
each recycling step is x + y.

We tested CF-randomon92 fold-switching proteins likely in AF2’s
training set and found that it predicts both the dominant and alter-
native conformations of 32 fold switchers successfully. Further, CF-
random sampled 89% fewer structures than other AF2-based methods
(Fig. 2a), which predicted 25 fold switchers altogether. To explorewhat
AF2 has learned about alternative conformations of fold switchers, all
predictionswere performedwithout templates. Very shallow sequence
sampling was a key to CF-random’s success: 23 conformations (72%)
were successfully predicted at sampling depths of 4:8 sequences or
below (Fig. 2b). To our knowledge, random sequence sampling at such
shallow depths has not been tested systematically; previous work
suggested a minimum sampling depth of 8:1614,23.

CF-random successfully predicts both global and local fold-
switching events, some of which had not been predicted successfully
by other methods (Fig. 2c). For instance, CF-random successfully
predicts both conformations of human XCL1, which have distinct
hydrogen bonding networks and hydrophobic cores25. Though both
predictions correspond well with experimentally determined struc-
tures, CF-random mispredicts that a disordered C-terminal region of
dimeric XCL1 folds into a helix, consistent with other reports that AF2
sometimes incorrectly predicts disordered regions as helices26. CF-
random also predicts two conformations of TRAP1-N. This N-terminal
domain of a human mitochondrial heat shock protein assumes dif-
ferent conformations in its apo, GTP-, and GDP-bound forms27. The
alternative autoinhibitory apo form has a conserved glutamine that
binds to the ATP-binding lid region and is proposed to be an on-
pathway conformation important for TRAP1N’s function as a protein
folding chaperone. The dominant ATP-open form has not been
observed to promote protein folding. Finally, RepE, a DNA replication
initiator protein from E. coli, has two folds with distinct functions. As a
monomer, it functions as a replication initiator whereas the dimeric
form functions as a repressor. Its dimeric form is dominant under
physiological conditions; the chaperone DnaKmediates its conversion
to a monomer28. CF-random predicts its monomeric form from full
MSAs and its dimeric form at a very shallow sampling depth
(2:4, Fig. 2c).

Generate alternative structures
(Shallow MSA sampling)

n=0
n=1

n=2
…

n=n
max-seq MSA 2n

max-extra-seq MSA 2n+1

For n  {0…6}

Full-length MSA

Sequence
(MAPLRKTYVLKLYVAGNTPNSVRALKTLNNILE
KEFKGVYALKVIDVLKNPQLAEEDKILATPTLAK
VLPPPVRRIIGDLSNREKVLIGLDLLYE)

Inputs
Generate dominant structure

(Deep MSA sampling)
Check against experiment

plD
D

T
CF-random

max-seq MSA 512
max-extra-seq MSA 5120

Fig. 1 | Overview of CF-random. CF-random (ColabFold-based random MSA
sampling) generates dominant and alternative protein structures by combining
ColabFold predictions generated from a deepmultiple sequence alignment (MSA)
and shallow randomMSAs, respectively. To run default mode, a full-length MSA is
required. ColabFold samples the MSA at default depth (512:5120) to produce the
dominant conformation and then randomly subsamples at shallower depths to

predict putative alternative conformations. It was benchmarked against known
fold-switching proteins by calculating the TM-scores of all predicted structures
against two reference structures. Success was considered correct predictions of
both conformations from a single target sequence. Source data are provided as a
Source Data file.
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Combining AF2-multimer with CF-random sampling improves
some predictions
Of the 32 successful predictions of fold switchers, six were improved
from additional molecular context supplied by the AF2-multi-
mer model. For instance, CF-random predicted a monomer of FraC–a
pore-forming toxin from Actinia fragacia–to have its N-terminal helix
detached from the rest of the protein, similar to the pore form29

(Supplementary Fig. 1a). Inputting its sequence into AF2-multimer and
sampling at the shallowest depth found to produce folded predictions
yielded a structure highly consistent with experiment (1.4 Å, Fig. 3a).
Interestingly, neither sampling deeper MSAs nor using the
AlphaFold330 (AF3) server produced this conformation (Fig. 3a). Fur-
thermore, though AF2-based predictors often struggle to predict
amyloid structures31,32, CF-randomproduced an amyloid-like structure
of the human Aβ42 peptide (Supplementary Fig. 1b). Running the
multimer model on its sequence at the shallowest depth possible (1:2)
yielded a fibril-like conformation consistent with experiment (Fig. 3b).
While the morphology of the overall fibril was not completely
correct–the experimentally determined structure involved three
chains while the prediction involved two in a similar configuration–the
prediction suggests that an amyloid-like configuration is possible.
Deep-MSA sampling with the AF2 multimer model did not produce
amyloid-like fibrils consistent with those in the PDB by a Foldseek33

search, and AF3 predicted a different fibril morphology also loosely
consistent with experiment (Fig. 3b). Additionally, CF-random pre-
dicted a partially folded conformation of the cell cycle regulatory
protein Cks1 from S. cerevisae consistent with its functionally relevant
domain-swapped dimer34 (Supplementary Fig. 1c). Running the AF2
multimer model on both deep and shallow MSAs produced an
experimentally consistent dimer orientation, while AF3’s was incon-
sistent (Fig. 3c). The multimer model also enhanced promising

predictions of the domain-swapped conformation of human CrkL-
SH3Cdomain (not predicted by AF3) and domain-swapped Escherichia
coli rhomboid protease and E. coli FimF (both predicted by AF3). After
running CF-random with multimer weights on all 92 fold-switching
proteins, only one additional alternative conformation was found: the
dimeric form of bone morphogenic protein inhibitor DAN from Mus
musculus (PDB ID: 4jph). It wasnot included among the successes since
itwas not identifiedwhenCF-randomwas runon a singleproteinchain.

CF-random predicts rigid body motions and local conforma-
tional changes more efficiently than other AF-based methods
CF-random’s performance on alternative conformations of fold
switchers raises the question of how well it predicts other conforma-
tional changes. To address this question, we tested it on two other
datasets used to assess how well AF2-based methods predict alter-
native conformations. The first was a dataset of 14 proteins, 2 soluble
proteins and 12 membrane transporters used to benchmark two pre-
vious methods14,16. Like CF-random, one of these two methods
(SPEACH-AF) did not use templates to make predictions. SPEACH-AF
works by making in silico alanine mutations to columns of multiple
sequence alignments (MSAs) corresponding to groups of residues in
direct contact. The idea is that these alaninemutationsmask dominant
evolutionary couplings used for structural inference, allowing AF to
detect alternative couplings invisible in the full unmasked MSA16. The
other dataset contained 23 proteins with well-defined open and closed
conformations (OC23), such as periplasmic binding proteins, used to
benchmark another method called AFSample213. Like SPEACH-AF,
AFSample2 also masks columns of MSAs but randomly rather than
targeting residues in direct contact. It also enables dropout, which set
some of AF2’s weights to 0 during inference, making it easier for the
network to sampleuncertainties and generatemorediverse structures.

Fig. 2 | CF-random outperforms other methods for predicting fold switching.
a CF-random performs more successfully and efficiently than SPEACH-AF, AF-
cluster, and AF2 with no templates. b Most alternative conformations can be pre-
dicted successfully using very shallow sampling depths (those to the left of the
dotted line comprise 72% of all predictions). In two cases, sampling at 1:2 produced
homogenous well-folded structures similar to the dominant conformation, in

which case single sequences were also tested (single). c Successful predictions of
three fold-switching proteins not predicted by the other methods: human XCL1,
human TRAP1N, and Escherichia coli (E.coli) RepE. Gray represents the reference
PDBstructures and single-folding regions; blue andpink indicate the fold-switching
regions of dominant and alternative structures, respectively. Source data are pro-
vided as a Source Data file.
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CF-random sampled alternative conformations more efficiently
than both methods while producing accurate predictions. For
instance, it successfully captured local conformational fluctuations in
the “LID” and “AMP-binding” domains of Escherichia coli Adenylate
Kinase (AK) with high accuracy (TM-scores of 0.98 and 0.9 for the
dominant and alternative forms, respectively, Fig. 4a,b). Overall, CF-
random captured both Fold1 and Fold2 of all SPEACH-AF targets with
TM-scores ≥0.81 with considerably less sampling than SPEACH-AF:
200 structures/CF-random ensemble compared to 300-811 structures/
SPEACH-AF ensemble (Fig. 4c,d, Supplementary Table 2). Similarly, CF-
random captured the “cap-open” and “cap-closed” states of β-
phosphoglucomutase (βPGM) with TM-scores of 0.97/0.99 for the
dominant/alternative conformations (Fig. 4e,f). Overall, CF-random
captured both Fold1 and Fold2 of all OC23 targets with TM-scores ≥
0.7, except for Q9ERE7 (Fig. 4g); AFSample2 also failed to predict its
conformations with high accuracy (Supplementary Table 3). However,
CF-random successfully captured three other alternative conforma-
tions that AFSample2 failed to capture (Supplementary Table 3). Fur-
ther, CF-random sampled 5x fewer models to predict alternative
conformations compared to AFSample2 in 16/23 cases (Fig. 4h). In 6/7
remaining cases, sampling an additional 600 structures yielded high
accuracy predictions of both conformations, 20% less sampling than
AFSample2 (Fig. 3h).

Sequence association drives some predictions of alternative
conformations
How does CF-random predict alternative conformations? Since AF2
predictions are often based on evolutionary couplings inferred from
multiple sequence alignments (MSAs), it has been proposed that
supplying varied MSAs can provide evolutionary restraints unique to
alternative conformations15,17. Recent work indicates that this is not the
case for rigid body motions and local conformational fluctuations,
however18. Instead, conformations consistent with the same set of
evolutionary restraints are sampled stochastically. Fold switching dif-
fers from rigid body motions and local conformational fluctuations
because it involves remodeling of secondary structure, sometimes
leading to alternative folds inconsistent with dominant evolutionary
couplings20. Since AF2-based predictions of dominant fold-switch

conformations are typically consistent with coevolutionary restraints
from deep MSAs, we investigated whether successful AF2 predictions
of fold switchers are driven by coevolutionary restraints unique to
their alternative conformations.

Coevolutionary analysis of the MSAs that successfully produced
each alternative fold-switched conformation revealed few unique
alternative evolutionary couplings, indicating that predictions of
alternative conformations of fold switchers are not generally driven by
coevolutionary inference (Fig. 5a). In fact, these MSAs provide more
information unique to dominant unpredicted conformations (mean
percentage of total couplings, 11%) than alternative predicted con-
formations (mean percentage of total couplings, 8%). Thus, many of
these predictions seem to be driven by AF2’s learning of protein
structure rather than couplings unique to alternative conformations.
Since previouswork suggests that (1) AF2 struggles to predict the large
conformational changes that many fold switchers undergo18 and (2)
AF2 has memorized some alternative conformations of fold
switchers19,20, we hypothesized that AF2 may generate alternative
conformations of fold switchers through sequence association: relat-
ing features of homologous sequences to a learned structural land-
scape. This differs from coevolutionary inference, which can be used
to infer protein structure without prior knowledge.

We used a recently characterized fold switcher, Sa1 V90T (Sa1
hereafter), to test whether AF2 may produce some alternative con-
formations through sequence association. Sa1 is a temperature-
sensitive fold switcher that assumes a three-α-helix bundle fold at
low temperature but switches to an α/β plait as temperature
increases13. Some methods for predicting multiple conformations
struggle to predict both folds of Sa119. Similarly, with default settings,
CF-random predicts the α/β plait fold but not the helical bundle.
Investigating, we noticed that although the initial iterationof sequence
search for Sa1 yielded sequences unique to both folds, subsequent
sequence-search iterations left its final MSA without three-α-helix
bundle sequences (Fig. 5b).

We then searched the sequence of Sa1 against the PDB and found
it to match 3 three-α-helix folds with sequence identities ranging from
42−70%; these sequences revealed that CF predicts the three-α-helix
fold through sequence association. In further detail, we ran CF three

Fig. 3 | Running CF-random with AF2 multimer weights produced experimen-
tally consistent protein assemblies. By contrast, AlphaFold3 (AF3) predicted
some assemblies incorrectly but with high confidence. For CF-random, predictions
are pink, denoting alternative conformations, while AF3 predictions are colored by

plDDT. Experimentally determined predictions are gray with PDB IDs: 4TSY (FraC),
6RHY (Aβ42, above), 2MVX (Aβ42, below), 1QB3 (Cks1). Experimentally determined
structures are gray. Source data are provided as a Source Data file.
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Fig. 4 | CF-randomefficiently and accurately predicts rigid body reorientations
and local conformational changes. a, e The open- and closed-conformations of
Adenylate Kinase (AK) and β phosphoglucomutase (βPGM) were correctly pre-
dicted. Dominant/alternative conformations are blue/pink. b, f CF-random pro-
duces ensembles of AK and βPGM accurately and with high confidence, though

some inaccurate lower confidence structures are produced also. c, g The highest
TM-scores that CF-random produced are reported in these tables and compared
with SPEACH-AF and AFSample2, respectively. d, h CF-random sampled sub-
stantially fewer structures than either SPEACH-AF or AFSample2. Source data are
provided as a Source Data file.
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times, inputting only one of the three PDB sequences in each run. In all
three cases, CF confidently predicted three-α-helix folds from the two-
sequence MSAs (Sa1 sequence+homolog, Fig. 5c). Since these two-
sequence MSAs are too shallow for robust coevolutionary inference
(Supplementary Fig. 2), it seems the best explanation for these pre-
dictive successes is sequence association. This approach is much like
homology modeling but more powerful because only a single “tem-
plate” sequence–rather than an input structure–is needed to produce
the alternative conformation. Underscoring the explanatory power of
this approach, it produces the helical bundle conformation more fre-
quently (40-100% of the time from 20 models, depending on input
sequence) than in previous work sampling 1000 structures with
dropout and MSA masking (<2% of the time)13. Some of these three-
helix-bundle predictions also contained a fourth C-terminal helix
experimentally observed to be disordered, again demonstrating that
sometimes AF2 sometimes mispredicts disordered regions as helical.

Leveraging these observations, we developed a strategy that
enabled CF-random to predict both folds of Sa1 (Fig. 5d). First, Sa1’s
MSA was rebalanced to contain hundreds of 3-α-helix bundle
homologs but only 3 sequences homologous to the α/β-plait. Inter-
estingly, sampling themodifiedMSA at full depth produced α/β-plait
modelswith high confidence and RMSDs closer to the experimentally
determined structure than the deep MSA with >1000 α/β-plait
sequences. Since AF2 predicts the α/β-plait fold of Sa1 from a single
sequence with high confidence (Supplementary Fig. 3), sequence
association seems to be the best explanation for this prediction.
Likewise, sampling at shallow depths such as 2:4 yields high-
confidence and accurate predictions of the three-α-helix fold
(Fig. 5d). Given the very shallow samplingdepth and theobservations
in Fig. 5c, sequence association seems to be a sensible explanation for
this prediction as well.

Blind predictions with CF-random
CF-random was further developed to predict new fold switchers
without prior knowledge. This approach extends the algorithm by

automatically selecting putative alternative conformations among
the predictedmodels; the remainder of the algorithm is unchanged.
In both previous work and this study, we noticed that correctly
predicted alternative conformations of fold switchers are not
always assigned confident scores by AF219, as measured by plDDT
(per-residue local Distance Difference Test). For instance, the
alternative fold of XCL1 is predicted with low confidence (plDDT
<70) in most cases (Supplementary Fig. 4); low plDDT scores of
alternative conformations have been observed in other work as
well18,35. To circumvent this problem, we developed an approach to
cluster predictions by structural similarity (Fig. 6). Although struc-
tural clustering can be straightforward for proteins whose alter-
native conformations differ substantially from dominant, it is more
challenging when structural differences are localized to relatively
small protein regions. To overcome this challenge, a Foldseek33

database of all structures predicted for a given target is con-
structed. This database is used to calculate an all against all simi-
larity matrix for the structures using the Foldseek structural
bitscore, which enables both subtle and large conformational dif-
ferences between predicted structures to be distinguished (Meth-
ods). The similarity matrix is then reduced using Principal
Component Analysis (PCA) followed by two different density-based
scanning algorithms, finally yielding a subset of the full CF-random
blind mode ensemble that represents the conformational variance
of the predicted structures. Blind mode successfully detected both
conformations of fold switchers in 81% of cases identified in default
mode (26/32), corresponding to a 28% success rate among all 92
fold switchers. An example of a difficult-to-identify local con-
formational change is the active-site loop of inositol monopho-
sphatase (IMPase) from Thermatogamaratima shown in Fig. 6. Well-
folded predictions of both conformations are present in the yellow
and green clusters. Structures from purple and blue clusters are not
as well folded (Supplementary Fig. 5). Thus, user discretion is
required to identify the most plausible alternative conformations
among those suggested by blind mode.

Fig. 5 | CF-random predictions of alternative conformations are sometimes
driven by sequence association. a Evolutionary couplings unique to dominant
unpredicted structures are generally stronger than evolutionary couplings unique
to predicted alternative structures. Each box-and-whisker plot contains 104 data
points, with boxes representing interquartile ranges and the middle line repre-
senting the median. Whiskers extend to 1.5 times the interquartile range. b CF-
randomfailed topredict the alternative conformation (3-α-helixbundle fold)of Sa1
using the multiple sequence alignment (MSA) with α/β-plait homologs only. c To
test for sequence association, three different MSAs were generated containing the
Sa1 sequence and a single 3-α-helix homolog over the protein data bank (PDB)

search. In all three casesColabFold (CF)predicted thehelical bundle sequencewith
high confidence, indicating that they are predicted by sequence association.
d When the MSA was rebalanced with 3-α-helix (orange and red sequences also
represent 3-α homologs) and α/β-plait, CF-random successfully predicts both
Sa1 structures. It predicted theα/β-plait from the fullMSA and the 3-α-helix bundle
with --max-seq = 2, --max-extra-seq = 4. Color bar representing AF2’s confidence
metric, per-residue local distance difference test (plDDT) scores, applies to all
structures with corresponding colors. Source data are provided as a Source
Data file.
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Blind predictions of fold-switching E. coli proteins
Finally, we tested CF-random’s blind mode on E. coli
proteins–including some from bacteriophage–with 300 residues or
fewer (Fig. 7a). This length limit makes them suitable for future
experimental testing by nuclear magnetic resonance (NMR) spectro-
scopy, a method that has successfully identified fold-switching pro-
teins previously36. To ensure maximum plausibility, predictions
reported here were also subject to the following quality checks.

(1). Coevolutionary evidence for both conformations. Both
dominant and alternative protein conformations often have clear
coevolutionary signatures37. As shown previously, AF2-based predic-
tions, including those by CF-random, do not necessarily result from
coevolutionary inference18–20. Predictions of alternative conformations
without evolutionary basis can be incorrect20,37. Therefore, we sear-
ched for coevolutionary evidence of both conformations using Alter-
native Contact Enhancement (ACE), a method designed to identify
evolutionary couplings unique to multiple protein conformations37. If
such evidence was found, a prediction was considered plausible if
condition (2) wasmet.We also note that at shallow depths, CF-random
can predict spurious helical conformations. Cross-checking against
coevolutionary information often helps to eliminate them. In cases
where insufficient evolutionary couplings were present, we used our
best judgement to assess the predictions.

(2). Ruling out interchain contact misassignment. Previous work
has shown that AF3 can misassign intrachain contacts as interchain19.
Here, we observe the opposite problem: sometimes AF2 assigns
interchain contacts as intrachain (Supplementary Fig. 6), producing
questionable alternative conformations. To circumvent this problem,
we performed Foldseek searches on all hits produced by blind mode
andexamined their oligomeric states. If the target hada closehomolog
(≥70% sequence identity) with an oligomeric state whose interchain

contacts overlapped with contacts unique to the predicted alternative
conformation, the prediction was discarded under the assumption
that it forms an oligomer and its interchain contacts were misassigned
as intrachain, producing a spurious alternative conformation. In cases
where a target did not have a close homolog with solved structure, but
both of its conformations had coevolutionary support, it was reported.
These cases may also conflate intrachain contacts with interchain but
lacked evidence to support exclusion.

(3). Confidence ranking. Most confident (Tier 1) predictions
satisfied criteria (1) and (2) while also being supported by experiment
or having a strong biological basis for the conformational change. Tier
2 predictions satisfied criteria (1) and (2) without further experimental
support.

With this approach, we ran CF-random on 2126 E. coli proteins, of
which 52 were predicted to switch folds (Supplementary Table 4).
Supporting the plausibility of these predictions, the estimated relative
Rosetta energy scores38,39 between each pair of putative fold switchers
were in the same range as fold switchers determined by experiment
(Supplementary Fig. 8). Among the functionally annotated putative
switchers, transcription/translation regulators were the most com-
mon, followed by toxin-antitoxin proteins, phage proteins, and struc-
tural assemblyproteins (Fig. 7b). Toxin-antitoxin proteins andproteins
of unknown function have not been observed to switch previously,
while previous work has established that proteins in the other func-
tional classes sometimes switch, especially transcription factors,which
are enriched among fold switchers. Furthermore, the blind search
identified some experimentally confirmed fold switchers, including
RfaH and MinE, along with homologs of fimbrial proteins known to
switch folds.

Three putative fold switchers are presented as examples (Fig. 5c,
Supplementary Fig. 7). The phage tail tube protein is part of a large

Fig. 6 | FlowdiagramofCF-random’s blindmode.A Foldseek database is created
from CF-random generated structures (collectively called the ensemble). This
database is used to evaluate each structure’s similarity to the ensemble. Con-
trasting default mode in Fig. 1, two reference structures are not required, enabling
a blind search. Principal component analysis followed by two different clustering
algorithms produce the final subset of CF-random conformations that represent
the structural variance in the ensemble. From left to right: CF-random blind mode
produces 200 predicted structures; all structures are queried against the

generated database to create the similarity matrix. Predicted structures from T.
maratima IMPase (PDB ID: 2P3V) are depicted within the similarity matrix repre-
sentation. Principal component analysis and HDBSCAN then produce a reduced
spacewith similar structures clustered near each other (scatter plot top right), and
K-medoids selects representative structures from the HDBSCAN clusters (2P3V
predicted structures for the green and yellow clusters are shown bottom left,
purple and blue structures in Supplementary Fig. 5). Source data are provided as a
Source Data file.
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assembly that penetrates its host cell envelope. Its dominant form
resembles the conformation of a homolog in its protein assembly,
with protruding β-sheets that interact with its partners. Its alternative
fold has its β-sheets tuckedwithin the larger body of its structure and
stabilized by hydrogen bonds. Though no similar PDB structures
could be identified through a Foldseek search, this alternative con-
formation seems plausible given that similar behaviors in pore
forming proteins have been observed40. Both conformations were
predicted with plDDT scores ≥ 70. Second, NinH is a transcriptional
regulator whose closest FoldSeek matches are Cro repressor pro-
teins. The structures of Cro proteins have evolved over time, and
switches have been engineered41,42. This, combined with the fact that
several known fold-switching proteins are transcription factors4,
supports the prediction. Finally, the bacterial antitoxin YmcE may
also switch folds. This is themost speculative of the three predictions
since few YmcE homologs were used to construct its MSA, and its
evolutionary couplings were noisy. However, the hit is reported
because (1) CF-random predicts that several bacterial antitoxins
switch folds, and (2) YmcE is predicted to assume two dramatically
different conformations.

Based on these predictions, we estimate that up to 5% of E. coli
proteins switch folds. Of the 2126 proteins in the set, 52 are predicted
to switch folds, a 2.4%hit rate. However, CF-randompredicted only 22/
47 of known fold-switching proteins with ≤300 residues. If an equal
number wasmissed here, 5.2% would switch folds. Furthermore, 45/92
know fold-switching proteins have > 300 residues. Again, a similar

ratio among E. coli proteins would suggest that up to 5% may
switch folds.

Discussion
Though AlphaFold2 often predicts single protein conformations with
high accuracy, predicting alternative conformations remains a
challenge43. Some recently developed methods44,45 generate alter-
native conformations using new techniques such as the Distributional
Graphoformer46 and flow matching46, though these have not been
tested on many fold-switching proteins. A diffusion-based model
called EigenFold was tested on fold switchers, but its performance was
weak47. Several previous methods have relied on coevolutionary
information to predict fold switching and other conformational
changes, for both AlphaFold215 and ESMFold48,49. Here we show that
leveraging AF2’s learning of protein structure–including sequence
association–outperforms previous methods for predicting fold-
switching proteins. Furthermore, this approach is more efficient than
previous methods for predicting rigid body motions and local con-
formational rearrangements. The generalizability of CF-random sug-
gests that leveraging AF2’s learning of protein structure offers more
robust predictions of alternative conformations than coevolutionary
inference of input MSAs, and sequence association may be a far-
reaching explanation for how AF2 predicts alternative conformations
of fold switchers.

CF-random has both advantages and limitations. First, it predicts
some fold-switched conformations through AF2’s learning of protein

Fig. 7 | Predicting E. coli proteins thatmay switch folds. aWe ran the sequences
of 2126E. coli andphage proteins throughCF-random. In total 3237 sequenceswere
attempted, but in 1111 cases,MSAs deep enough for coevolutionary inference could
not be generated. Seashell-like image represents these 3237 proteins by length; the
inner circle represents 1111 rejected candidates, and outer, the 2126 proteins that
were then run through CF-random. If two or more distinct conformations were
identified, such as in the case of the successfully identified fold-switching E. coli
protein, RfaH, we tested for dual-fold coevolution using ACE. If coevolutionary
evidence for both folds was found, the protein was considered a putative fold
switcher. Light gray/black contacts on upper/lower diagonals are unique to CF-
random predicted dominant/alternative conformations. Teal contacts are from
coevolutionary inference. Medium gray contacts are unique to both folds.

b Putative fold-switching proteins are involved in diverse functions. C Examples of
putative hits. The phage tail tube protein is part of a large assembly that penetrates
its host cell envelope. The dominant conformation predicts an extended β-sheet,
while in the alternative form, the sheets are incorporated into the larger β-sheet
structure. Both conformations were predicted with plDDT scores > 70. NinH is
transcription factorprotein thatmay undergo anα-helix-to-β-sheet transition; both
conformations were predicted with plDDT scores > 70. Finally, YmcE is a bacterial
antitoxin predicted to assume twodifferent folds. Its dominant formwas predicted
with plDDT> 80, while its alternative was predicted with plDDT >66 excluding
disordered ends. Throughout this figure, dominant folds are blue and alternatives
are pink. Source data are provided as a Source Data file.
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structure rather than coevolutionary inference of input MSAs. To our
knowledge, this is thefirst study showing that AF2 sometimesworks by
sequence association. Much like homology modeling, sequence asso-
ciation requires prior learning of protein structure. We suspect that
this drives many CF-random predictions at very shallow sampling
depths (4:8 andbelow).While shallow randomsamplingmay fosterCF-
random’s efficiency, it may also impede predictions of alternative
conformations verydifferent from those in the training set. CF-random
maymakenewassociations between input sequences and structures in
its training set, however, as it did with Sa1. Accordingly, it may suc-
cessfully reveal that certain sequences assumed to be single folders
can assume yet-undiscovered alternative conformations in the training
set. Previous work indicates that AF2-based methods can incorrectly
predict single folders as fold switchers20, however. This is a second
notable limitation of CF-random: it may predict alternative con-
formations of proteins erroneously. For this reason, we suggest using
alternative approaches–such as ACE37, AF2-RAVE50, or other MD-based
approaches51–to cross-check predictions. Nevertheless, some predic-
tions presented here may be incorrect, particularly those of proteins
with unknown function. Thirdly, blind mode sometimes misses alter-
native conformations that CF-random predicts correctly.

Although CF-random outperforms other methods for predicting
known fold switchers, it is a weak predictor (35% success rate), indi-
cating thatmuchwork remains to be done in this challenging research
area52. CF-random was run without templates and with much less
sampling than other methods. More sampling and inclusion of tem-
plates may lead to a higher success rate, though we do not expect
major improvements since most of the successful predictions repor-
ted here were also achieved by combining results from other AF2-
based methods with a lot more sampling, and inclusion of templates
yielded only a few more unique hits19. The CF-random approach may
improve AF3’s performance on fold switchers also, since it was also
weak (8% success rate)19.

Nevertheless, CF-random predicts alternative conformations in
>50 E. coli proteins, suggesting that up to 5% switch folds. This sub-
stantial number supports previous work proposing that fold switching
is a widespread natural phenomenon4,53. To demonstrate its potential
significance, there are ~20,000 human genes. If 5% of them switched
folds, that would be ~1000 human fold-switching proteins. Future
work will examine the scope of fold switching in human and other
proteomes.

To our knowledge, this is the first study to successfully predict
many plausible 3D alternative conformations from thousands of pro-
tein sequences.While the focus of this studywas on fold switching, CF-
random predicted other conformational changes also, suggesting that
it can be used to predict alternative conformations in general. Future
experimentalworkwill testwhether thesepredictions of fold switchers
are correct. We hope that CF-random will help to advance the new
frontier of predicting conformational ensembles52.

Methods
Datasets
Fold-switching proteins adopt at least two different conformations
(e.g., active/inactive or apo/holo conformations). In the CF-random
pipeline, the dominant conformation is typically defined as that which
CF predicts most frequently from full MSA sampling, except in a few
cases where memorization has been shown or is expected to overrule
coevolutionary inference19,35,54. AF2/CF rarely predicts more than one
conformation when sampling full MSAs22. By exclusion, the alternative
conformation is defined as that whichAF2 rarely–if ever–samples from
full MSAs and therefore requires an alternative sampling strategy.

PDB IDs corresponding to both conformations of all proteins
tested here (fold switchers and other conformational changes) are in
Supplementary Tables 1/2/3; regions of proteins that switch folds are
also reported, if applicable. These regions are well ordered, as

evidencedby having B-factors comparable to regions of solved protein
structures that do not switch folds19.

Default mode prediction for predicting alternative conforma-
tions and fold-switching proteins
All CF-random predictions were run using ColabFold (CF) version 1.5.5
with monomer-ptm weights and all MSAs were constructed using the
CF pipeline unless specified otherwise. Previous work showed that
monomer weights can perform better thanmonomer-ptm20, but E. coli
genome proteins were run with monomer-ptm weights before this
observationwasconsidered; rerunningwithmonomerweightswas too
costly. When run with either set of weights, default mode requires an
input MSA and two reference structures as input. It works as follows:

Step 1: Sampling. Multiple Sequence Alignments are sampled at
default depth (512:5120) to generate structures using all 5 AF2 models
and 5 random seeds. Then 7 shallow depths (1:2, 2:4, 4:8, 8:16, 16:32,
32:64, 64:128) are sampled with 5 random seeds, all 5 models. This
leads to 200 predicted structures overall. Importantly, as shown by
previous work, the default depth is expected to predict one
conformation22; thus, finding the alternative is the challenge. Note that
X:2*X refers to the --max-msa:--max-extra-msa ColabFold parameters.

Step 2: Checking against experiment. TM-scores of each pre-
diction are calculated against two distinct experimentally character-
ized conformations. If predictions with TM-scores ≥0.6 for both
conformations were generated, and the best TM-score relative to
conformation 1 > its TM-score relative to conformation 2 and vice
versa, the predictions were considered a success. In some cases, such
as human lymphotactin, the TM-score threshold was lowered to
account for variability in disordered regions.

Fold-switching predictions
The total number of successes was the number of sequences from
which both conformations could be generated; one conformation had
a higher TM-score corresponding to Fold1 and the other to Fold2.
Models whose accuracies increased by running the Multimer model
were included, though their alternative conformations were required
to be sampled as monomers also. The total number of structures
generated by CF-random was (200)*154 proteins with distinct
sequences (many fold switchers have a few mutations to stabilize one
conformation or are truncated4) = 30,800 structures. Additionally,
models of 100 proteins were generated from single sequences,
25 structures each= 2500 additional structures. In two cases where the
alternative conformation was sampled with lower quality from deep
MSAs (512:5120), 100 additional structures were sampled each. Finally,
as reported in Results, six other proteins were also sampled using the
multimer model (alphafold_multimer_v3 weights), 100 conformations
each= 600 additional structures, for a total of 34,100 structures.
Sampling depths used to produce alternative conformations of fold
switchers are reported in Supplementary Table 1. Sampling and suc-
cess rates for SPEACH-AF, AF-cluster, and AF2 were taken from the
supplementary data reported in19.

Multimer predictions
CFwas run with the sameMSA sampling depths as CF-random using the
alphafold2_multimer_v3 weights. The number of chains in predicted
homo-oligomers matched those from the biological assemblies in the
PDB. For diversity, the AF3 server was sampled with up to 5 seeds (1-5)
for each of the oligomeric targets. If the alternative conformation could
not be found with those seeds, we reported that AF3 did not predict it.

Other conformational changes
The 14/23 proteins from the SPEACH-AF/OC23datasets are reported in
Supplementary Table 2 and 3. For sampling comparisons, it should be
noted that the sampling numbers reported in all cases did not com-
prise the total number of structures sampled by SPEACH-AF. Rather,
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the number of good quality structures produced by SPEACH-AF (by
MolProbity score55) was reported because the total number of struc-
tures generated by SPEACH-AF was not found. MSAs for SPEACH-AF
targets were generated using the sequences in their GitHub repository.
MSAs for AFsample2 targets were taken directly from their Zenodo
repository.

Coevolutionary analysis
With default settings, MSA Transformer56 was used to calculate the
evolutionary couplings of eachMSA uniformly sampled by CF-random
at each sampling depth and each recycling step used to produce the
best structure corresponding to each alternative conformation.
Sequences from –max-seq and –max-extra-seq were combined to
make these MSAs. MSA Transformer contacts were superimposed on
residue-residue contacts calculated from AlphaFold2 models of a
representative dominant and alternative conformation, except 5 that
were better produced by the multimer model and 3l5n/2a73 because
their large sizes required too much memory to complete the analysis.
Structure-based contacts were calculated by finding pairs of heavy
atoms from two different residues within 8 Å of each other. Contact
intensities for each protein were normalized by the total number
(common+dominant+alternative) for each protein for even
comparison.

Sequence association
Protein BLAST57 was used to search the sequence of Sa1 V90T (PDB ID:
8E6Y) against the PDB. Three hits corresponding to the 3-helix-bundle
were identified with PDB IDs: 2FS1, 2MH8, 1GJS. Since these 3 sequen-
ces were shorter than 8E6Y, pairwise alignments were constructed by
adding gaps to the BLAST alignments at both termini as needed. Each
MSA was run through ColabFold1.5.5 with the Sa1 V90T sequence as
target, 3 recycles for each MSA. To construct the mixed MSA, an MSA
for 1GJS was first constructed using ColabFold1.5.5. This MSA was
reregistered with gaps at either or both termini to match the pairwise
alignment generated previously. Then, the top 3 sequences from the
ColabFold1.5.5-generated MSA for 8E6Y were added to the registered
1GJS MSA. Their UniProt IDs were: A0A7C7DMW5, A0A7C6PUQ5,
A0A354ECL0. In all cases, CF was run with all 5 models, 4 random
seeds/model.

Blind mode predictions
For blind mode of CF-random, only an MSA file is required as
input. After CF-random has generated all structures from deep
and shallow MSAs, a Foldseek33 database is generated from the
predicted ensemble. This database is used to calculate an all
against all similarity matrix for the ensemble using the Foldseek
structural bitscore. This bitscore is a combination of the
Smith–Waterman sequence alignment algorithm, local distance
difference test (LDDT), and template modeling (TM)-score. Our
approach leverages the combination of LDDT and TM-score
within Foldseek’s structural bitscore to discern both subtle and
large conformational differences between predicted structures
because all predicted structures have the same amino acid
sequence, discounting the Smith-Waterman algorithm’s con-
tribution because the sequences of all structures are identical.
Unfolded structures can be produced by the CF-random
pipeline–particularly at shallow depths. These structures are fil-
tered by calculating the ensemble’s distribution of DSSP assign-
ments and removing outliers from the distribution. The similarity
matrix is then reduced using Principal Component Analysis (PCA)
to create a lower dimensional space where the distance between
points represents how similar/dissimilar the predicted structures
are to each other. The HDBSCAN algorithm then clusters similar
points together (i.e. points that are both near to each other and of
similar density) forming groups of predictions and finally the

K-medoids algorithm is used on each group to select three
representative structures. The final result is a subset of the full
CF-random ensemble that represents the conformational variance
of the predicted structures.

Colab notebook prediction with blind mode
Blind mode of CF-random is implemented in a Colab notebook. With
job nameand full-lengthMSA file, the user can run blindmodewithout
installingon a localmachine. Due to the limited resources of freeColab
accounts, a set of shallow MSAs is limited as max-seq = 1, 2, 4, and 8,
and max-extra-seq = 2 *max-seq. For running ColabFold with the
shallow random MSAs, the user can run ColabFold with selected
shallow randomMSAs. Running the Colab notebook on proteins >300
residues is not recommended with a free Google account.

E. coli proteome predictions
We ran CF-random on 2126 proteins, representing 65% of proteins
≤300 residues. The remaining 1111 were excluded because we could
not generate anMSAdeep enough for strong coevolutionary inference
by ACE. These proteins were taken from the Refseq58 E. coli genome,
consisting of 5386 proteins. Final predictions in Fig. 7 were refined by
running CF with 12−24 recycles instead of 3, resulting in higher plDDT
scores.

Rosetta energy scores
To estimate the folding energies of E. coli predictions compared to
known fold-switching proteins, we calculated the Rosetta Energy
Scores (RES) of experimentally characterized fold-switching proteins
(Supplementary Table 1) and blind search on the E. coli genome
(Supplementary Table 4) using Rosetta38,39. The RES of the crystal
structures of fold-switching proteins and the predictions of the E.coli
genome were calculated after relaxation with the relax function59. The
folding energy difference was obtained following the equation:

ΔEfolding energy = Edominant�Ealternative ð1Þ

Other software
All protein illustrationsweregeneratedwith PyMOL60. Plotsweremade
with matplotlib61 and Seaborn62. Clustering and PCA were performed
with scikit-learn63. The scripts for all data analysis were written in
Python 3.10 (https://www.python.org/) with following modules: Bio-
python 1.79 (https://biopython.org/), NumPy 1.23.5 (https://numpy.
org/doc/2.1/index.html), tmtools 0.2.0 (https://pypi.org/project/
tmtools/), and pandas 2.2.3 (https://pandas.pydata.org/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated for the analysis and example data to run scripts and to
create figures were deposited on GitHub: https://github.com/ncbi/CF-
random_software. The supporting data generated in this study are
provided in the Supplementary Information and the Source Data file.
The structural data used in this studywere taken from the ProteinData
Bank are listed below with their accession codes –NMR structures of
human XCL1: 1J90 [https://www.rcsb.org/structure/1J9O] and 2JP1;
crystal structures of human TRAP1N: 5F5R and 5F3K; crystal structures
of E. coli RepE: 1REP and 2Z9O; crystal structure of FraC with lipids
4TSY: [https://www.rcsb.org/structure/4TSY]; crystal structure of the
cell cycle regulatoryproteinCks1 1QB3; NMRstructure of amyloid-beta
fibrils: the Osaka mutations 2MVX; NMR structure of pore-forming
amyloid-beta tetramers 6RHY; crystal structure of Thermotoga mar-
itima IMPase TM1415 2P3V, chains A andD; NMR structure of Sa1_V90T
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8E6Y; NMR structure of the Albumin binding domain of Streptococcal
Protein G 1GJS; GA-79-MBP CS-rosetta structures 2MH8, and solution
NMR structure of PSD-1 2FS1. Unless otherwise stated, all data sup-
porting the results of this study can be found in the article, supple-
ment, and source data files. Source data are provided with this paper.

Code availability
Code can be found at https://github.com/ncbi/CF-random_software
and https://doi.org/10.5281/zenodo.15596182.

References
1. Kim, A. K. & Porter, L. L. Functional and regulatory roles of fold-

switching proteins. Structure 29, 6–14 (2021).
2. Karamanos, T. K., Tugarinov, V. & Clore, G. M. An S/T motif controls

reversible oligomerization of the Hsp40 chaperone DNAJB6b
through subtle reorganization of a beta sheet backbone. Proc. Natl
Acad. Sci. USA 117, 30441–30450 (2020).

3. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature
of allostery. Nature 508, 331–339 (2014).

4. Porter, L. L. & Looger, L. L. Extant fold-switching proteins are
widespread. Proc. Natl. Acad. Sci. USA 115, 5968–5973 (2018).

5. Daily, M. D., Phillips, G. N. Jr. & Cui, Q. Many local motions coop-
erate to produce the adenylate kinase conformational transition. J.
Mol. Biol. 400, 618–631 (2010).

6. Xia, Y. et al. Secondary-structure switch regulates the substrate
binding of a YopJ family acetyltransferase. Nat. Commun. 12,
5969 (2021).

7. Pontiggia, F., Zen, A. & Micheletti, C. Small- and large-scale con-
formational changes of adenylate kinase: a molecular dynamics
study of the subdomain motion and mechanics. Biophys. J. 95,
5901–5912 (2008).

8. Galaz-Davison, P., Ferreiro, D. U. & Ramirez-Sarmiento, C. A.
Coevolution-derived native and non-native contacts determine the
emergence of a novel fold in a universally conserved family of
transcription factors. Protein Sci. 31, e4337 (2022).

9. Zuber, P. K. et al. Structural and thermodynamic analyses of the
beta-to-alpha transformation in RfaH reveal principles of fold-
switching proteins. Elife 11, 76630 (2022).

10. Tyler, R. C., Murray, N. J., Peterson, F. C. & Volkman, B. F. Native-
state interconversion of a metamorphic protein requires global
unfolding. Biochemistry 50, 7077–7079 (2011).

11. Wayment-Steele, H. K. et al. The conformational landscape of fold-
switcher KaiB is tuned to the circadian rhythm timescale. Proc. Natl.
Acad. Sci. USA 121, e2412293121 (2024).

12. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

13. Kalakoti, Y. & Wallner, B. AFsample2 predicts multiple conforma-
tions and ensembleswithAlphaFold2.Commun. Biol.8, 373 (2025).

14. Del Alamo, D., Sala, D., McHaourab, H. S. & Meiler, J. Sampling
alternative conformational states of transporters and receptorswith
AlphaFold2. Elife 11, 75751 (2022).

15. Sala, D., Engelberger, F., McHaourab, H. S. & Meiler, J. Modeling
conformational states of proteins with AlphaFold. Curr. Opin.
Struct. Biol. 81, 102645 (2023).

16. Stein, R. A. & McHaourab, H. S. SPEACH_AF: Sampling protein
ensembles and conformational heterogeneity with Alphafold2.
PLoS Comput. Biol. 18, e1010483 (2022).

17. Wayment-Steele, H. K. et al. Predicting multiple conformations via
sequence clustering and AlphaFold2. Nature 625, 832–839 (2024).

18. Bryant, P. & Noe, F. Structure prediction of alternative protein
conformations. Nat. Commun. 15, 7328 (2024).

19. Chakravarty, D. et al. AlphaFold predictions of fold-switched con-
formations are driven by structurememorization.Nat. Commun. 15,
7296 (2024).

20. Schafer, J. W. et al. Sequence clustering confounds AlphaFold2.
Nature 638, E8–E12 (2025).

21. Mirdita,M. et al. ColabFold:makingprotein folding accessible toall.
Nat. Methods 19, 679–682 (2022).

22. Chakravarty, D. &Porter, L. L. AlphaFold2 fails to predict protein fold
switching. Protein Sci. 31, e4353 (2022).

23. Monteiro da Silva, G., Cui, J. Y., Dalgarno, D. C., Lisi, G. P. &
Rubenstein, B. M. High-throughput prediction of protein con-
formational distributions with subsampled AlphaFold2. Nat. Com-
mun. 15, 2464 (2024).

24. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment
algorithm based on the TM-score. Nucleic Acids Res. 33,
2302–2309 (2005).

25. Dishman, A. F. et al. Evolution of fold switching in a metamorphic
protein. Science 371, 86–90 (2021).

26. Pajkos, M., Erdős, G. & Dosztányi, Z. The origin of discrepancies
between predictions and annotations in intrinsically disordered
proteins. Biomolecules 13, 1442 (2023).

27. Sung, N. et al. Mitochondrial Hsp90 is a ligand-activatedmolecular
chaperone couplingATP binding todimer closure through a coiled-
coil intermediate. Proc. Natl. Acad. Sci. USA 113, 2952–2957 (2016).

28. Nakamura, A., Wada, C. & Miki, K. Structural basis for regulation of
bifunctional roles in replication initiator protein. Proc. Natl. Acad.
Sci. 104, 18484–18489 (2007).

29. Tanaka, K., Caaveiro, J. M., Morante, K., González-Mañas, J. M. &
Tsumoto, K. Structural basis for self-assembly of a cytolytic pore
lined by protein and lipid. Nat. Commun. 6, 6337 (2015).

30. Abramson, J. et al. Accurate structure prediction of biomolecular
interactions with AlphaFold3. Nature 630, 493–500 (2024).

31. Agarwal, V. & McShan, A. C. The power and pitfalls of AlphaFold2
for structure prediction beyond rigid globular proteins. Nat. Chem.
Biol. 20, 950–959 (2024).

32. Ragonis-Bachar, P. et al. What can AlphaFold do for antimicrobial
amyloids?. Proteins Struct. Funct. Bioinforma. 92, 265–281 (2024).

33. van Kempen, M. et al. Fast and accurate protein structure search
with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

34. Bourne, Y. et al. Crystal structure and mutational analysis of the
Saccharomyces cerevisiae cell cycle regulatory protein Cks1:
implications for domain swapping, anion binding and protein
interactions. Structure 8, 841–850 (2000).

35. Schafer, J. W. & Porter, L. L. AlphaFold2’s training set powers its
predictions of some fold-switched conformations. Protein Sci. 34,
e70105 (2025).

36. Tuinstra, R. L. et al. Interconversion between two unrelated protein
folds in the lymphotactin native state. Proc. Natl. Acad. Sci. USA
105, 5057–5062 (2008).

37. Schafer, J.W.&Porter, L. Evolutionary selectionof proteinswith two
folds. Nat. Commun. 14, 5478 (2023).

38. Alford, R. F. et al. The rosetta all-atom energy function for macro-
molecular modeling and design. J. Chem. Theory Comput 13,
3031–3048 (2017).

39. Park, H. et al. Simultaneous optimization of biomolecular energy
functions on features fromsmallmolecules andmacromolecules. J.
Chem. Theory Comput 12, 6201–6212 (2016).

40. Iacovache, I. et al. Cryo-EM structure of aerolysin variants reveals a
novel protein fold and thepore-formationprocess.Nat. Commun. 7,
12062 (2016).

41. Newlove, T., Konieczka, J. H. & Cordes, M. H. Secondary structure
switching in Cro protein evolution. Structure 12, 569–581 (2004).

42. Kumirov, V. K. et al.Multistepmutational transformationof a protein
fold through structural intermediates. Protein Sci. 27,
1767–1779 (2018).

43. Saldano, T. et al. Impact of protein conformational diversity on
AlphaFold predictions. Bioinformatics 38, 2742–2748 (2022).

Article https://doi.org/10.1038/s41467-025-60759-5

Nature Communications |         (2025) 16:5622 11

https://www.rcsb.org/structure/8E6Y
https://www.rcsb.org/structure/1GJS
https://www.rcsb.org/structure/2MH8
https://www.rcsb.org/structure/2FS1
https://github.com/ncbi/CF-random_software
https://doi.org/10.5281/zenodo.15596182
www.nature.com/naturecommunications


44. Lewis, S. et al. Scalable emulation of protein equilibriumensembles
with generative deep learning. bioRxiv https://doi.org/10.1101/
2024.12.05.626885 (2024).

45. Jing, B., Berger, B. & Jaakkola, T. AlphaFoldmeetsflowmatching for
generating protein ensembles. arXiv 2402, 04845 (2024).

46. Zheng, S. et al. Predicting equilibrium distributions for molecular
systems with deep learning. Nat. Mach. Intell. 6, 558–567 (2024).

47. Jing, B. et al. EigenFold: Generative protein structure prediction
with diffusion models. arXiv 2304, 02198 (2023).

48. del Alamo, D., Jeliazkov, J. R., Truan, D. & Karpiak, J. D. Conforma-
tional sampling and interpolation using language-based protein
folding neural networks. bioRxiv https://doi.org/10.1101/2023.12.16.
571997 (2023).

49. Swapna, G., Dube, N., Roth, M. J. & Montelione, G. T. Modeling
alternative conformational states of pseudo-symmetric solute car-
rier transporters using methods frommachine learning. bioRxiv 16,
2024.07.15.603529 (2024).

50. Vani, B. P., Aranganathan, A. & Tiwary, P. Exploring kinase Asp-Phe-
Gly (DFG) loop conformational stability with AlphaFold2-RAVE. J.
Chem. Inf. Model 7, 2789–2797 (2023).

51. Meller, A., Bhakat, S., Solieva, S. & Bowman, G. R. Accelerating
cryptic pocket discovery using AlphaFold. J. Chem. Theory Comput
19, 4355–4363 (2023).

52. Bowman, G. R. AlphaFold and protein folding: not dead yet! the
frontier is conformational ensembles. Annu Rev. Biomed. Data Sci.
7, 51–57 (2024).

53. Subramanian, V., Appadurai, R., Venkatesh, H., Sekhar, A. & Sri-
vastava, A. Morpheus: A fragment-based algorithm to predict
metamorphic behaviour in proteins across proteomes. bioRxiv
https://doi.org/10.1101/2025.02.13.637956 (2025).

54. Chakravarty, D., Lee, M. & Porter, L. L. Proteinswith alternative folds
reveal blind spots in AlphaFold-based protein structure prediction.
Curr. Opin. Struct. Biol. 90, 102973 (2025).

55. Williams, C. J. et al. MolProbity: More and better reference data for
improved all-atom structure validation. Protein Sci. 27,
293–315 (2018).

56. Rao, R. M. et al. International Conference on Machine Learning. In
Forty-Second International Conference on Machine Learning
(PMLR, 2025).

57. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new genera-
tion of protein database search programs. Nucleic Acids Res. 25,
3389–3402 (1997).

58. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI:
current status, taxonomic expansion, and functional annotation.
Nucleic Acids Res 44, D733–D745 (2016).

59. Khatib, F. et al. Algorithm discovery by protein folding game play-
ers. Proc. Natl. Acad. Sci. USA 108, 18949–18953 (2011).

60. Lilkova, E. The PyMOL Molecular Graphics System, Version 2.0
Schrödinger, LLC. https://www.scirp.org/reference/
referencespapers?referenceid=2403147 (2015).

61. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

62. Waskom,M. L. seaborn: statistical data visualization. J. OpenSource
Softw. 6, 3021 (2021).

63. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

Acknowledgements
L.L.P. thanks Carolyn Ott, Marius Clore, and John Jumper for helpful
discussions. This work utilized resources from the NIH HPC Biowulf
cluster (http://hpc.nih.gov), and it was supported by the Intramural
Research Programof theNational Library ofMedicine, National Institutes
of Health (LM202011, L.L.P.).

Author contributions
Conceptualization: L.L.P., Methodology: M.L., L.L.P., and J.W.S.; Soft-
ware: M.L, J.W.S., L.L.P., and J.P., Investigation: M.L., J.W.S., J.P., D.C.,
M.F.C., and L.L.P.,; Data Curation: M.L., J.W.S., D.C., and L.L.P.; Visuali-
zation: M.L., J.W.S., D.C., M.F.C., and L.L.P.; Writing – original draft: M.L.,
L.L.P.; Writing – review & editing: M.L., L.L.P.; Supervision: L.L.P.; Project
administration: L.L.P.; Funding acquisition: L.L.P.

Funding
Open access funding provided by the National Institutes of Health.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-60759-5.

Correspondence and requests for materials should be addressed to
Lauren L. Porter.

Peer review information Nature Communications thanks Jing Huang
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

This is aU.S.Governmentwork andnot under copyright protection in the
US; foreign copyright protection may apply 2025

Article https://doi.org/10.1038/s41467-025-60759-5

Nature Communications |         (2025) 16:5622 12

https://doi.org/10.1101/2024.12.05.626885
https://doi.org/10.1101/2024.12.05.626885
https://doi.org/10.1101/2023.12.16.571997
https://doi.org/10.1101/2023.12.16.571997
https://doi.org/10.1101/2025.02.13.637956
https://www.scirp.org/reference/referencespapers?referenceid=2403147
https://www.scirp.org/reference/referencespapers?referenceid=2403147
http://hpc.nih.gov/
https://doi.org/10.1038/s41467-025-60759-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Large-scale predictions of alternative protein conformations by AlphaFold2-based sequence association
	Results
	CF-random outperforms other AF-based predictors of fold switching
	Combining AF2-multimer with CF-random sampling improves some predictions
	CF-random predicts rigid body motions and local conformational changes more efficiently than other AF-based methods
	Sequence association drives some predictions of alternative conformations
	Blind predictions with CF-random
	Blind predictions of fold-switching E. coli proteins

	Discussion
	Methods
	Datasets
	Default mode prediction for predicting alternative conformations and fold-switching proteins
	Fold-switching predictions
	Multimer predictions
	Other conformational changes
	Coevolutionary analysis
	Sequence association
	Blind mode predictions
	Colab notebook prediction with blind mode
	E. coli proteome predictions
	Rosetta energy scores
	Other software
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




