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GAUDI: interpretable multi-omics
integration with UMAP embeddings and
density-based clustering

Pol Castellano-Escuder1, Derek K. Zachman1,2, Kevin Han 1 &
Matthey D. Hirschey 1,3,4,5

Integrating high-dimensional cellular multi-omics data is crucial for under-
standing various layers of biological control. Single ‘omic methods provide
important insights, but often fall short in handling the complex relationships
between genes, proteins, metabolites and beyond. Here, we present a novel,
non-linear, and unsupervised method called GAUDI (Group Aggregation via
UMAP Data Integration) that leverages independent UMAP embeddings for
the concurrent analysis of multiple data types. GAUDI uncovers non-linear
relationships among different omics data better than several state-of-the-art
methods. This approach not only clusters samples by their multi-omic profiles
but also identifies latent factors across each omics dataset, thereby enabling
interpretation of the underlying features contributing to each cluster. Con-
sequently, GAUDI facilitates more intuitive, interpretable visualizations to
identify novel insights and potential biomarkers from a wide range of
experimental designs.

Multi-omic analyses integrate diverse data types such as genomics,
proteomics, and metabolomics. Combining multiple omics modalities
has the potential to uncover novel insights and biomarkers more than
when each data type is analyzed alone1,2. The growth in high-throughput
technologies has precipitated an exponential increase in omics data,
underscoring the urgent need for new integration methods.

Traditional approaches to multi-omics integration have primarily
focused on dimension reduction techniques. For example, methods
based on Canonical Correlation Analysis (CCA) are used in RGCCA3,
while Co-Inertia Analysis is used in MCIA4. Similarly, Bayesian Factor
Analysis underpins methods such as MOFA+5, Negative Matrix Fac-
torization is central to intNMF6, Principal Components Analysis to
JIVE7, and Independent Components Analysis forms the basis of tICA8.
Although these methods have been applied across various omics
datasets and biological contexts, their effectiveness and limitations
vary, highlighting the need for careful consideration in their
application9.

A central limitation shared by these methods is their reliance on
linear assumptions. While appropriate in some cases, this assumption
can be inadequate for accurately capturing the complex, often non-
linear interplay among different omics layers10,11. Moreover, their
computational intensity poses challenges, particularly for large-scale
datasets. In response to these challenges, recent advancements have
shifted towards non-linear integration approaches9,10.

Uniform Manifold Approximation and Projection (UMAP) is a
dimension reduction technique that can reveal the underlying struc-
ture in complex datasets12. By combining manifold learning with
topological data analysis, it effectively visualizes high-dimensional
data in lower-dimensional spaces. UMAP stands out from other
methods like PCA and t-SNE by efficiently preserving global data
structures, making UMAP particularly effective in visualizing large
datasets and detecting patterns that might remain hidden using other
techniques11. Recent studies have also explored UMAP for multi-omics
integration in specific contexts such as cancer classification13, though
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these applications have been limited in scope due to constraints such
as RGB-based visualization requirements restricting integration to
three omics layers, dependence on gene similarity networks, and
evaluation primarily focused on cancer-type classification tasks.

One of its key strengths is handling non-linear data relationships,
which is crucial in multi-omics, where data types often interact in
complex, non-linear ways11. Thus, UMAP can greatly improve the
interpretation and understanding of multi-omic interactions.

Despite UMAP’s strengths in addressing some of these chal-
lenges, gaps remain that require further development. For example,
integrating disparate feature spaces from different omics layers can
complicate the analysis and interpretation of results14. Additionally,
UMAP is often sensitive to parameters and pre-processing choices,
leading to potentially misleading outputs that may not accurately
reflect biology15. The need for more robust methods that enhance
UMAP’s adaptability across various data modalities and settings
remains crucial, particularly for addressing the complexities of
biological systems15. Therefore, we set out to develop a model that
leverages UMAP’s inherent advantages, to address the specific
needs of multi-omics integration, and to benchmark its perfor-
mance against six prominent joint dimension reductionmulti-omics
integration methods using a variety of real-world and simulated
datasets.

Results
Group Aggregation via UMAP Data Integration (GAUDI) is a method
developed for the unsupervised integration of multi-omics data,
capitalizing on the strengths of Uniform Manifold Approximation and
Projection (UMAP) for dimensionality reduction (Fig. 1). GAUDI begins
by applying UMAP independently to each omics dataset, preserving
the unique characteristics of each data type.

After processing each dataset, GAUDI concatenates the individual
UMAP embeddings into a unified dataset (see Methods) and then
applies a second UMAP to this concatenated dataset. This step com-
bines the distinct omics layers into a single, lower-dimensional repre-
sentation, allowing for the identification of underlying biological
patterns that may not be evident in higher dimensions.

GAUDI then employs Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (HDBSCAN) for clustering16. Given the
non-linear nature of the latent space, HDBSCAN is effective as it han-
dles clusters of varying densities and irregular shapes without
assuming a predefined number of clusters. It identifies clusters based
on data density and is robust against noise and outliers, making it
suitable for multi-omics datasets.

Finally, GAUDI computes metagenes using a XGBoost model to
synthesizemolecular features17. This involves usingXGBoost to predict
UMAP embedding coordinates from molecular features (e.g., gene

Multi-omics Data Matrices
X = {X , X , ..., X }

X  (n p ) X  (n p ) X  (n p ) X  (n p )

Step 1: Independent UMAP Embedding
Z_i = UMAP(X_i)

Apply UMAP to each omics dataset to standardize dimensions

Z  (n d) Z  (n d) Z  (n d) Z  (n d)

Step 2: Embedding Concatenation

Z Z Z Z

Step 3: Integration UMAP
Z_integrated = UMAP(Z)

Step 4: HDBSCAN
Density-based clustering

Step 5: XGBoost + SHAP
Feature importance analysis

Fig. 1 | GAUDI method overview and workflow. The GAUDI (Group Aggregation
via UMAP Data Integration) method integrates multi-omics data through a non-
linear unsupervised approach. The workflow consists of five steps: (1) Independent
UMAP embedding is applied to each omics dataset, transforming matrices of dif-
ferent dimensionalities (n×p1, n×p2, etc.) into standardized representationsof equal
dimensions (n×d); (2) These embeddings are concatenated to create a combined
data matrix; (3) A second UMAP transformation is applied to the concatenated

matrix to create an integrated representation; (4) Hierarchical Density-Based Spa-
tial Clustering (HDBSCAN) is used to identify sample groupswith similarmulti-omic
profiles; and (5) XGBoost combined with SHAP values is used to calculate feature
importance, enabling biological interpretation of the factors driving sample clus-
tering. This approach mitigates bias from high-dimensional omics types, captures
non-linear relationships between variables, and provides interpretable results that
can reveal novel biological insights across diverse experimental designs.
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expressions) and identifying key features that influence the position-
ing of samples in the integrated latent space. Feature importance
scores are then extracted using SHapley Additive exPlanations (SHAP)
values to determine each feature’s contribution to the embeddings18.

GAUDI computes metagenes for both individual omics datasets
and the combined omics, integrating feature importance scores from
all datasets to provide a comprehensive view of molecular features
across different biological layers.

Multi-omics integration methods comparison on artificial
datasets
Next, we assessed GAUDI’s performance. In the initial phase of our
validation and comparative analysis, we generated three artificial
omics datasets using the InterSIM R package19, following the approach
described by Cantini et al. These datasets were designed with pre-
defined reference clusters, enabling a direct comparison between the
clusters generated by each integration method and the dataset’s
intrinsic ‘real’ clusters. We simulated these datasets with varying
cluster complexities, creating sets with five, ten, and fifteen clusters.
Each cluster setwas further diversified by simulating twodistributions:
a homogeneous distribution (‘_EQ’) and a heterogeneous distribution
(‘_HET’), where the latter featured a varied number of samples per
cluster.

Using these synthetic datasets, we compared GAUDI to six other
leading multi-omics integration methods9. Each method decomposed
the omic matrices into factors corresponding to the artificially gen-
erated cluster counts—5, 10, and 15. Notably, intNMF and GAUDI are
unique in providing default clustering outputs. For the other five
methods, we derived clusters by implementing k-means consensus
clustering on the factor matrices9.

We quantified the alignment between the clusters obtained from
these integration methods and the ground-truth clusters using the
Jaccard index (JI), with a score of 1 indicating perfect agreement and 0
indicating complete discrepancy. Generally, all tested algorithms
demonstrated strong performance across different scenarios, with
most JIs exceeding 0.6 (Fig. 2). intNMF, primarily designed for clus-
tering, consistently outperformed the other five methods in almost all
cases. However, GAUDI distinguished itself by achieving a JI of 1 in
every scenario, irrespective of cluster count or sample distribution
heterogeneity.

Notably, intNMF displayed heightened variability in its perfor-
mance as the number of clusters expanded and with the increase in
sample size (usingN = 500 in our study compared toN = 100 in Cantini
et al.‘s benchmark). In contrast, GAUDI showed remarkable con-
sistency in clustering accuracy, unaffected by changes in cluster
numbers or sample size variations (Fig. 2).

ThesefindingspositionGAUDI as a superiormethod for clustering
purposes, demonstrating high accuracy and generating more con-
densed and differentiated clusters across all tested scenarios (Sup-
plementary Fig. 1).

Multi-omics integration methods comparison on TCGA cancer
datasets
To determine the efficacy of GAUDI to cluster multi-omics from real-
world data, we used TCGAmulti-omic data from eight different cancer
types20. We included gene expression, DNA methylation, and miRNA
expression data, with sample sizes ranging from 170 for acutemyeloid
leukemia (AML) to 621 for breast cancer.

Following the benchmarking strategy outlined by Cantini et al.,
we decomposed the omic matrices into five latent factors and
applied a Cox proportional hazards regression model to evaluate
the association of these factors with survival. Consistent with pre-
vious findings, the number of factors linked to survival varied more
with cancer type than with the integration method used (Fig. 3A),
suggesting that intrinsic biological differences across cancer types

significantly influence survival outcomes9. This underscores the
importance of context-specific analysis when interpreting multi-
omics data, revealing that factors such as tumormicroenvironment,
genetic heterogeneity, and molecular pathways play crucial roles in
determining survival.

To extend our analysis beyond survival to clinical annotations, we
tested for significant associations for the clinical annotations “age”,
“days to new tumor”, “gender”, and “neo-adjuvant therapy adminis-
tration” with the factors generated for each cancer type9. The average
selectivity value across all cancers and methods was 0.53 (see Meth-
ods). Methods excelling at producing clinically interpretable latent
factors in each cancer type were those with the highest number of
factors associated with clinical annotations and selectivity values
above this average (Fig. 3B).

Each method exhibited similar performance in terms of the
number of generated latent factors associated with clinical annota-
tions and selectivity scores across all cancer types, suggesting that
while they identified similar numbers of associations, the relevance
and impact of these associations differed depending on the specific
cancer type and the underlying biological context.

To enhance the interpretability of these results and further com-
pare the clinical applicability of each method, we examined the rela-
tionship between the clusters generated by each method and patient
survival. We identified clusters with the highest and lowest median
survival in each cancer type and compared their survival curves. This
approach aimed to maximize survival differences based on distinct
multi-omic profiles, thereby identifying molecular features predictive
of extreme survival groups.

While the association between factors and survival generally
depended more on cancer type than on the method used, a similar
pattern emerged in the relationship between clusters and survival.
Notably, none of the methods revealed significant differences in
breast, colon, and ovarian cancers, but they showed comparable
results for the other five cancer types (Supplementary Fig. 3).

However, GAUDI stood out for its ability to detect sample groups
withmulti-omic profiles linked tomarkedly lower overall survival. This
wasmost pronounced in acutemyeloid leukemia (AML), where GAUDI
identified the greatest median survival difference between the two
most distant clusters (718 days, p = 1.31e-08), pinpointing a small high-
risk group with a median survival of only 89 days—a threshold not
reached by other methods (Fig. 3C). For AML, intNMF produced
clusters with identical survival medians and classified varying multi-
omic profiles into similar survival groups (Fig. 3C), indicating limited
sensitivity at the extremes.

Using human multi-omic data, GAUDI stood out from other
methods by identifying profiles associated with significantly lower
overall survival times, especially in AML. These analyses demonstrate
GAUDI’s enhanced sensitivity in detecting critical survival differences,
which has the potential to offer valuable insights for precision medi-
cine. In some cancers like AML, GAUDI was uniquely effective in iso-
lating high-risk groups, an important capability that is urgently
needed.

Multi-omics integration methods comparison on single-cell
datasets
Single-cell analysis has been essential for studying the biology and
behavior of single cells from cell populations. As single-cell analytic
techniques improve, including the ability to apply next-generation
sequencing to individual cells, we have learned that cell populations
previously thought to be homogeneous display considerable
heterogeneity21,22. Thus, we tested the ability of GAUDI to detectmulti-
omic heterogeneity within scRNA-seq and scATAC-seq datasets. We
obtained datasets containing gene expression and chromatin acces-
sibility information across three cancer cell lines (HCT, Hela, and
K562), covering 206 cells9,23. For this analysis, we reduced the omic
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datasets to two dimensions, aiming for precise classification of each
cell according to its cell line.

We performed a comparative analysis including seven of the
multi-omics integration methods, selected based on their C-index
performance (see Methods). All methods displayed a general ability to
distinguish between the three cell line types; however,MOFA+ and JIVE
faced challenges in creating a clear classification in two dimensions.
While the rest varied in the dispersion of their clusters, GAUDI had a

misclassification rate of 1.46% (misclassifying 3 out of 206 cells), gen-
erating the most compact clusters and achieving a clear cell line
identification (Fig. 4A).

Beyond accurate cell line classification, GAUDI uniquely identified
and categorized distinct multi-omic profiles within the same cell line
(K562) into separate clusters (Fig. 4B). We performed a differential
expression analysis comparing clusters 2 and 3 within the K562 cell
line, uncovering 190 differentially expressed genes with an FDR <0.05

Fig. 2 | Clustering Accuracy on Simulated Multi-Omics Datasets. This figure
displays boxplots illustrating the Jaccard Index (JI) scores for clusters identified by
various multi-omics integrationmethods compared to the ground-truth clusters in
the simulated data (in these boxplots, the center line represents the median, box
boundaries show the interquartile range (25th–75th percentiles), whiskers extend
to points within 1.5 × IQR, and points beyond the whiskers indicate outliers). The

analysis encompasses scenarios with 5, 10, and 15 pre-defined clusters. For each
method, we present results for both heterogeneous (HET) and homogeneous (EQ)
cluster distributions. The analysis is based on datasets comprising 500 samples,
and the depicted results are aggregated over 1000 independent iterations of
k-means clustering, ensuring robust and reliable performance evaluation. Source
data are provided as a Source Data file.

Fig. 3 | Comprehensive analysis of survival prediction and clinical associations
using TCGA multi-omics data. A Bonferroni-corrected p-values for each of the 5
factors identified by multi-omics integration methods as predictive of survival,
based on a Cox regression analysis. Dotted lines indicate the threshold for a cor-
rected p-value of 0.05. Results for the remaining five cancer types are available in
Supplementary Fig. 2. B Number of factors associated with clinical annotations in

each method and the selectivity score of the factor-annotation associations. The
dashed horizontal line represents the mean selectivity score. C Kaplan–Meier sur-
vival curves for AML clusters with the highest and lowest median survival times
identified by each method. The log-rank test is used for p-value calculations, and
the sample size for each cluster is provided (N). Source data are provided as a
Source Data file.
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(Fig. 4B)24. Subsequent Gene Set Enrichment Analysis (GSEA) using
KEGG pathways highlighted significant variations in DNA replication,
ATP-dependent chromatin remodeling, spliceosome, and cell cycle
processes between the sub-clusters (Fig. 4C),mirroring the complexity
of the integrated datasets25.

These findings underscore GAUDI’s effectiveness as a clustering
tool, highlighting its ability to dissect both bulk and single-cell multi-
omics datasets. GAUDI’s capacity to detect and differentiate biologi-
cally significant substructures within these datasets sets it apart from
other methods that fail to capture such details.

Multi-omics integration methods comparison on functional
genomics datasets
In the final of four benchmarks in this study, we applied the multi-
omics integration methods to the Cancer DependencyMap (DepMap)
Project datasets, which include a wide array of cancer cell lines char-
acterized by multiple omic layers. This benchmark aimed to evaluate
the ability of each method to integrate and interpret complex, large-
scale multi-omics data with a potential impact on cancer research and
therapeutic targeting.

For consistency and comparability with the TCGA benchmark
(Fig. 3), the DepMap evaluation focused on 258 cell lines, representing
seven of the eight cancer types evaluated in the TCGA benchmark.
These include AML, breast, colorectal, kidney, liver, ovarian, and
melanoma lineages. We integrated four distinct omics layers—gene
expression, DNAmethylation, miRNA expression, andmetabolomics—
reducing this multifaceted data into two latent factors to test precise
lineage classification for each cell.

The performance of each method was gauged by the lineage
accuracy of the resulting clusters. For methods not intrinsically pro-
ducing clusters, we employed k-means consensus clustering on the
factor matrices. We then compared each cell line cluster against its
known lineage, computing a composite score that combined the

Adjusted Rand Index (ARI), whichmeasures the similarity between the
true classification and the clustering outcome, and cluster purity, an
indicator of the homogeneity of the clusters (see Methods). The
composite score ranged from 0 to 1, with 1 representing perfect ARI
and purity, indicative of optimal clustering.

GAUDI excelled in this comprehensive test, achieving the highest
composite score of 0.656, indicating a superior performance in
creating condensed and pure clusters (Fig. 5A). This score surpassed
that of MOFA+, which followed at 0.561, showing approximately a 15%
lower performance compared to GAUDI (Fig. 5B).

The functional genomics benchmark demonstrates GAUDI’s
strengths in multi-omics data integration. It demonstrated the meth-
od’s precision and efficiency, even as the complexity of the data
increased.

Integration of single-cell chromatin conformation and gene
expression data
As an additional use case, we applied GAUDI to recently published
large-scale datasets. Single-cell analysis presents unique computa-
tional challenges due to data set size, sparsity, technical noise, and the
need to identify rare cell populations. These challenges are magnified
when integrating different data modalities at single-cell resolution. To
further validate GAUDI’s capabilities on emerging large-scale single-
cell data, we applied it to mouse embryo data with single-cell Hi-C
(scHi-C) and RNA-seq (scRNA-seq) profiles from E9.5 embryos as
described in Rappoport et al.26. After standard normalization and fil-
tering of the scHi-C and scRNA-seq datasets (seeMethods), we applied
GAUDI using default parameters.

GAUDI integration generated a low-dimensional representation
that revealed distinct cell clusters corresponding to major
embryonic cell populations (Fig. 6A). Through density-based clus-
tering, GAUDI identified 8 cell populations after removing noise
samples, with cluster sizes ranging from 19 to over 2000 cells.

Fig. 4 | Multi-omics integration and sub-structure analysis in single-cell
cancer data. A Scatter plots of the two factors for each integrationmethod (along
with its C-index), color-coded by the origin of cancer cell lines. B Density-based
clusters by GAUDI reveal underlying sub-structures within the K562 cell line.
Adjacent is a volcano plot detailing differentially expressed genes between clusters

2 and 3, highlighting genes with significant differential fold changes and FDR
values.CGSEA results usingKEGGpathway annotations demonstrate the biological
pathways differentially enriched between GAUDI-derived clusters 2 and 3 in the
K562 cell line, providing insights into the functional implications of the identified
substructures. Source data are provided as a Source Data file.
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GAUDI’s Cluster 0 exhibited highest expression of hemoglobin
genes (Hba-a2, Hba-x, Hbb-b1, Hbb-bh1, Hbb-y) and Cpox. This
corresponds to the primitive erythrocyte cluster (C3) from the
original study. The spatial segregation of Cluster 0 in the manifold
(Fig. 6A) aligns with its distinctive gene expression profile. This
suggests primitive erythrocytes maintain a unique transcriptional
program clearly demarcated from other lineages.

For pluripotency markers, we observed a mixed pattern across
multiple clusters. Cluster 0 showed elevated expression of Dppa4.
Cluster 1 exhibited the highest expression of Tet2. Cluster 2 showed
the highest expression of Zfp42. Clusters 0, 1, and 2 all appear at the
periphery of the UMAP embedding (Fig. 6A). This suggests they may
share developmental relationships in the higher-dimensionalmanifold
despite appearing distant in the 2D representation. This spatial
arrangement, combined with the distributed expression of plur-
ipotencymarkers across these peripheral clusters, suggests a complex
differentiation trajectory. This differs from the discrete ESC popula-
tion originally proposed by Rappoport et al., possibly reflecting dif-
ferent stages of stem cell characteristic loss during lineage
commitment.

The ectoderm markers show a distinct expression pattern with
Cluster 3 displaying themost prominent activity. Specifically, Cluster 3
exhibits dramatic upregulation of Crabp1 compared to all other clus-
ters. Cluster 3 also shows moderate peaks for Sox2, Neurog1, Pou3f1,
Pou3f2, Sox11, and Crabp2. Six family and Lhx family genes are
recognized ectoderm markers but don’t show particularly high
expression in Cluster 3. Notably, Cluster 6 shows a distinct peak for
Lhx6, suggesting potential subpopulation specialization within the
ectoderm lineage. The overall expression profile strongly supports
Cluster 3 (147 cells) corresponding to the C2.1 ectoderm cluster from
Rappoport et al., with Crabp1 serving as themost definitive marker for
this population.

For mesoderm/endoderm markers, we observe distinct expres-
sion patterns across several clusters. Cluster 1 shows the most pro-
nounced expression profile with a dramatic peak in Ankrd1 expression
and moderate upregulation of Igf2, Hand1, Vim, Dlk1, and Tbx5. This
suggests correspondence to the C2.3 mesoderm/endoderm cluster
from the original study. Cluster 0 displays a unique expression pattern
with a distinct peak for Ftl1, suggesting a different mesoderm sub-
population with specialized characteristics. Cluster 5 (largest cluster
with 2093 cells) maintains consistent moderate expression across
several mesoderm/endoderm markers, indicating a stable, broadly
defined mesoderm lineage population. The remaining clusters show
more moderate expression patterns across the marker genes, sug-
gesting they may represent intermediate states with less defined
identities.

GAUDI’s SHAP-based feature importance analysis identified many
of the same marker genes highlighted in Rappoport et al. as the most
significant contributors to GAUDI’s latent space. This indicates that
GAUDI’s unsupervised approach can recover key biological signals
without prior knowledge. GAUDI also identified several ribosomal
protein genes (such as Rpl29 and Rps3a) as significant contributors to
the latent space, capturing cell cycle or translational activity variation
that was filtered out in Rappoport et al.‘s analysis, as the authors
explicitly modeled and removed cell cycle effects26. Our functional
analysis of top UMAP coordinate-contributing genes revealed sig-
nificant (FDR <0.05) enrichment patterns between dimensions
(Fig. 6C). ThefirstUMAPdimension showed enrichment for embryonic
vascular/leptomeningeal cells, endothelial cells, neural progenitors,
and stem cell lines. The second UMAP dimension displayed stronger
enrichment for embryonic vascular/leptomeningeal cells, neural pro-
genitors, and pericyte lineage cells, including post-natal vascular sig-
natures. These neurovascular developmental patterns align with the
clear primitive erythrocyte separation observed in Fig. 6A. While

Fig. 5 | Lineage discrimination analysis in DepMap multi-omics data.
A Scatterplots of the two factors derived frommulti-omics integration across each
method. The plots are annotated with composite scores, calculated as the average
of Adjusted Rand Index (ARI) and cluster purity, which collectively assess the
accuracy and homogeneity of the lineage-specific clustering. A higher composite

score indicates superior performance in accurately classifying cell lineages based
on the integrated multi-omics data. The cells are color-coded by its lineage.
BComposite scores are presented across themethods, with the vertical dashed line
indicating the third quantile (75%). Source data are provided as a Source Data file.
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Rappoport et al. employed complex analytical approaches to decon-
volve cell cycle effects from lineage-specific chromatin conformations,
GAUDI’s integrative approach effectively captured both cell cycle and
lineage-specific variation in a unified framework. The original study
primarily identified four main clusters. GAUDI recapitulated these
major divisions and identified additional substructures within the
mesoderm and ectoderm lineages. This enhanced resolution can be
attributed to GAUDI’s ability to simultaneously leverage com-
plementary information from both data modalities.

Discussion
In this study, we developed a novel approach to multi-omics integra-
tion and evaluated it against six leading methods benchmarked and
found it to be the best joint dimension reduction methods for multi-
omics integration9. This comprehensive analysis has not only posi-
tioned GAUDI as a useful tool formulti-omics integrationmethods but
also demonstrated that, in some instances, GAUDI performs superior
to existing techniques, showcasing its proficiency in integrating com-
plex biological data. These advancements are particularly notable in
identifying survival outcomes and potential biomarkers, highlighting
GAUDI’s potential to contribute to the advancement of precision
medicine.

The initial benchmark using simulated datasets illustrated GAU-
DI’s superior capability in clustering accuracy. It achieved perfect Jac-
card index scores across various scenarios, demonstrating its
robustness in the face of both homogeneous and heterogeneous
cluster distributions.

In the TCGA benchmark, GAUDI consistently detected sample
groupswithmulti-omicprofiles associatedwithmarkedly lower overall
survival times. Notably, in acute myeloid leukemia, GAUDI identified
high-risk patient groups that other methods failed to distinguish,

thereby highlighting its utility in clinical prognostication. It is impor-
tant to note that in this benchmark, the methods used to test the
significance of clinical annotations were linear, while GAUDI’s factors
are non-linear, unlike the other methods. Given this, we would expect
poorer performance from GAUDI in this analysis. However, not only
did GAUDI perform comparably to othermethods, but it also achieved
the best results in sarcoma, with a selectivity of 0.83 and two asso-
ciations. These results highlight GAUDI’s capabilities not just in pre-
dicting survival but also in its association with a range of clinical
annotations.

Our single-cell analysis benchmark further reinforced GAUDI’s
strength. It was the only method that could detect significant sub-
structures within the same cell line types, which was substantiated by
differential gene expression analysis. This capability to discern finer
biological details holds promise for advancing our understanding of
cellular heterogeneity in cancer and other complex diseases. Addi-
tionally, these findings indicate that as the capability to analyze multi-
omics in single-cell data advances, GAUDI precisely classifies and
manages such data. This capability offers an enhanced level of detail
and interpretation, enriching our understanding of complex biological
interactions at the single-cell level.

The functional genomics benchmark was perhaps the most chal-
lenging, given the scale and diversity of the datasets. Nonetheless,
GAUDI demonstrated strong performance, showcasing its efficiency
and accuracy even as the dimensionality of the integration increased.
The method’s ability to generate precise and biologically informative
clusters, even with the addition of more ‘omic layers, emphasizes its
applicability to current high-throughput multi-omics datasets in can-
cer biology.

Finally, GAUDI successfully integrated mouse embryo single-cell
Hi-C and RNA-seq data. It identified eight distinct embryonic cell

Fig. 6 | Integration of single-cell Hi-C and RNA-seq data frommouse embryos.
A UMAP visualization of the integrated embedding, with cells colored by GAUDI-
identified clusters, showing clear separation of major embryonic cell populations.
B Expression patterns of key marker genes across GAUDI clusters, organized by
gene categories: pluripotency genes associated with ESCs (C1), primitive ery-
throcyte markers (C3/pEry), ectoderm markers (C2.1), and mesoderm/endoderm

markers (C2.3), as defined by Rappoport et al. C Functional enrichment analysis of
top genes contributing to GAUDI’s latent space dimensions, showing significant
enrichment of developmental pathways including embryonic vascular and lepto-
meningeal cell development, neural progenitor cell markers, and pericyte devel-
opmental programs. Source data are provided as a Source Data file.
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populations that extended beyond the four clusters in the original
study26. SHAP feature importance analysis highlighted key develop-
mental marker genes. Functional enrichment identified significant
biological pathways including neural progenitor and vascular devel-
opment. These results demonstrate GAUDI’s ability to capture mean-
ingful biological signals without prior knowledge. GAUDI revealed
additional substructure within mesoderm and ectoderm lineages that
enhances our understanding of embryonic development at the single-
cell level.

One limitation that emerged across the benchmarks is the
computational intensity inherent in processing large-scale multi-
omics data. Although GAUDI is relatively efficient, further
advancements in computational strategies are needed to enhance
its scalability and speed. Additionally, while GAUDI showed pro-
mising performance on synthetic data, this success does not always
translate seamlessly to real-world datasets, which tend to exhibit
more noise and variability. Another challenge lies in the nature of
clustering outcomes. Clustering cell types with high contrast, such
as those across three different single-cell datasets, can be more
straightforward than distinguishing biologically similar cells, where
differences are more nuanced. This subtlety affects the clustering’s
applicability and raises the question of when clustering or classifi-
cation is the appropriate tool. In some research scenarios, cluster-
ing may not yield useful outcomes, making alternative methods,
such as network analysis or pathway enrichment, more suitable for
uncovering complex biological interactions.

Moreover, while GAUDI effectively clusters complex biological
data, there are inherent limitations concerning overfitting. This con-
cern persists even in unsupervised learning, as models might capture
noise or dataset-specific patterns instead of underlying general struc-
tures. This issue is particularly pronounced in high-dimensional, noisy
multi-omics data, where distinguishing the true signal from noise is
challenging. Techniques such as parameter optimization, regulariza-
tion, and external validation can mitigate overfitting, but they cannot
eliminate this risk entirely. Therefore, we recommend users employ
these strategies to enhance the robustness of their clustering results.
Overfitting concerns are common across all machine learning meth-
ods, emphasizing the need for careful validation to ensure models
generalize beyond the training data.

GAUDI’s performance highlights the importance of developing
integration methods that not only provide statistical robustness but
also maintain biological interpretability. By achieving accuracy in
clustering and showing a strong association with clinical outcomes,
GAUDI has proven to be a useful tool for researchers and clinicians,
creating new opportunities for discovery in precision medicine.

Future work should focus on extending GAUDI’s application to
other complex diseases and exploring its potential to guide ther-
apeutic decision-making. Integrating GAUDI with other machine
learning models may also improve its classification power for patient
stratification and treatment response, offering a more comprehensive
framework for interpreting complex datasets.

In conclusion, this study emphasizes the need for advancedmulti-
omics integration tools like GAUDI, which combines the strengths of
UMAP with methodological improvements, to keep pace with the
evolving landscape of biomedical data. Our benchmarking supports
the adoption ofGAUDI in futuremulti-omics studies and demonstrates
its advantages over existing methods. Its ability to shed light on
complex biological phenomena enhances our understanding of dis-
eases and informs the development of precision therapies, helping to
drive progress in biomedical research.

Methods
UMAP embedding integration for optimizing GAUDI
To optimize the UMAP embedding integration strategy for our GAUDI
method, we systematically assessed various approaches to improve

data segregation into biologically relevant clusters. This analysis
was performed in Python using a custom script, “umap_inte-
gration_methods.py”, which is available in our source code repository
for reproducibility.

For the benchmark, we used gene expression and miRNA
expression datasets from DepMap, leveraging cell line lineage infor-
mation to evaluate the resulting clusters. UMAP was first applied to
each omics dataset to generate individual embeddings. We then
explored several integration techniques, including intersection, union,
subtraction, and concatenation of these embeddings. Additionally, we
performedUMAPon the concatenated raw omics datasets and applied
joint matrix factorization to the UMAP embeddings, testing the inte-
gration techniques on both the concatenated UMAP and the shared
matrix embeddings.

Each integration (a total of 10) was clustered usingHDBSCAN, and
the effectiveness was evaluated based on cluster purity and silhouette
scores (Supplementary Fig. 4). This process identified the concatena-
tion of individual UMAPembeddings followedby a combinedUMAP as
the most effective technique for our GAUDI method.

Integration bias mitigation through dimensional
standardization
GAUDI addresses potential integration biases through a two-stage
UMAP application process. First, each omics layer is independently
embedded using UMAP, creating fuzzy topological representations
based on local connectivity patterns rather than raw dimensionality12.
This initial step effectively normalizes each layer’s contribution
regardless of its original feature space size. The subsequent con-
catenation and second UMAP application ensure equal weighting of
information from all omics layers through dimensional standardiza-
tion. We validated this approach using SHAP values derived from
XGBoost models predicting UMAP coordinates in our DepMap analy-
sis, which revealed that lower-dimensional omics layers maintained
strong contributions to the final embedding. Specifically, metabo-
lomics features showed thehighest enrichment scores (19.50and 17.64
for dimensions 1 and 2, respectively), followed bymiRNAdata (5.98 for
dimension 1), demonstrating that our integration strategy effectively
preserves signals from lower-dimensional omics layers without bias
from high-dimensional data types.

Parameter selection and implementation details
GAUDI provides comprehensive parameter customization capabilities
while offering empirically-derived defaults that enable robust analysis
across diverse multi-omics contexts. For the initial dimensionality
reduction, GAUDI uses UMAP’s established default parameters with
n_neighbors set to 15,metric set to euclidean, and min_dist set to 0.01.
Our dimensionality reduction follows a two-stage approach. We first
reduce each individual omics dataset to 4 dimensions—a choice based
on typical dimensionality requirements for capturing primary biolo-
gical variance components in omics data. This is followed by a final
reduction to 2 dimensions for visualization and interpretation of bio-
logical relationships. For clustering, if not defined by the user,
HDBSCAN’s minimum cluster size is automatically computed as 3% of
the sample count with a minimum threshold of 2 samples - values
selected to provide reasonable cluster sizes across the range of typical
multi-omics sample counts while preventing singleton clusters. For
downstream analysis of feature importance, we support two approa-
ches. XGBoost parameters are tuned for feature selection in biological
data: lambda set to 0 to avoid over-regularization of sparse biological
signals, eta set to 0.5 for moderate learning rate, gamma set to 50 to
encourage sparse trees, max_depth set to 10 to capture complex fea-
ture interactions, and subsample set to 0.95 tomaintain stable feature
selection. Alternatively, Random Forest can be used for broader fea-
ture inclusion. While XGBoost performs efficient feature selection,
Random Forest tends to capture more features at higher
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computational cost, allowing researchers to choose based on their
analytical needs.

Like most machine learning approaches, while these parameters
provide robust performance across typical multi-omics datasets, users
are encouraged to optimize them for their specific biological context
through standard cross-validation and benchmarking procedures,
particularly when analyzing datasets with unique characteristics or
investigating novel biological phenomena.

Multi-omics data simulation
The multi-omics datasets in our study were simulated using the
InterSIM package, available on CRAN19. This package creates inter-
related datasets that emulate the complexity of real-world data,
based on DNA methylation, mRNA gene expression, and protein
expression from TCGA ovarian cancer data. For our analysis, we
generated 500 simulated samples, increasing the sample size of 100
used in Cantini et al.’s paper. As described in Cantini et al. bench-
marking workflow, we created five, ten, and fifteen clusters of equal
and randomly varying sizes.

Latent space clustering
For those benchmarked methods that do not inherently generate
clusters (excluding intNMF and GAUDI), we employed k-means clus-
tering on the latent space matrix (i.e., factor matrix), aligning with the
approach outlined by Cantini et al. Given the stochastic nature of
k-means clustering, we executed the clustering process 1000 times.
Subsequently, we derived a consensus clustering by determining the
most common sample-to-cluster associations across these iterations.
This approach aligns with the clustering strategy employed by intNMF,
which utilize Euclidean distance-based k-means clustering.

Clustering quality metrics
The Jaccard Index is a statistic used for gauging the similarity and
diversity of sample sets. The index measures the similarity between
sample sets by dividing the number of observations common to both
sets by the total number of distinct observations in both sets. Its value
ranges from 0 to 1, where 0 signifies no similarity and 1 denotes that
the sets are identical.

The C-index is a clustering evaluation metric that assesses the
goodness of a clustering result in relation to the within-cluster varia-
tion and the separation between clusters. A lower C-index value indi-
cates a better clustering structure, i.e., small intra-cluster distances and
large inter-cluster distances.

The Adjusted Rand Index (ARI) quantifies the congruence
between twoclustering solutions, taking into account the possibility of
chance groupings. It accounts for both true positives and false posi-
tives within the clustering process. An ARI of 1 signifies an impeccable
correspondence between the two clustering solutions, whereas an ARI
of 0 indicates that the clustering is no better than a random
assignment.

Cluster purity is a simple and transparent evaluation measure. It
assesses the homogeneity of clusters with respect to the class dis-
tribution (e.g., lineage). The purity of a cluster is achieved when most
of its members belong to the same class, with a purity score ranging
from 0 (no purity) to 1 (complete purity).

To evaluate the clusters in the DepMap benchmark, we defined
composite scores as the average of ARI and cluster purity, collectively
assessing the accuracy and homogeneity of the lineage-specific
clusters.

Finally, the silhouette score is used to measure how similar a
sample is to its own cluster compared to other clusters. The silhouette
score for a sample is calculated based on how much closer it is to
members of its own cluster versus members of the nearest cluster to
which it does not belong. The goal is to have a high silhouette score
(with 1 being the highest value), which indicates that the sample is well

matched to its own cluster and poorly matched to neighboring
clusters.

Each of these metrics contributes to a comprehensive evaluation
framework, providing us with a multifaceted understanding of the
clustering quality and the effectiveness of each method in grouping
multi-omics data.

Selectivity score
The selectivity score, as defined by Cantini et al., quantifies the speci-
ficity of the associations between latent factors and clinical annota-
tions. This score achieves a maximum of 1 when each latent factor
associates with a unique clinical or biological annotation, reflecting a
highly specific one-to-one relationship. Conversely, the score approa-
ches a minimum of 0 when latent factors are broadly and non-
specifically associated with multiple annotations. An ideal method
would aim to maximize the number of meaningful, unique factor-
annotation associations while ensuring the selectivity score remains
high, thereby achieving specificity without excessive generalization9.

Cluster gene differential expression analysis in single-cell data
To explore molecular differences between clusters 2 and 3 identified
by GAUDI, within the K562 cell line, we performed a Limmadifferential
expression analysis using the POMARpackage24,27. Our analysis sought
to detect genes exhibiting significant expression differences between
the clusters, considering an adjusted p-value of 0.05 as the threshold
for significance. A volcano plot was also created to illustrate these
differences, with a fold-change cutoff of 1.5 and the same p-value
threshold to emphasize the most significant changes.

After this, we conducted an enrichment analysis using the R
package clusterProfiler to understand the biological implications of
the differentially expressed genes, focusing on KEGG pathways28. This
analysis, employing 10,000permutations and anFDR-adjusted p-value
of 0.05, helped to contextualize the gene expression patterns within
broader biological pathways.

For an in-depth understanding of the benchmarking framework
employed in our study, we recommend consulting the detailed expo-
sition provided in the paper by Cantini et al.

Sample matching for single-cell Hi-C and RNA-seq integration
To integrate chromatin conformation with gene expression at single-
cell resolution, wedeveloped a computational approach tomatch cells
between separate scHi-C and scRNA-seq datasets. The data consisted
of 4993 cells with scHi-C profiles (59,639 features) and 4781 cells with
scRNA-seq measurements (27,306 features). After removing constant
features (45 from scHi-C and 9732 from scRNA-seq), we standardized
both datasets using z-score normalization and performed dimension-
ality reduction via PCA, selecting 2445 components that explained
~80% of variance in the scRNA-seq data (79.4%) and the scHi-C
data (70.5%).

Since the scRNA-seq dataset contained fewer cells, we employed a
greedy algorithm to identify theoptimal subset of scHi-C cells that best
matched the scRNA-seq cells in the reduced-dimension space. The
matching quality was assessed using Procrustes analysis (final align-
ment disparity: 0.67). The resulting integrated dataset comprised
4781 cells with matched scHi-C and scRNA-seq measurements,
enabling subsequentmulti-modal analyses of chromatin structure and
gene expression relationships.

Computational efficiency and scalability
GAUDI demonstrates efficient performance across varying dataset
sizes. Our scalability analysis across 60 scenarios (varying from 50 to
1000 samples, 1000–25,000 features, and 2–5 omics layers) shows
approximately linear scaling with dataset size (Supplementary Fig. 5).
Execution times range from seconds for smaller datasets to under
10minutes for the most complex configuration (1000 samples ×
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25,000 features × 5 omics layers) on standard hardware. Memory
usage also scales linearly with total dataset size, while maintaining
clustering quality (silhouette scores with Q1 = 0.51, median =0.61,
Q3 =0.68) regardless of data complexity. This makes GAUDI suitable
for routine analysis of typical multi-omics datasets without requiring
specialized computing resources.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The simulated data are produced using the R package InterSIM and can
be reproduced using our quarto document “01_compar-
isons_on_simulated_data.qmd”. The cancer TCGA data were down-
loaded from http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.
html. The single-cell data are available in the “data/” folder of our
GitHub repository (https://github.com/hirscheylab/umap_multiomics_
integration). Biological annotations were obtained from Cantini et al.
GitHub repository and can be found in our GitHub repository as well.
The Cancer Dependency Map datasets were obtained from https://
depmap.org/portal/download/custom. Finally, the scHi-C and scRNA-
seq datasets were obtained from the GEO database under accession
code GSE148793. Source data are provided with this paper.

Code availability
The source code necessary to reproduce the analyses and figures
presented in this paper is fully available to the scientific community at
our GitHub repository under MIT license, https://github.com/
hirscheylab/umap_multiomics_integration, ensuring transparency
and easeof access. The specific versionof the code associatedwith this
publication is archived in Zenodo and is accessible via https://doi.org/
10.5281/zenodo.1544217229. In addition to the source code, we have
developed a dedicated R package for the method presented in this
paper, GAUDI. This package is designed to facilitate the easy imple-
mentation of our method by other researchers. The package includes
comprehensive documentation and examples to assist users in
implementing our method in their own research. We encourage
researchers to use these resources for their work and welcome any
contributions or feedback to improve the utility and functionality of
this method.
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