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Model mimicry limits conclusions about
neural tuning and can mistakenly imply
unlikely priors

Michael J. Wolff & Rosanne L. Rademaker

ARISING FROM W. J. Harrison et al. Nature Communications https://doi.org/10.
1038/s41467-023-41027-w (2023)

In a recent issue of Nature Communications, Harrison, Bays, and
Rideaux use electroencephalography (EEG) to infer population tuning
properties from human visual cortex, and deliver a major update to
existing knowledge about the most elemental building block of visual
perception – orientation tuning. Using EEG together with simulations
in an approach they refer to as generative forward modeling, the
authors adjudicate between two competing population tuning
schemes for orientation tuning in visual cortex. They claim that a
redistribution of orientation tuning curves can explain their observed
pattern of EEG results, and that this tuning scheme embeds a prior of
natural image statistics that exhibits a previously undiscovered ani-
sotropy between vertical and horizontal orientations. If correct, this
approach could become widely used to find unique neural coding
solutions to population response data (e.g., from EEG) and to yield a
true population tuning scheme deemed generalizable to other
instances. However, here we identify major flaws that invalidate the
promise of this approach, which we argue should not be used at all.

First, we will examine the premise of Harrison and colleagues1, to
subsequently explain why generative forward modeling cannot cir-
cumvent model mimicry pitfalls and can deliver many possible solu-
tions of unknowable correctness. Finally, we show a tentative
alternative explanation for the data.

Invasive neural recording techniques are the gold standard and
only direct measurement tool for quantifying neural orientation tun-
ing properties in visual cortex. Harrison and colleagues1 point to pre-
vious research as precedence for the overrepresentation of horizontal
compared to vertical orientations, citingwork showing higher contrast
energy for horizontal compared to vertical orientations in natural
images2,3, and inversely related differences in behavioral sensitivity
when using images with broadband orientation contents2,4. These
theoretical findings could imply a cardinal asymmetry at the neural
level. Indeed, Harrison and colleagues1 also prominently feature an
apparent overrepresentation of horizontal compared to vertical
selective neurons in visual areas of mouse5, cat6, and macaque7 in
Fig. 1B of their paper. How these data were derived and plotted is not

described, and statistical tests of vertical-horizontal anisotropies are
not reported. However, Harrison and colleagues seem to misinterpret
data from these physiology studies. While all three studies provide
evidence for an overrepresentation of neurons tuned to cardinal
(horizontal and vertical) compared to oblique (diagonal) orientations
(the well-known oblique effect8), they do not, in fact, set out to test for
or convincingly show anisotropies between vertical and horizontal
orientations. Inmouse, Roth and collegues5 showaweak trend ofmore
horizontal versus vertical selectivity inmouse V1, but an opposite trend
in a later visual area (Posteromedial area). In cat, Wang and collegues6

show a similar weak trend favoring horizontal selectivity in cat visual
cortex, but other cat studies that show no or opposite trends can be
easily found (e.g.,9,10). In macaque, Fang and colleagues7 analyzed data
from a total of 48 V1 hemispheres and 38 V4 hemispheres (in over 34
animals), showingno trends favoringhorizontal orientations inV4, and
an opposite trend in V1. (The first data figure in Fang and collegues7

shows a single example V4 hemisphere where a trend for more
horizontal-preferring neurons can be observed, similar to Fig. 1b in
Harrison and colleagues. This trend is absent in the full V4 data.) This
higher selectivity for vertical was statistically significant, but likely due
to concurrent radial biases. That is, neurons fire preferentially for
orientations aligned with the radial angle between their receptive field
location and fixation (radial bias), and Fang and colleagues7sampled V1
neurons at radial angles closer to the vertical meridian more densely
than those closer to the horizontal meridian. Thus, even this small
selectionof animalphysiology research fromafield that spansdecades
(starting with Hubel & Wiesel in 196211) shows no consistent evidence
for or against differences between vertical and horizontal neural
selectivity, and it is unclear to us how Harrison and colleagues can
implyotherwise. If systematicneural anisotropies between vertical and
horizontal selectivity exist, we are not aware of research that has sys-
tematically evaluated the existing literature or actually applied quan-
titative tests, but this would certainly be worth looking into.
Furthermore, while some orientation selectivity is present innately12

the implied evolutionary justification for an anisotropy favoring
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horizontal over vertical orientations that is seemingly mirrored in the
statistics of natural but not man-made scenes, does not take into
account physiological research emphasizing the extent to which sen-
sory input during development can shape orientation tuning12–14. (The
justification for an embedded prior based on natural scene statistics
(i.e., the green line in Harrison and colleagues Figure 7B) comes from
measurements by Girshick and colleagues15 over 6 levels of image
resolution. It is unclear which resolution the green line is based on
or why).

Aside from its premise, the central flaw in Harrison and collegues1

lies with the fact that EEG decoding results cannot inform about the
underlying neural or population tuning, due to an inherent inverse
problem and model mimicry. The inverse problem is where an
underlying cause cannot be inferred from a (measurable) effect, such
as the inability to estimate neural causes from non-invasive imaging
results. The inability to model single neurons and other limitations of
population response models are discussed at length in refs. 16–19.
Relatedly,modelmimicry (ormodel degeneracy) refers to cases where
many possible models can generate the same, or very similar, out-
comes and model fits. To test what population tuning properties
explain their pattern of EEG results, Harrison and colleagues1 claim
they can use generative forward modeling (see also20) to differentiate
between two possible population tuning schemes: differences in tun-
ing widths and differences in tuning preferences. We do not believe
this claim is justified. Using the same simulation approach as Harrison
and colleagues (but a slightly different decoder, see “Methods” and

Supplementary Fig. 1), we show several examples of population tuning
schemes that all yield the same pattern of results at the macro-level
(Fig. 1). Importantly, this includes the population tuning scheme with
different tuning widths that Harrison and colleagues argued could not
fit their data (Fig. 1B). This is because they did not consider the entire
parameter space for thismodel, omitting schemeswithwider tuning at
cardinals compared to obliques. In addition tomodels with differences
in tuning width or preference, a physiologically sensible model with
differences in gain modulation21 could also explain the data (Fig. 1C),
but was not considered by Harrison and colleagues1. In fact, even a
uniform set of tuning curves can approximate the data, as long as the
signal-to-noise ratio (SNR) is modulated across orientation space
(Fig. 1D). Indeed, we argue that it boils down to orientation-specific
SNR differences that need to be simulated to approximate the EEG
results. This can be done either by explicitly changing the signal
strengths (Fig. 1D) or by modulating the tuning curves in some way
(preferred tuning, width, and gain as in Fig. 1A–C, or any combination
thereof). To complicate matters further, when adjudicating between
models, or even when deciding if a single model approximates the
data, there are many possibly sensible, but fairly arbitrary parameters
to pick from (e.g., the number of tuning functions, the range of tuning
function widths, etc.) that can all generate outcomes that mimic each
other or impact SNR. Furthermore, model specification is not limited
to sensible choices only—the tuning functions used by Harrison and
colleques1 may be well-motivated models16, but a set of arbitrarily
shaped functions could also be used to simulate data and/or recover
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Fig. 1 | Model mimicry: many models produce the same pattern of results. In
generative forward modeling, EEG data are simulated from models that use dif-
ferent sets of orientation tuning functions (top row). Decoding results (mean-
centered decoding accuracy, mean-centered precision, and bias) as a function of
orientation are shown (3 bottom rows) for simulations using different underlying
example models. Blue error areas are 95% confidence intervals of the mean of the
simulated instances (n = 36) of each model for each decoding metric. A Preferred
tuning model: Tuning functions are unevenly spaced along the orientation space,

with more clustering at vertical, and even more at horizontal orientations. This is
the best fittingmodel fromHarrison and colleagues1. BWidthmodel: Tuning curve
widths are uneven, with narrowest tuning for obliques, wider tuning for vertical and
widest tuning for horizontal. C Gain model: Uneven tuning curve gain across
orientations space, with more gain at cardinals that is highest for horizontal
orientations. D Signal-to-noise (SNR) model: Tuning curves are uniform, but signal
strength is orientation specific. Source data are provided as a Source Data file.
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decoding metrics17. Thus, even when a model clearly fails to approx-
imate the data, like the width model with sharpening around cardinal
orientations from Harrison and collegues1, one should be careful to
falsify such a model outright. We aren’t entirely confident that even
this sharpening-at-cardinal model might not still fit when combined
with a different set of (sensible or arbitrary) parameter choices that
compensate for the model’s low SNR at cardinals. Importantly, our
modelmimicry argument should not be taken to discount allmodeling
of (neuroimaging) data, as modeling can serve many useful purposes.
Models often are the best description of neuroscientific theory thatwe
have available and can guide experiments.

Across two EEG data sets from previously published
manuscripts20,22, Harrison and colleagues1 show that horizontal orien-
tations result in notably better and more consistent decoding than
vertical orientations. (Note that generative forwardmodeling was only
applied to the data fromRideaux et al.20, and not to the data fromKing
& Wyart22. The latter shows a diverging pattern of relative precision
across orientation space, with peaks at cardinals and obliques – a
pattern that the model does not reproduce.) Given that generative
forward modeling cannot be used to infer orientation tuning aniso-
tropies in human visual cortex as a plausible explanation, what other
factors might be driving these EEG results? Using the same decoding
method as for the simulations (Fig. 1), we replicate the pattern of
results both for the dataset20 used by Harrison and colleagues1, as well
as for another openly available EEG dataset where orientated grating
stimuli were presented centrally23 (Fig. 2A). However, this effect is not
replicated for EEG data sets24,25 where orientation gratings were

presented laterally, just to the left and right of fixation along the hor-
izontal meridian (Fig. 2B), where no decoding differences between
vertical and horizontal orientations are evident (see Supplementary
Fig. 2 for overlaid grating sizes and positions to scale of all
experiments).

Thus, simply presenting gratings slightly off-center leads to
markedly different results that do not align with Harrison and collea-
gues’ central premise of more neurons tuned to horizontal compared
to vertical7. Note that is has been found that at the single neuron level,
eccentricity does not seem to have an impact on orientation selectivity
in primate V1, where selectivity does not differ between cells with
receptive fields closer (<5.2°) or further (>5.2°) away from fixation7. So
why do we see this striking difference between centrally and laterally
presented stimuli in the EEG data? We hypothesize that the cardinal
anisotropy seen only for centrally presented gratings could be driven
by V1 surface area anisotropies – i.e., anisotropies that affect proces-
sing of visual field location instead of orientation. Human V1 has about
double the cortical surface area dedicated to the horizontal compared
to the vertical meridian, and human visual performance is higher for
stimuli presented along the horizontal compared to the vertical mer-
idian, especially in the periphery26,27. A central stimulus drives
responses all around fixation, including both the horizontal and ver-
ticalmeridians. Thismeans central stimuli are susceptible to V1 surface
area anisotropies, with not all parts of the stimulus processed equally.
Conversely, laterally presented stimuli fall alongonly a singlemeridian,
meaning no surface area anisotropies. In EEG, further anisotropiesmay
arise due to the organization of the visual field map in cortex, which
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Fig. 2 | Cardinal anisotropies for orientation decoding are specific to central
stimuli in EEG. Stimulus positions and sizes (top) are shown to scale. Dashed
lines depict the vertical and horizontal meridians. Black horizontal line illustrates
10° visual angle from fixation. A Re-analyzes of experiments reported by Harrison
and colleagues1 (left: n = 36) andWolff and colleagues23 (right: n = 24)where central
orientations were shown to participants. Line plots show mean-centered Mahala-
nobis distance-based decoding metrics as a function of orientation, with shaded
areas indicating the cardinal orientation bins used to compute differences between
horizontal (green) and vertical (purple) orientations. Blue error areas are 95%
confidence intervals (C.I.). The box plots show decoding metric differences for
horizontal minus vertical orientations, with box limits indicating the upper and
lower quartiles of the data, whiskers indicating 1.5 times the inter-quartile range,
and blue dots representing individual subjects. The superimposed black circle and
error-bars indicate the mean and 95% C.I. Top: Mean-centered accuracy (mean-
centered cosine vector mean of pattern similarity curve), Middle: Mean-centered

precision (1 minus the circular standard deviation of decoded orientation across
trials), Bottom: Bias of pattern similarity curves, in degrees. Both data-sets show
statistically significant differences between horizontal and vertical orientations),
with higher decoding for horizontal orientations (both p <0.001), higher precision
for horizontal orientations (left: p <0.001, right: p =0.003), and a stronger attrac-
tion toward vertical orientations (both: p <0.001). Tests were two-sided permuta-
tion t-tests (10.000 permutations). No adjustments for multiple comparisons were
made. B Re-analyzes of experiments with orientations presented laterally24,25 (left:
n = 30; right: n = 26) to the left and right of fixation, at an eccentricity of 6.69° or
6.08° (for data from24 and25, respectively). Same conventions as in A. No consistent
differences between horizontal and vertical orientations. (Decoding accuracy dif-
ference, left: p =0.315, right: p =0.232; precision difference, left: p =0.837, right:
p =0.895; attraction difference, left: p 0.43, right: p =0.236; two-sided, not cor-
rected for multiple comparisons). Source data are provided as a Source Data file.
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determines how well activity from different portions of cortex are
captured by EEG scalp electrodes. For example, locations along the
vertical meridian are processed closer to, and inside of, the long-
itudinal fissure28, which is more difficult to measure with scalp elec-
trodes. This couldmean that EEG is particularly ill-suited formeasuring
orientation sensitivity, also because different orientations are pre-
dominantly processed in different regions of cortex29,30, whichmay be
unevenly sampled by scalp electrodes.

That differences between the vertical and horizontal meridians of
the visual field play a role in EEG measurements, becomes evident
when looking at location decoding from EEG signals. We re-analyzed
multiple openly available EEG datasets where participants were pre-
sented with a single dot at one of many possible locations around
fixation31–33. We see clear and systematic differences in location
decoding accuracies, with highest relative decoding for locations close
to the horizontal meridian, and lowest for locations close to the ver-
tical meridian (Fig. 3A). The eccentricity at which dot stimuli were
presented in four of these datasets (outer ring in Fig. 3A, bottom)
overlaps with the edge of the grating stimulus used by Harrison and
colleagues (overlaid gray dotted line in Fig. 3A, bottom). The same is
true for the eccentricity of dot stimuli in the dataset fromBae31, shown
as the inner ring in Fig. 3A (bottom), which is close to edge of the full-
field gratings used inWolff and collegues23 where cardinal anisotropies
are also observed (Fig. 2A). Concretely, for centrally presented stimuli,
this difference in sensitivity across the visual field means lower SNR at
the upper and lower stimulus edges than at the left and right stimulus
edges (Fig. 3B, left).

Importantly, these location-specific SNR differences can interact
with second order stimulus properties (stimulus edge effects or vig-
netting) that have been argued to at least in part be related to the
decoded signal obtained from non-invasive neuroimaging34,35 (but see
also refs. 29,36). Vignetting refers to the interaction between stimulus
orientation and stimulus aperture, such that for circular gratings the

orientation energy is strongest on the edges of the grating alignedwith
the orientation (Fig. 3B, right). A vertically orientated grating pre-
sented centrally will therefore evoke more activity in the periphery of
the vertical meridian, a visual field location where sensitivity is lower,
leading to relatively lower decoding. A centrally presented horizontal
grating will evoke more activity in the periphery of the horizontal
meridian, where sensitivity is higher, leading to relatively higher
decoding (Fig. 2A). Thismay not be true for laterally presented stimuli,
where the decoded orientation energy falls into a part of the visual
field where measurement sensitivity is more evenly distributed (i.e.,
along a singlemeridian). Unaffected by large SNR differences between
the horizontal and vertical meridians, decoding results for lateral sti-
muli are similar for horizontal and vertical orientations (Fig. 2B).

We do not claim that this explanation is definitive or exhaustive.
Rather, we want to highlight the importance of considering stimulus
and measurement biases that can interact with orientation decoding.
For example, spatial attention to the endpoints of orientated gratings37

could also interact with visual field anisotropies in a manner similar to
vignetting effects. Other factors may interact with measurement of
orientation selectivity as well, such as stimulus contrast38 or radial
bias7,39. However, radial bias should impact central and lateral stimuli
similarly: Central stimuli are preferentially processed along the hor-
izontalmeridian, given the location-specific SNRdifferences described
above. Lateral stimuli to the left and right of fixation are entirely pro-
cessed along the horizontal meridian. Thus, both types of stimuli
should have higher decoding for horizontal (radial from fixation)
compared to vertical (tangential from fixation) orientations if radial
bias had a measurable impact on orientation decoding with EEG. Yet,
our analyzes of lateral orientations do not show any decoding differ-
ence between horizontal and vertical orientations at all (Fig. 2B).
Finally, the oblique effect which describes better perceptual perfor-
mance for cardinal over oblique orientations8 and is mirrored in the
overrepresentation of orientation-tuned neurons that prefer cardinal
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over obliques5–7, aligns with the EEG results for both centrally and
laterally presented gratings (see Fig. 2). This implies that at least some
form of well-established orientation anisotropy may be genuinely
measurable with EEG. That said, the observed attenuation of decoding
metrics for vertical compared to horizontal orientations, specific for
centrally presented gratings, is likely driven by location-specific mea-
surement differences that could interact with second-order stimulus
properties (such as vignetting) or other factors.

In conclusion: Despite decades of research, invasive neural
recordings in animals havenot found the anisotropies between vertical
and horizontal orientations seen in the EEG data reported by Harrison
and colleagues1. This pattern of results cannot be explained on the
basis of the underlying orientation tuning, because generative forward
modeling1,20 suffers from an inherent inverse problem, where many
possible population tunings (including many physiologically plausible
ones) can approximate the patterns of reported EEG data equally well.
Given that the pattern of EEG results does not replicate for laterally
presented stimuli, cardinal anisotropies are likely driven by other
factors, such as differences in visual field sensitivity between the ver-
tical and horizontal meridian and their interaction with second-order
stimulus effects.

Methods
Simulations (generative forward modeling)
We simulated different population tuning models using largely the
same approach as in Harrison and colleagues1 by adapting their pub-
lished Matlab scripts. Briefly, data for 36 subjects, from 32 EEG chan-
nels and 6480 trials per subject, was simulated for each model (see
below). Eachmodel had a given number of tuning functions, or model
channels. The modeled channel responses to each orientation (1° to
180°, in steps of 1°) shown to a given model were transformed to EEG
sensor space viamatrixmultiplicationbetween theorientation-specific
model response of each trial, and a randomweightsmatrix (number of
channel functions by number of EEG channels, sampled from a uni-
form distribution over 0 to 1). Trial-specific noise was added to each
simulated EEG channel sampled from a normal distribution (s.d. = 6),
which also ensures differences in simulated responses to trials on
which identical orientations were shown.

For all models we will only mention any deviations from Harrison
and colleagues1 Preferred-tuning-model. The purpose of our simula-
tions was to demonstrate that there is no unique model that best
describes the data, even when only considering models that could be
argued to be plausible. Our models (Fig. 1) are by no means the best
fitting models, as searching for best fitting solutions in this very large
parameter space would be computationally intractable. Indeed, we
derived at our models through mere trial and error and stopped once
we obtained decoding results that resembled Harrison and colleagues1

Preferred-tuning-model. Thus, the models and their parameters
described below should not be considered definitive; they are snap-
shots out of many more possibilities.

Preferred-tuning-model: For this we used the exact script pub-
lished by Harrison and colleagues1, which generates the preferred
tuning model. This model consisted of 16 tuning functions with con-
stant widths (κ = 2). Preference was modulated by shifting the tuning
functions based on the sum of two von Mises derivative functions
(κ =0.5) centered on 0° (amplitude = 14) and on 90° (amplitude = 8),
which has the effect that there are relatively more tuning functions
around horizontal (0°) compared to vertical (90°), and fewest tuning
functions around obliques (45° and 135°). Note that these values in the
scripts uploaded by the original authors at the time of writing differ
slightly from the values described in the manuscript (which states the
amplitudes were 15 and 10). The resulting difference between these
twoparameter settings ismarginal however, andwedecided to stick to
those parameters in the script as uploaded by the authors, without
changing anything.

Width-model: Instead of changing the tuning preferences across
the orientation space, tuning functions were evenly spaced, but their
widths weremodulated. This modulation was derived from the inverse
of the sum of two von Mises functions (κ = 0.5), one centered on 0°
(amplitude = 15) and one centered on 90° (amplitude = 4). Given the
inversion, tuning widths were wider for cardinals than for obliques,
with horizontal widths being wider than vertical widths. The possible
tuning widths were rescaled such that they ranged from κ = 7 (the
widest) to κ = 19 (the narrowest). The number of tuning functions
increased to 24 (from the original 16) and every tuning function was
scaled to range from 0 to 1.5.

Gain-model: The gain-model comprises 16 evenly spaced tuning
functions with constant widths (κ = 2), but differences in scaled
amplitude (i.e., gain). Gains were modulated from the sum of two von
Mises functions (κ = 0.5), one centered on 0° (amplitude = 15) and the
other on 90° (amplitude = 8). The range of gains were scaled from 0.7
(at the obliques) to 1.4 (at 0 degrees, which is horizontal).

SNR-model: Here we used a uniform distribution of 16 identical
tuning functions, all with the same width (κ = 2) and all with the same
gain (amplitude of 1). Unlike the models above, here we do not
manipulate the underlying tuning response functions but instead
modify the signal strengths of the simulated activity patterns across
the EEG channels. Specifically, the signal strength was modulated for
simulated response patterns generated from each of the 180 orienta-
tions using the sum of two von Mises functions (κ =0.5), centered on
0 degrees (amplitude = 15) and on 90 (amplitude = 8). Signal
strengthmodulation ranged from0.68 (68% signal strength) to 1 (100%
of signal strength). The signal strengths of the orientation-specific
patterns were modulated after transforming activations from the
tuning response functions to every possible orientation (1°–180°) into
sensor space (as described in Harrison and collegues1 and above),
meaning that the orientation-specific patterns of the simulated
EEG sensors were multiplied by the corresponding signal strengths
(0.68 to 1), before adding the same amount of Gaussian noise to
each (s.d. = 6).

EEG data
We reanalyzed openly available EEGdatasets of 9 experiments across 7
publications1,23–25,31–33, where human participants viewed either circular
orientation gratings, or locations. For the present manuscript, the
stimulus sizes and locations that participants viewed while EEG was
recorded are of particular interest, and are described in more detail
below. Other details are available in the methods sections of the ori-
ginal publications.

Harrison et al.1: Participants (N = 36, 23 female; age (years):
M = 23.8, SD = 4.6) viewed serially presented, randomly orientated
circular gratings (4.2° radius) centered around fixation. Each grating
was presented for 50ms, with an ISI of 150ms between consecutive
gratings. The taskwas todetect gratingswith a lower spatial frequency.

Wolff et al.23: Participants (N = 24, 12 female; age (years):M = 22.2,
range 18–38) performed a visual working memory task, where the
orientation of a grating had to be memorized for up to 2.6 seconds.
Each circular gratingwas centrally presented (2.88° radius) for 200ms,
followed by a blank delay of at least 1.17 seconds.

Wolff et al.24: Only experiment 1was reanalyzed.Here, participants
(N = 30, 13 female; age (years): M = 24.9, range 18 to 38) performed a
retro-cue visual working memory task. Two randomly orientated cir-
cular gratings (radius of 3.345° each) were simultaneously presented
on the horizontalmeridian at 6.69° eccentricity. The presentation time
was 250ms, followed by a blank delay of 800ms. The orientations of
both gratings were behaviorally relevant during encoding.

Wolff et al.25: Participants (N = 26, 17 female; age (years):M = 25.8,
range 20 to42) alsoperformeda retro-cue visualworkingmemory task
with laterally presented, randomly orientated circular gratings. The
gratings (radius of 4.255° each) were presented at 6.08° eccentricity
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for 200ms followed by a blank delay of 400ms. The orientations of
both gratings were behaviorally relevant during encoding.

Foster et al.32: Participants performed a spatial working memory
task in all three experiments. The visual stimulus on each trial in all
three experiments was a dark gray circle (0.8° radius) presented on a
random location of an invisible circle at 4° eccentricity. The partici-
pants’ task was to memorize the location for a delay of at least 1 s
(variable across experiments). In experiment 1 and 3, the circle was
presented for 250ms and in experiment 2 for 1 s. Sample size was
N = 15 in all experiments (age range 18 to 35 years). Information about
the sex of participants is not provided in the original manuscript.

Foster et al. 33: We reanalyzed experiment 1 (N = 10, 7 female; age
range 18 to 35 years). Here, in each trial a single a randomly colored
circle (0.8° radius) was presented on a random location of an invisible
circle at 3.8° eccentricity. Stimulus duration was 100ms, followed by a
1.2 s blankdelay. Theparticipants’ taskwas tomemorize and report the
color of the colored circle in each trial.

Bae 31: We reanalyzed experiment 1, where participants (N = 22, 16
female; mean age range 18 to 30), performed a spatial working mem-
ory task. The visual stimulus was a small circle (0.175° radius) pre-
sented for 200ms on one of 16 discrete locations on an invisible circle
at 2.3° eccentricity. A blank delay (1.3 s) followed after the offset of the
circle. The task was to memorize and report the location of the circle
on each trial.

Preprocessing
For all experiments, we used the voltage data the way it was published
and preprocessed by the original authors.

For the subsequent decoding analyzes, we used the voltage traces
from 50 to 450ms relative to stimulus onsets from the posterior
electrodes, in line with Harrison and colleagues1. Data from refs. 23–25
and the reanalyzed experiment 1 from ref. 31 all used the same elec-
trode coverage, and the same 17 posterior channels were included in
the corresponding analyzes (P7, P5, P3, P1, Pz, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O1, Oz andO2). The same electrodes were included for
the data of ref. 1 in addition to the electrodes Iz, P9, and P10. The
electrode coverage was lower for the reanalyzed experiments in
refs. 32,33 and the included posterior electrodes for these data-sets
were PO3, PO4, P3, P4, O1, O2, POz, and Pz.

Insteadof decoding at each time-point separatelywithin the time-
window of interest and then averaging (as in Harrison and collegues1),
we first reformatted the data in a manner similar to previous work25

before feeding it to the decoder: To take advantage of the fact that
stimulus-specific information is not only present in the activity pat-
terns across electrodes, but also in the temporal pattern of the evoked
voltage changes, we combined the channel and temporal dimensions
to improve the sensitivity of the decoder. To do so, we first down-
sampled the signal from the time-windowof interest (50ms to 450ms,
relative to stimulus onset) to 50 (51.2 Hz for Harrison and collegues1,
due to the original sampling rate of 1024Hz), and removed the mean
activity level within each trial and electrode. The resulting, mean-
centered 20 voltage values of each channel in each trial were then
combined with the channel dimension. The number of dimensions for
the decoder increased therefore 20-fold (number of down-sampled
time-points by number of channels).

Stimulus decoding
None of the various decoding metrics (accuracy, precision, bias) in
Harrison and collegues1 are specific to the commonly used inverted
encoding model (IEM) in their paper. We used a Mahalanobis distance
decoder25 that yields qualitatively similar results as the IEM decoder
(Supplementary Fig. 1). We made other minor analysis changes to
improve consistency and robustness, such as using wider orientation
bins, using repeated stratified random folds to split both real and
simulated data, etc (see below).

We used the same approach to decode orientations from the
simulated data and orientations/locations from the spatiotemporal
signal from the EEG data sets. Location decoding was the same as
orientation decoding apart from taking into account that orientations
are in 180° space, while locations are in 360° space. We used an 8-fold
cross-validation approach. First, trials were assigned to the closest of 16
evenly spaced orientations/locations (variable, see below). The trials
were then randomly split into 8 folds using stratified sampling. The trials
of 1 fold were held out for testing and the trials of the remaining 7 folds
were part of the training data. The covariance of the train trials was
estimated using a shrinkage estimator40, before the number of trials in
each orientation/location bin of the train data was equalized through
random subsampling. The subsampled trials within each bin of the
training set were then averaged. And the averaged bins were then
convolved with a half cosine basis set raised to the 15th power41 to pool
information across similar orientations/locations. The Mahalanobis dis-
tances between the left-out test trials and the averaged train bins were
then computed. This procedure was repeated for all train/test fold
combinations. The experiment of one dataset31 used exactly 16 evenly
spaced locations. Here the original location labels were used, rendering
the aforementioned binning unnecessary. All remaining datasets used
random orientations/locations, for which the above procedure was run
separately for 8 possible ways of binning the orientations (with bins
centered at 0° to 168.75°, at 1.40625° to 170.1563°, at 2.8125° to
171.5625°, at 4.2188° to 172.9688°, at 5.625° to 174.375°, at 7.0313° to
175.7813°, at 8.4375° to 177.1875°, or at 9.8438° to 178.5938°, each in
16 steps of 11.25) or location spaces (same as for orientation, but con-
verted to 360° space by multiplying all values by two). This means that
for each trial, we obtained 16 times 8 = 128 Mahalanobis distance bins
(with the exception of the dataset with only 16 discrete orientations,
which resulted in exactly 16 distances per trial). Given the randomness
of the initial folds and the subsampling within folds, the above proce-
dure was repeated 20 times to obtain more robust results. Once all
distances were obtained and averaged over repetitions, distances for
each trial were mean centered by subtracting the average distance
across all Mahalanobis bins from each. The distances were then ordered
as a function of angular difference between test and train bin, obtaining
pattern-similarity-curves for each trial. For experiments with two
simultaneously presented orientation gratings, one on each side24,25,
each orientation was decoded separately.

Centered decoding accuracy, centered precision, and bias
Decoding accuracy was obtained for each trial by computing the
cosine vector mean of the pattern-similarity-curve24. Decoding accu-
racy was then averaged as a function of orientation/location using a
sliding window (width = 11.25° for orientations, width = 25° for loca-
tions) that moved over angular space in steps of 1.40625°/2.8125° for
orientations/locations. Mean-centered decoding accuracy was
obtained by mean-centering the resulting orientation/location—spe-
cific decoding accuracy curve. Precision was obtained by taking the
circular means of the trial-wise pattern-similarity-curves and calculat-
ing the inverse circular standard deviation over these means. Mean-
centered precision was obtained by mean-centering the precision
curve (same as for relative decoding accuracy). Bias was obtained by
computing the circular mean of the averaged pattern-similarity-curves
of all trials within each angular window (same as above).

For location decoding we obtained relative decoding accuracy (%
difference frommean decoding) by subtracting the average decoding
accuracy (of all locations) from each location bin and then dividing the
mean-centered decoding accuracies by the average to obtain
proportion-difference. This was multiplied by 100 to obtain
%-difference.

For visualization, the angular relative decoding, relative precision
and bias curves were smoothed across orientations/locations with a
Gaussian smoothing kernel (s.d. = 2°/4° for orientations/locations).
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To explicitly test differences in decoding accuracy and precision
between vertical and horizontal orientations (as shown in Fig. 2), the
respective decoding metrics were averaged from −22.5° to +22.5°
relative to 0° and 90° degrees. For the bias we assumed that, given
equal attraction towards each cardinal, the effect should be maximal
for orientations 22.5° away from the cardinals, i.e., halfway the distance
to the obliques, where the influence of each cardinal should be can-
celed out.We thus averaged the bias values from −12.5° to 12.5° relative
to 22.5° and 157.5° for horizontal orientations, and relative to 67.5° and
112.5° for vertical orientations,after sign reversing bias values such that
positive values always correspond to attraction to the nearest cardinal.

Edge effects (vignetting)
We used the perfect-cube-model34 to illustrate a possible relationship
between location-specific SNR differences, and orientation energy,
strongest at the edges for circular gratings.We used the exact stimulus
and model parameters as described in ref. 34. Briefly, two sine-wave
gratings (one vertical, the other horizontal) were convolved with eight
distinctly oriented 2D Gabor filters (0° to 157.5°, in steps of 22.5°),
which all had the same spatial frequency as the sine-wave gratings. The
output of each filter was normalized before taking the sum over all
eight, resulting in the 2D orientation energy plot in Fig. 3B.

Statistical significance testing
The reported differences between horizontal and vertical orientations
(Fig. 2) were tested for significance using a permutation t-test with
10,000 permutations as implemented by the python toolbox MNE. All
tests were two-sided and the statistical significance threshold
was p <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study is openly available23–25,31–33. For convenience,
data from23–25 was reduced in size by only including electrodes and
time-points of interest, and is available at https://osf.io/bdf74/ Source
data are provided with this paper.

Code availability
The code used to generate the figures and results reported in this
manuscript are available at https://github.com/mijowolff/model-
mimicry-and-unlikely-priors42.
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