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RiNALMo: general-purpose RNA language
models can generalize well on structure
prediction tasks

Rafael Josip Penić1, Tin Vlašić 2, Roland G. Huber 3, Yue Wan 2 &
Mile Šikić 1,2

While RNA has recently been recognized as an interesting small-molecule drug
target, many challenges remain to be addressed before we take full advantage
of it. This emphasizes the necessity to improve our understanding of its
structures and functions. Over the years, sequencing technologies have pro-
duced an enormous amount of unlabeled RNA data, which hides a huge
potential. Motivated by the successes of protein language models, we intro-
duce RiboNucleic Acid Language Model (RiNALMo) to unveil the hidden code
of RNA. RiNALMo is the largest RNA language model to date, with 650M
parameters pre-trained on 36M non-coding RNA sequences from several
databases. It can extract hidden knowledge and capture the underlying
structure information implicitly embedded within the RNA sequences.
RiNALMo achieves state-of-the-art results on several downstream tasks.
Notably, we show that its generalization capabilities overcome the inability of
other deep learningmethods for secondary structure prediction to generalize
on unseen RNA families.

Large language models (LLMs) trained onmassive text corpora have
been performing remarkably on various natural language under-
standing and generation tasks1–6. In recent years, the exploration of
language models (LMs) has gone beyond the domain of natural
language processing (NLP), reaching into the realms of biology and
its data. A vast amount of sequenced protein data provided a
ground for training protein LMs, and since they have proven to be
an extremely valuable asset in protein generative7–9 and structure
prediction tasks10,11.

Most efforts in applying the ideas originally developed for NLP
have been focused on proteins after the success of AlphaFold12 in the
prediction of protein structures. ESM-1b13 was one of the first models
that applied the self-supervised language modeling approaches to
protein data. It was pre-trained on 250M protein sequences and
tested on several downstream tasks, including the secondary struc-
ture and tertiary contact prediction, where it achieved state-of-the-

art results. Later on, several other protein LMs were proposed and
tested on various downstream tasks14–17. Protein LMs play an impor-
tant role in protein tertiary structure prediction. ESM-211 and
OmegaPLM10 are examples of protein LMs that efficiently replace a
multiple sequence alignment (MSA) step in deep learning (DL)
methods for structure prediction.

RNAs play crucial roles in fundamental biological processes,
including transcription, cell signaling, chromatin remodeling, and
genome imprinting. Like proteins, RNAs have recently become an
attractive drug target, whose function and interaction with other
molecules are closely related to their structure18,19. However,much less
attention has been given to applying LMs to RNA-related problems,
partly because there is no such amount of available data and corre-
sponding structures, and partly because similar problems tend to be
more difficult than for proteins. Furthermore, RNA structure predic-
tion is severely hindered by the scarcity of high-resolution structural
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data and the lack of unbiased, diverse sequence alignments, which are
often used as a source of evolutionary information20.

Currently, there are only two single-input-sequence RNA foun-
dation models, RNA-FM21 and Uni-RNA22, that have found applications
in several structure and function prediction tasks. RNA-FM is a 100M
parameters Transformer encoder based on the original implementa-
tion by ref. 23 and trained exclusively on 23.7M non-coding RNAs
(ncRNAs) from theRNAcentral database24,22 pre-trained an ensemble of
LMs ranging from 25M to 400M parameters trained on a much larger
dataset of 1B sequences with the architecture analogous to the ESM
protein LM13 enhanced by several advanced techniques such as RoPE
and fused layer norm. The authors pre-trained language models of
different sizes and reported when the model parameters exceeded
400M, the performance in downstream tasks reached a plateau with
their architectures and datasets. Both foundation models used the
standard BERT-style masked language modeling (MLM) pre-training
task1. Unlike the Uni-RNA, RNA-FM is publicly available.

Besides the RNA-FM and Uni-RNA foundation models, several
authors proposed LMs to solve a few specific downstream tasks. RNA-
MSM25, an MSA-based BERT-style RNA LM, specialized in particular for
secondary structure prediction, that instead of a single input sequence
utilizes a set of homologous sequences. However, obtaining the MSAs
is a very time-consuming procedure—it takes RNAcmap, a homology
search tool used by RNA-MSM, on average 9h to obtain anMSA for one
RNA sequence of length 6025,26 proposed SpliceBERT, a BERT-style
encoder pre-trained exclusively onmore than 2M precursormessenger
RNA (pre-mRNA) sequences from different vertebrates for studying
RNA splicing. SpliceBERT outperforms DNABERT27, an LM trained only
on a human genome, both on human and non-human splice-site pre-
diction tasks. It demonstrates better generalization capability of LMs
pre-trained onmultiple species28. Proposed single-cell BERT (scBERT), a
BERT-style LM pre-trained on huge amounts of unlabeled single-cell
RNA-seq data for cell type annotation. BigRNA29 is an LMpre-trained on
the genomes of 70 individuals on a task to predict DNA-matched RNA-
seq data. BigRNA accurately predicts tissue-specific RNA expression
and the binding sites of proteins and microRNAs. UTR-LM30 is an RNA
language model for 5′ untranslated region (5′ UTR) of mRNAs, which
was pre-trained on endogenous 5′ UTRs from multiple species. It is
specialized for mRNA translation-related downstream tasks such as
mRNA translation efficiency and expression level prediction.

Motivated by the recent successes of protein LMs and the latest
architectural improvements in LLMs, we propose RiNALMo, a novel
RNA language model. We pre-trained RiNALMo on a set of carefully
curated 36M ncRNA sequences from the RNAcentral database aug-
mented by several other RNA databases. RiNALMo is a 650M para-
meters BERT-style Transformer encoder advanced by modern
architectural techniques such as rotary positional embedding (RoPE)31,
SwiGLU activation function32, and FlashAttention-233. During pre-
training, RiNALMo can extract hidden knowledge and capture the
underlying structural information embedded within the sequences at
the single-nucleotide level. Later, its output embeddings serve as a
powerful sequence representation that improves the performance on
various structural and functional RNA downstream tasks compared to
other foundation models and state-of-the-art methods. In particular,
RiNALMo shows remarkable generalization capability on secondary
structure prediction of RNA families not encountered in the training
dataset where other DL methods fail.

The main contributions of the paper are as follows:
• We propose RiNALMo, a 650M parameters RNA LM, which is the
largest RNA language model to date that can fully leverage the
potential of a vast amount of public unannotated RNA sequences;

• We show that the generalization capability of RiNALMo can
overcome the problem of other DL methods for secondary
structure prediction to perform well on RNA families not seen in
the training dataset;

• We conducted extensive experiments on several RNA structural
and functional downstream tasks whose results show that
RiNALMo outperforms other RNA LMs and DL methods on most
datasets.

• We release the pre-trained and fine-tuned RiNALMo weights and
scripts for fine-tuning the model for the downstream tasks.

Results
General-purpose RNA language model
A schematic diagram of RiNALMo and its pre-training procedure and
downstream tasks is shown in Fig. 1. Our LM is a Transformer
encoder focused on understanding and unveiling the RNA code. At
the heart of the model is the self-attention mechanism23, which
captures important local and global contextual information. We pre-
trained RiNALMo using the MLM, where we tasked the model to
reconstruct corrupted, unlabeled RNA sequences. In this paper,
each nucleotide is a single token. To corrupt the input sequence, we
randomly mask 15% of the tokens in the training sequence. To
reconstruct the masked tokens, RiNALMo’s embeddings are utilized
by the MLM prediction head whose outputs are used in the cross-
entropy loss function. More technical details, pretraining details,
and ablation study are given in “Methods” and Supplementary
Information.

Once pre-trained, RiNALMo’s output embeddings can serve as a
powerful sequence representation that has embedded structural
and evolutionary information. First, its embeddings can be used for
visualization and clustering analysis of RNA sequences. Second,
such a representation can be used as an enriched input to structural
and functional downstream tasks. We employed RiNALMo in a few
tasks to assess its performance and generalization capabilities.
Namely, we show how RiNALMo can improve and generalize well on
secondary structure, multi-species splice-site, translation efficiency
(TE), expression level (EL), and mean ribosome loading (MRL) pre-
diction tasks as well as for multi-class ncRNA family classification
tasks. However, we anticipate it can be leveraged inmany other tasks
related to RNA structure and function. Particularly interesting
would be the employment of RiNALMo in RNA tertiary structure
prediction tasks, where, motivated by the results from ESMFold11

and OmegaFold10, we believe RiNALMo’s embeddings can success-
fully replace the MSA.

To analyze the interpretability of our model, we visualized pre-
trained RiNALMo’s sequence representations by applying t-SNE on
the classification token embeddings for RNAs from a secondary
structure prediction dataset and an ncRNA functional family clas-
sification dataset (see Fig. 2). RNA structures and functions vary
across different RNA families, and we expect RiNALMo has learned
these properties during the MLM pre-training and is able to encode
them within its RNA sequence representations. We compared the
classification token embeddings of RiNALMo and RNA-FM21. Con-
trary to the RNA-FM’s embedding space, in the RiNALMo’s embed-
ding space, the RNAs are clustered by families with, in general, clean
boundaries between clusters. This is especially evident when com-
paring Fig. 2c and Fig. 2d, which illustrate the embeddings of RNAs
from the ncRNA functional family classification dataset. The ana-
lyses of embeddings revealed that RNAs with similar structure and
function properties are grouped, implicating that RiNALMo has
learned these properties beyond their primary structure. Further-
more, the t-SNE visualization shows RiNALMo’s ability to cluster and
distinguish different RNA families and confirms it can be used in
various clustering analyses of RNA sequences. Later in “Results”,
RiNALMo’s ability to reason beyond RNA primary structure was
additionally backed by the state-of-the-art performance on an
ncRNA Rfam family classification downstream task. The t-SNE
visualization is important from the RNA structure perspective as
well, since the RNAs from the same families fold similarly, meaning
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the structure information is also contained in the embedding space.
This was later backed up by the RiNALMo’s state-of-the-art perfor-
mance on the inter-family generalization secondary structure pre-
diction downstream task.

Fine-tuning RiNALMo for intra-family secondary structure
prediction
When RNAs fold into complex structures, many of their bases pair up
and form hydrogen bonds. These pairs are vital for the structure’s
stability and function. These bonds can be represented by secondary
structure, which can tell us a lot about RNA and which is often used as
an input to the tertiary structure prediction tools. An example of a
secondary structure can be seen in Fig. 3a.

Most popular secondary structure prediction tools often rely on
thermodynamic models, aiming to identify secondary structures that
possess the lowest free energy34. There are also popular probabilistic
methods based on statistical learning procedures that act as an alter-
native to free energy minimization methods, such as CONTRAfold35.
Several DL methods have been developed as well. They often outper-
form the thermodynamic models on RNA families on which they were
trained, i.e., on in-distribution data.

We fine-tuned RiNALMoon a simple binary classification task with
binary cross-entropy loss, where we tasked the model to classify each
nucleotide pair as either paired or unpaired. The pipeline for deter-
mining secondary structures is illustrated in Fig. 3b. We utilized a
dataset proposed in ref. 36 and compared our model to RNA-FM21 and
popular DL methods specialized for secondary structure prediction
SPOT-RNA36, UFold37, and MXfold238. The proposed dataset is derived
from thebpRNAdatabase39 whichcompiled secondary structures from
seven different sources. Most structures were obtained with com-
parative sequence analysis while a smaller portion was extracted from
atomic coordinates from PDB40 using the annotation tool RNAView41.
Authors filtered out redundant RNAs by clustering similar sequences
which yielded 13,419 non-redundant secondary structures which were

then randomly split into training, validation and testing datasets
denoted asTR0, VL0 and TS0, respectively. Allmodels were trained on
the same training dataset (TR0) except SPOT-RNA which was addi-
tionally fine-tuned on a smaller dataset derived from PDB40. As can be
seen in Fig. 3c, RiNALMo outperforms other state-of-the-art DL
approaches in terms of precision, recall and consequently F1 score.We
provide F1 score distributions in Fig. 3d. A TS0 target example and the
predictions from different DL methods are given in Fig. 3g.

Beyond sequence similarity, it is important to consider structure
similarity and evaluate the ability of structure prediction tools to gen-
eralize to RNAs structurally dissimilar to ones found in the training
datasets. Therefore, RiNALMo was further evaluated using the datasets
TrainSetA and TestSetB proposed by Rivas et al.42. TrainSetA consists of
RNAs collected fromdatasets proposed in several different studies35,43,44.
Toensure sequencediversity, similar sequenceswere removed, leavinga
total of 3166RNAs in thedataset. TestSetBcontainsRNAs from22Rfam45

families with known structures not found in TrainSetA, making it struc-
turally dissimilar. RNAs from these families are then filtered by removing
similar sequences, resulting in 430RNAs in the TestSetB. Themodel was
first fine-tuned with RNAs from the TrainSetA dataset. All RNAs in this
dataset longer than 500 nucleotides were used for validation. Once
trained, the model was evaluated on the TestSetB. RiNALMo’s perfor-
mance on the TestSetB dataset was compared to RNAstructure34,
ContraFold46, MXfold238, and RNA-FM21. As shown in Fig. 3e, f, RiNALMo
outperforms other tools in terms of F1 score.

RNA language models can generalize well on inter-family
structure prediction tasks
While DL methods for secondary structure prediction outperform
thermodynamic models on in-distribution data, they are usually
unable to generalize well on new RNA families47,48. This is a severe
limitation as it hinders the practical usage of such tools.

To test the generalization capabilities of RiNALMo, we utilized the
benchmark proposed by ref. 47. The benchmark utilizes the ArchiveII
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Fig. 1 | RiNALMo pre-training and applications. In the pre-training stage,
RiNALMo is trained on unlabeled RNA sequences from several databases using
masked language modeling (MLM). To corrupt the input sequence, we randomly
mask 15% of the tokens in the training sequence. Before being passed to the
Transformer, an RNA sequence is tokenized and turned into a 1280-dimensional
vector using a learned input embeddingmodule. The languagemodel comprises 33
Transformer blocks. EachTransformer block consists of amulti-head attention and

a feed-forward network. Once pre-trained, RiNALMo can be separately fine-tuned
for various structural and functional downstream tasks in which its expressive
output embeddings, utilized by the prediction heads, significantly improve per-
formance. In this work, we fine-tuned RiNALMo for secondary structure, multi-
species splice-site, mean ribosome loading (MRL), translation efficiency (TE), and
expression level (EL) prediction, as well as for ncRNA family classification.
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dataset49,50 of 3865 RNAs fromnine families whichwas split nine times,
and in each split, a different family was held out for evaluation while
the other eight families were used for training and validation. RiNAL-
Mo’s ability to generalize across different RNA families was compared

to RNA-FM21, popular thermodynamics-based tool RNAstructure34,
widely used probabilistic method CONTRAfold35, and two DL approa-
ches specialized for secondary structure prediction UFold37 and
MXFold238. The LMs were fine-tuned and the other two DL models
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Fig. 2 | t-SNE visualizations of RNA sequence embeddings outputted by RNA-
FM21 and RiNALMo. RNA-FM (a) and RiNALMo (b) classification token
embeddings for the inter-family generalization evaluation dataset. RNA-FM

(c) and RiNALMo (d) classification token embeddings for one part of the
ncRNA functional family classification task dataset.
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Fig. 3 | Secondary structureprediction. aRNAs fold intovarious shapes according
to their function and while doing so, many of their nucleotides pair up using a
hydrogen bond. These pairings are crucial for structural stability and form struc-
tural motifs such as hairpin loops and bulges. b, RiNALMo produces nucleotide
embeddings for the given RNA sequence. Nucleotide pair embeddings are con-
structed by applying outer concatenation to RiNALMo’s outputs. Finally, pair
representations are fed into the convolutional bottleneck residual neural network
(ResNet)whichproducesbase pairingprobabilities that are then converted into the
final secondary structure prediction. c, Precision, recall and F1 performance of
different deep learning models on the TS0 evaluation dataset. d Distribution of F1

scores for predictions of different models on the TS0 dataset (sample size
n = 1305). e Precision, recall and F1 performance of different structure prediction
tools on the TestSetB evaluation dataset. f Distribution of F1 scores for predictions
of different structure prediction tools on the TestSetB dataset (n = 430). Cfold
denotes CONTRAFold and RNAstruct denotes RNAstructure. g A target RNA from
the TS0evaluationdataset and its predictions fromdifferent deep learningmodels.
In (c, e), the best result for eachmetric is shown in bold. In (d, f), Box plots show the
median (center line), 25th and75thpercentiles (boundsof box),whiskers extending
to the smallest and largest values within 1.5× the interquartile range, and individual
outliers beyond the whiskers.
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were separately trained on each of the previously described dataset
splits and evaluated on a corresponding unseen RNA family. For pre-
dicting the secondary structures using CONTRAfold, we used Eterna-
Fold parameters46 trained on the EternaBench dataset, a set of more
than 20,000 RNAs.

Average F1 scores and F1 score distributions for different dataset
splits are shown in Fig 4. Fine-tuned RiNALMo demonstrates that it is
capable of inter-family generalization as it outperforms RNAs-
tructure and CONTRAfold in eight out of nine families by high mar-
gins, unlike other DL models. To the best of our knowledge, this is
the first paper to show that LMs can generalize well on inter-family
secondary structure prediction, mitigating the limitations of other
DL methods. We noted, however, that RiNALMo struggles to gen-
eralize on telomerase RNAs, but it achieves the highest F1 score on all
other families. Visualization of RiNALMo’s sequence embeddings for
all RNAs in the dataset is presented in Fig. 2b. One can notice that
telomerase RNAs are clustered together, however, there is no clear
boundary between them and SRP RNAs. We also noticed that telo-
merase RNAs are the longest in the dataset, on average around 25%
longer than the second-longest in the dataset. Please refer to Sup-
plementary Table S2 for the mean lengths and standard deviations of
the RNA families in the ArchiveII dataset. Interestingly, UFold per-
forms best on telomerase RNA, while achieving much worse results
on the other families. We are currently unable to conclude why
RiNALMo fails on telomerase RNAs, but we will take more focus on
this problem in the future. Technical details and more secondary
structure prediction results and examples can be found in the Sec-
ondary Structure Prediction section, Supplementary Note 2 and
Supplementary Fig. S3.

RiNALMo’s secondary structurepredictiongeneralization capabilities
were also compared to homology-based tools CentroidHomfold51,
locARNA52, and CentroidAlifold53. To identify RNA homologs, we used the
approach presented in ref. 54. Using the Infernal’s cmscan55 tool, we first
determine which RNA family the target RNA belongs to. Then, from the
seed alignment of the identified family, we randomly select up to 19 RNAs
that share between 65% and 95% sequence identity with the target
sequence. The identified homologs and the target RNA sequence are
forwarded to CentroidHomfold and locARNA. Besides the structure pre-
diction, locARNA also outputs alignment of given RNAs which is then
forwarded to CentroidAlifold since it requires sequence alignment as an
input. It is worth noting that locARNA and CentroidAlifold output con-
sensus structure prediction, so to obtain the structure prediction of the
target RNA, the consensus structure is mapped onto the target sequence.
To ensure a fair comparison, RNAs for which no homologs were found
have been excluded from the evaluation. 16S and 23S rRNAs were not
included in the comparison as they are split into independent folding
domains, making the identification of homologs more challenging than
for other families. Except for telomerase RNAs, RiNALMo outperformed
or showed comparable performance to other tools across all families. A
detailed comparison of RiNALMo’s performance with homology-based
methods can be found in Fig. 5.

Fine-tuning RiNALMo for classification tasks
RiNALMo can also be fine-tuned for downstream tasks that determine
important functions of the observed RNA. Splice-site prediction and
determination of the ncRNA family are two important functional tasks
that can be cast as classification tasks.

RNA splicing plays an important role in eukaryotic gene expres-
sion, involving the removal of introns frompre-mRNAs and the ligation

Fig. 4 | Inter-family secondary structure prediction. a, Average F1 scores for
secondary structure predictionon the ArchiveII evaluation datasets. The best result
for each evaluation dataset in the tables is shown in bold. b, Distribution of
F1 scores fordifferentmethodson theArchiveII evaluationdatasets (sample sizesn:
1, 283, 918, 557, 462, 454, 74, 67, 35, and 15, respectively). Box plots show the

median (center line), 25th and75thpercentiles (boundsof box),whiskers extending
to the smallest and largest values within 1.5× the interquartile range, and individual
outliers beyond the whiskers. Minimum and maximum values are 0 and 1,
respectively.
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of exons to form mature mRNAs (see Fig. 6a). Precisely pinpointing
splice sites-the donor and acceptor sites that mark the boundaries
between exons and introns, and vice versa-is essential for accurately
predicting gene structure and location.

Identifying the splice sites can be cast as a binary sequence-level
classification task. A widely used dataset of positive and negative
subsets of splice-site sequences was proposed in ref. 56. The dataset
was constructed by randomly selecting sequences from the exon/
intron regions of the G3PO+ genomic sequences57. The dataset con-
sists of error-free splice-site sequences from a diverse set of 148
eukaryotic organisms, including humans. The test dataset consists of
four different species not seen in the training dataset.

We separately fine-tuned the model, first for donor and then for
acceptor splice-site prediction. The splice-site prediction pipeline using
RiNALMo embeddings is illustrated in Fig. 6b. Finally, we compared our
model’s performancewith other RNA LMsRNA-FM21 andUni-RNA22, and
several established methods such as Spliceator56 and SpliceBERT26. We
present the results in Fig. 6c. Separate results for donor and acceptor
splice-site prediction can be found in Supplementary Tables S6 and S7,
respectively. Figure 6c reports the average value of donor and acceptor
prediction results. We fine-tuned other models and used the same
predictionhead if theywerepublicly available andeasy tofine-tune.Our
fine-tuned model outperforms other models, showing its powerful
generalization properties. Notice that RiNALMo even outperforms
SpliceBERT, an LLM pre-trained exclusively on pre-mRNA sequences.
More details on the splice-site prediction task and the model’s hyper-
parameters can be found in the Multi-Species Splice-Site Prediction
section and Supplementary Note 4.

Non-coding RNAs are RNA molecules that play vital regulatory
roles in a wide range of biological processes. Among the most abun-
dant and functionally significant ncRNAs are transfer RNAs and

ribosomal RNAs (rRNAs), both playing an important part in protein
synthesis, microRNAs which are essential in regulating gene expres-
sion, small nuclearRNAs involved in the processing and splicing of pre-
mRNA, etc.

Determining the family of ncRNA is a multiclass classification
task. We utilized RiNALMo to predict short noncoding RNA func-
tional families from Rfam58 using the sequence as an input. The
dataset and data preprocessing were adopted from ref. 59. After
data preprocessing, the dataset comprised ncRNAs shorter than 200
nucleotides arranged in 88 different Rfam families. We assessed the
classification performance of RiNALMo for the original ncRNA
sequences, for which we denoted the experiment as 0% boundary
noise, and sequences with random nucleotides, equivalent to 100%
of the sequence length, added at both ends of the original sequence.
Random parts maintained the same single-nucleotide and di-
nucleotide frequencies as the original sequence. The second
experimental setup we denoted as 200% boundary noise. This way,
we introduced the uncertainty of where the ncRNA sequence starts
and ends. Adding random nucleotides to the original ncRNA
sequences was also adopted from ref. 59.

We fine-tuned RiNALMo separately on datasets with 0% and 200%
boundary noise. The ncRNA functional family classification pipeline
using RiNALMo embeddings is illustrated in Fig. 6d. We compared
RiNALMo’s performance against other RNA LMs Uni-RNA22 and RNA-
FM21, as well as against CNN-based methods with different sequence
representation approaches proposed by ref. 59.We present the results
in Fig. 6e.Wefine-tunedRNA-FMandused the sameprediction headas
for RiNALMo.Our fine-tunedmodel outperforms other state-of-the-art
models and shows robustness against boundary noise. This further
validates the ability of RiNALMo to extract evolutionary information.
More details on the ncRNA classification task and the model’s

Fig. 5 | Inter-family secondary structure prediction for RiNALMo and
homology-based tools. a Secondary structure prediction average F1 scores for the
ArchiveII evaluation datasets. The numbers in brackets next to each RNA family
name represent the count of RNAs for which at least one homolog was identified,
followed by the total number of RNAs in that dataset. RNAs for which no homologs
were found are ignored. The best result for each evaluation dataset in the tables is

shown in bold. b Distribution of secondary structure prediction F1 scores for dif-
ferent tools on theArchiveII evaluation datasets (sample sizes n: 1278, 738, 510, 456,
442, 37, and 35, respectively). Box plots show the median (center line), 25th and
75th percentiles (bounds of box), whiskers extending to the smallest and largest
values within 1.5× the interquartile range, and individual outliers beyond the
whiskers. Minimum and maximum values are 0 and 1, respectively.
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hyperparameters can be found in the Multi-Species Splice-Site Pre-
diction section and Supplementary Note 4.

Fine-tuning RiNALMo for mRNA translation downstream tasks
Due to efficiency reasons, cells usually use groups of multiple ribo-
somes to translate the mRNA. These groups are called polyribosomes,
enabling the cell to create multiple proteins from a single mRNA. To
quantify protein synthesis activity, an MRL metric, defined as the
average number of ribosomes that translate the mRNA instructions
intopolypeptides, has been introduced. Several othermetrics describe

the translation of mRNA to polypeptides and protein production. The
mRNATE quantifies the rate of translation into proteins and themRNA
EL indicates the relative abundance of the mRNA transcript in the cell.
These quantities are predictive of the 5’ untranslated region (UTR)
of mRNAs. Figure 7a illustrates the translation of an mRNA to
polypeptides.

MRL, TE, and EL prediction tasks canbe viewed as regression tasks
where the input is the 50 UTR region of the mRNA. Commonly used
datasets of 50 UTR sequences with measured MRL values are provided
by ref. 60. Two evaluation datasets, namely Random7600 and
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Fig. 6 | RNA functional classification tasks. Splice-site prediction. a A pre-mRNA
transcript consists of non-coding, i.e., introns, and coding regions, i.e., exons.
Introns are located between two exons of a gene. As part of the RNA processing
pathway, introns are removed by cleavage at splice sites. These sites are found at 50
and 30 ends of introns, known as donor and acceptor splice sites, respectively.Most
frequently, the 50 end of introns begins with the dinucleotide GU, and the 30 end of
introns ends with AG. b An input to RiNALMo is a 400-nucleotide-long RNA
sequence from the GS_1 dataset. We utilize only the CLS embedding that then
passes through a two-layer MLP classification head. The output layer gives infor-
mation on whether a sequence contains a donor/acceptor site or not.
cClassification F1 score for splice-site prediction. Here, we report the average value

of donor and acceptor prediction results. ncRNA family classification. d Given an
RNAsequence the goal is to classify its ncRNA family. Theprocedure is again similar
to the procedure in (b): Original and noisy RNA sequences from the Rfam dataset
are input to RiNALMo.We utilize only the CLS embedding that then passes through
a two-layer MLP classification head. The output layer determines which of the 88
Rfam families the input ncRNA belongs to. e ncRNA family classification accuracy
for noiseless and noisy input sequences and the average accuracy. In (c and e), FT
denotes whether we fine-tuned the model or represented direct citations from the
original papers with the same split train/test datasets. The best result for each
evaluation dataset is shown in bold.
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Human7600, were created by sampling the original dataset containing
human and random UTR sequences. For the TE and EL prediction
downstream tasks, we followed the work reported by ref. 30. Three
endogenous human 50 UTR datasets analyzed by ref. 61 were used.
Each dataset originated from a distinct cell line or tissue type: human
muscle tissue (Muscle), human prostate cancer cell (PC3), and human
embryonic kidney 293T (HEK). Each sequence of these three datasets
provides measurements of translation efficiency and expression level.

We separately fine-tuned RiNALMo to predict the MRL values, TE,
and EL for the 50UTR sequences fromdatasets. The prediction pipeline
is illustrated in Fig. 7b. RiNALMooutputs are fed into a prediction head
consisting of six ResNet62 blocks. The mean squared error was used as
the loss function for MRL prediction. In TE and EL downstream tasks,
we used the Huber loss function.

For the MRL downstream task, the model’s performance was
compared to other RNA LMs Uni-RNA22 and RNA-FM21. We also com-
pared our model to the popular Optimus 5-prime model60 specialized
for MRL prediction. R2 was used as the evaluation metric, and the
results are reported in Fig. 7c. Fine-tuned RiNALMo outperforms other
models. Notice that RiNALMo can generalize on human UTRs despite
being fine-tuned only on sequences of randomorigin, again proving its
generalization capability.Moredetails onMRLprediction canbe found

in the Multi-Species Splice-Site Prediction section and Supplemen-
tary Note 4.

For the TE and EL prediction, RiNALMo’s performance was com-
pared to other LMs UTR-LM30 and RNA-FM21. Uni-RNA22 was not eval-
uated on the TE and EL prediction downstream tasks. We also
compared RiNALMo to a random forest method proposed in ref. 61
and again to the popular Optimus 5-prime model60. The Spearman
correlation coefficient was used as the evaluationmetric. In Fig. 7d and
Fig. 7e, we report the average Spearman correlation coefficient across
ten folds for TE and EL tasks, respectively. From the tables, it can be
seen that the fine-tunedRiNALMooutperformsothermodels on all the
evaluation datasets.Moredetails on TE and EL prediction canbe found
in the Translation Efficiency and Expression Level Prediction section
and Supplementary Note 4.

Fine-tuning the model for mRNA translation-related downstream
tasks and the achieved state-of-the-art results demonstrate good
generalization capabilities of RiNALMo to other types of RNAs.
Namely, RiNALMo was pre-trained on ncRNAs without seeing a single
mRNA or its UTR parts. Despite this, it outperforms other general-
purpose RNA languagemodels andUTR-LMwhichwas specifically pre-
trained on 5’ UTR sequences and designed for mRNA translation-
related tasks.
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Discussion
We pre-trained our RNA language model on a vast amount of ncRNA
sequences fromseveral databases, includingRNAcentral, Rfam,nt, and
Ensembl. The data was carefully curated to ensure sequence diversity
in each training batch, which subsequently led to better generalization
capabilities of the pre-trained language model. We used t-SNE on the
classification token embeddings to show that RiNALMo’s output
representations contain informationabout theRNA family and that the
RNAswith similar structures are close in themodel’s embedding space.
A more insightful way of assessing the embeddings’ expressiveness
and whether the model captures hidden structure information is to
assess it on downstream tasks.

First, we fine-tuned and tested RiNALMo on two secondary
structure prediction tasks. The first task was an intra-family secondary
structure prediction, where RNAs from the same family came in both
the training and test datasets. The results showed that fine-tuned
RiNALMo’s output representation embeds important structure infor-
mation about the input sequence and, when utilized with a proper
prediction head, leads to state-of-the-art performance. The second
task was an inter-family secondary structure prediction, where an RNA
family from the test dataset was not seen in the training dataset. It was
shown previously that deep learning methods do not generalize well
across RNA families47. However, RiNALMo outperformed both
thermodynamics-based and deep learning methods and showed that
RNA languagemodels can generalizewell on unseenRNA families. This
demonstrates the outstanding generalization capability of RiNALMo
for secondary structure prediction tasks.

Furthermore, we fine-tuned RiNALMo on five function-related
RNA downstream tasks. Four of these tasks were related to the pre-
mRNA or the untranslated region of the mRNA whose examples were
not contained in thepre-trainingdataset. The “Results” section showed
that RiNALMo again generalizes well and can capture important
functional information from RNA sequences from previously unseen
RNA types. RiNALMo outperforms other general-purpose RNA lan-
guage models and language models trained on RNA types specific for
those downstream tasks, such as SpliceBERT26 and UTR-LM30.

In future work, we will explore the augmentation of the pre-
training dataset by adding coding RNAs and evaluate how it
affects the model performance on the structural and functional
downstream tasks. Having bigger data might require a larger RNA
LM which we also have in consideration. Multimodal pre-training,
including sequence and chemical mapping data, is another
direction for improving the representations for structure-related
downstream tasks, which we will explore in the future. Finally, we
plan to employ RiNALMo in several other structure-related tasks.
Of particular interest would be testing RiNALMo on tertiary
structure prediction tasks and seeing whether its expressive
output embeddings and generalization capability can improve the
performance of existing or new prediction tools. Another inter-
esting application would be employing RiNALMo’s embeddings
for sequence conditioning for RNA design63,64.

To conclude, we presented RiNALMo, a new largest-to-date
general-purpose RNA LM pre-trained on a dataset of 36M ncRNA
sequences using MLM. We showed that by pre-training on a carefully
curated RNA dataset and using the most modern Transformer tech-
niques, an LM can capture hidden knowledge and important struc-
tural information from unlabeled RNA sequences. The results on
downstream tasks proved the generalization capability of RiNALMo
and the expressiveness of its output representations. Of particular
importance are the results of the inter-family secondary structure
prediction task, where we showed that RiNALMo can generalize well
on RNA families unseen during fine-tuning, unlike other DLmethods.
Due to the significance of the results, we believe RiNALMo presents a
valuable asset for advancing our understanding of RNA structures
and functions.

Methods
RNA language model
RiNALMo is an encoder-only Transformer. An input RNA sequence is
tokenized, turned into a 1280-dimensional vector using a learned
input embedding model and passed to the Transformer. RiNALMo
consists of 33 Transformer blocks, and each block comprises a multi-
head attention and a feed-forward network (FFN). The position of the
tokens is encoded using the RoPE31, which effectively encapsulates
both the relative and the absolute positional information. Eachmulti-
head attention has 20 attention heads. Multi-head attention is illu-
strated in Supplementary Fig. S1. To improve the pre-training effi-
ciency of such a large model, we employed the IO-aware
FlashAttention-233, a fast andmemory-efficient exact attention. In the
FFN, we use two linear layers and the SwiGLU activation function32

which combines the advantages of the Swish activation function and
the gated linear unit (GLU). The FFN layers have hidden size
dff = 3413, scaling the model to 650M parameters. The Transformer
modules are interconnected using residual connections. We use the
layer normalization put inside the residual blocks to stabilize the
training and have well-behaved gradients at initialization65. We did an
ablation study for RoPE and the SwiGLU activation function which
showed the effectiveness of these techniques on the downstream
tasks compared to the conventional absolute positional encoding
and GELU activation function used in RNA-FM. The ablation study
results are provided in Supplementary Tables S14 and S15.

Tokenization
In this work, each nucleotide is a single token. During tokenization, we
replace all “U"s in the sequences with “T"s. This leads to a vocabulary
involving standard IUPAC nucleotide codes ("A", “C", “T", “G", “R", “Y",
“K", “M", “S", “W", “B", “D", “H", “V", “N", and “-") and a special token for
inosine ("I"). We use additional tokens commonly used in MLM, such as
[CLS], [EOS], [PAD], and [MASK]. During masking, we change
nucleotides with the [MASK] token or replace it with one of the four
main types of nucleotides from the vocabulary or the “any nucleotide"
("N") token. Tokens [CLS] and [EOS] are added at the beginning and
end of the sequence. The[PAD] token is appended at the end of shorter
sequences to have all the sequences in a batch of the same length.

Data preprocessing
For pre-training dataset preprocessing, we implemented a multi-step
preparation pipeline. First, we collected noncoding RNA sequences
from publicly available datasets RNAcentral, nt, Rfam and Ensembl.
We removed sequences shorter than 16 and longer than 8192. Fur-
thermore, we also removed sequence duplicates with seqkit rmdup
and the resulting unique sequences were clustered with mmseqs
easy-linclustwith options --min-seq-id 0.7 and -c 0.8. Finally, we saved
the processed dataset into LMDB (Lightning Memory Mapped Data-
base) so we could easily and quickly access any data sample during
the pre-training. In the end, the dataset consisted of 36M unique
ncRNA sequences clustered into 17M clusters. In comparison, ref. 21
collected ncRNAs from the RNAcentral database only. As a pre-
processing step, the authors removed only duplicate RNA sequences.
We clustered the RNA sequences to ensure sequence diversity in
each training batch since we later sample from each cluster once
per epoch.

Pre-training
We pre-trained RiNALMo using the MLM task where we corrupted
unlabeled RNA sequences and then tasked the model to reconstruct
them. To corrupt the input sequence, we randomly selected 15% of the
tokens in the training sequence. Of these, 80% are masked, i.e.,
replaced with the unique vocabulary token [MASK], 10% are replaced
with a randomly selected token from the vocabulary, and the
remaining 10% are left intact.
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Let us denote the corrupted sequence by ~X = f~xig. We train
RiNALMo parameterized by θ to reconstruct X by predicting the
masked tokens conditioned on ~X . For a given input token ~xi, the loss is
the probability of the correct nucleotide, given ~X :

LMLM = � logpθð~xi = xij~XÞ: ð1Þ

The weight updates are based on the average loss over the sampled
tokens from a single training sequence (or a batch of sequences):

LMLM = � 1
jMj

X

i2M
logpθð~xi = xij~XÞ, ð2Þ

whereM is the index set of masked tokens.
Due to the computational limitations, during training, we limited

the length of the input into the language model to 1024 tokens. Every
sequence begins with a [CLS] token, i.e., a classification token, and
ends with an [EOS] token, i.e., an end-of-sequence token. If an input
sequence is longer than 1022 nucleotides, a random part of the
sequence will be cropped out and fed into the model during each
epoch, similar to what was done in ref. 13. To implicitly give informa-
tion to the model that the sequence was cropped, it does not begin
with the [CLS] token nor ends with the [EOS] token unless we crop
the beginning or end of the sequence.

To ensure sequence diversity in each training batch during pre-
training, we randomly sampled each sequence in the batch from a
different sequence cluster. Effectively, it means that in every epoch
RiNALMo saw 17M samples, i.e., one sequence from each of the clus-
ters, and in each epoch, sequences were sampled randomly from the
clusters using a new seed.

Wepre-trainedRiNALMowith sevenA100GPUs of 80GBmemory
for 2 weeks. The batch size was set to 192 per GPU. We adopted the
cosine annealing learning rate schedule with a linear warm-up. During
the warm-up period, learning rate increases from 10−7 to 5 × 10−5 for
2000 steps. For the cosine annealing schedule, the minimum learning
rate was set to 10−5. The gradient norm was clipped to 1.0.

We pre-trained several configurations of the LM: RiNALMo-650M
with 650M parameters, RiNALMo-150M with 148M parameters, and
RiNALMo-33M with 33.5M parameters. We did several experiments to
evaluate how the model’s size influences its performance on the pre-
training and downstream tasks. First, we measured perplexity. Per-
plexity is ametric used to evaluate howwell an LMpredicts a sampleof
text or, in our case, an RNA sequence. The perplexity is defined as the
exponential of the negative log-likelihood of the sequence. To effi-
ciently calculate the perplexity, we used the following term

PERPLEXITYðxÞ= expf� logpθð~xi2M = xij~XÞg: ð3Þ

Lower perplexity means the LM is better at reconstructing the masked
tokens in the MLM pre-training task.

In order to evaluate how the number of parameters affects the
model’s ability to reconstruct the masked tokens, we calculated the
perplexity of RiNALMo for several different model sizes. Validation
perplexity was measured on a 1% random-split holdout of the pre-
training dataset. The perplexity values are given in Supplementary
Fig. S2. It can be seen that as we increase themodel size, the perplexity
decreases, meaning the larger the LM gets, the more capable it is of
reconstructing the missing tokens.

The hyperparameters of RiNALMo models of different sizes are
given in Supplementary Table S1, and the comparison of their per-
formance on the downstream tasks are given in Supplementary
Tables S8, S9, S10, S11, S12, and S13. Based on these results, we can
conclude that besides novel techniques such as RoPE and SwiGLU,
model size is important in achieving a boost in performance on pre-
training and consequently downstream tasks.

Secondary structure prediction
To adapt RiNALMo for the secondary structure prediction, we fine-
tuned the model with a simple binary classification task with binary
cross-entropy loss, where we tasked the model to classify each
nucleotide pair as either paired or unpaired. A simple prediction head
was attached to the language model and was fed with nucleotide pair
representations. The prediction head was a bottleneck residual neural
network (ResNet) with two convolutional blocks. These representa-
tions are obtained by applying outer concatenation to RiNALMo’s
output. For example, to obtain the vector representation of the
nucleotide pair (i, j), we simply concatenate the representation of the
nucleotide j to the representation of the nucleotide i.

In the end, our secondary structure prediction pipeline outputs a
matrix where each element represents a pairing probability logit for a
certain nucleotide pair. Because of the symmetry of secondary struc-
tures (if nucleotide i is pairedwith nucleotide j, then j is pairedwith i as
well), we calculate training loss only on matrix elements “above" the
main diagonal.

During fine-tuning, we utilized gradual parameter unfreezing.
After every three epochs, we unfroze an additional three RiNALMo’s
layers. In the first three epochs, we trained only the prediction head.
The model was fine-tuned for 15 epochs and the learning rate was
initially set to 10−4 with a linear decay schedule. We used the same
prediction head architecture for RNA-FM fine-tuning. Due to archi-
tectural differences between RiNALMo and RNA-FM, we decided to
modify the fine-tuning schedule. The prediction head was first pre-
trainedwhileRNA-FMparameterswere kept frozen. After three epochs
we unfroze RNA-FM and fine-tuned it alongside the prediction head.

To convert base pairing probabilities to a proper secondary
structure, we implemented a simple greedy approach where we
iteratively set nucleotide pairs with the highest pairing probability as
paired and then excluded all possible clashing pairs (pairs where the
same nucleotide is paired with multiple other nucleotides) from being
set as paired in future iterations of the algorithm. During this proce-
dure, we ignore non-canonical nucleotide pairings and pairings that
would cause a “sharp” hairpin loop (i-th nucleotide cannot be paired
with the j-th nucleotide if ∣i − j∣ < 4). The classification threshold was
tuned on the validation set to ensure a balanced pairing ratio.

When assessing the performance of secondary structure predic-
tion, it is important to consider RNA structural dynamics, and that’s
why it is helpful to view predictions that are close enough as correct.
Same as the other methods we compared RiNALMo to, we employed
the metric calculation approach proposed in ref. 50. To be more pre-
cise, for a nucleotide pairing (i, j) where i and j represent nucleotide
indices in the RNA sequence, (i ± 1, j) and (i, j ± 1) pairings are also
considered correct predictions. To obtain the F1 scores we reported in
this study, we calculated the F1 score separately on each structure and
then averaged those values. Again, for the sake of fairness, notice that
we have reported F1 scores for all other methods and tools using the
exact same calculation.

In the RNA community, it is also customary to use the interaction
network fidelity (INF) measure66, which is tailored for evaluating RNA
base pairs. The INF measure provides a more balanced assessment of
the predictive algorithm’s performance than the F1 score across both
positive and negative classes. Therefore, and for the completeness of
our study, we computed INF scores for the secondary structure pre-
diction evaluation datasets, which are provided in Supplementary
Tables S3, S4, and S5. Regarding the INF measure, RiNALMo still out-
performs other methods we used for the comparison.

In Supplementary Table S2, we report sequence-length weighted
F1 scores on the inter-family secondary structure prediction task. We
also provide the performance of smaller LMs, the ablation study and
the impact of fine-tuning in Supplementary Note 4.

Secondary structure visualizations shown in the figures were
generated using forna67 and RNAstructures’s draw34.
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Multi-species splice-site prediction
Splice-site prediction task is essentially a binary sequence-level clas-
sification task, where a method has to detect whether a query RNA
sequence contains a donor/acceptor site or not. We fine-tuned
RiNALMo on the training dataset to predict splice sites in the
sequences. The classification token (CLS) was used as input to
the classification head. This head is configured as a two-layer
multilayer perceptron (MLP) featuring a hidden layer with 128 neu-
rons and employing the GELU activation function. Cross-entropy loss
served as our choice for the loss function.We separately fine-tuned the
model, first for the donor and then for the acceptor splice-site
prediction task.

We used the dataset denoted as GS_1 in the paper, which was
proposed in ref. 56. GS_1 has the same ratio of positive to negative
samples, whose negative samples consist of exon, intron, or false-
positive sequences. The length of the input sequences was set to 400
nucleotides for both the training and test datasets. The trainingdataset
for the acceptor splice-site prediction consists of 22,178 samples and
the training dataset for the donor splice-site prediction comprises
21,973 samples. Each test dataset for both donor and acceptor splice-
site prediction consists of 20,000 samples.

The prediction head was uniformly initialized from
Uð�

ffiffiffiffiffiffiffiffi
1=d

p
,

ffiffiffiffiffiffiffiffi
1=d

p
Þ, where d is the input feature dimension. The

learning rate was set to 10−5 and the language model with the pre-
diction head was fine-tuned for two epochs when it achieved the best
results on the validation dataset. The batch size was set to 32.

We fine-tuned the SpliceBERT model and the RNA-FM model in
combination with a two-layer MLP prediction head. We fine-tuned the
models on the same training/validation dataset used for fine-tuning
RiNALMo with the same learning rate.

The performance of smaller LMs and the impact of fine-tuning for
the splice-site prediction task can be found in Supplementary
Table S10.

ncRNA family classification
The ncRNA functional family classification downstream task is a
sequence-level multiclass classification task. We separately fine-tuned
RiNALMo on the two training datasets. The CLS was used as input to
the classification head. The head was configured as a two-layer MLP
featuring a hidden layer with 256 neurons and employing the GELU
activation function. Cross-entropy loss served as our choice for the
loss function.

The noiseless and noisy datasets were constructed following the
preprocessing reported by ref. 59. Starting from the original Rfam
dataset58, the procedure excludes classes annotated as long ncRNAs and
with an average sequence length greater than 200 nucleotides. This
leads to a dataset with 371,619 sequences among 177 Rfam families.
Furthermore, the procedure removes families whose clustering was
highly correlated with sequence length and families with less than 400
RNA sequences to ensure data quality. This dataset consisted of
306,016 sequences distributed among 88 different Rfam classes. Each
Rfam family was randomly split into three subsets: training (84%), vali-
dation (8%), and test (8%). The procedure ensured that all sequences in
the validation and test sets have a similarity, in terms of normalized
Hamming distance, less than 0.5 with any other sequence in the training
set. This is to limit the potential bias arising from an over-representation
of highly similar homologous sequences in random splits. Finally, the
training and validation sets were sampled with replacements to address
the imbalanced class distribution. The final dataset contained 105,864
training, 17,324 validation and 25,342 test sequences.

The classification head was uniformly initialized from
Uð�

ffiffiffiffiffiffiffiffi
1=d

p
,

ffiffiffiffiffiffiffiffi
1=d

p
Þ, where d is the input features dimension. We trained

themodel using anAdamWoptimizer with a weight decay of 0.01. The
learning rate was set to 8 × 10−6 and the language model with the
classification headwasfine-tuned for 25 epochs. The batch size was set

to 128. The final model weights were chosen based on the best accu-
racy achieved on the validation set.

We fine-tuned RNA-FM in combination with a two-layer MLP
prediction head. The best classification performance it achieved was
with 128 neurons in the hidden layer and 10−5 learning rate. We fine-
tuned themodels on the same training/validationdataset used forfine-
tuning RiNALMo.

In Supplementary Table S11, we provide the results of smaller LMs
and the impact of fine-tuning on the ncRNA family classification task.

Mean ribosome loading prediction
We fine-tuned RiNALMo on the appropriate training dataset to
predict the MRL value for the given 50 UTR sequence. Language
model outputs are fed into a prediction head which consists of six
ResNet convolutional blocks. The mean squared error was used as
the loss function. RNA-FM was fine-tuned with the same prediction
head as RiNALMo.

Each block of the prediction head consists of two 1D convolution
layers followed by instance normalization and ELU activation function.
Parameters of the prediction head were initialized with the default
Pytorch68 parameter initialization method.

Training and evaluation datasets were produced with the proce-
dure described in ref. 60. Two evaluation datasets were created by
sampling the original dataset which contains 83,919 human and random
UTR sequences of varying lengths. To ensure that each sequence length
is represented equally in the dataset, 100 sequences with the deepest
readcoveragewere selected for every length from25 to 100nucleotides.
The same approach has been applied to both the human and random 50
UTR sequences, yielding two evaluation datasets of size 7600 called
Random7600 and Human7600. All remaining random 50 UTRs with
acceptable read coverage depth were used as the training dataset.

All MRL targets were standardized with the mean and standard
deviation of training MRL values.

The model was fine-tuned for 50 epochs. In the first 5 epochs of
the training, only the prediction head was trained. The learning rate
was set to 10−4 and linearly decayed to 10−5 over the first 5000 training
steps after which it remained constant. The batch size was set to 64.
RNA-FM was fine-tuned with the same training procedure.

The performance of smaller LMs and the impact of fine-tuning for
the MRL prediction task can be found in Supplementary Table S12.

Translation efficiency and expression level prediction
Fine-tuning and prediction of mRNA TE and EL from 5′ UTR sequences
followed the procedure for the MRL prediction downstream task.
Languagemodel outputs are fed into a prediction headwhich consists
of six ResNet convolutional blocks. TheHuber loss was used as the loss
function. The architecture and the initialization of the prediction head
were the same as for the MRL prediction task. RNA-FM was fine-tuned
with the same prediction head as RiNALMo.

Evaluation data were the same as reported in the UTR-LM paper30.
The data consisted of three datasets, namely human muscle tissue,
human prostate cancer cell line PC3, and human embryonic kidney
293T cell line. The Muscle, PC3, and HEK datasets contained 1257,
12,579, and 14,410 5′ UTR sequences, respectively. Following ref. 30
and to achieve a fair comparison, only a fixed 5′ UTR length of 100
nucleotideswas chosen for training. These 100nucleotides are located
upstream of the coding region in the mRNA. Following ref. 30, for
training and testing we used tenfold cross-validation for each cell line
for both TE and EL prediction tasks.

In the datasets, mRNA expression level was determined using
RNA-seq reads per kilobase of transcript per million mapped reads
(RPKM), and translation efficiency for each transcript was calculated
by dividing the Ribo-seq RPKM by the RNA-seq RPKM. The transla-
tion efficiency and expression level labels are in the natural
logarithm space.
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The model was fine-tuned for 30 epochs. In the first 5 epochs of
the training, only the prediction head was trained. The learning rate
was set to 8 × 10−5 and linearly decayed to 8 × 10−6 over the first 3000
training steps after which it remained constant. The batch size for the
Muscle dataset was set to 8, and for the PC3 and HEK datasets to 32.
RNA-FM was fine-tuned with the same training procedure.

In Supplementary Table S13, we provide the results of smaller LMs
and the impact of fine-tuning on the TE and EL prediction task.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used several databases with unannotated RNA sequences, namely
RNAcentral24, nt69, Rfam45 and Ensembl70. The RNAcentral dataset is
available at https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/
22.0/sequences/. The nt dataset is available at https://ftp.ncbi.nlm.nih.
gov/blast/db/FASTA/. The Rfam 14.9 dataset is available at https://ftp.
ebi.ac.uk/pub/databases/Rfam/14.9/fasta-files/Rfam.fa.gz. Finally, the
Ensembl dataset is available at https://ftp.ensembl.org/pub/release-
109/fasta/and https://ftp.ensemblgenomes.ebi.ac.uk/pub/bacteria/
release-56/.The intra-family RNA secondary structure dataset with
train/test splits is available at https://dl.dropboxusercontent.com/s/
w3kc4iro8ztbf3m/bpRNA_dataset.zip. Structurally dissimilar datasets
TrainSetA and TestSetB are available at https://github.com/mxfold/
mxfold2/releases/download/v0.1.1/Rivas.tar.gz. The inter-family sec-
ondary structure dataset consists of nine families and train/test splits
are available at https://github.com/marcellszi/dl-rna/releases/
download/Data/ct-splits.tar.gz. For the multi-species splice-site
downstream task, we used the dataset denoted as GS_1 in ref. 56. The
dataset is available at https://git.unistra.fr/nscalzitti/spliceator and
https://zenodo.org/records/7995778. The dataset59 used in the ncRNA
family classification task can be found at https://github.com/
bioinformatics-sannio/ncrna-deep/tree/master/datasets/Rfam-novel.
The mean ribosome loading dataset60 used in the paper can be found
at https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE114002&
format=file. The mRNA translation efficiency and expression level
datasets reported in ref. 61 and used in ref. 30 as well as in this paper
are available at https://drive.google.com/drive/folders/190oihtrw
CxWjtDCK9kJzyhXPKxbr5xoR and https://codeocean.com/capsule/
4214075/tree/v1.

Code availability
The code repository71 is available on https://github.com/lbcb-sci/
RiNALMo and the pre-trained and fine-tuned weights are available on
https://zenodo.org/records/15043668. The weights can be auto-
matically downloaded using the script provided in the repository. We
provide scripts for fine-tuning the pre-trained model on the down-
stream tasks from the “Results” section. The data used in the down-
stream tasks can be automatically downloaded and preprocessed
using the scripts in the code repository.
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