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Quantifying local stability and noise levels
from time series in the US Western
Interconnection blackout on 10th
August 1996

Martin Heßler 1,2 & Oliver Kamps1

Critical transitions necessitate anticipation to prevent adverse outcomes.
While many studies focus on bifurcation-induced tipping, noise-induced tip-
ping is also possible. We propose to use the open-source (non-Markovian)
Bayesian Langevin estimation to quantify deterministic and stochastic
dynamics simultaneously. By analysing bus voltage frequency time series from
theWestern Interconnection blackout on 10thAugust 1996, complemented by
conceptual network models of its key events, we reveal the interplay of
changing local restoring rates and noise levels. Furthermore, a comparison of
these findings to the blackout’s timeline supports our frequency Langevin
model driven by correlated noise. A state change is indicated two minutes
before the official triggering event, potentially by establishing a tree-to-line
fault. This study highlights the importance of distinguishing destabilising
factors for anticipating critical transitions and provides a tool for under-
standing such events across various disciplines.

Complex systems like Earth’s global climate, ecosystems, the human
brain, or infrastructure, such as power grids and communication sys-
tems, are composed of a large number of interacting parts operating
on various scales in space and time.

Often, the observation of such a system gives only partial infor-
mation about the involved processes and it is not simply possible to
identify the reason leading to a certain behaviour. In this context, very
prominent phenomena are sudden transitions, so-called tipping
events, where the system undergoes a fast transition into a different
state. There are numerous pathways to tipping events that can differ
strongly in the keymechanisms. This fact significantly complicates the
anticipation of suchcritical transitions, which is desired in awide range
of research fields and everyday life to mitigate or prevent damage and
in order to control complex systems1–10. To achieve these goals,
research is done to develop stability measures or leading indicators
based on time series data that are applicable in the absence of detailed
knowledge about the underlying laws of the system dynamics11–16.

Common leading indicators rely on critical slowing down (CSD) or
flickering, which are mentioned as general phenomena in connection
with bifurcation-induced tipping (B-tipping)17,18. Briefly summarised,
CSD denotes the phenomenon of decreasing local restoring rates—i.e.
an increasing relaxation time—prior to a bifurcation which can lead to
higher lag-1 autocorrelation (AR1) ρ̂1 and standarddeviation (STD) ~σ of
a time series (cf. Supplementary Information (SI) S1 and S2 for more
details). Ongoing jumps between two branches in a bistable regime are
called flickering and can cause an increasing skewness of the data
distribution. However, since common leading indicators rely on CSD
and flickering, they are inherently limited to the generic B-tipping
scenario, which is only one of many pathways to destabilisation.

In addition to B-tipping, rapid variation of the control parameter
without crossing a B-tipping threshold can also lead to rate-dependent
tipping (R-tipping) when the phase space is altered on a time scale
much faster than that needed by the system to relax onto themodified
stable branch. Furthermore, the overall noise level must be sufficiently
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low to avoid noise-induced tipping (N-tipping) to alternative stable
states. Notably, N-tipping can occur for parameter configurations far
from a critical B-tipping threshold. Such N-tipping is intrinsically hard
to predict, but it is a crucial factor in driving tipping events across
many natural and technical systems, e.g. power grids19–21.

In the framework of graph theory and networks22,23, power grids
can bemodelled by coupled nonlinear oscillators, such as provided by
the Kuramoto model24–30. Their operating regimes are threatened by
the risk of desynchronisation, which leads to power outages. Such
outages can occasionally have severe consequences for industry and
private consumers. Fortunately, unlike in many other sciences, e.g.
ecology31, highly resolved data of characteristic observables, such as
bus voltage frequency ω time series, are readily available today.

Previous studies focused on destabilisation due to B-tipping20,21.
However, power grids are continuously exposed to intrinsic variable
noise, e.g. from renewable energy sources such as wind power or solar
stations (cf. Supplementary Box S1a)32,33. Furthermore, the currently
pressing trend towards an environmentally sustainable grid archi-
tecture is likely to significantly increase the number of noisy grid
participants in the future34,35. Under these circumstances, N-tipping, or
at least the influence of internal noise, can play an essential role in
destabilising power grids36.

It would be worthwhile to have the opportunity to monitor
changes in both the local restoring rates and noise levels simulta-
neously at a specified time resolution to effectively control the system,
gain a better understanding of the frequency dynamics before power
outage events, and, in rare cases, potentially avoid power outages.

In principle, the Bayesian Langevin estimation (BLE)37,38 is able to
do so. Specifically, it assumes a frequency ω Langevinmodel39 (cf. also
Supplementary Box S1a for details regarding its connection to the
high-dimensional power grid state x)

_ωðωðtÞ, tÞ=hðωðtÞ, tÞ+ gðωðtÞ, tÞ � ΓðtÞ, ð1Þ

with the drift h(ω(t), t), the diffusion g(ω(t), t), and stochasticity Γ(t).
The BLE provides access to robust estimates of local restoring rates
through the drift term, and to noise level estimates via the diffusion
term for a given time scale resolution. Decreasing restoring rates
directly relate toCSDprior toB-tipping.Monitoringof increasingnoise
levels can be beneficial when a system is suspected to exhibit multiple
stable states. Here is a sketch of the method: We parameterise a one-
dimensional stationary drift function h(x) as a third-order polynomial
with a constant diffusion g(x) = const. ≡ σ. The probability density
functions (PDFs) of the parameters are obtained by Markov Chain
Monte Carlo (MCMC) sampling, which enables a statistically sound
definition of credibility bands (CBs). Throughout this article, we use
16% to 84% and 1% to 99% percentile CBs for the measures of interest,
i.e. the drift slope ζ = dhðxÞ

dx ∣x = x*, representing local restoring rates, and
the noise level σ. The drift slope ζ < 0 quantifies the local restoring rate
of the given observable. It approaches zero when a B-tipping event
occurs. The noise level σ accounts for stochastic contributions in the
observed data, which may trigger N-tipping in bistable systems.
Furthermore, we take advantage from the expanded non-Markovian
BLE (NBLE) procedure. This expansion is two-dimensional: In addition
to the measured data, it assumes these observations to be driven by a
hidden Ornstein-Uhlenbeck (OU)39 process. Under these circum-
stances, the observed process is described by non-Markovian
dynamics. The hidden process can represent fast-scale red noise, but
also the slow dynamics of an unobserved driving process. We denote
the drift slopes derived this way by ζNBLE and the noise level by Ψ. See
Methods and Box 1 for more details on the mathematical background.

For power grid analysis, the (N)BLE approach is well justified by
the macroscopic aggregated swing equation (ASE; Eq. S.4 in the
SI)36,40–42 for stable grid conditions and less coarse-grained model
simulations (cf. SI S3). Under certain constraints, the mesoscopic

frequency dynamics of an N-node power grid, described by the less
coarse-grained classical swing equation (CSE; Eq. S.5 in the SI) can be
summarised by the coarse-grained ASE as the center-of-inertia fre-
quencywith dynamics that follow anOUprocess39, i.e. a Langevin-type
equation. Nevertheless, the ASE is a model approximation, and real-
world bus voltage frequency data can exhibit nonlinear drift
behaviour43. This is also the case for the analysed time series in this
article (cf. SI S4). Therefore, by using the (N)BLE, a heuristic nonlinear
drift is assumed in the ASE.

The total balance between power generation and consumption is
critical for maintaining the stable synchrony of bus voltage frequency,
typically 60 Hz (e.g. USA, Japan) or 50Hz (e.g. Europe, also Japan).
Variations in the electric energy generation and consumption of grid
components (some of which are shown as an example in Supplemen-
tary Box S1a) thus affect the frequency dynamics. This is why the bus
voltage frequencyω is amacroscopic key observable for assessing grid
stability in control rooms.

Power outages as well as control mechanisms live on time scales
of seconds up to severalminutes (cf. SI S5). For these reasons,we focus
on the sub-second to minute resolution. Since our theoretical con-
siderations (cf. also SI S6 for B- andN-tipping, and S7 for R-tipping) are
largely supported by the NBLE analysis of frequency data from the
North America Western Interconnection (NAWI) cascading failure on
10th August 1996, the timeline of this historic event is briefly sum-
marised in Fig. 1a. A more detailed description is left for SI S8. Please
note that all times in this article are given in the local Pacific Daylight
Time (PDT).

Not least, we emphasise that the (N)BLE incorporates correlated
fast-scale contributions, which are typically relevant in time
series applications, in a straightforward way—a feature that standard
leading indicators lack. Additionally, the (N)BLE outperforms existing
indicators, such as AR1, STD, direct drift-diffusion estimation38,44,45,
and the linear approximation through OU estimation (OUE)46.
The (N)BLE is significantly more stable and precise, as demonstrated
for synthetic and real-world datasets (cf. SI S1, S2, and S9). Moreover,
the (N)BLE is generally applicable across various research fields,
including palaeoclimatology10, climate science47, theoretical ecology38,
population dynamics of living bacteria1, power grids, and more
(cf. SI S10).

In this work, we first demonstrate the (N)BLE’s performance by
applying it to four synthetic time series from different systems. We
then investigate two bus voltage frequency time series which cover
periods before and after the power outage of the NAWI on 10th August
1996, with the NBLE to gain insights into the complex interplay of the
power grid’s stability and varying noise influence. As suspected, aside
from possible B-tipping, the noise level plays an important role for the
emerging power outage. A previous study by Ehebrecht48 supports our
findings on the pre-outage time series by a related approach44,45. In
contrast to this study, we additionally contextualise our findings
regarding the pre-outage and post-outage time series in close com-
parison to the real timeline of events and quantify uncertainties in the
estimates. This leads to substantially deeper insights into the impact of
certain events during the outage cascade and their modelling finger-
prints. Furthermore, it largely confirms the hypothetical considera-
tions in Supplementary Boxes S1 and S2. Moreover, we provide
evidence for several mistakes in the derived time scale of the second
post-outage time series used in previous studies20,48–50, which is most
likely explainable due to sparse literature sources of low print quality
(cf. SI S11–S13 formore details). The subsequentmisinterpretation due
to incorrect time scaling and direction erroneously implies that cas-
cading failures might be typically preceded by smoothly changing
warningmetrics based on the theory of CSD and B-tipping. This might
be surprising, considering that grid components can fail rather
abruptly. Although our analysis supports basic theoretical considera-
tions of refs. 20,48–50, it reveals a significantlymore complex picture:
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BOX 1 (NON-MARKOVIAN)

Bayesian Langevin estimation

1 Initialise: Load time series x(t). Choosewindow sizeNw andwindow shiftNsh. Define drift h(x)(x) = hMC(x), diffusion g(x)(x) = const. = θ4, noise type
Γ(t) (BLE) or y(t) (NBLE), percentiles qa, qb (in percent) for credibility bands (cf. second illustration below, right part), along with prior types and
ranges, all according to the “Estimation schemes” section. For simplicity, the following notation assumes the BLEwith drift slope ζ andnoise level
σ; for the NBLE, replace ζ and σ with ζNBLE and Ψ, respectively.

2 Perform estimation per window:
2.1 Draw parameter sets θ̂ from the joint posterior distribution pðθjx,IÞ via Markov Chain Monte Carlo sampling based on the current
window’s data x and background information I.
2.2 Transform the sampled parameter sets θ̂ into drift slopes ζ̂ and noise levels σ̂.
2.3 Approximate the marginalised posterior distributions pðζ jx,IÞ and pðσjx,IÞ by summing the density kernels of the corresponding
samples (cf. illustration below).
2.4 Read out and store maximum posterior estimates and predefined percentiles for credible intervals (cf. illustration below).

3 Shift window and repeat: Shift to the next rolling data window and repeat Step 2 until all windows are processed.

4 Collect output: Time evolution of drift slopes ζ̂ ðtÞ and noise levels σ̂ðtÞ including CBs.
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The dynamics change rather abruptly related to real-world grid mod-
ifications, which can contribute in a stochastic and/or deterministic
manner. Our results capture these state changes and account for the
different contributing scales from stochastic to deterministic influ-
ence. Finally, a brief discussion of the results is given and com-
plemented by suggestions for future research.

Results
In “Studies on synthetic data”, the (N)BLE is applied to four synthetic
test cases, before the method is used to analyse the NAWI power
outage frequencyω in “North AmericaWestern Interconnection power
outage on 10th August 1996”.

Studies on synthetic data
The following four datasets and two corresponding models are intro-
duced to demonstrate that the method can track the noise level that
eventually leads to N-tipping, while simultaneously providing local
restoring rates playing a role for B-tipping. The first example dataset is
simulated with 4 ⋅ 104 data samples of the pitchfork model equations:

hðxÞ= ν � x � x3 gðtÞ =σðtÞ=
0:05 for t = ½0, 500�,
2:4 � 10�4 � t +0:05 for t = 500, 1750ð �,
0:35 for t = 1750, 2000ð �:

8><
>:

ð2Þ
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The control parameter is fixed at ν = 1 and the simulations are per-
formed via the Euler-Maruyama method39. The model’s two stable
states are confined to regions around the modes of the bimodal state
PDF at ± 151. The realised simulation undergoes an N-tipping transition
into a flickering state due to the increasing noise level. The example is
referred to as theN-tipping dataset xg. The index notation indicates the
terms that are varied in each time series.

The second system, called the simultaneousdrift-diffusion-varying
dataset xh,g, is governed by a fold model

hðxÞ= r + x � x3 gðtÞ=σðtÞ= 9:5 � 10�4 � t +0:05 for t = ½0, 1000�,
�9:5 � 10�4 � ðt � 1000Þ+ 1 for t = 1000, 2000ð �:

(

ð3Þ

This model features linearly increasing noise from 0.05 to 1 in the first
half [0, 1000] of the simulated time interval, followed by decreasing
noise in the second half (1000, 2000]. At the same time, the control
parameter r increases linearly from 5 to 15 over the entire time interval,
with 3 ⋅ 104 samples computed using the Euler-Maruyamamethod. The
system could potentially undergo a fold bifurcation at rcrit = 0 and,
consequently, tends to stabilisewith increasing r in the test case. Thus,
the system could be envisioned as a power grid in which frequency
diffusion is driven by noise of variable amplitude g(t), potentially
including consumer decisions or renewable energy sources, while the
drift is increasingly stabilised by damping, control actions, or suitable
infrastructure extensions (cf. Supplementary Box S1).

As stated in SupplementaryBox S1, there is a relationship between
the grid components, the high-dimensional power grid states x, and
the related frequency ω Langevin model. By applying the (N)BLE, we
consider a macroscopic frequency model motivated by the ASE (cf.
SI S3). Thismeans that the noise level estimates σ̂ and Ψ̂ can reflect the
absolute noise changes of less coarse-grained levels, such as those
from the orange-tiled components in Supplementary Box S1, as well as
relative changes of their impact on the macroscopic ASE scale. For
example, modified damping strengths on mesoscopic scales result in
increasing macroscopic ASE noise estimates, even though the overall
mesoscopic noise level remains constant. Fast macroscopic signal
contributions are less damped and become more relevant for
explaining the data at the macroscopic descriptive level. Expectedly,
the drift slope estimates increase aswell, indicating lower damping; i.e.
weaker control leads to reduced deterministic stability of the fre-
quency state (cf. SI S3). However, if a stricter distinction between
absolute and relative noise strengths than that provided by the current
(N)BLE is desired, this can be achieved by introducing a suitable high-
dimensional mesoscale model in the (N)BLE estimation procedure,
potentially incorporating high-dimensional time series feed-in. Finally,
we remark that the (N)BLE does not formally distinguish between
signal noise and measurement noise (cf. SI S10 for an illustrative

example1). If necessary, extensions to explicitly incorporate measure-
ment noise in these types of models are accessible52–54.

Next, we simulate two models with correlated noise to demon-
strate the NBLE as a correction to the basic BLE under non-Markovian
conditions. The third example, called the correlated B-tipping dataset
xcorrh , illustrates how the NBLE’s noise estimate Ψ̂ can correct for the
biased BLE noise estimates σ̂ when the non-Markovian system with
hidden slow-scale dynamics approaches a bifurcation in the fast
observed process xcorr

h . The correlated B-tipping dataset xcorrh is simu-
lated via the drift, coupling, and diffusion terms of x and y (cf. notation
of Eq. (18)):

hxðxÞ= r + x � x3 gxðxÞ= const: � q=0:5

hyðyÞ= � c � y= � 0:75 � y gyðyÞ= const: � σy =
ffiffiffi
c

p
:

ð4Þ

A B-tipping destabilisation is reached by a linear shift of the control
parameter r from 15 to −5 over the simulated time interval. The
relation between the inverse correlation length c and the noise level σy
is chosen to reduce the number of independent model parameters for
demonstration purposes of the NBLE method. Nonetheless, the NBLE
is relatively robust to imperfect parameterisation of the drift and
diffusion parameters, as demonstrated by our last example, the
correlated drift-diffusion varying dataset xcorr

h, g . It introduces a twofold
misfit in theNBLE. Theprocess x, following the pitchforkmodel Eq. (2),
is multiplicatively coupled through gx(x) to a slower-scale OU process
y. Furthermore, the NBLE’s correspondence between the inverse
correlation length and the diffusion, i.e. σy =

ffiffiffi
c

p
, is undermined by a

time-dependent diffusion gy(t):

hxðxÞ=α � x � x3 gxðxÞ= x hyðyÞ= � c � y = � 0:75 � y gyðtÞ=σyðtÞ
ð5Þ

with σyðtÞ=
1:45 � 10�3 � t +0:05 for t = ½0, 1000�
�1:45 � 10�3 � ðt � 1000Þ+ 1:5 for t = 1000, 2000ð �:

(

ð6Þ

The control parameter ν is increased linearly from 5 to 15. The additive
noise coefficient σy(t) increases linearly over the range [0.05, 1.5] in the
first half of the simulation, before it decreases linearly to its starting
value σy(0) = 0.05.

The simulations and the results of the analyses are presented in
Fig. 2. The example datasets are analysed with the (N)BLE in windows
of size Nw = 2 ⋅ 103 points with a shift of 100 points per window. For the
analyses in Fig. 2d, g, j, the data from each window are linearly
detrended to account for the non-stationary trend in the mean.

In Fig. 2a, the N-tipping dataset xg is presented. The red dotted
vertical line indicates the time tN−tip ≈ 1386.8 at which the N-tipping
transition into a flickering regime occurs. Since the control parameter

Fig. 1 | Pre- and post-outage NBLE results alignedwith the NAWI blackout’s key
events. The results are robust to variations in window size (cf. SI S16). Dark- and
light-green shadings represent 16% to 84% and 1% to 99% percentile credibility
bands, respectively. Shaded time intervals refer to the listed events. a Timeline (in
PDT) and power grid islands61. BPA denotes Bonneville Power Administration.
b Detrended pre-outage bus voltage frequency ~ωPðtÞ. The data oscillations at
~ 0.2 Hz to 0.4Hz (cf. inset) are not captured by the NBLE drift (cf. SI S3, S8, and
S15). c Following the 500 kV Keeler-Allston line trip, a turbulent period of control
actions and destabilising events is reflected by pronounced fluctuations around
drift slope ζ̂NBLE � �3:3. Estimates increase sharply with the loss of the McNary
power units, exhibiting a smoother trend toward the islanding process, consistent
with the concepts in Supplementary Box S1, as grid component failures affect the
frequency drift rather than noise levels. d Noise levels Ψ̂ increase sharply about
2min before the 500kV Keeler-Allston line trip, indicating greater impact of fast-
scale phenomena, possibly due to the tree-related high-impedance fault (THIF) or a

sudden load imbalance (cf. SI S17). eDetrended bus voltage frequency ~ωRðtÞ during
restoration. The black-hatched interval’s end coincides with the end of ~ωPðtÞ.
f Initial drift slopes ζ̂NBLE≳0 are unreliable, as the windows include pre-outage data.
The barely stable grid state during the orange-shaded key restoration interval is
reasonable, as most of the grid components are recovered only stepwise
throughout this period, with some not restored until much later, on 16th August
1996. The system steadily approaches the physical pre-outage configuration,
including lines, power units, and loads, reflected by drift slopes reaching a stable
plateau during the green-shaded period. Nine windows exhibit spiking credible
intervals due to outliers. g Initial noise levels Ψ̂ are unreliable (cf. f). The steepening
potential during restoration lowers the noise levels as the system stabilises in the
operational fixed point (cf. Supplementary Box S1b). f, g Grey lines show outlier
(orange in insets) effects, causing a bias of roughly one window length (cf. Meth-
ods; SI S18).
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is fixed at ν ≡ 1, the computed drift slopes ζ̂ , shown in Fig. 2b, remain
approximately constant prior to time tN−tip. After this time, a sharp
jump indicates sudden destabilisation caused by emerging flickering,
leading to artificial peaks in the leading indicator ζ. These artefacts
ζ̂ ≥0 span the width of one window length, as marked by the
grey-shaded area. The constant level of the leading indicator before
time tN−tip aligns with the true drift slope values ζ, shown as solid green
line, which correctly indicates that no B-tipping occurs.

But if there is no B-tipping event, how can we identify the desta-
bilising mechanism? In such cases, the BLE can yield valuable infor-
mation about the ongoing phenomena. While the deterministic
dynamics remain unchanged, the increasing noise level σ is well esti-
mated, as shown in Fig. 2c. The BLE results accurately follow both the
noise plateaus and the linear ramp of the noise level. Small deviations
from the true values are expected for two reasons. First, the rolling
window approach introduces a time lag. Second, the online reasoning
of the BLE requires assigning the estimates to the last time stamp of
each window, in order to align the most recent stability information
with the current time stamp. If the estimates were ascribed to the
midpoints of their respective windows, they would almost perfectly
match the true values (cf. SI S14). Even though the noise level estimates
cannot definitively determine whether an N-tipping event will occur,
they provide valuable information about increasing noise levels and,
potentially, a higher chance for N-tipping occurring in multistable
systems.

In the previous N-tipping example, xg, the drift is unchanged. The
slope estimates ζ̂ in Fig. 2e correctly mirror the stabilising effects of a
decreasing control parameter r, showing a negative trend that aligns
with the true drift slope values ζ. As illustrated in Fig. 2f, changes in the
noise level are precisely reproduced while accounting for deviations
due to rolling windows and online reasoning. In summary, the BLE

analysis of the two synthetic uncorrelated Markovian examples
demonstrates that using the BLE can be advantageous for quantifying
local restoring rates and noise levels and for controlling systems in
which both B- and N-tipping may play a role.

In principle, the BLE is limited to cases in which the general model
ansatz of a Markovian Langevin equation holds. The analysis of the
correlated B-tipping dataset xcorrh in Fig. 2g–i illustrates the potential
BLE bias if the Markov assumption is not sufficiently fulfilled. The
increasing drift slope estimates ζ̂ in Fig. 2h are strongly biased, but
correctly suggest the approaching B-tipping event by a positive trend.
Thus, they might be useful as qualitative indicators, similar to AR1 ρ̂1

and STD ~σ, in this case. However, the noise level estimates σ̂ exhibit an
artificial positive trend in the vicinity of the bifurcation point and
are not even qualitatively correct. The constant true noise level
Ψcorr

h = q � ffiffiffi
c

p � dt (cf. Eq. (20)) is shown by the green solid line. A BLE
noise increase before a B-tipping event should be carefully interpreted
in such cases, but at least the approaching B-tipping event is qualita-
tively mirrored by the BLE drift slopes ζ̂ . The advanced NBLE turns out
to be advantageous for the correlated B-tipping dataset xcorrh and
related cases. In these basic examples, the NBLE completely corrects
for the BLE bias. In particular, it does not exhibit the artificial increase
in the noise levels that is observed for the BLE.

In order to complement these results, the generating process of
the data xh,g is modified in a way that violates the NBLE model para-
meterisation. The analysis results of this case are shown in Fig. 2k, l:
The BLE estimates are qualitatively—but not quantitatively—reason-
able as in the previous example. Interestingly, the BLE noise level
estimates σ̂ still agree rather accurately with the ground truth
Ψcorr

h, g = xðtÞ � σyðtÞ � dt, especially in the first half of the simulated time
range. The multiplicative coupling increases with the positive trend
in the data xcorrh, g and the hidden correlated process y becomes more

Fig. 2 | (N)BLE applied to prototype synthetic examples.Dark- and light-orange
shadings represent 16% to 84% and 1% to 99% percentile credibility bands (CBs) for
the BLE, respectively; the sameapplies in green for theNBLE. a,d,g, jThe results of
the (N)BLE applied to the four test sets. The red, dotted vertical lines in (a–c, j–l)
indicate the approximate times when noise-induced tipping (N-tipping) into a
flickering regime and bifurcation-induced tipping (B-tipping) take place, respec-
tively. The example datasets are analysed within windows of sizeNw = 2 ⋅ 103 points
with a shift of 100 points per window. The estimates' shift in time is due to the
rolling window approach and ascribing the estimates to the last point of each
window. Ascribing them to the midpoint of each window makes unbiased esti-
mates match the true values almost perfectly (cf. SI S14, Fig. S12). In the examples

(d, g, j), the data of each window are linearly detrended to account for the non-
stationary trends in the mean. b At time t = 1386.8, the N-tipping causes artificial
drift slope peaks with the width of one rolling time window as indicated by the
grey-shaded area. b, c, e, f The BLE ζ̂ and σ̂ are unbiased for the Markovian
examples. h, i, k, l The BLE yields strongly biased estimates which work as quali-
tative leading indicators (due to correct trends), similar to AR1 ρ̂1 and STD ~σ, apart
from the noise level estimates in vicinity of the bifurcation point in (i). The BLE bias
in (l) increases because of the increasing influence of the hidden process y due to
multiplicative coupling via x. The strong BLE bias is perfectly compensated by the
NBLE estimates. It mirrors the constant noise before the bifurcation in (i) and also
works under the imperfect model parameterisation in (k, l).
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significant. This is probably the reason for the increasing bias in σ̂
over the second part of the time range. Far away from a bifurcation,
both BLE metrics are thus useful qualitative indicators. However, the
analysis of the data xh,g reveals that the NBLE—despite its imperfect
model parameterisation in this case—yields accurate results. The
NBLE drift slopes ζ̂NBLE and noise levels Ψ̂ are still perfectly unbiased.
The explanation for this is found by considering the explicit MCMC
estimates of the NBLE x-coupling term gx(x) ≡ θ4 and the OU para-
meter θ2

5 = c
�1. The varying diffusion σy(t) is compensated by a sui-

table variation of θ4, whereas the OU parameter θ5 remains almost
constant. The fact θ̂5 � const: is in agreement with the constant
correlation length c−1 of the correlated drift-diffusion varying dataset
xcorrh, g . This means that the drift slope and noise level estimates of the
resulting process can be unbiased, although individual parameter
estimates θ do not agree with the data-generating process.

North America Western Interconnection power outage on 10th
August 1996
Keeping in mind the performance and robustness of the (N)BLE,
demonstrated in “Studies on synthetic data”, we apply the NBLE to two
bus voltage frequency time series, ωP(t) and ωR(t), which cover a his-
toric major cascading failure, namely the NAWI blackout on 10th
August 1996. The NBLE is preferred to the BLE because it better
reproduces key statistics of the datasets through inclusion of corre-
lated fast-scale dynamics. For details, see SI S3 and S15.

Pre-outage interval. We start our discussion with bus voltage fre-
quency data ωP(t) from the pre-outage (index P) time interval, and
conclude our considerations with the analysis of restoration (index R)
frequency data ωR(t) from the post-outage period. The results
obtained from the NAWI frequency time series and from com-
plementingmodel simulations presented in the following are robust to
variation in window size (cf. SI S16).

In Fig. 1b–d, we present the NBLE results for the time series seg-
ment ωP(t), covering the entire timeline of events leading up to the
power outage. The analysed data ~ωPðtÞ, shown in Fig. 1(b), represent
the original frequency time series ωP(t) detrended using a Gaussian
kernel-smoothed version with kernel bandwidth σk = 5 s, transforming
the original data into a stationary version that is suitable for statistical
analysis. TheNBLE is applied inwindows of 1 ⋅ 103 data points (i.e. 50 s),
which are shifted by 100points (i.e. 5 s). As shown in the inset of Fig. 1b,
the data feature a periodicity of roughly 0.2 Hz to 0.4Hz (cf. SI S15)
that is not captured by the (N)BLEmodels. For details, please see SI S3,
S8, and S15. In the following presentation of the results, note the high
accuracy of the report’s time stamps, as most of the grid components
were satellite-synchronised.

The time series ωP(t) was provided by Bonneville Power Admin-
istration (BPA) via a Freedom of Information Act (FOIA) request.
Thanks to very cooperative correspondence, we could clarify the time
series’ metadata (cf. SI S11): The data record is sampled with equidi-
stant time steps Δt =0.05 s and was measured in Tacoma. The record
starts at 15:29:40 and ends at 15:48:54.95, which approximately coin-
cides with the emergence of the first three islands (cf. Fig. 1a).

The historically significant cascading failure was triggered by the
opening of the 500kV Keeler-Allston line due to a tree-related high-
impedance fault (THIF)55,56, causing a flashover and subsequent tripping
of the line at 15:42:03.139. This event, marked by the end of the first red
time interval in Fig. 1b–d, led to the almost simultaneous tripping of
the Keeler-Pearl line. The sharply pronounced positive frequency
deviation peak at this time mirrors the line tripping event. Based on
theoretical considerations (cf. Supplementary Boxes S1 and S2), var-
iations in the NBLE metrics ζ̂NBLE and Ψ̂, are expected to yield a fin-
gerprint of the Keeler-Allston line tripping. Indeed, a positive trend in
the noise level estimates towards a new stable plateau (cf. vertical
dimension line with double-headed arrows in Fig. 1d), along with

moderate oscillatory variations in the drift slopes ζ̂NBLE, can be
observed starting roughly 2min prior to the recorded line tripping
event of the approved disturbance report57 (cf. Data Availability section
for access details). The approximate starting time of the noise level
change is highlighted by the beginning of the first red time interval at
15:40:09.00. Simultaneously, there is a notable frequency dip in the
original time series ωP(t) (cf. SI S17), which may indicate a sharp load
increase in the grid. This change in dynamics, preceding the actual line
tripping, aligns well with technical aspects of THIFs and inspires two
plausible explanations:
1. There is a non-vanishing probability that the contact between the

Keeler-Allston line and the tree was established around
15:40:09.00. The start time of the first red interval would thus
correspond to the beginning of the THIF. A developing THIF
typically leads to an immediate load increase on the directly
affected line, and possibly surrounding grid components later,
due to network dependencies. Although a THIF can evolve in
various ways, it typically occurs stepwise. Initial tree-to-line
contact, along with any resulting line damage, can significantly
increase electrical resistance, leading to a greater load when the
line is partially transferring energy. Eventually, if a permanent
tree-to-line contact is established, progressive carbonisation can
reduce the initially high electrical resistance of the wood55,56,58,59.
Such a scenario is supported by the frequency dip at this time (cf.
SI S17). Even if the THIF had caused a fairly sudden drop in load
instead, such frequency dips are still possible due to the complex
network response and control actions. This may lead to the
greater impact of fast-scale phenomena, i.e. increasing noise level
Ψ̂. The emerging oscillations of the drift slope ζ̂NBLE might thus
resemble the interplay of alternating primary control actions and
additional destabilising events (cf. timeline in Fig. 1a) under the
increased noise stress. Of course, we cannot definitively deduce
causal relations between noise level and drift slope, even though
the explanation fits well into the overall picture. Deterministic
changes could also contribute to the increased impact of fast-
scale phenomena (cf. SI S3). However, following the THIF
scenario, the grounded Keeler-Allston line led to modified drift-
diffusion dynamics, characterised by drift slope oscillations and
new noise level plateaus reached after 15:40:09.00. Once
grounded via vegetation, it takes seconds up to several minutes
for a THIF to be fully established before the line trips58,59. Thus, the
actual tripping event at 15:42:03.139 falls within a reasonable time
range. These findings suggest that THIFs could leave fingerprints
in the (N)BLE metrics derived from bus voltage frequency data in
some cases, providing a potential starting point for future
research on THIF detection.

2. Though it seemsplausible that the changingdynamics are directly
related to the actual Keeler-Allston line tripping due to a THIF, we
cannot establish with certainty a causal relationship between the
state change and an emerging THIF. However, even if we assume
that the frequency dip at 15:40:09.00 is not caused by the THIF, it
likely corresponds to a sudden load increase for some other
reason. From an engineering perspective, such a load increase—
especially during the hot weather documented for the 10th
August 1996—favours the occurrence of THIFs. As the load
increases, a power line heats up and elongates, leading to
significant sagging. In consequence, the distance between the
power line and the underlying vegetation decreases, heightening
the risk of a THIF.

Even though the exact circumstances cannot bededuced from the
NBLE, the method clearly identifies a significant change in the
dynamics ~2min before the actual line tripping event, and it appears
likely to be related to the triggering event of the NAWI blackout on
10th August 1996.
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The subsequent line trippings forced theMcNary units to increase
the reactive output to 494 MVAR, before they began tripping due to
technical issues with the excitation equipment, which triggered
actions of the system protection protocol. The NBLE identifies the lost
reactive power of the McNary units by strongly increasing drift slopes
ζ̂ . This supports the depiction of the Langevin model for power grid
frequency dynamics, as the McNary power units have a notable influ-
ence on the deterministic frequency dynamics (cf. Supplemen-
tary Box S1).

The NBLE mirrors the barely stable state with increasing power,
voltage, and consequently, frequency oscillations following the
McNary loss through the new drift slope level ζ̂NBLE � �1, which is less
stable than the state prior to the 500 kV Keeler-Allston line flashover.
Ultimately, the drift slope estimates ζ̂NBLE tend to increase more gra-
dually, reflecting the progressive destabilisation due to increasing
frequency oscillations, and approach zero when the first two of the
three island splittings occur. Moreover, in SI S3 we complement our
empirical (N)BLE results, obtained from the frequency records, by
modelling three key episodes of the NAWI blackout, namely
(i) the NAWI pre-outage conditions, characterised by more

dominant fast-scale stochastic dynamics and greater system
stress compared to the post-outage interval (with the pre-
outage noise levels being approximately one order of magni-
tude higher),

(ii) the 500 kV Keeler-Allston line THIF,
(iii) and the loss of the McNary power units, followed by insufficient

damping.

We provide a simple model that qualitatively reproduces the key
characteristics of the (N)BLE signatures over a wide range of window
sizes (cf. SI S16) and consolidates the relationships betweenpower grid
components and macroscopic ASE frequency dynamics observed in
this study, using a CSE mesoscale description. This further sub-
stantiates our real-world empirical observations. In particular, we find
that key aspects of the CSE’s mesoscale dynamics are principally
accessible via the (N)BLE frequency model. The macroscopic (N)BLE
noise levels follow the absolute noise level variations of the meso-
scopic CSE model during the pre-outage period. Interestingly, the
observed decoupling of BLE and NBLE drift slope estimates in the
example of the Keeler-Allston line (cf. Fig. S13) is reproduced by
including red instead of white noise in the model. Changing the
deterministic line capacities of theCSE tomodel theKeeler-Allston line
THIF is partially reflected in the (N)BLE drift slope of the ASE, as well as
in the (N)BLE noise levels. In such cases, the noise level appears to
quantify how rapidly noise propagates through the network and how
strongly it enters into the dynamics of the nodes due to the coupling
strength. The rate of change of the CSE parameters can influence the
response of the drift slope. This is likely attributable to the network’s
intrinsic time scale for relaxing into a fully synchronised state after a
disturbance. In this way, the abrupt loss of the McNary units is asso-
ciated with a substantial increase in the drift slope. Reducing the
damping in theCSEMcNarymodel alignswithour empiricalfindings of
increasing drift slopes and noise levels at the very end of the pre-
outage interval. This idea is supported by the approved disturbance
report57 (cf. Data Availability section for access details), which states
that several damping tools were not functioning at TheDalles and John
Day hydroelectric power units due to control issues. This caused
increasing frequency oscillations, resulting in the final grid separa-
tions. It is a prototypical example of a scenario similar to that pre-
sented in Supplementary Box S2. Not least, the relative influence of
mesoscale CSE noise on the macroscopic ASE frequency noise dimin-
ishes as the grid approaches a B-tipping destabilization due to extreme
power demands or insufficient line capacities, whereas the B-tipping
itself continues to be characterised by drift slopes that approach zero
(cf. Fig. S4).

Grid restoration interval. The second bus voltage frequency time
series ωR(t) was originally extracted from four DIN A4 pages of an
analogue, printed frequency graph in the approved disturbance
report57 using image processing software comparable to DigitSeis60.
The printed graph, originally provided by BPA for the disturbance
report’s task force, can be found in Exhibit 10 of the disturbance
document57. In refs. 20,49,where thedigitised version of the frequency
scan first appeared, no absolute time stamps were reported; the stu-
dies used only relative times. After roughly 1.5 years of research and
correspondence (cf. SI S11) to check the analogue source of the digital
time seriesωR(t), there are compelling reasons to build the analysis on
a time axis that differs significantly from the originally reported one.

Based on the reasons stated in SI S11, it can be concluded that the
investigated bus voltage frequency time series ωR(t) mostly covers the
timeafter the grid separation in four islands, incorporates roughly20 h
with an approximate time step resolution of Δt = 6.41 s, and starts at
15:10:45 with an uncertainty of σts

= ± 3 min. This uncertainty, which is
in the range of a fewminutes, does not affect the conclusions drawnon
a scale of hours. Additional details regarding the approximate recon-
struction of the correct absolute time stamps, time interval, and the
time step Δt can be found in SI S12.

Similar to the pre-outage time series ωP(t), the original frequency
timeseriesωR(t) isdetrendedby a slow trend versionobtained through
Gaussian kernel smoothing with the bandwidth σk = 10:68 min. This
process results in the detrended frequency time series ~ωRðtÞ, which is
shown in Fig. 1e. For the analysis of the detrended time series ~ωRðtÞ,
timewindows of 1 ⋅ 103 data points (i.e. 1.78 h) with a shift of 100 points
(i.e. 10:68 min) are used.

Following the interpretation of the metadata from SI S12, the
black-hatched time interval in Fig. 1e–g encompasses only pre-outage
data. The end of the black-hatched interval coincides with the end of
the high-resolution frequency data in Fig. 1b at 15:48:54.95. The
emergence of the first three islands aligns with the first sawtooth-
shaped peak. Roughly 6min later, the final system separation statewas
reached when Alberta segregated from the Northern island. The
separation of the Alberta island falls together with the second
sawtooth-shaped peak, which is somewhat difficult to discern due to
the time scale resolution.

The Alberta island was the last area to insulate from the NAWI,
but it was also the first to re-synchronise with the Northern island.
The full load in the Alberta area was already restored by 17:39, which,
at first glance, seems to coincide with the zero-crossing of the drift
slope estimates ζ̂NBLE and the rapid transient to stable noise level
estimates Ψ̂ in Fig. 1e, f, respectively. However, the estimates are not
trustworthy, as the first windows incorporate both pre-outage and
post-outage data. The zero-crossing of the drift slope estimates
coincides with the exclusion of the initial dip and pronounced first
sawtooth-shaped peak around 15:48. In this context, the zero-
crossing is sensitive to the rolling window size due to the non-
stationary nature of the data (i.e. mixed pre-outage and post-outage
data) and does not reflect the real-world event of load restoration in
Alberta after its re-synchronisation.

Only shortly after 21:42, when the full load was restored by reco-
vering theMetropolitanWater District of SouthernCalifornia, the drift
slope estimates ζ̂NBLE indicate further stabilisation, exhibiting a nega-
tive trend towards a stable plateau around ζ̂NBLE � 2:3 � 10�2 in the
green-shaded time interval. During this interval, the last customers
were reconnected to the grid by 01:00:0061. This is in good agreement
with the theoretical model considerations, as over this time, the grid
increasingly resembles the physical pre-outage state. Similarly,
the rapid noise level transient prior to the orange-shaded key
restoration interval slows down within the orange-shaded interval,
eventually reaching a stable plateau in the green-shaded period. The
complete restoration of the NAWI took several days, as mentioned
previously.
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The scaling differences between the NBLE estimates, derived from
the frequency time series ~ωPðtÞ and ~ωRðtÞ in Fig. 1b–d, e–g, respectively,
are at least partly attributable to the significantly different time resolu-
tion and quality of the data. The discussion concludes with a few
remarks on this matter. In principle, generating the digitised frequency
time series ωR(t) of the restoration interval from a printed graph via an
image processing tool yields reasonably approximated data for analysis.
However, some outliers exist in the extracted raw data. The two most
prominent outliers are shown as orange lines in the insets of Fig. 1d,
along with the corrected raw data in blue. The effect of these outliers is
demonstrated by the grey drift slopes ζ̂NBLE and noise level estimates Ψ̂
in Fig. 1f, g, respectively. Essentially, they were concomitant with dis-
continuous jumps in the estimates to plateaus of approximately one
window length. With access to a scan of the original printed frequency
time series, these outliers are identified as artefacts of the data gen-
eration procedure. Specifically, the image processing algorithm that
extracted the digitised time series from the printed version mis-
interpreted grid lines of themillimetre paper to be actual data points (cf.
SI S18, Fig. S11 formore details). In light of this, the discontinuous jumps
in the estimates make sense, as the outliers are completely independent
of the assumed stationary data distributions in the individual windows.
The unbiased results shown in Fig. 1f, g are accordingly computed on a
corrected version of the frequency time series, represented in blue in
Fig. 1e. Briefly, this correction consists of using a thinned version of the
data, in which the two most prominent outliers are systematically
replaced by random values. This approach diminishes their influence
without making assumptions about their underlying frequency dynam-
ics. See Methods for more details regarding the outlier correction pro-
cedure. As a result, the estimates from the outlier-corrected dataset
exhibit only a weak increase with broader credible intervals (CIs) over
one window length in the corrected intervals. This is an expected result,
as the correction values were drawn from a distribution estimated in a
symmetric ϵ-environment around the outlier sequence. Therefore, they
correct for the strong outlier magnitude; however, the increments
between the random values do not resemble the actual frequency
dynamics. In nine windows, broad CIs with skewed drift slope distribu-
tions are observed. These are most likely caused by the differing data-
base of individual rolling windows. Some of them may include further
outliers or extreme values that disrupt the NBLE and cause broader CIs.
All in all, the power gridmost likely remained in a similarly resilient state
from 01:00 until 11:00.

Discussion
We demonstrated the (N)BLE’s potential to quantify varying restoring
rates (as indicators of deterministic stability) and noise levels (capturing
stochastic influences) related to B- and N-tipping, respectively, from
time series data. The method significantly outperforms common non-
parametric and parametric leading indicators, such as AR1, STD, direct
drift-diffusion estimation, and the OUE (cf. SI S1 and S9) for synthetic
and real-world datasets and is applicable across various disciplines (cf.
SI S10). Additionally, we extend the BLE to the NBLE, which cancels the
BLE bias observed for the non-Markovian synthetic examples. Incor-
porating memory effects and correlated noise, as in the NBLE, is fun-
damentally out of reach for the aforementioned state-of-the-art leading
indicators.

Two bus voltage frequency time series, spanning the pre-outage
to post-outage period of the NAWI cascading failure on 10th/11th
August 1996, are analysed using the NBLE parameterisation, since it
significantly improves the statistical model of frequency dynamics
during the NAWI outage (cf. SI S15).

A detailed comparison of the NBLE results with the real timeline of
events supports the presented theoretical ideas about macroscopic
power grid frequency dynamics and the Langevin model to a large
extent (cf. SI S6). The results disprove the simple idea of smooth
changes in early warning metrics based on CSD for B-tipping20,21,48,49,

even though the basic assumptions are still supported. Rather than
observing continuous changes in frequency dynamics, the analysis
reveals rapid variations into states of modified local stability and sto-
chastic influences. These variations are closely interrelated to abrupt
real events, such as line openings, the loss of power units, or failures of
other grid components. These state changes are almost discontinuous
in nature. However, the alternating states are reflected in alternating
NBLE results. These findings align with the common intuition sur-
rounding cascading failures, which are typically perceived as not
continuous but rather as discrete sequences of destabilising events.
Nevertheless, the analysed example demonstrates that these discrete
changes can lead to operating conditions that indeed trigger more
continuous destabilisation—specifically, a lack of damping options that
favoured increasing frequency oscillations for ~1min prior to the initial
formation of grid islands. Even though a skilled power system con-
troller might already extract a considerable amount of information
about changes in the grid state from the raw frequency time series, the
distinction of fast and slow dynamics, as well as the persistence of
changes in the (N)BLE results, adds valuable information. In particular,
the (N)BLE identifies a significant and persistent change in the fre-
quency dynamics ~2min before the outage’s key triggering event,
namely the 500 kV Keeler-Allston line tripping. While a trained system
controller might have noticed a short dip in frequency at the time
suggested by the (N)BLE, this dip does not provide information about
the persistence of the system’s state change. In the considered outage,
the newly reached stable constant values persist for roughly 6min,
until the loss of the McNary units changes the state again. Moreover,
the theoretical foundation of applying the (N)BLE to power grid fre-
quency data is elaborated in SI S3. In stable operation, the fre-
quency dynamics can be aggregated from the CSE on mesoscopic
scales to the macroscopic scale of the ASE. The ASE represents an OU
model, i.e. a Langevin-type equation. In this sense, using the (N)BLE, we
directly estimate the macroscopic frequency dynamics of the ASE.
Moreover, the formal relationship between the one-dimensional
macroscopic ASE and the high-dimensional CSE, resolving network
topologies on mesoscopic scales, allows for improved inference from
the macroscopic (N)BLE to the mesoscopic scales of the power net-
work. This partially closes the gap (cf. Supplementary Box S1) between
the macroscopic ASE estimation and lower topological scales.

In this spirit, a simple CSE reconstruction is provided for three key
events of the NAWI cascading failure. The simple model qualitatively
reproduces (N)BLE signatures of the real-world scenarios, further
substantiating our empirical findings and deepening our under-
standing of the NAWI outage event in relation to the response of the
(N)BLE metrics. This simple topological model of the NAWI power
outage serves as a starting point for further discussions, fostering a
better understanding of the relationship between macroscopic fre-
quency dynamics of the ASE and topological features of the CSE scale,
and may be improved in future.

The overall modelling results leave several intriguing questions
for future research: Notably, a clear direct (N)BLE response to actual
line tripping events is not observed. However, in our model, cutting a
line removes inertia from the grid, suggesting that considering such
cases systematically in future studies could be beneficial. Moreover,
the model results suggest that local disturbances are predominantly
detected by the (N)BLE in signals from nodes located in the dis-
turbance’s immediate periphery. A more detailed consideration of
these topological features is left for future investigations.

While this analysis focuses on frequencies as a key observable,
other macroscopic quantities of power grids may also be suitable for
the (N)BLE. For instance, thephaseof theCSE represents an interesting
candidate. The parameterisation of the (N)BLE could be extended to
higher dimensions, potentially taking advantage of high-dimensional
time series input. An ambitious approach could involve using fre-
quency and phase time series of various grid locations in a CSE-like

Article https://doi.org/10.1038/s41467-025-60877-0

Nature Communications |         (2025) 16:6246 9

www.nature.com/naturecommunications


high-dimensional parameterisation of the (N)BLE. Not least, the gen-
erality of the results should be tested on other real-world data or sig-
nals from network models with more complex topologies and
alternative destabilisation scenarios.

The BLE is provided in the open-source Python package
antiCPy62,63. Application to other fields and systems could improve the
understanding of its scope and limitations. It lends itself for adapta-
tions of the drift-diffusion parameterisation based on partial system
knowledge and specific established models to improve the statistical
inference.

Furthermore, we are considering the inclusion of prior informa-
tion about multi-stability, specifically by restricting the parameter
space to combinations that produce a double-well potential. This
approach could potentially allow us to apply the formalismof Kramers’
escape rate estimation64–66 without needing data from both minima of
the double-well potential. Assuming a priori that the system is bistable
might enable us to extract the potential barrier height, necessary for
computing the Kramers’ rate, provided the noise is strong enough to
resolve the inflection point of only one of the potential valleys.

Methods
In “Estimation schemes”, the basic and extended numerical procedures
are presented in “Bayesian Langevin estimation” and “Non-Markovian
Bayesian Langevin estimation”, respectively. The outlier treatment is
summarised in “Outlier correction in the post-outage interval”.

Estimation schemes
Key steps of the estimation protocols detailed below are illustrated in
an algorithmic scheme in Box 1.

Bayesian Langevin estimation. The Bayesian Langevin estimation
(BLE) procedure37,38 is applied using rolling windows over the time
series (cf. Box 1). Similar to the idea of Carpenter and Brock12, the
observed signal in each window is modelled by a stochastic differential
Langevin equation. In general, the proposedmodelling approach is not
limited to one-dimensional time series. However, since we consider
one-dimensional signals in the following, we reduce the general
approach to the one-dimensional Langevin equation

_xðx, tÞ=hðxðtÞ, tÞ+ gðxðtÞ, tÞ � ΓðtÞ: ð7Þ

This method implemented for the one-dimensional case can, in
principle, be extended to address N-dimensional time series analysis
problems. The noise Γ(t) is assumed to be Gaussian and δ-correlated,
and does not significantly depend on the state x(t), i.e. we can set
g(x(t), t) = const. = σ in eachwindow. The stochastic process resembles
the increments of a Wiener process, i.e. ΓðtÞ= dW

dt .
A change of the sign ( − → + ) in the slope

ζ =
dhðxÞ
dx

����
x = x*

ð8Þ

of the nonlinear drift at the fixed point x* indicates destabilisation of
this fixed point through control parameter change and thus a bifur-
cation. The fixed point x* is estimated as mean in each window.

We develop h(x, t) into a third-order Taylor series, which is suffi-
cient to describe the normal forms of simple bifurcation scenarios67.
Furthermore, in cases of strong noise, the first approximation of small
disturbances, i.e. Oððx � x*Þ2Þ � 0 breaks down and the BLE is more
reliable due to the higher-order Taylor expansion38. This results in

hðxðtÞ, tÞ=α0ðtÞ+α1ðtÞ � ðx � x*Þ+α2ðtÞ � ðx � x*Þ2 +α3ðtÞ � ðx � x*Þ3

+Oððx � x*Þ4Þ
ð9Þ

so that the information on the linear stability is incorporated in α1,
assuming the fixed point is shifted to zero. For practical reasons, in the
numerical approach, Eq. (9) is used in the form

hMCðxðtÞ, tÞ= θ0ðt; x*Þ+ θ1ðt; x*Þ � x +θ2ðt; x*Þ � x2 + θ3ðt; x*Þ � x3, ð10Þ

where anarbitraryfixed point x* is incorporated in the coefficients θ by
algebraic transformation and comparisonof coefficients. Asweuse the
stationary window approximation, it holds that hMC(x(t), t) ≡ hMC(x)
within eachwindow. In other words, the time dependence is translated
into the subsequent shift of the window. The estimation of the model
parameters θi and σ is realised via a Markov Chain Monte Carlo
(MCMC) method to reconstruct the full posterior distribution of the
drift slope ζ and the noise level σ. The starting point is Bayes’ theorem

pðθjx,IÞ= pðxjθ,IÞ � pðMjIÞ
pðθjIÞ ð11Þ

with the posterior probability density function (PDF) pðθjx,IÞ, the
likelihood pðxjθ,IÞ, the prior pðMjIÞ, and the evidence pðθjIÞ, which
accounts for the normalisationof the posterior. Themodel parameters
are denoted by θ, the time series data by x, the background informa-
tion by I, and the model by M.

The short-term propagator68

pðx, t = t0 +Δtjx0, t0Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πg2ðx0, t0ÞΔt

p exp � ½x � x0 � hðx0, t0ÞΔt�2
2g2ðx0, t0ÞΔt

 !

ð12Þ
for subsequent times t and t0 with τ = t � t0�!0 can be derived from
the Langevin equation if the difference x � x0 in the exponential
expression is approximately defined by the first differences of a given
timeseries. It represents the likelihood. Thepriors are chosen to reflect
the situation of no or just poor prior information. This guarantees the
determination of the posteriormainly due to the available data instead
of strong prior assumptions. More restrictive priors would be
ill-advised in the subsequent analyses, since we have limited informa-
tion about the model parameters describing the frequency dynamics
of the NAWI. For this reason, we assume an invariant prior69 for a
straight line, i.e. for the intercept θ0 and the slope θ1. It is given by

ppriorðθ0, θ1Þ=
1

2πð1 + θ21 Þ
3
2

ð13Þ

with broad parameter ranges. Note that we denote pprior(θ0, θ1) even if
there is no explicit dependency on the intercept θ0. For equally likely
straight-line models, the angle and distance parameters in the Hesse
normal form are assumed to be uniformly distributed. The prior in
Eq. (13) then results from the transformation into Cartesian coordi-
nates, which implicitly couples slope and intercept (cf. refs. 69–71). For
the noise level σ, the invariant Jeffreys’ scale prior69

ppriorðσÞ=
1
σ

ð14Þ

is chosen because it is almost uninformative. Furthermore, by using
broad Gaussian priors

ppriorðθ2Þ=Nðμ=0,σθ2
= 4Þ ð15Þ

ppriorðθ3Þ=Nðμ=0,σθ3
= 8Þ ð16Þ

with mean μ and standard deviations σθi
, we ensure that the higher-

order parameters can initially contribute to the deterministic

Article https://doi.org/10.1038/s41467-025-60877-0

Nature Communications |         (2025) 16:6246 10

www.nature.com/naturecommunications


dynamics with a magnitude similar to that of the linear ones. The
MCMC affine-invariant ensemble sampler of the emcee72 Python
package is used to compute the posterior PDF. Based on the estimated
joint posterior PDF pðθjx,IÞ, the parameters θ are sampled and
corresponding drift slopes ζ in the fixed point x* are calculated by
marginalisation:

pðζ jx,IÞ=
Z

pðθ,σjx,IÞδ ζ � dhðxÞ
dx

����
x = x*

� �
dθdσ: ð17Þ

The credible intervals (CIs) of the slopes and noise levels are
defined as the 16% to 84% and 1% to 99% percentiles of the
corresponding posterior PDFs. These are computed from kernel
density estimates of these PDFs. The kernel density estimation is
performed with scipy. stats. gaussian_kde73 using Silverman’s rule
of thumb to determine the kernel bandwidth. More details on the
specific prior ranges used for the analyses are provided in SI S19,
Table S5.

Non-Markovian Bayesian Langevin estimation. The non-Markovian
Bayesian Langevin estimation74 (NBLE) builds on the previously sket-
ched BLE (cf. Box 1). Inspired byWillers and Kamps75, it involves a two-
dimensional model

_x =hxðxÞ+ gxðxÞ � y _y=hyðyÞ+ gy � ΓðtÞ= � 1

θ2
5

y+
1
θ5

� ΓðtÞ, ð18Þ

with an observed Langevin-like process x and a hidden OU process y.
The hidden process may be interpreted as red noise y(t) = Γred(t) if it
lives on a faster time scale ~τy than the observed process x, or,
alternatively, as a slow external driver y of the observed process x,
which then evolves on the faster time scale ~τx . Note that similarmodels
are also treated under the name hidden Markov models75. Under the
assumption of a hidden OU process, the likelihood of the two-
dimensional system is adapted accordingly to be

pðx, tjx0, x00, t0, t00Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πψ2ðx0, x00ÞΔt

q exp � ðx � x0 � φðx0, x00ÞΔtÞ2
2ψðx0, x00Þ2Δt

 !
,

with primes and double primes denoting values one and two steps Δt
past in time. The non-Markovian drift is given as

φðx0, x00Þ=hxðx0Þ+ gxðx0Þy00 +hyðy00Þgxðx0ÞΔt with

y00ðx0, x00Þ= x0 � x00 � hxðx00ÞΔt
gxðx00ÞΔt :

ð19Þ

Thenon-Markoviananaloguetotheconstantnoise levelg(x)=const.≡σ
of the Langevin equation is given by the composite noise level75

ψðx0, x00Þ= gxðx0Þ � gyðy00Þ � Δt: ð20Þ

The parameterisations of drift hx(x) and diffusion gx(x) remain
unchanged compared to the one-dimensional BLE parameterisation,
but the diffusion gx(x) serves as coupling function. An invariant prior of
a straight line for the drift hy(y) and a scale prior for the constant
diffusion gy � 1

θ5
are multiplied:

ppriorðθ5Þ=
θ5

2π 1 + � 1
θ5

� �2� �3
2

:
ð21Þ

Furthermore, we account for stability issues and ambiguities in the
estimation scheme, discussed by Willers and Kamps75, in two ways:
First, analogous to Willers and Kamps75, by including only one free

parameter θ5 in the OU process y, and second, by an a priori
assumption of a notable time scale separationbetween the processes x
and ywith the time scales ~τx and ~τy, respectively. Precisely, we require
either ~τx > γ � ~τy or ~τy > γ � ~τx with a scale separation coefficient γ = 2.
We denote characteristic time scales by ~τ to distinguish them from
discrete time lags τ (without a tilde, as used in the SI). The character-
istic time scales67 are approximated by

~τϑ =
dhϑðϑ, tÞ

dϑ

� ��1
�����

�����
�����
ϑ= ϑ*

with ϑ 2 fx, yg: ð22Þ

The priors for the model of the observed data x(t) remain unchanged
apart from the coupling term gx(x) = const. ≡ θ4 for which we use
a Gaussian prior, analogous to Eq. (15) with σθ4

= 4. More details on
the prior ranges used for the analyses are provided in SI S19 and
Table S5.

Outlier correction in the post-outage interval
The time series ωR(t) was carefully compared to its printed source in
SI S18 and Fig. S11. The comparison revealed that the outliers were
erroneously generated by the image processing tool, which mis-
interpreted grid lines of the scale paper as actual data points. For this
reason, we first thinned the original time series by a factor of two,
which already eliminated four out of six prominent outliers. Second,
we corrected for the remaining twoprominent outlier regions by using
a heuristic approach. The detected outlier intervals, the first and sec-
ond of which contain four and two points, respectively, were replaced
with a sequence of random numbers in a range derived from the data
observed before and after the intervals. Therefore, we considered the
non-outlier samples in a symmetric ϵ-environment of roughly 2min
centred around the outlier peaks. The peaks are subjectively defined
by thresholdsTout = 0.01 andTout = 0.04 for thefirst and secondoutlier
intervals, respectively. The data ω ∈ ϵ are used to construct Gaussian
kernel density estimates with Silverman’s rule. The correction values
are drawn from the resulting probability densities. The approach is
chosen to avoid prior assumptions about the frequency dynamics
under analysis. In light of this, the corrections account for the mag-
nitude of the outliers, but cannot reconstruct information about the
underlying dynamics.

Data availability
The simulated and empirical data and SI can be found in the
folder “Quantifying_Local_Stability_and_Noise_Levels” of the GitHub
repository76 at https://github.com/MartinHessler/Disentangling_
Tipping_Types. Both versions of the restoration time interval’s fre-
quency data ωR(t), i.e. the densely sampled and the thinned one, are
included. The additional data of a bacteria population collapse, ana-
lysed in SI S10, are openly available at https://lifesciences.datastations.
nl/dataset.xhtml?persistentId=doi:10.17026/dans-ztg-93aw. Regarding
the approved disturbance report57, the text source without Appen-
dices was provided by Bonneville Power Administration (BPA) via a
Freedomof InformationAct (FOIA) request thanks to JamesKing (FOIA
Public Liaison, BPA; P.O. Box 3621, CGI-7, Portland, OR 97208-3621;
phone: 503-230-7621; email: FOIA@bpa.gov) and Brian Roth (FOIA
Case Coordinator, BPA). The Appendices 2, 3, 5, and 9 of the timeline
were provided thanks to Mary Schaff from the Washington State
Library, currently operating under the Secretary of State, Steve Hobbs,
through mail correspondence via the “Ask a Librarian” service
(Washington State Library, Point Plaza East, 6880 Capitol Blvd. SE,
Tumwater, PO Box 42460, Olympia WA 98504-2460; phone: (360)
704-5200; email: askalibrarian@sos.wa.gov). A low-quality scan of the
restoration frequency time series from the approved report’s Exhibit
10was provided byWECC, and a readable version from the preliminary
report77 was made available thanks to Jeanie Fisher from the Seattle
Municipal Archives (Seattle Municipal Archives, 600 Fourth Avenue,
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Third Floor, Seattle, WA, 98104, PO Box 94728, Seattle, WA, 98124-
4728; phone: (206) 684-8353; email: archives@seattle.gov). The full
preliminary report77 is available at the Seattle Municipal Archives.
Contact with Jeanie Fisher of the Seattle Municipal Archives was
established by Mary Schaff. Source data are provided with this paper.

Code availability
The open-source Python package antiCPy62,63 to perform the (N)BLE
can be found at https://github.com/MartinHessler/antiCPy under a
GNU General Public License v3.0 and is documented at https://anticpy.
readthedocs.io. A second GitHub repository76 includes computation
codes and plot scripts for the analyses presented in the main article
and SI, published under a GNU General Public License v3.0.
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