Table 4 Task- and model-specific hyperparameters

From: Advancing spatio-temporal processing through adaptation in spiking neural networks

  

lr

# neurons

# layers

q

α (SLAYER)

c (SLAYER)

Ep.

[\({\tau }_{u}^{\,{\mbox{min}}},{\tau }_{u}^{{\mbox{max}}\,}\)]

[\({\tau }_{w}^{\,{\mbox{min}}},{\tau }_{w}^{{\mbox{max}}\,}\)]

dropout

τout

batch size

SHD

SE

0.01

128/360

1/2

120

5

0.4

300

[5, 25]

[60, 300]

15%

15

256

 

EF

0.01

360

2

60

5

0.4

300

[5, 25]

[60, 300]

15%

15

256

 

LIF

0.01

360

2

5

0.1

300

[5, 150]

15%

15

256

SSC

SE

0.006

720

2

120

5

0.4

40

[5, 25]

[60, 300]

15%

15

256

 

EF

0.006

720

2

60

5

0.4

40

[5, 25]

[60, 300]

15%

15

256

 

LIF

0.006

720

2

5

0.1

40

[5, 150]

15%

15

256

ECG

SE

0.01

36

1/2

120

5

0.2

400

[5, 25]

[60, 300]

15%

3

64

 

EF

0.01

36

1

60

5

0.2

400

[5, 25]

[60, 300]

15%

3

64

 

LIF

0.01

36

1

5

0.1

400

[5, 150]

-

15%

3

64

BSD

SE

0.01

512

1

120

5

0.4

400

[5, 25]

[60, 300]

0%

15

128

 

LIF

0.006

510

1

5

0.2

400

[5, 50]

-

0%

15

128

spring-mass

SE/EF

0.01

[25, 3200]

1

228/65

5

0.4

200

[5, 25]

[60, 300]

0%

[1, 20]

256

 

LIF

0.01

[27, 3202]

1

10

0.5

200

[1, 25]

0%

[1, 20]

256

 

LSTM

0.001

[13, 1600]

1

200

0%

[1, 20]

256

audio comp.

SE/EF

5 10−4

300

4

120/20

5

0.4

10

[5, 25]

[30, 300]

0%

[1, 10]

128

 

LIF

5 10−4

302

4

5

0.1

10

[5, 100]

− 

0%

[1, 10]

128

  1. Our experiments use a spike threshold of ϑ = 1 and an integration time-step Δt = 1 ms, except for spring-mass (Δt = 2.5 ms) and audio comp. (trainable threshold).
  2. lr: learning rate for ADAM optimizer, Ep.: number of training epochs, τout: Membrane time constants of output layer (leaky integrator), dropout: dropout rate, q: coefficient of the reparameterization of a and b (see Eq. (75) and (76)).