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Multi-representation domain attentive
contrastive learning based unsupervised
automatic modulation recognition

Yu Li 1, Xiaoran Shi 1 , Haoyue Tan 1, Zhenxi Zhang1, Xinyao Yang1 &
Feng Zhou1,2

The rapid advancement of B5G/6G and wireless technologies, combined with
rising end-user numbers, has intensified radio spectrum congestion. Auto-
maticmodulation recognition, crucial for spectrum sensing in cognitive radio,
traditionally relies on supervised methods requiring extensive labeled data.
However, acquiring reliable labels is challenging. Here, we propose an unsu-
pervised framework, Multi-Representation Domain Attentive Contrastive
Learning, which extracts high-quality signal features from unlabeled data via
cross-domain contrastive learning. Inter-domain and intra-domain contrastive
mechanisms enhance mutual modulation feature extraction across domains
while preserving source domain self-information. The domain attention
module dynamically selects representation domains at the feature level,
improving adaptability. The experiments through public datasets show that
the proposed method outperforms existing modulation recognition methods
and can be extended to accommodate various representation domains. This
study bridges the gap between unsupervised and supervised learning for radio
signals, advancing Internet of Things and cognitive radio development.

The 5G wireless communications have become the social infra-
structure for Internet of Things (IoT) and mobile internet
applications1,2. The powerful feature extraction capability offered by
the stacked layers of artificial neurons has sparked a significant
expansion of research in reforming or even revolutionizing the design
of communication systems in B5G and 6G IoT paradigms3,4. Among
diverse efforts made by both academia and industry, automatic
modulation recognition (AMR) using deep learning (DL)methods have
attracted much attention5–8. AMR is of great significance as a key
intermediate link in multiple natural wireless communication fields
such as cognitive radio9,10, wireless sensor networks11, ensuring the
physical layer security12,13 and dynamic IoT environments14,15.

The purpose of AMR, as a key step in signal reception and
demodulation, is to identify the modulation scheme employed in
wireless signals and discern their types and characteristics16. Data-
driven DL-AMR approaches typically employ supervised learning,

where well-designed deep neural networks are trained by a large
number of labeled samples. From the perspective of network struc-
ture, CNN-type networks are particularly effective at extracting spatial
correlation features from signals17–19. In addition, wireless signals also
exhibit temporal correlation features20, which can be effectively
learned using RNN20,21. Pure CNN or RNNmodels focus solely on either
the spatial or temporal dimension of wireless signals. However, an
increasing number of researchers have started investigating hybrid
models that combine both CNN, RNN, and other architectures for
AMR22–24. From the perspective of the input form of data, the afore-
mentioned approach directly feeds time-domain IQ sequences into the
network for feature extraction and recognition. Scholars have also
considered leveraging features from different representational
domains to enhance the performance of AMR25–28. Both manual and
deep learning-based feature extraction methods have demonstrated
that modulation information in wireless signals is distributed across
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multiple representation domains. This process parallels the way
humans gather information through multiple sensory modalities,
including vision, hearing, touch, and taste. Such integration from dif-
ferent views enhances cognitive abilities. Methods that leverage
information from multi-representation domains often achieve super-
ior recognition performance. However, the choice of representational
domains under different modulation schemes has currently become a
critical issue for researchers in AMR.

In addition, supervising AMR method training requires a large
number of high-quality samples. The process of annotating a large
volume of labeled samples necessitates substantial investments in
terms of time and financial resources. Moreover, in civilian scenarios,
considering user privacy and security presents inherent difficulties in
acquiring massive and accurate modulation labels16,29. In military sce-
narios, the reconnaissanceside can intercept only aminimalnumberof
labeled signals from the non-cooperative target30,31. The performance
of the supervised AMR model cannot be fully guaranteed in the pre-
sence of insufficient labels32.

The mechanism of unsupervised learning offers a novel approach
to tackle the aforementioned problem. Over the years, as large
amounts of unlabeled wireless signals have accumulated in the radio
stations of civilians and the military, we can collect more and more
wireless signals. By constructing appropriate proxy tasks, high-quality
representation information is extracted from unlabeled samples.
These unsupervised representations can be applied to recognition and
other downstream tasks either by fine-tuning with a few labeled
samples33 or through metric-based querying34. This prompts us to
study the benefits of utilizing unlabeled wireless signals.

The key to unsupervised automatic modulation recognition
(UAMR) critically depends on the approach to signal representation
learning. Recent research16,32,35 has provided compelling evidence of
the superior performance achieved through the utilization of con-
trastive learning in unsupervised signal representation learning. The
choice of signal augmentation is critical to the success of contrastive
learning. Recently, innovative efforts have been directed towards
semi-supervised learning35, Yihong Dong et al.36 developed a semi-
supervised signal recognition convolutional neural network (SSRCNN)
that employs multiple loss functions for unlabeled samples. Dongxin
Liu et al.32 pioneered the use of self-supervised contrastive learning for
the representational learning of modulation signals, creating positive
and negative sample pairs by manipulating unlabeled IQ signals for
self-supervised training. After pre-training, the encoder parameters are
frozen, and labeled samples are used to refine the classifier.Weisi Kong
et al.16 explored the use of a self-supervised Transformer encoder,
advancing the discussion on the application of pre-trained models in
semi-supervised AMR to achieve superior recognition accuracy.
However, the data augmentation strategies employed in existing
works for constructing positive and negative sample pairs pre-
dominantly originate from computer vision or audio signal domains,
rather than being specifically tailored for radio signals. Moreover,
these augmentation methods remain confined to a single dimension
(time-domain I-Q), neglecting the complex cross-dimensional corre-
lations inherent in the high-dimensional modulation characteristic
space, as shown in Fig. 1a. This oversight restricts the potential for
deeper understanding and improvement in AMR representation
learning.

In this work, we propose an unsupervised framework for UAMR
called multi-representation attentive domain contrastive learning
(MAC). The framework integrates multi-domain signal representation
with contrastive learning. Unlike previous methods that were limited
to contrastive learning within a single dimension (time-domain I-Q),
MAC is capable of correlating signal modulation characteristics across
multiple high-dimensional spaces, as shown in Fig. 1b. Similar to
observing an object frommultiple perspectives, MAC provides amore
comprehensive understanding of the subject by integrating diverse

viewpoints. The domain attention (DA) module is proposed to
emphasize features from multiple representation domains based on
their contextual relevance. The selection of appropriate transforma-
tion domains for different modulation types is finished at the feature
level, which is more robust than relying on expert knowledge during
the signal preprocessing level.MACmaximizes themutual information
between representations of the signal in different domains, con-
structing dual-domain feature dictionaries for wireless signals. Fur-
thermore, we propose the “I-Q single-centering” optimization strategy
to extend MAC to an arbitrary number of representation domains. By
leveraging proxy tasks, MAC has achieved efficient signal multi-
domain representation learning in unlabeled scenarios, and promoted
the construction of large communication semantic models and
advances in cognitive radio.

Results
The proposed MAC-based UAMR framework
We propose a MAC-based UAMR framework, as illustrated in Fig. 1c.
Firstly, unsupervised learning of MAC can be divided into two parts:
inter-domain contrastive learning and intra-domain contrastive learn-
ing. In the inter-domain contrastive learning part,multi-representation
domain signals are taken to construct positive and negative sample
pairs, which focus on the similarities and differences betweendifferent
representation domains. Then, we establish an intra-domain con-
trastive learning within the representation domain by leveraging the
augmented samples, whichmaintain robust features within the source
domain (SD) during the process of maximizing inter-domain mutual
information. Additionally, we extend MAC to handle any number of
representation domains by “I-Q single centralization”. The DA module
is proposed to leverage attention mechanisms to shift the selection of
signal preprocessing forms from the signal level to the feature level.
Finally, in the supervised fine-tuning stage, we validated the AMR
performance through representation evaluation (linear evaluation and
prototype evaluation) and few-shot fine-tuning. Three publicly avail-
able datasets, including RML2016.10 A, RML2016.10B, RML2018.01 A,
were used to evaluate the proposed MAC. (refer to Supplementary
Note 2 for details.)

Performance of representation learning
We froze the feature embeddings obtained after unsupervised training
and employed two evaluation paradigms, linear evaluation and pro-
totype evaluation, to demonstrate the superior representation learn-
ing performance of the MAC unsupervised framework. We conducted
a comparative analysis with several previous unsupervised learning
frameworks, including SAE37, MoCo33, SimSiam38, MoCoV239, and
CPC40. For fairness, wedenote theMAC-MT4without theDAmodule as
MC-MT4, and use it for comparison with the unsupervised framework,
employing the same classifier. Significantly, we maintained con-
sistency in hyperparameters such as km,ρ across MC-MT4, MoCo, and
MoCoV2. Additionally, in all comparative experiments except for SAE,
we utilized the same backbone as the feature extractor to ensure fair
performance comparison among unsupervised frameworks with
similar feature extraction capabilities.

Figure 2a, b illustrate the accuracy curves of variousmethods at all
SNRs in two evaluation paradigms. Linear evaluation and prototype
evaluation yield similar results, with MC-MT4 achieving the best
recognition performance. This strongly demonstrates the superiority
of multi-domain representation learning. Among the comparison
methods, CPC achieves reasonably good results in two evaluation
paradigms, which can be attributed to the contrastive learning task of
encoding predictions, which captures the temporal dependencies of
the signal. However, the information obtained from a single domain
remains inherently limited. SimSiam performs better under the pro-
totype evaluationparadigm than under linear evaluation. This is due to
SimSiamdiscarding negative sample pairs and directlymaximizing the
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similarity between two augmented views of the same sample, which
aligns with the instance-based verification of the prototype evaluation.
The proposed MC-MT4 outperforms the previous UAMR models SAE,
indicating that the contrastive unsupervised learning approach exhi-
bits superior capabilities in extracting meaningful representations
compared to the simpler generative unsupervised sparse auto-
encoders. The comprehensive utilization of multi-domain features in
MC-MT4 contributes to its improved accuracy, indicating that crucial
modulation information in wireless signals resides in multiple repre-
sentation domains within a high-dimensional space. By effectively
leveraging this multi-domain information, the proposed model can
capture the discriminative features underlying the signals and achieve
enhanced classification accuracy.

Furthermore, we visualize and analyze the effectiveness of the
proposed MAC framework utilizing t-Distributed Stochastic Neighbor
Embedding (t-SNE)41 to map the high-dimensional feature to a two-
dimensional space for visualization. As shown in Fig. 3a–h, we consider
the t-SNE results for both linear evaluation and prototype evaluation
(three sub-centroids) at 0 dB (see Supplementary Fig. S1) and 8 dB. As
the number of training epochs increases, the intra-class distances for
both paradigms are gradually reduced, and the inter-class distances
are expanded, indicating that MAC is able to get high-quality signal
representations usingunlabeled samples.We found that thedifference
in classification hierarchy between linear evaluation (Fig. 3a–d) and
prototype evaluation (Fig. 3e–h) can lead to changes in feature dis-
crimination. In addition, for some modulation types, an excessive

number of sub-centroids may not contribute to classification.
(Detailed discussion see Supplementary Note 3 and Note 7.)

Performance of few-shot fine-tuning recognition
To intuitively demonstrate the utilization of unlabeled samples in
representation learning, we conducted few-shot fine-tuning experi-
ments using N =2, 5, 10, 20, 50, 100 labeled samples. To ensure fair-
ness, in all datasets, the number of labeled samples for each
modulation type at each SNR remains the same. To eliminate the
impact of individual sample differences on the results, all fine-tuning
and real-time inference results are averaged over ten Monte Carlo
experiments.

Firstly, we conducted a thorough analysis of the fine-tuning per-
formance of MAC using different numbers of labeled samples. The
results are shown in Fig. 4, where the curves in different colors
represent different values, and the shading around the curves repre-
sents the fluctuation in accuracy due to random sample selection. It is
evident that as the number of labeled samples increases, the recog-
nition accuracy of MAC continuously improves. And, the impact of
individual sample differences on MAC fine-tuning weakens across all
threedatasets.Whenweuse 100 labeled samples tofine-tune,meaning
10% labeled ratio in the RML2016.10 A and 1.67% labeled ratio in the
RML2016.10B, MAC achieves an average recognition accuracy of over
78.93% and 74.15% for signals above 0 dB, respectively. For the
RML2018.01 A dataset, using the 2.44% labeled samples, the average
recognition accuracy for signals above 12 dB was over 79.24%.

Fig. 1 | DesignofMAC-basedUAMR framework. a Signal observation comparative
dimensions based on IQ single dimension. b MAC considers multi-domain repre-
sentation perspectives. c The workflow of MAC. Firstly, the unsupervised training
module performs inter-domain and intra-domain representation learning on
unlabeled signals, bringing positive samples closer and negative samples farther

apart in the feature space, respectively. Secondly, the AMR tasks are performed by
supervised fine-tuning. Representation evaluation (linear evaluation and prototype
evaluation) and few-shotfine-tuning areused to assess thequality of representation
learning and semi-supervised performance, respectively.
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Additionally, we compared our method with the current popular
semi-supervised AMR methods, including SSRCNN36, SemiAMC32, and
TcssAMR16. The comparison results on RML2016.10 A, RML2016.10B
and RML2018.01 A datasets are shown in Fig. 5. It is evident that MAC
achieved the best semi-supervised recognition performance across
three datasets in 90% of cases (Fig. 5d, h, i). We observe that the per-
formance gain of MAC compared with the semi-supervised methods
mainly comes from the signals with high SNR, while MAC performs
similarly with the semi-supervised methods when the SNRs are low.
When N > 10 (Fig. 5a–c, e–g, i–k and Supplementary Fig. S2), MAC
achieves significant performance improvements at high SNRs across
all three datasets. Particularly on the RML2018.01 A dataset, when
N = 50 (Fig. 5k), using only 1.22% of the labeled samples from the
dataset, MAC can achieve an over 70% recognition accuracy for signals
above 12 dB. Compared to SemiAMC and TcssAMR, recognition
accuracy has increased by 17.8% and 30.5% respectively, illustrating a
improvement over existing semi-supervised methods.

The backbone of TcssAMR is based on Transformer.We increased
the fine-tuning epochs for TcssAMR. However, even after 120 epochs
of training, the accuracy remained lower than MAC. On the
RML2018.01 A dataset, TcssAMRmight require more labeled samples.
When N =2 and N = 5 (Supplementary Fig. S2), SemiAMC achieved
higher accuracy than MAC on the RML2018.01 A dataset. As the num-
ber of labeled samples increased, the accuracy improvement of
SemiAMC increased slowly. Note that, when N = 20, 50, 100 (Fig. 5j,k
and (Supplementary Fig. S2), using 0.49%, 1.22%, and 2.44% labeled
signals from the RML2018.01 A dataset for fine-tuning, the recognition
accuracy of MAC is higher than SemiAMC by 5.98%, 19.03%, and
19.68%, respectively, at a SNRof 18 dB. These phenomenonmaybedue
to the multi-domain representation extraction pre-trained through
unsupervised learning requires a certain number of labeled samples
for activation. MAC significantly improved the recognition accuracy of
semi-supervised AMR through the multi-domain contrastive learning
and the DA mechanism.

Prototype
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The comparison of recognition accuracy between MAC and
popular supervised AMR models, including I-Q CNN42, ResNet43,
CLDNN44, CLDNN243, LSTM20, MCLDNN23, PET-CGDNN45 in few-shot
scenarios are shown in the (Supplementary Table S1). It is evident
that the performance of supervised methods significantly decreases
with fewer labeled samples, while MAC, pre-trained with unlabeled
samples, significantly improves the AMR performance under N ≤ 100.
When N =2 and N = 5 (Supplementary Table S1), MAC improves
recognition accuracy by 7.22% and 9.92%, respectively, compared to
the SOTA supervised AMR methods. It is worth noting that PET-
CGDNN achieves the best performance under fully supervised con-
ditions (when N =ALL, thanks to the proposed frequency estimation
module. However, as the number of labeled samples decreases
(whenN =2, 5, 10, 20, 50, 100), PET-CGDNN found it difficult to

accurately estimate the frequency offset, resulting in a significant
decrease in the recognition accuracy. Compared to SP-MAC, MAC
significantly improves recognition accuracy across all values of $N$.
When N = 100 (Supplementary Table S1), using 10% of the dataset
labeled samples,MAC (58.12%) nearly achieves the same results as SP-
MAC (58.35%) using all dataset labeled samples. This fully demon-
strates the effective utilization and exploitation of unlabeled samples
through the proposed multi-representation domain unsupervised
pre-training. Additionally, even when using all labeled samples, MAC
still improves accuracy by 2.99% compared to SP-MAC (Supple-
mentary Table S1). This demonstrates that unsupervised pre-training
can provide robust pre-trained weights for downstream AMR tasks.

The inability of anAMRmethod to accurately classifymodulations
arises when it fails to identify the fundamental AMR characteristics
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within its training set. In order to thoroughly validate the network’s
generalization ability, our experiment is designed to ensure a clear
demarcation between training and testing phases by employing dis-
tinct datasets. In eachmethod, the correspondingmodel pre-trained in
RML2016.10 A will be tested in RML2016.10B to verify the general-
ization abilities of the model.

Considering the results in (Supplementary Table S2), most of the
supervised AMR methods based on I-Q signals have shown poor per-
formance in generalization accuracy. It can be seen that an AMR
method can no longer classify modulations well if this method cannot
find the essential AMR characteristics in its training set. The ResNet
architecture, incorporating multiple layers of residual structure con-
nections, effectively mitigates overfitting on the training dataset,
thereby preserving an accuracy of 86.98% on the generalization data-
set (Supplementary Table S2). MCLDNN exploits the complementary
information from I-Q multi-channel, I channel, and Q channel data to
extract robust signal features, resulting in an accuracy of 89.16%. The
proposed MAC-MT4 has achieved the best performance and its
accuracies are over 91% when the SNR = 8 dB (Supplementary
Table S2). This demonstrates the strong AMR generalization ability of
MAC-MT4. The possible reasons are as follows. Firstly, during unsu-
pervised training, MAC-MT4 does not establish a direct mapping
between signal samples and class labels but discretizes the feature
vectors of the samples in the sample space. This enables MAC-MT4 to
avoid overfitting samples in a single dataset. Secondly, the utilization
of multi-domain information assists MAC-MT4 in identifying the dis-
tinctive features of signals in different representation domains. Most
importantly, the proposed MAC model selects relevant domain infor-
mation through domain attention mechanisms to emphasize key
representations. For PSK and QAM signals in particular, the con-
stellation space representation domain is a 2D statistical distribution
diagram result of symbol values of a signal on the I-Q plane, and its
shape, number, and array of constellations are generally unchanged,
even when the transmission symbols of the same modulation are
ordered differently in different datasets. These explicit features to
represent modulations are not difficult to find by MAC.

The confusion matrices in Fig. 6a, b depict the performance of
MAC-MT4 on the generalization task at SNR =0dB and 8dB. Overall,
the diagonal elements of the confusion matrices are clear, indicating
that MAC-MT4 maintains robust feature extraction capabilities and
achieves satisfactory classification performance when trained and
tested on two different datasets, thereby ensuring accurate and reli-
able identification of modulation schemes in diverse and dynamic IoT
transmission environments.

To assess the effectiveness of MAC in achieving favorable gen-
eralization performance, we evaluate the quality of features extracted
by both supervised and unsupervised model encoders. The distribu-
tion of feature vectors in the feature space serves as a reliable indicator
of the signal representation quality. In this regard, we introduce the
similarity ratioR, which provides a comprehensive assessment of both
intra-class and inter-class distributions, and can be expressed as

R=
1
�L

X�L
l = 1

Pl
intra�class

Pl
inter�class

ð1Þ

A higher similarity ratio between intra-class and inter-class indi-
cates that the featureswithin the sameclass aremore tightly clustered,
which is beneficial for subsequent classification. Figure 6c, d illustrates
the distribution of the proposed unsupervised method and a super-
vised model with the same backbone on the generalization task. In
Fig. 6c, when the training and testing data belong to the same dataset,
the density distribution of the unsupervised model is similar to the
supervised model. However, in Fig. 6d, when tested with signals that
are not in the same dataset as the ones used for training, the similarity
ratio of the supervised model peaks around R= 1. This suggests that

some signals have similar intra-class similarity Pintra�class and inter-
class similarity Pinter�class , posing significant challenges for subsequent
classification. In contrast, the proposed unsupervisedmodel exhibits a
higher similarity ratio, indicating thatMAC-MT4 can learnmore robust
signal representations and has pleasant generalization ability.

Ablation study
We discuss the impact of hyperparameters as well as key modules of
MAC through ablation studies. The symbol for the variant is shown in
Supplementary Note 4. Prior to this, we demonstrate the effects of the
momentumupdate coefficient and feature dictionary stack size on the
effectiveness of signal representation learning. We compared the
recognition accuracy and training time of the proposedMAC-MT4 and
representative MAC-D1 for 0 dB signals on two datasets.

Supplementary Table S3 illustrates the impact of momentum
update coefficients on the consistencyof featureswithin the range of 0
to 0.999. When ρ =0:9, both MAC-MT4 and MAC-D1 achieve optimal
performance on two datasets, indicating that a moderately slow
update of the key encoder is beneficial. This can be attributed to the
fact that rapid updates of encoder parameters (i.e., too small coeffi-
cients) lead to the loss of consistency between consecutive iterations
of features within the dictionary over time. Conversely, slow updates
(i.e., too large coefficients) result in significant distribution differences
among features in different dictionaries; at the extreme of no
momentum (ρ=0), the training loss oscillates and fails to converge.
These results support our motivation to build a consistent dictionary.

Notably, the proposedmethod outperforms RML2016.10B on the
RML2016.10 A dataset when using a smaller momentum update coef-
ficient (ρ<0:7). This can be attributed to the smaller sample size of the
RML2016.10 A dataset, where individual identification-based proxy
tasks are relatively easy to accomplish in unsupervised training,
thereby requiring less consistency in sample features. Furthermore,
the momentum update strategy does not introduce any additional
trainable parameters.

Figures 7, 8 shows the results of the ablation study on MAC.
Firstly, Fig. 7 illustrate the influenceof km on the effectiveness of signal
representation learning. In general, the accuracy of identification
benefits from a larger km, akin to the concept of a memory bank. The
inclusionof a greater number of negative sample features in thefieldof
comparison facilitates the learning of signal representation. However,
excessive negative samples not only prolong training time but also
increase the difficulty of contrastive learning.

The results indicate that the improvement in accuracy becomes
negligible compared to the additional computational resources when
the number of negative samples exceeds 16,384. The proposed
method achieves the optimal trade-off between accuracy and training
time on the RML2016.10 A and RML2016.10B datasets when km = 8192
and 16,384, respectively. Building upon these findings, we will
conduct subsequent experiments based on the aforementioned
hyperparameters.

The different representation domains serve as different perspec-
tives of the samemodulation type, where the sample from SD and TD
can alternate as contrastive query vectors. Figure 8a shows the con-
trastive loss curves between different representation domains
according to Fig. 9b on the validation set in training MAC-MT4. The
four groups of contrastive loss curves consistently decrease and con-
verge as the unsupervised training epoch goes on. This indicates that
MAC can simultaneously complete the task of positive sample
screening in four representation domains. LVs ,V2

s�t converges to nearly
the minimum value. This is attributed to the locally scaled repre-
sentation domains fWTg are obtained from the SD through wavelet
transformation, resulting in high similarity in overall waveform trends
that facilitate effective contrastive learning by the network. Benefiting
from the “I-Q single-centering” strategy, Ls�t with SD samples as query
vectors, reaches a better solution than Lt�s. Figure 8b demonstrates
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the convergence of the loss function forMAC-MT4,MC-MT4, and TAC
during the linear evaluation stage. TAC-MT4, which lacks the intra-
domain contrastive learning, only converges to a local minimum. Due
to the presence of DA, MAC-MT4 outperforms MC-MT4 and achieves
the comparatively best solution.

Subsequently, a detailed analysis will be undertaken to assess the
impact of each representation domain’s ablation and the specific
contributions made by SD representation learning and DA to MAC.

We conducted ablation experiments on intra-domain and inter-
domain contrastive learning, as well as the domain attention
mechanism, comparing the classification performance of MAC-MT4,
MAC-MT4, SRC, TAC, andMAC-DX(MAC-D1-MAC-D4) on two datasets.

The linear evaluation results on the RML2016.10 A and
RML2016.10B datasets, as shown in Supplementary Table S4 and
Supplementary Table S5, respectively, indicate that overall, the
recognition accuracy is higher on the RML2016.10B dataset due to its
larger sample size. The performances for both datasets demonstrate

that MAC-MT4 is the most effective among all SNRs. Consistent with
the analysis in Fig. 8b the method of combining TDs and SD under the
MAC framework (MAC-DX) significantly outperforms SRC in terms of
testing accuracy. Compared to SRC, the accuracy of MAC-MT4
improved by 12.94% on the RML2016.10 A dataset and 12.92% on the
RML2016.10B dataset (Supplementary Table S4 and Supplementary
Table S5). This confirms the effectiveness of the MAC unsupervised
framework, where inter-domain contrastive learning can comprehen-
sively utilize information from both SD and TDs.

The results of MAC-DX, which use only a specific representation
domain, are lower than those of MAC-MT4. Notably, among the con-
tributions of different specific representationdomains,MAC-D2 shows
lower recognition accuracy, which can be attributed to the challenges
posed by the rapid fluctuations of instantaneous frequency, making
feature learning by the encoder more difficult. Additionally, MAC-D4
exhibits good performance at low SNRs, benefiting from the high- and
low-frequency decomposition effects of wavelet transforms. Overall,
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these results highlight the advantages of integrating multiple repre-
sentation domains to effectively explore and leverage information
from different domains.

The confusion matrices for the proposed MAC-MT4 on the
RML2016.10 A andRML2016.10B datasets are shown in Supplementary
Fig. S3. The proposed MAC-MT4 demonstrates satisfactory dis-
criminability for the challenging recognition problem of QAM16 and
QAM64, which has been a major challenge for most existing AMR
methods23,24. Additionally, through the DA module, the MAC frame-
work effectively reduces confusion between 8PSK, AM-DSB, and QPSK
signals. Thesemodulation types exhibit significant distinguishability in
constellation space and instantaneous amplitude representation,
which canbe appropriately capturedbyMAC.However, differentiating
between AM-DSB andWBFMposes somedifficulties. Due to the strong
spectral similarity between these two types of signals46,WBFMalso has
periods of audio silence21.

For a more straightforward visualization of the impact of SD
representation learning on feature vectors, we compute the density
distribution of intra-class similarity Pintra�class and inter-class similarity
Pinter�class for modulation signal classes. The specific definition for
intra-class and inter-class similarity measurement is shown in the
Supplementary Note 5.

Pleasant contrastive learning results should maximize the intra-
class sample similarity while minimizing the inter-class similarity. We
define Ns =N as the number of inter-class samples used for inter-class
similarity calculations. As depicted in Fig. 8c,d, with the addition of
intra-domain contrastive learning, intra-class sample similarity is
increased, while inter-class sample similarity is decreased. Conse-
quently, SD representation learning is crucial for preserving the IQ
characteristics and distinguishing amplified samples within the
feature space.

Undifferentiated handling of information from various repre-
sentation domains, as the classification network treats all inputs
equally, makes it difficult to select appropriate representations. MC-
MT4, lacking attention guidance, achieves lower performance com-
pared to MAC-MT4 (Supplementary Tables S4,S5). MC-MT4 has lim-
ited capability to filter out irrelevant information and emphasize
relevant information among signals from multi-representation
domains. Furthermore, we delve into a detailed display of the effec-
tiveness of the DA module in selecting signal representation domains
at the feature level in the Supplementary Fig. S4. Comparing the visual
attention weights to the modulation signal types, MAC correctly
chooses the transformation domains for signal preprocessing at the
feature level and emphasizes the feature vectors of the appropriate
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representation domains for different modulation types in the final
classification module. (Refer to Supplementary Note 6 for details.)

In summary, the extensive incorporation of multi-representation
domains in MAC-MT4 leads to superior classification performance.
Intra-domain contrastive learning assists MAC in preserving robust SD
features, and theDAmodulewithin theMAC framework plays a pivotal
role. Effective domain attention weights aid in selecting the most sui-
table representation domain forms at the feature level, laying a strong
foundation for final recognition.

Discussion
Previous experiments on publicly available datasets have shown that
multi-representation attentive domain contrastive learning (MAC) has
the ability to leverage a substantial quantity of unlabeled signal sam-
ples. Creating positive and negative sample pairs using signal multi-
representation domains and data augmentation, signal representation
learning is performed unsupervised. The experimental results of linear
evaluation and prototype evaluation in Fig. 2a, b indicate that MAC
achieves the mining of information from multiple characterization
domains and obtains discriminative modulation features.

Subsequently, the results of few-shot fine-tuning highlight the
impressive unsupervised learning capability and interpretability of the
MAC framework. The results under different sample label sizes in
Figs. 4 and 5 indicate that MAC can reduce the number of labeled
samples required. The comparison results in Supplementary
Table S1,S2 with the supervised model show that MAC reduces the
disparity with supervised models in terms of classification results and
exhibits robust generalization performance.

The results of the ablation study indicate the contributions of
different representation domains and components in MAC. We
found that the characteristic differences of modulated signals in the
representation domain are related to their performance contribu-
tions, as shown in Supplementary Fig. S5. For instance, in distin-
guishing QPSK and 8PSK signals, as well as QAM16 and
QAM64 signals, the constellation space representation domain and
the instantaneous frequency representation domain, which consider
amplitude information, achieved better clustering results. In general,
the visual results of using specific representation domains align
closely with the inherent modulation features of the signals. In
addition, the domain attention (DA) module allocates suitable
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attention to multi-representation domains, facilitating the selection
of the optimal signal representation domain. The contribution of
specific representation domains to different modulation types is in
good alignment with the attention scores obtained by the DA mod-
ule, shown in Supplementary Fig. S4, providing strong evidence of
the interpretability of MAC.

Our approach enables effective spectrum utilization without
relying on labeled training samples, particularly in dynamic and het-
erogeneous environments. Most importantly, unsupervised signal
representation learning is not confined to a specific feature task. Our
objective is to leverage MAC for transferring across multiple down-
stream tasks, such asmodulation recognition, estimation of key signal
parameters, SNR estimation, and communication signal behavior
recognition. By leveraging unlabeled data, our method contributes to
the development of more efficient, adaptive, and intelligent wireless
communication systems. These advancements have the potential to
facilitate awide range of innovative applications and services in the era
of IoT devices and next-generation wireless networks. In addition,
optimizing the representation learning process by considering multi-
ple similarity measurement methods and mining quantitative indica-
tors that can evaluate the level of unsupervised representation
learning of signals could be further investigated.

Methods
Signal model and problem formulation
Consider the basebandwireless signalmodel after down-conversion at
the receiver. At any discrete time instant, the relationship between the
transmitted signal and the received signal can be represented as

sr ðnÞ= sltðnÞ*hðnÞejð2πnΔf +φ0Þ +wðnÞ ð2Þ

where sr ðnÞ is the received baseband signal, sltðnÞ is the modulated
signal generated from one of �L modulation schemes
fs1ðnÞ, s2ðnÞ, � � � , s�LðnÞg, hðnÞ is the pulse response of the wireless
transmission channel, * denotes the convolution operation,wðnÞ is the

noise,Δf andφ0 represents the additional carrier frequency offset and
phase jitter during the transmission process. n =0, 1, . . . ,NL � 1, NL

represents the total length of the signal.
The AMR methods based on multi-input use different repre-

sentation domains and achieve pleasant performance when the input
form and characteristics of the signal can be selected properly. The
modulation recognition problem based on signals from multi-domain
can be formulated as

l̂ = arg max
l2f1, ..., Lg

PðMlj
X
k = 1

TkðsrðnÞÞÞ ð3Þ

where Tkð�Þ denotes the k -th preprocessing transformation operation
for I-Q sequence of baseband signal. The four signal representation
domains we consider are introduced in Supplementary Method 1.

Unsupervised learning of MAC
Considering a collection of representation domain datasets, denoted
as VD = fV 1,V2:::VK g. For each domain, we define xi

t as the i -th signal
sample in the t -th domain dataset. Vt ,Vs from VD represent the two
representation domain datasets for wireless signal. Vs represents the
I-Q SD. Vt represents the outcome of a target signal processing
transformation, referred to as TD. The dataset comprises sample pairs
fxi

s, x
i
tg

N
i = 1 with a total ofN pairs, forming a contrastive domain of signal

samples between domains Vs andVt .
Positive sample pairs of inter-domain contrastive learning are

those originating from the joint distribution α = fxis , xi
tg, while negative

sample pairs come from the marginal product β= fxi
s, x

τ
t gi≠τ. (Refer to

Supplementary Method 2 for details.) For the proxy task of signal
individual identification between the SD and TDs, the similarity score
for a pair of positive sample can be expressed as

Sifs, tg = exp
gsðf sðxi

sÞÞgtðf tðxi
tÞÞ

kgsðf sðxisÞÞk � kgtðf tðxitÞÞk � μ

� �
ð4Þ

Fig. 9 | Modules in MAC Framework. a Different data augmentation methods for modulation signals used for SD representation learning. b “I-Q single centralization”
multi-representation domain loss calculation strategy. c DA module for attention inference.
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where the hyperparameterμ acts as a temperature coefficient that
scales the range of similarity scores. A higher value ofμ shifts the
emphasis towards negative sample pairs with smaller similarity dif-
ferences. Our aspiration is to train a discriminator to identify a single
positive sample from a batched contrastive set Us�t = fα,β1,β2:::βζ g
which includes ζ negative samples. The “SD-TD” contrastive loss
function can be defined as

Ls�t = � EUs�t
log

Sifs, tg
Sifs, tg +

Pζ
j = 1S

i, j
fs, tg

" #
ð5Þ

However, when viewed from a high-dimensional feature space,
each representation domain of the signal is merely a form of repre-
sentation. Symmetrically, we not only consider the negative sample
similarity

Pζ
j = 1S

i, j
fs, tg when traversing the TD Vt using the SD Vs as the

query set, but also take into account the negative sample dis-
criminative score

Pζ
j = 1S

i, j
ft, sg obtained by swapping the query relation-

ship between the SD and TDs.

LVs ,Vt
inter = Ls�t + Lt�s ð6Þ

where LVs ,Vt
inter represents the inter-domain contrastive loss between the

two representation domains.
Considering the potential impacts encountered in real-world

channel transmission, we selected four data augmentationmethods to
construct positive and negative sample pairs. Figure 9a illustrates the
impact of various data augmentation techniques on the signal in the
constellation diagram. Similar to the construction of inter-domain
contrastive similarity (refer to Supplementary Method 3), we define
the similarity between a pair of positive samples within the same
domain as

SifA,Bg = exp
gAðf Aðx̂i

AÞÞgBðf Bðx̂iBÞÞ
kgAðf Aðx̂iAÞÞk � kgBðf Bðx̂iBÞÞk � μ

 !
ð7Þ

The intra-domain contrastive loss can be represented as

Lintra = � EUAB
log

SifA,Bg
SifA,Bg +

Pζ
j = 1S

i, j
fA,Bg

" #
ð8Þ

The correlation between different representation domains of
wireless signals decreases with nonlinear signal processing steps.
Therefore, we propose the “I-Q single-centering” strategy to facilitate
MAC to effectively handle any number of representation domains as
illustrated in Fig. 9b. (Refer to Supplementary Method 4 for details.)
Themulti-domain joint contrastive loss function under the “I-Q single-
centering” strategy can be expressed as

LK =η1Lintra +
XK
t = 2

ηtL
Vs ,Vt
inter ð9Þ

where η1,η2 � � �ηK are the weighting coefficients for the loss functions
between the SD and each TD, and

PK
t = 1ηt = 1.“I-Q single-centering”,

which effectively amplifies the distinctiveness of samples in the feature
space while striking a balance between computational efficiency and
operational effectiveness.

Domain attention module
DA module was proposed to distinguish which feature vectors
obtained from different representation domains provide the most
helpful information for AMR, as illustrated in Fig. 9c. DA performs
two distinct fusion operations to obtain consolidated features

νcoh1 2 R1 × ðK + 1ÞL, νcoh2 2 RðK + 1Þ× L.

νcoh1 = Jðνs, ν1, � � � , νK Þ, s:t: νcoh1ð1,n+ ðk + 1Þ× LÞ= νkðnÞ
νcoh2 = Jðνs , ν1, � � � , νK Þ, s:t: νcoh2ðk + 1,nÞ= νkðnÞ

ð10Þ

where J represents the concatenate operation, ν : fνs, ν1, � � � , νK g
represents the set of feature vectors derived from different repre-
sentation domains. Subsequently, DA applies global average pooling,
squeezing and convolution to map it to the representation domain
weight scores γ : ½γs, γ1, � � � , γK �. The entire process can be represented
as

νatt = νcoh1 � σðcov1 × 1ðAvgPoolðνcoh2ÞÞÞ ð11Þ

where σ represents the sigmoid activation function. νatt 2 R1 × ðK + 1ÞL is
capable of disregarding redundant information across multiple
representation domains, ensuring that the final modulation classifi-
cation employs the most suitable representation domain features. DA
achieves the selection of signal representation domains at the feature
level, thereby significantly reducing reliance on prior information and
expert experience.

Experimental setup
In experiments, the proportions of the unlabeled training set, test set,
and validation set are divided into a 6:3:1 ratio in each dataset. All
unlabeled signals in the training set are used for unsupervised pre-
training. For the labeled training set, during the representation eva-
luation phase, the number of labeled samples is equal to that of
unlabeled samples. In the few-shot fine-tuning phase,N labeled signals
are randomly selected from the unlabeled dataset. Note that our
method’s effectiveness analysis and ablation validation were con-
ducted on RML2016.10 A and RML2016.10B. Few-shot fine-tuning
experiments were validated on RML2016.10 A, RML2016.10B and
RML2018.01 A datasets. The comparison with supervised AMR meth-
ods experiments were validated on the RML2016.10 A and
RML2016.10B datasets.

Unsupervised representation learning: In the unsupervised train-
ing phase, we conduct a total of 240 training epochs with a batch size
of 256. The initial learning rate is 0.03, and after the first 120 epochs,
the learning rate is reduced by a factor of 0.1 every 40 epochs. For
calculating the contrastive loss, the temperature coefficient μ is
set to 0.07.

Supervised fine-tuning: There exist two paradigms within this
stage. One is called representation evaluation, where the pre-trained
encoder is kept frozen. Linear evaluation33 and prototype
evaluation47 are implemented by training linear classifiers or proto-
type classifiers, which can evaluate the representation learning ability
of MAC. Another one is few-shot fine-tuning, where both the encoder
and classifier are fine-tuned by few-shot labeled signals, which can
assess the semi-supervised AMR performance. In the supervised fine-
tuning stage, we conduct a total of 80 training epochs with a batch
size of 128. The initial learning rate is set to 0.01, and after the first 40
epochs, the learning rate is reduced by a factor of 0.2 every 10
epochs.

Data availability
All experimental datasets used in this paper were inDeepSIG’s publicly
available datasets RML2016.10 A, RML2016.10B, RML2018.01 A and
generated using GNU Radio, which are available in https://www.
deepsig.ai/datasets/. Source data are provided with this paper.

Code availability
Codes used in this work are available from the corresponding authors
on request. A permanent version is released on Zenodo: https://doi.
org/10.5281/zenodo.15599189.
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