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Mapping global floods with 10 years of
satellite radar data

Amit Misra 1 , Kevin White1, Simone Fobi Nsutezo1, William Straka III 2 &
Juan Lavista 1

Floods cause extensive global damage annually, making effective monitoring
essential. While satellite observations have proven invaluable for flood
detection and tracking, comprehensive global flood datasets spanning
extended time periods remain scarce. In this study, we introduce a deep
learning flood detection model that leverages the cloud-penetrating cap-
abilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery,
enabling consistentflood extentmapping through cloud cover and in bothday
and night conditions. By applying thismodel to 10 years of SAR data, we create
a unique, longitudinal global flood extent dataset with predictions unaffected
by cloud coverage, offering comprehensive and consistent insights into his-
toricallyflood-prone areas over thepast decade.Weuseourmodel predictions
to identify historically flood-prone areas in Ethiopia anddemonstrate real-time
disaster response capabilities during the May 2024 floods in Kenya. Addi-
tionally, our longitudinal analysis reveals potential increasing trends in global
flood extent over time, although further validation is required to explore links
to climate change. To maximize impact, we provide public access to both our
model predictions and a code repository, empowering researchers and prac-
titioners worldwide to advance flood monitoring and enhance disaster
response strategies.

Floods are the deadliest natural hazards, striking numerous regions in
the world each year1. Floods cause 40 billion dollars (2015 USD) in
damages annually2 and affected 2.5 billion people between 1994 and
20143. Furthermore, the population of people living in flood-prone
areas is increasing due to migration and population growth4,5. All of
these impacts are expected to become even more severe with climate
change6.

A key factor in understanding and mitigating impacts from
flooding is knowingwhere flooding occurs on a regular basis. Accurate
flood extent mapping provides essential data for various purposes. It
helps urban planners design resilient infrastructure, aids in developing
early warning systems, and supports insurance companies and pol-
icymakers in assessing risks and allocating resources. By under-
standing past flooding events, communities can better prepare for

future occurrences, leading to safer and more resilient living envir-
onments. While mapping flood extent is important, doing this via on-
the-ground efforts is often challenging, especially in developing
countries, where resources for this time-intensive work are scarce. In
addition, ground-based assessments are often for small areas.

Satellite data offers a powerful solution for mapping flood extent
at scale. Two primary types of sensors are commonly used for this
purpose: optical/infrared and Synthetic ApertureRadar (SAR). Optical/
infrared sensors passively capture reflected light, yielding familiar
photographic images with benefits like wide availability and frequent
observations at various resolutions. However, their effectiveness is
limited by cloud cover and a dependence on daylight. In contrast, SAR
actively emitsmicrowave signals and records their reflections, offering
advantages such as being able to penetrate through cloud cover and
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operate in both day and night conditions.While SAR is often described
as all-weather, its signal may be affected during extremely heavy
rainfall7,8. However, SAR satellites like Sentinel-1 typically provide
observations every 6–12 days for a given location, whereas optical
satellite constellations have revisit times ranging from daily to several
days, often enabling more frequent coverage than SAR. This lower
temporal frequency can affect our ability to capture the full dynamics
of flood events with SAR, particularly flash floods and peak flood
extent that may occur between SAR observations. Additionally, both
technologies face challenges in complex terrain suchasnarrowvalleys,
which are common worldwide.

To understand where flooding occurs regularly, researchers have
attempted to track flood events systematically over time. Previous
work on tracking global flood events over time has primarily relied on
optical and infrared imagery, despite limitations

from cloud coverage. One notable study4 used relatively coarse
resolution (250m) visible and infrared data from MODIS (Moderate
Resolution Imaging Spectroradiometer) to map known flood events
from the Dartmouth Flood Observatory9, a curated catalog of flood
events. Similarly, the Global Surface Water (GSW) maps uses Landsat
data (30m resolution optical and infrared imagery) to track surface
water and its changes over time10, though this study was not specifi-
cally focused on flooding. Neither the MODIS- or Landsat-based
archives are being updated over time. In addition to these global,
temporal datasets, there are existing tools for real-time floodmapping
using optical and infrared imagery11–13. However, all of these approa-
ches face a fundamental challenge in that cloud coverage often
obscures flood events.

In light of the challenge of cloud coverage, SAR imagery offers a
significant advantage for flood detection because SAR microwave
signals penetrate cloud cover and can be used in both day and night
conditions. SAR’s effectiveness in flood mapping stems from the dis-
tinct backscatter signatureofwater surfaces,which appear dark in SAR
imagery due to specular reflection of the radar signal away from the
sensor. This characteristic makes SAR particularly suitable for distin-
guishing water from other land cover types. Researchers have suc-
cessfully applied various techniques to Sentinel-1 imagery for flood
mapping, including threshold-based approaches, machine learning
methods, and more recently, deep learning algorithms14. Combined
with its high resolution capabilities (as fine as 10m for Sentinel-1), SAR
has become a valuable tool for flood mapping. SAR’s effectiveness in
detecting flooding and its cloud-penetrating capabilities were high-
lighted in a comparison of flood detection between Sentinel-1 (SAR)
and Sentinel-2 (optical) satellites over Europe, with SAR imagery
detecting 58%of flood eventswhile optical imagery capturedonly 28%,
given the same number of satellites15.

Given these capabilities, SAR data has been used extensively for
flood mapping16–18, especially over Europe and Canada, where satellite
ownership enables more frequent observations than other regions in
the world. However, unlike the comprehensive, multi-year datasets
created using MODIS and Landsat imagery, there has not been an
effort to create a similar dataset of flood extent using SAR imagery.
While the Copernicus Global FloodMonitoring (GFM) systemprovides
valuable SAR-based floodmaps19, it is primarily designed for analyzing
individualfloodevents rather thanproducing aggregatemaps showing
all flood detections across multiple years or tracking longitudinal
flooding trends. Therefore, there remains a need for an analysis of
flooding patterns over extended periods. A dataset that aggregates
global SAR flood detections over multiple years, while carefully
accounting for challenges like false positives, could provide additional
insights into the spatial and temporal patterns of flooding.

Our aim is to address this gap by building a neural networkmodel
to detect flood extent from Sentinel-1 SAR imagery and apply this
model to 10 years of available SARdata toprovide a globalflood extent
database over time. Our model uses a change detection approach,

comparing pairs of SAR images acquired before and during potential
flood events to identify inundated areas. We focus solely on SAR to
ensure consistent detection through cloud cover and in both day and
night conditions, which is beneficial for creating reliable aggregate
flood maps and enabling unbiased temporal analysis. We account for
false positives with auxiliary datasets such as soil moisture, digital
elevation models, temperature and land cover mappings.

Applying themodel to a decade of Sentinel-1 SAR data enables the
creation of a unique global dataset that supports several important
use cases:
1. A comprehensive historical baseline: We generate a high-

resolution map identifying historically flood-prone areas globally
over the past decade. Leveraging SAR’s ability to observe through
clouds, this dataset provides a consistent perspective that
complements optical datasets often hindered by cloud cover
during flood events. While historical flooding is not a perfect
predictor of future risk, particularly as climate change and other
dynamic factors (e.g., land use change) may alter future patterns,
this baseline can inform risk assessments, mitigation planning,
and resilient infrastructure development.

2. Enhanced rapid response: The underlying model and processing
pipeline can provide near-real-time flood extent maps during
crises, serving as a valuable tool for disaster response teams.

3. Observation-based trend analysis: The longitudinal nature of our
datasets enables analysis of potential trends in flood extent over
time. Although the 10-year span limits definitive climate attribu-
tion, this SAR-based approach offers a globally consistent,
observation-driven view of flood dynamics over time. It also
helps mitigate biases associated with report-based trend
studies20,21 and provides a foundation for ongoing monitoring as
the satellite record expands.

Results
Global flood map and application to Ethiopia
We aggregated all flood detections over the 10 years of Sentinel 1 SAR
data available at the time of our analysis (Oct 2014–Sep 2024) to create
a global flood extentmap, as shown in Fig. 1. While we are able to track
floodingdetectedon specificdates andmapflood ratesover time, here
we present flood extent as a binary output for ease of visualization,
marking only whether or not flooding has been detected in that pixel
after removing potential false positives. In SAR imagery, there are
multiple potential causes of false positives that need to be accounted
for when running a model over an extended time period and not just
for specific flood events (see “Methods” Section for more details).
Additionally, while we run our model at a 20m spatial resolution, here
we create the map at 250m resolution to aid in visualization.

After creating the global flood map, we developed an exclusion
mask to identify areas where flood detection may be unreliable or
prone to false positives. This mask covers urban areas, where building
interference makes flood detection challenging, arid regions where
certain surface features can create false positives, and areaswith rough
terrain. In our visualizations, these excluded areas are shown in gray.
This masking approach, similar to that used by the Copernicus GFM
system, helps users understand where our flood detection capabilities
may be limited. More details on the exclusionmask logic can be found
in the “Methods” section.

To contextualize our flood detection approach, we compared our
results with two existing GSW datasets: the Landsat-based GSW
dataset10 and a MODIS-based dataset4 (see Table 1). For the GSW
dataset, we considered anything with water occurrence less than 50%
as a flood-prone area. Our analysis shows significant increases in
detected flood extent compared to these existing datasets. Globally,
we estimate that our results increase areas with detected historical
flooding by 71%. Given that our dataset’s timespan (2014–2024) is
largely covered in the GSW (1984–2021) and MODIS (2000–2018)

Article https://doi.org/10.1038/s41467-025-60973-1

Nature Communications |         (2025) 16:5762 2

www.nature.com/naturecommunications


datasets, this 71% increase suggests our approach is not merely cap-
turing recent events, but rather detecting flood-prone areas that
optical sensors missed during the same observation periods.

We also find strong overlap in locations where previous methods
have detected flooding.When examining areaswhere the GSWdataset
identifies flooding, our method detects flooding in 35% of these loca-
tions, increasing to 48%when restricting to areas outsideour exclusion
mask. The comparison with MODIS-based maps shows similar pat-
terns, with our method detecting flooding in 28% of MODIS-identified
flood areas (33% outside the exclusion mask). This is similar to the
overlap between MODIS and GSW compared to each other (36% and
20%). Note that we do not expect perfect overlap between any of these
datasets due to inherent differences in observation time spans, tem-
poral resolution, and sensing modalities (optical/infrared vs SAR).

While we can create this global map, the primary significance is
being able to go deeper and analyze any location on the globe using

the same, scalable methodology. To illustrate this capability, we
examined flood patterns in Ethiopia, a country that reflects broader
trends observed across Africa. Across the continent, our model
detects a 90% increase in flood extent compared to existing data-
sets. We focused on Ethiopia because we were able to work with
organizations within the country with deep domain knowledge
about expected flood patterns and get qualitative validation of the
insights shown here22. At a country scale, our flood map identifies
both well-known flood areas - such as regions near the Awash and
Shabelle rivers and around Lake Tana in the northwest - and reveals
additional flood-prone regions not captured in existing datasets, as
shown in Fig. 2. We estimate that our results increase the flood
detections in Ethiopia by 194%—nearly a 3× increase over existing
methods.

In Fig. 3, we highlight two areas where our model reveals addi-
tional flood-prone regions not captured in existing MODIS and
Landsat-baseddatasets: Semera in theAwashRiver Basin andDoloAdo
along the Ganale River. Near Semera, we see a 96% increase in flood-
prone areas. Several factors contribute to our confidence that this
represents improved flood detection rather than noise. First, SAR’s
ability to penetrate cloud cover enables observation during flood
events often missed by optical sensors, providing a more temporally
complete view. Second, the model’s robust performance—particularly
its high recall validated on the geographically diverse Kuro Siwo
benchmark (see Methods subsection on “Model Validation”) —sup-
ports its ability to detect true floodingwhen present. Third, qualitative
validation from local experts in Ethiopia with deep knowledge of
regional flood behavior provides corroborating support that many of
these detections are consistent with known flood-prone areas22. While
our model identifies substantially more extent, we also note regions—
especiallywetlands near lakes—where optical datasets detectwater not
captured by our model, underscoring the complementarity of differ-
ent sensing modalities.

In Dolo Ado, the increase in detected flood extent is even more
pronounced, exceeding 1000% relative to the combined extent from
MODIS andGSW.While the large flood event inNovember 2023, which
falls outside the coverage of the comparison datasets, contributes
significantly to this increase, our model also captured extensive

Table 1 | Comparison of our flood detection method with
existing datasets

Region Additional Flood Area
Identified

Overlap With Existing Flood
Detections

GSW MODIS

Global +71% 35% (48%†) 28% (33%†)

Africa +90% 44% (57%†) 33% (37%†)

Ethiopia +194% 51% (78%†) 21% (44%†)

Semera +96% 59% (68%†) 31% (41%†)

Dolo Ado +1013% 59% (78%†) 72% (76%†)

Our model successfully detects a substantial portion of flood-prone areas identified in existing
datasets while revealing significant additional flood extent. The first column shows the per-
centage of additional flood-prone area identified by ourmodel relative to a combination of GSW
and MODIS flood detections. Our results identify considerably more flood extent than previous
datasets, particularly in Ethiopia and its sub-regions. Thenext twocolumns show thepercentage
offlood areas fromestablished datasets (GSWandMODIS) that ourmodel detected.Numbers in
parentheses (†) indicate detection rates when excluding areas where SAR detection may be
unreliable (e.g., urban areas, steep terrain).For context, when comparing the existing datasets to
each other, GSW captures 36% of MODIS-identified flood areas, while MODIS captures 23% of
GSW-identified areas - similar to the overlap rates we observe with our model.
GSW Global Surface Water dataset, MODIS Moderate Resolution Imaging Spectroradiometer
dataset.
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Fig. 1 | Global flood map. Aggregated global flood extent map as detected by our
deep learningmodel applied to 10 years of Sentinel-1 SAR data (October 2014–Sep
2024). Blue areas indicate locations where flooding was detected at least once
during this period, shown at 250-m resolution. Darker gray areas represent the

exclusion mask, indicating regions where flood detection may be unreliable due to
urban development, steep terrain, or arid conditions. Areas without color showed
no flooding during the observation period. This map highlights historically flood-
prone regions identified by cloud-penetrating SAR data.
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flooding prior to 2021 that is not observed in the optical datasets.
These additional detections, supported by the same validation factors
described above, suggest our model identifies genuine flood events
historically underrepresented in global optical datasets.

This enhanced flood detection capability significantly influ-
ences our understanding of flood risks to critical areas, such as
cropland. By overlaying our floodmap with land use/land cover data
from ESRI (Environmental Systems Research Institute)23, we asses-
sed the extent of cropland at risk near Semera, as shown in Fig. 4a.
We estimate that 19% of cropland in this region falls within histori-
cally flooded areas according to our map, compared to 7% in the
GSW dataset and 2% in the MODIS-based dataset. The contrast is
even more pronounced in Dolo Ado, where our model identifies 52%
of cropland in flood-prone areas versus just 1–3% in existing data-
sets. These regions primarily rely on rainfed agriculture for staple
crops like sorghum and maize, making unplanned flooding a sig-
nificant risk for the local population who depend on subsistence
farming.

With the high resolution flood map, we can zoom in further to
identify areas with historical flooding at even finer granularity, as in
Fig. 4b, which provides a more detailed view of one particular area of
Semera. Building on the previously stated assumption that historical
flood patterns can inform future risk assessments, we can use these
detailed maps to identify specific areas that may be vulnerable to
future flooding. Given the importance of local agriculture for the
populations in this area, it is important to understand which areas
could be at risk of future flooding so that government agencies and
other stakeholders, such as non-governmental aid organizations,
would be able to target mitigation efforts as well as targeted infra-
structure improvements or policies on future settlement and
agriculture.

While the example above was for a specific region in Ethiopia, the
methodology employed could be used anywhere in the world. This
capability to produce high-resolution, detailed flood risk assessments
anywhere in the world underscores the potential of our approach to
significantly enhance flood preparedness andmitigation efforts across
diverse geographic and socio-economic contexts. By enabling precise
identification of flood-prone areas, our maps can support targeted
interventions, ultimately contributing to more resilient communities
worldwide.
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Fig. 3 | Detailed flood detection comparison in key Ethiopian regions. Com-
parison of flood extent mappings in two flood-prone regions of Ethiopia: a Semera
in the Awash River Basin and b Dolo Ado along the Ganale River. Blue areas show
Sentinel-1 SARflooddetections fromour deep-learningmodel (2014–2024), orange
areas represent MODIS/Landsat flood extent (1984–2021), and green indicates

agreement between datasets. Both regions demonstrate increased flood detection
capabilities from our method, with significant amounts of flooding detected only
by our model (blue). Darker gray areas indicate regions where flood detection may
be unreliable.
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Fig. 2 | Comparison of flood extent maps for Ethiopia. Comparison of flood
extentmappings over Ethiopia frommultiple satellite sources. Blue areas show SAR
flood detections from our deep-learning model (2014–2024), while orange areas
represent historicalfloodextent fromMODIS and Landsat optical and near-infrared
imagery (1984–2021). Green areas indicate agreement between SAR and optical
datasets. The map reveals both consistencies and complementarity between
detection methods, with notable flood-prone areas identified along the Shabelle,
Ganale, and Awash rivers. Darker gray areas indicate regions where SAR flood
detection may be unreliable due to terrain or land cover characteristics.
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Case Study: Kenya 2024 flooding and disaster response
Another application of the flood model is to be able to analyze SAR
imagery for disasters. The spring rains of 2024 resulted in some of the
worst flooding in Kenya’s history. During the flooding, we were able to
collaborate with agencies within Kenya to provide near-real-time
updates of flood extent with minimal human intervention.

Figure 5 shows the flood extent map (blue) and cropland map
from ESRI (yellow) over the course of the flooding betweenMarch and
May 2024 for the entire country. While we updated the map daily
during the flood event, the version shown is a composite of all areas
where flooding was detected during this time period. As with the
Ethiopia example above, we were able to overlay this with cropland
maps to estimate the impact of the flooding. We estimated that
roughly 75,000 hectares in the country was in or very near flooded
areas (2% of all cropland in the ESRI land cover mapping for Kenya).
This is roughly in line with the public government numbers of
168,000 acres/68,000 hectares affected24.

Being able to track flooding like this in real-time is a valuable asset
during a disaster.While there are existingmodels and tools that can do

this with SAR and other satellite data, having an additional model that
can be run with minimal human intervention is another source of
information that can be leveraged.

Temporal analysis of flooding trends
One major contribution from our work is the ability to track flood
extent longitudinally. Climate change is expected to exacerbate
flooding over time, but direct measurement of this trend is challen-
ging. Because Sentinel-1 satellites have consistent return periods (with
minor exceptions) and areminimally affectedby cloud cover, weget as
unbiased a view as possible of flood extent over time.

We are able to see statistical support for an increase in flooding
over time, though we acknowledge the limitation of having only 10
years of data due to the operational period of the Sentinel-1 con-
stellation. With limited data, it is difficult to attribute this to climate
change, and we encourage others to extend this work and to refresh
this over time as new data becomes available.

We aggregated global flood extent detections by month over the
entire 10 year period. While the data is initially noisy, after removing
the seasonal trend we see an increase over time. Figure 6 shows a
seasonal decomposition of the overall trend. This decomposition
visualizes how the flood extent signal can be separated into trend,
seasonal, and residual components, helping illustrate the underlying
patterns in our data. For our statistical analysis, we used a linear
regression model with monthly dummy variables to control for sea-
sonality while estimating the temporal trend. From the trend, we
identified two potential data challenges: the potential outlier year of
2022, and the time before June 2017. Prior to June 2017, many of the
observations were made with only one polarization channel instead of
two, resulting in different rates of flood detections that we correct for
beforemeasuring the trend. The large observed flood extent in 2022 is
likely due to specific flood events such as the flooding in Pakistan from
June to October of that year. Given that these two factors could skew
any potential estimate of the trend over time, we estimated the trend
under different scenarios (see “Methods” Section for more details).

Table 2 shows the results for the different scenarios with one
standard deviation. In general, we see a positive trend of a few percent
per year, though in the most pessimistic case the result is not statis-
tically significant (the result is within <2 standard deviations of 0),
because of both the lower effect size and the result of removing nearly
40% of the data, which increases the uncertainty estimate.We view the
middle row, where we exclude 2022 but include the earlier data and

Fig. 5 | Kenya flood map, spring 2024. Composite flood extent map of Kenya
during the 2024 floods, overlaid with cropland data. The map highlights flood-
affected areas, and we estimate that ~75,000 hectares of cropland were impacted.
This estimate aligns closely with official government statistics, which reported
68,000 hectares affected. The map showcases the utility of SAR data for real-time
disaster response and assessment.

Fig. 4 | Semera flood map. a Overlay of cropland and flood extent maps near
Semera, Ethiopia. Analysis reveals that ~19% of cropland near Semera is within
historically flood-affected zones according to our flood map. b Detailed view of a
specific area in the northwest part of the overview, illustrating the overlap between

cropland (yellow) and flood zones (blue). The high-resolution floodmap allows for
the identification of specific fields at risk, demonstrating the utility of this mapping
approach for agricultural planning.
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see a 5% yearly increase, as our current best estimate of the change in
flooding over time. This 5% increase would result in a roughly 60%
increase every decade if the growth compounded, resulting in great
potential loss in human life and property if not mitigated.

In addition to understanding global trends in flooding, it can be
beneficial to understand where flooding is increasing or decreasing
across the globe. Figure 7 shows the estimated trend for 3° by 3° tiles.
Tiles that have a p value for the trend greater than 0.2 or have low
absolute observed trends are removed to reduce noise in the plot.
While there is considerable uncertainty because of the limited time
range of our analysis, there are some interesting regional insights. For
example, there is an area between Nigeria and Ethiopia with an esti-
mated increase in flooding. This is correlated with predictions of
increased precipitation in this region under the CMIP6 (Coupled
Model Intercomparison Project Phase 6) climate scenarios, a com-
prehensive climate modeling framework25. However, other regions do
not necessarily have similar increases in predictedprecipitation, so any

such correlations should be interpreted with caution. These insights
couldbe further corroboratedby repeating the analysis asmore data is
made available and trying to combine with other data sources, such as
the NOAA (National Oceanic and Atmospheric Administration) LEO
Flood archive, which runs from 2012 to 2024.

Discussion
In this paper, we presented a comprehensive approach for globalflood
extent mapping using SAR imagery from Sentinel-1 satellites. We have
developed a method for identifying flood-affected areas by leveraging
a decade of SAR data and a deep learning change detection model.
Additionally, our method incorporates post-processing steps to miti-
gate false positives, which are often a challenge with SAR data.

Our results demonstrate the utility of our approach in creating
detailed flood extent maps, which can be instrumental for identifying
areas at risk of flooding and for disaster response. The case studies in
Ethiopia and Kenya illustrate the practical applications of our model,
from assessing flood risks to cropland to providing near-real-time
updates during disaster events. Furthermore, we show that these types
of global flood datasets derived from satellite data can be useful in
measuring the trends in global flooding over time. We note that while
our results suggest the possibility of anupward trend inflooding,more
work would need to be done to confirm this result and ultimately tie it
causally to climate change. The addition of optical floodproductsmay
be a benefit in helping with this analysis.

Our global flood extent map shows significant benefits over
existing datasets, likely due to SAR’s ability to penetrate cloud cover
that often accompanies flooding events. This capability enables more
complete flood detection compared to optical and infrared sensors,
which can be obscured by cloud-cover during criticalflooding periods.
This consistent, cloud-independent observation capability enables the
creation of a historical baseline of flood-prone areas, complementing
optical records. For example, in Semera, our model identified sub-
stantially more flood-affected cropland than seen in the MODIS-based
flood database and the Landsat-based GSW dataset, even during time
periods wheremultiple datasets overlap. The benefits of our approach
are further demonstrated near Dolo Odo in southeast Ethiopia, where
we detected significant flooding along the Ganale river - flooding that
was almost entirelymissed in bothMODIS and Landsat-based datasets.
Additionally, our dataset extends through 2024, allowing us to capture
recent major flood events outside the temporal coverage of existing
datasets, though the improved detection rates for these regions per-
sist even in periods where the datasets overlap.

One major contribution from our work is the release of a code
repository allowing anyone to run our model. Additionally, we have
released all themodel predictions for every SAR image from Sentinel-1
up through September 2024, providing a valuable resource for further
research and practical applications.

While these results demonstrate significant progress in flood
mapping, several important limitations must be considered. Many
limitations are primarily due to the inherent challenges of SAR data.
Our model, while effective in many scenarios, faces difficulties in
accurately detecting flash floods and urban flooding. Flash floods are
challenging because of the short duration. Unless there is an obser-
vation taken during the time of the flood, our model will not capture
any flooding, posing a challenge for events that often last hours or less.
Urban flooding is another challenge for most satellite imagery outside
of very high resolution data (sub 10m), but especially for SAR because
of the interference from buildings that makes detection of the surface
difficult.

Ourmodel also will have difficulties in correctly identifying all false
positives. While we explored ways to filter out false positives for our
results, we recognize that this is an open problem, especially without
sufficient data from non-flood events. As discussed in the “Methods”
section, arid regions, areas with rough terrain, and freeze/thaw cycles

Table 2 | Flooding trends over time

Scenario Est. Trend p-val

All Data 6%± 2% 0.0005

2022 Removed 5%± 2% 0.01

2022 and pre-June 2017
Removed

2%± 3% 0.5

Estimated trends, uncertainties (one standarddeviation), andp values forfloodextent. Ingeneral
we see evidence for a positive trend, though the results are not statistically significant in the
third, most pessimistic scenario. We estimated the trend under different scenarios. The first row
(All Data) is where we include all time series data. In the second row, we remove 2022 as a
potential outlier because it has much higher average flood extent than other years. Removing it
removes the estimated trend slightly. The last row is if we exclude both 2022 and data prior to
June 2017. Before
June 2017 many of the observations were made with only one of two observations channels,
resulting in different rates of flood detection. This further reduces the estimated trend in flood
extent over time. We view themiddle row, where we only remove 2022 as a potential outlier, as
our current best estimate.

Fig. 6 | Seasonal decomposition offlood extent trends over a decade.The y-axis
represents flooded area (in hectares) per observation. The top panel shows the raw
signal from the model after removing false positives. The subsequent panels
decompose this signal into trend, seasonal, and residual components. The seasonal
component indicates higher flooding during northern summer months. The trend
component, after removing seasonal effects, suggests an increase in flooding over
time. We note that this plot is for visualization purposes only, as we fit a linear
model to the data when we estimate the trend, rather than simply looking at the
trend component in this plot. However, this visualization aids in understanding the
underlying patterns and trends in flood extent. Source data are provided as a
Source Data file.
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can create false positives. We found that adding in additional data
sources in our post-processing like soil moisture, elevation and tem-
perature greatly helps in removing false positives. However, some false
positives will inevitably persist, along with true positives that may be
incorrectly filtered out by our methods.

To address model limitations for end-users, we developed an
exclusion mask to identify areas where our model’s performance may
be compromised. This mask incorporates several key factors that can
impact SAR flood detection reliability. Specifically, we flag areas with
steep terrain, urban development, and arid regions. Although our
terrain slopemeasurements help identifymany forested areas, explicit
incorporation of forest cover data could further improve the accuracy
of the exclusion mask. The mask serves as a crucial tool for end users,
allowing them to better interpret our model’s outputs and understand
where additional verification may be needed.

While this exclusion mask helps users understand model limita-
tions in challenging terrains, it cannot address all interpretation chal-
lenges. In particular, certain land use patterns require careful
considerationwhen interpretingmodel results.A primeexample is rice
cultivation, where paddies are deliberately flooded as part of the
agricultural cycle. While our model correctly identifies these areas as
flooded, these detections represent intentional agricultural practices
rather than natural flood events. Users should exercise particular
caution when applying this model in regions with extensive rice cul-
tivation or similar agricultural practices, where distinguishing between
intentional and unintended flooding is crucial for proper
interpretation.

These interpretation challenges highlight the importance of
robust validation strategies that account for both geographic diversity
and local complexities. Our current evaluation is intentionally broad,
leveraging the Kuro Siwo benchmark, which spans 43 flood events
across six continents. This breadth is critical for assessingperformance

in globally diverse conditions and for building confidence in our
model’s generalizability. However, recent work underscores the com-
plementary value of event-specific, deep-dive analyses. For example,
Roth et al. conducted a systematic validation of one of the algorithms
used in the Copernicus GFM service across 18 flood events, with a
detailed analysis of 8 of these events26. Their study highlighted key
sensitivities for that particular radar-based flood detection algorithm,
including the impactof polarizationdifferences (VV vs. VH), vegetation
cover, wind conditions, and the use of post-processing filters.
Although such fine-grained evaluations fall outside the scope of our
global-scale work, they offer a valuable blueprint for future efforts to
diagnose and refine performance in more challenging or observa-
tionally challenging contexts.

Based on these limitations and considerations, we have identified
several potential improvements to the model. One approach is to
create a richer and more diverse labeled training data set. In an ideal
scenario, none of the false positive filtering would be done in post
processing. Instead, all of this data would be included in model train-
ing. However, this requires a substantially larger dataset, along with
examples of flooding and non-flooding examples for each of the cau-
ses of false positives. For example, we would need both true positive
and false positive examples in arid regions so the model could differ-
entiate between the two. The data requirements are particularly
demanding since some of the post-processing datasets are at much
coarser resolution than the SAR imagery. As an example, soil moisture
data is available at a resolution of 10 km. Training a model that could
make best use of soil moisture data would require muchmore training
data than what we have used here.

Another potential improvement would be to include SAR phase
data to address urban flooding. SAR data has an amplitude compo-
nent, which is whatweuse for ourmodel, and a phase component. SAR
amplitude data has inherent difficulties with capturing urban flooding

Fig. 7 | Flood trends by region.Globalmap showing regions with increasing (blue)
and decreasing (red) flooding trends from 2014–2024. “Large” changes represent
areas where flood extent showed net monthly increases exceeding 2% of the total
land area, while “moderate” changes represent monthly increases of 1–2%. Notable
increases occurred in eastern Australia and from Nigeria to Ethiopia, often char-
acterized by major flood events rather than gradual changes. This highlights
regions experiencing significant changes in flood risk, though these changes

frequently reflect the impact of extreme events rather than continuous trends.
Given the 10-year dataset, further research is needed to distinguish between epi-
sodic events and emerging patterns. These regional patterns merit follow-up in
future work, especially to assess whether any align with climate-related drivers as
longer observational records become available. Source data are provided as a
Source Data file.
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that are unlikely to be solvable with improved training data. However,
there has been work on detecting urban flooding using SAR phase
information27,28, and adding it in could be a valuable addition to
future work.

Other satellite imagery would also be valuable for modeling flood-
ing. For example, while beyond the scope of the current work, Sentinel 2
and Landsat imagery have been used extensively to model flooding.
Landsat data in particular is intriguing due to the longer temporal cov-
erage, with over 5 decades of data. Fusion models, where data from
different sources is combined in the flood detection algorithm itself,
represent another promising direction. Fusion methods have been
shown to improve flood detection using both single images29 and
change detection approaches with pre- and post-flood imagery30.
Additionally, time series approaches for whole image-based flood
detection rather than pixel-based flood detection demonstrate sub-
stantial improvements in accuracy when combining optical and SAR
time series data31. There is also work on combining microwave satellite
data with optical Landsat data32. While implementing such fusion
approaches for long-term temporal analysis presents challenges due to
cloud cover, combining SAR data with other modalities could increase
flood detection accuracy in future work, particularly for individual flood
events where consistent temporal coverage is less critical.

A key contribution of this work is the analysis of flooding trends
over time, leveraging Sentinel-1 SAR’s cloud-penetrating abilities and
consistent revisit cycle. This provides a globally coherent, observation-
based perspective on potential decadal changes derived purely from
SAR data. However, we acknowledge that our data is over too short a
timespan to draw any definitive conclusions between the observed
trends and climate change. While we observed an upward trend, this
could be influenced by other factors, such as natural climatic oscilla-
tions like El Niño and La Niña events, which can significantly impact
weather patterns. Still, our results suggest that satellite data can play a
crucial role in understanding trends in flooding over time and by
geographic area. This dataset and methodology establish an essential
baseline for future monitoring and offer a less biased approach com-
pared to traditional report-based methods. As the Sentinel-1 archive
grows, repeating and extending this analysis, potentially integrating
other satellite data sources and hydrological information will be cru-
cial for building a more robust understanding of long-term flooding
trends and their drivers.

Methods
Our approach for flood detection consists of two broad steps: first,
running a neural network model trained on SAR data to detect flood
candidates, and second, removing potential false positives using aux-
iliary datasets. After filtering out false positives, we used the aggregate
results to create flood extent maps and to look at flooding trends
over time.

Neural network model
We used a MobileNet early fusion change detection model, which
combines spatial and temporal information early in the processing
pipeline to analyze SAR images. We chose MobileNet as our model
architecture because it can be effectively adapted for pixel-level clas-
sification tasks in satellite imagery while remaining computationally
lightweight, making the model accessible to users with limited com-
puting resources.

The training data consisted of manually labeled SAR images from
significant flood events from the past few years. These events were
chosen because we could clearly identify the flooding in SAR imagery
and confirm the flooding using other sources, such as news reports,
drone footage, and cloud-free Sentinel-2 imagery when available.
Additionally, these flood events span multiple continents with diverse
geographies, providing a robust dataset for training our model.

• Pakistan flooding in August 2022

• Greece flooding in September 2023
• Mozambique flooding in March 2023 (validation)
• Southeast Ethiopia flooding in November 2023 (test scene)

We opted for a change detection model because it leverages the
temporal differences in SAR amplitudes to accurately represent
flooding. In essence, by comparing SAR images captured before and
after a flood event, the model can detect changes in the backscatter
signal that indicate the presence of water in previously dry areas.
Through experimentation on our validation dataset, we found that
model performance improved when we explicitly applied filtering to
the SAR amplitudes to identify ranges of pixel values consistent with
the presence of water, rather than using raw amplitudes directly.

Our model uses four input features that capture both the pre-
sence of water-like signatures and significant changes in surface
characteristics: binary change indicators for VV and VH polarizations
(indicating transitions into typical water backscatter ranges), and the
magnitude of backscatter changes (delta amplitudes) in both bands.
Water typically appears dark in SAR imagery due to specular reflection,
with characteristic backscatter values below −17.5 dB in the VV band
and below −22.5 dB in the VH band. The delta amplitude features allow
the model to distinguish between small changes that might be due to
noise versus larger changes more likely to indicate actual flooding.

The Sentinel-1 SAR data used in this study is fromCatalyst (via the
Microsoft Planetary Computer) and has undergone standard SAR
preprocessing, including orbit application, gamma-nought correction
to normalize backscatter across different incidence angles, radio-
metric terrain correction using PlanetDEM, and speckle filtering. The
gamma-nought correction adds an additional cosine correction to
better normalize backscatter across different incidence angles. We
utilize both ascending and descending passes to maximize temporal
coverage. The model was trained on consecutive pairs of SAR images
with the same viewing geometry and time of day taken within 30 days
of each other. While Sentinel-1 typically has a 12-day repeat cycle, we
allow up to 30 days between observations to account for potential
missing acquisitions while maintaining consistent imaging conditions.
Prior work17 has suggested that including an additional pre-event
image canprovide some improvement inflooddetection, but the gains
in F1 scorewere small (typically less than 1 percentage point) and were
often confounded with model architecture changes. Given these
modest gains and the increased computational cost of processing
additional images, we opted for a paired-image approach, using one
pre-event and one post-event image.

While we tested incorporating additional inputs such as soil
moisture and elevation data directly into the model, our labeled flood
examples did not contain enough diversity across different soil
moisture conditions and terrain types to effectively train on these
variables. Namely, we did not see sufficient flooded and non-flooded
pixels across a range of different soil moisture and slope values.
Additionally, the coarse resolution of soil moisture data (10 km)meant
we essentially had one measurement per scene, providing insufficient
data for the model to learn meaningful relationships. We therefore
elected to use these auxiliary datasets in post-processing instead,
where they help reduce false positives through heuristic filtering.

Model validation
We validated the model using two approaches: evaluation on our
internal test set and comparison to the Kuro Siwo dataset, a newly-
released comprehensive global dataset of expert-annotated Sentinel-1
flood images17.

The model’s performance on the test set showed promising
results. To understand these results, we use several standard metrics:
the Intersection over Union (IOU) measures how well our predicted
flood areas overlap with actual flood areas, with our score of 0.67
meaning that 67% of the combined predicted and actualflood areawas
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correctly identified. The Precision score of 0.68 indicates that when
our model predicts a flood, it’s correct 68% of the time. Our Recall
score of 0.99 means we successfully detected 99% of all actual flood
events. Finally, the F1 Score of 0.80 represents the overall balance
betweenprecision and recall, where 1.0wouldbeperfect performance.
These metrics indicate that the model is highly effective at detecting
flood events, with a high recall ensuring most flood events are cap-
tured, albeit with some false positives, or pixels predicted as flooded
but that are non-flooded.

To ensure robustness, we also test the model’s performance
against the Kuro Siwo dataset. This dataset was selected due to mul-
tiple favorable factors. First, it contains both pre- and post-flood SAR
imagery, making it suitable for a change detectionmodel such as ours.
Second, it contains 43 distinct flood events distributed across six
continents and varied climate zones. This is essential for validating a
model that is being applied globally. Lastly, the dataset contains
manually annotated images to account for shortcomings in existing
annotation approaches such as the Copernicus Emergency Manage-
ment System outputs17. Given the known challenges of SAR in complex
terrains like steep mountains and dense forests—areas where our
model’s predictions are masked using the exclusion mask (see
“Methods” subsection on Post-Processing)—this validation focuses on
assessing model performance in the diverse global regions where
detections are expected to be most reliable.

Ourmodel performswell against the Kuro Siwo dataset, achieving
an F1 score on the test set of 0.77. This is comparable to the models
published in the Kuro Siwo paper, which have F1 scores ranging from
0.75 to0.80, and greater than the performance of the Copernicus GFM
system’s F1 score of 0.72, as shown in Table 3.We note that in the Kuro
Siwo paper they report results for multi-class classification models, so
that the F1 scores are not necessarily directly comparable to the task
we have for binary classification. Additionally, the paper only provides
F1 scores for the flooding task. Nevertheless, their numbers provide a
useful benchmark for comparison. We also note that while our model
provides binary flood/no-flood classifications, GFM produces prob-
abilistic flood likelihood values that can be thresholded for different
applications. For this comparison, we used an optimal threshold of 0.3
for GFM, determined through validation on a subset of flood events
(see SI Section S1.5.2).

More details on the comparisons, commentary on specific scenes
in the Kuro Siwo test set, and the choice of buffer can be found in
Supplementary Information Section S1.5.

Post-processing
There are two types of post-processing we apply to the model results.
First, we filter out potential false positives using both time-varying
auxiliary data sources and static features. Second, we provide a static
exclusion mask that identifies areas where flood detection may be
unreliable due to false negatives or false positives.

There are several factors that can result in false positives in SAR
data. In SAR imagery, water appears very dark. Any surface that
appears similarly dark can therefore mimic water and therefore
flooding. For example, arid regions often look dark in SAR because the
surface absorbs much of the SAR signal or reflects it away from the

satellite, resulting in low backscatter measured by the satellite.
Another cause of false positives is mountainous areas, where terrain
shadows can result in areas where the signal sent out by the SAR
satellite does not reach the ground, again resulting in a low SAR
amplitude. Similar effects occur in heavily vegetated areas and urban
areas. Lastly, freeze/thaw cycles can result in areas that technically
flood, in the sense that water is present where it was not present
before, but typically this flooding is of a different nature than most of
the flood events we are concerned with, and so we aim to filter those
out as false positives.

To address potential false positives, we incorporated both static
landscape features and time-varying characteristics. The staticfiltering
was applied based on the ESA land cover mapping33 and a digital ele-
vation model34. Specifically, we filter out areas marked as “Bare
Ground” in the land covermapping alongwith areaswith terrain slopes
greater than 10°. We include two time-varying features: soil moisture
estimates35–37 and land surface temperature38, to identify areaswith low
soil moisture or low temperatures to exclude. As noted above, while
we tested incorporating soil moisture and elevation data directly into
the model training, we found it more effective to use it as a post-
processing filter to remove false positives. We also used the ESA land
cover mapping to remove permanent water bodies like lakes and riv-
ers. While our change detection approach should inherently ignore
permanent water bodies since they appear as water in both pre- and
post-event imagery, we found that explicitly masking them helped
reduce noise in our predictions.

We first run the neural network model to generate potential
candidates for detected floods, then apply heuristic thresholds with
the auxiliary datasets to remove false positives. The heuristic thresh-
olds were determined by analyzing model predictions and auxiliary
dataset values in regions with a very low likelihood of flooding, such as
deserts and mountainous areas. For instance, regions with soil moist-
ure levels below a certain threshold were excluded as false positives.
We note that in the dataset we have provided, we include all potential
flood candidates with the auxiliary data included, enabling other
researchers to apply their own thresholds and make informed deci-
sions on which events to filter out. Detailed methods and the specific
thresholds for removing false positives are provided in Supplementary
Information Section S2.

For our static map products (GeoTIFF format), we include an
exclusionmask that serves twopurposes. First, it identifies areaswhere
we expect unreliable flood detection due to static landscape features
based on the filtering used tominimize false positives: areasmarked as
“bare ground” in the ESA land cover mapping and regions with steep
terrain (slopes exceeding 10°) in their immediate surroundings. We
include these surrounding areas because steep terrain can influence
radar signals in nearby pixels. Second, the mask identifies areas where
we expect a high rate of false negatives, specifically areas marked as
“Built-Up” in the ESA land cover map, which typically indicates urban
areas where building interference makes flood detection challenging.

Flooding trends over time
We analyzed flooding trends over a decade by aggregating flood
extent data bymonth and normalizing by the number of available SAR
observations. This normalization is necessary as observation fre-
quency can vary - for example, one Sentinel-1 satellite went offline in
late 2021, reducing observations bynearly 50%. To estimate changes in
flooding over time, we fit a linear model to the time series under var-
ious scenarios. We chose a linear model for its simplicity and inter-
pretability, given the noisy nature of the flood extent data and the
relatively short time period.

We explored different scenarios to address potential data chal-
lenges. For example, 2022 showed much higher than average flood
extent per observation, likely due to large flood events like in Pakistan.
Given the short time period, these outliers could skew our results

Table 3 | Model Validation against Kuro Siwo global dataset

Model Prec Rec F1 IOU

AI4G Model 0.84 0.72 0.77 0.63

GFM 0.73 0.70 0.72 0.56

Kuro Siwo
baseline

0.75–0.80

Model performance against the test set in the Kuro Siwo dataset. Our model performance
exceeds that of theGlobal FloodMonitoring (GFM) data and is on par with themodels trained on
the Kuro Siwo dataset itself.
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towards artificially high estimates of increased flooding over time.
Another challenge was in the earlier Sentinel-1 observations. Many of
these used only one polarization channel, and therefore had different
rates of flood detection than the typical two-channel observations that
are ubiquitous after June 2017.We can correct for these differences, or
remove those earlier years. Both sets of results are presented as dif-
ferent scenarios in Table 2. Detailed methodology for estimating
flooding trends over time is provided in Supplementary Information
Section S3.

Buffering flood detections
One challenge inherent in high-resolution flood modeling using SAR
imagery is the precise delineation of flood extents. While SAR imagery
is effective in penetrating cloud cover and providing continuous
monitoring, it may not always capture every pixel of a flooded area
accurately. Factors such as SAR signal scattering, speckle noise, and
surface roughness variations can result in imperfect flood detection,
leading to potential underestimation of the flood extent39–42.

To mitigate these limitations, we apply a buffering or dilation to
the flooddetections39,41,42. This process involves expanding the detected
floodpixels by a specified distance to account for potential inaccuracies
in the SAR data. The buffer helps include areas likely at risk of flooding
that may not have been explicitly detected by the model. Buffering is
particularly important in urban areas or vegetated areas (such as
cropland), where buildings and vegetation can prevent the SAR signal
from reaching the ground,making it difficult to detect flooding in some
cases. For the geotiffs in our public dataset, we apply two versions, with
buffers of 240 and 80m. The 240m (12 pixels) buffer ensures a con-
servative estimate, in the sense that we err on the side of marking
something as flooded. For getting accurate estimates of cropland
affects by flooding, we found that 80m (4 pixels) gave us the closest
alignment with other sources of flood extent (see Supplementary
Information for details). We note that since we provide the raw model
outputs in our dataset, other researchers have the flexibility to apply
their own choice of buffer distances based on their specific needs.

Basemap data
Basemaps providing geographic context for analysis and visualization
of flood extent maps utilized administrative boundaries from the
GADM database (Version 4.1)43. General map features, such as coast-
lines, lakes, and roads, were incorporated using data from Natural
Earth (naturalearthdata.com).

Supplementary information
Detailed descriptions of the neural network architecture, training data,
model validation, post-processing steps, and themethodology used to
analyze flooding trends over time are provided in the Supplementary
Information.

Data availability
The Sentinel-1 SAR input imagery used for analysis is publicly available
from the Copernicus Data Space Ecosystem and were retrieved via the
Microsoft Planetary Computer (https://planetarycomputer.microsoft.
com/dataset/sentinel-1-rtc)44. The primary datasets generated and
analyzed during the current study are publicly available without
restriction. Specifically, the per-detection model predictions (includ-
ing coordinates and auxiliary data) in Parquet format and the aggre-
gated flood maps in GeoTIFF format, representing the minimum
dataset necessary to interpret, verify and extend the main findings,
have been deposited in the Hugging Face repository at: https://
huggingface.co/datasets/ai-for-good-lab/ai4g-flood-dataset45. Geotiffs
for the maps in Figs. 1–5 are available in the Hugging Face repository.
Source data underlying Figs. 6 and 7 are provided as a Source Data file
with this paper.

Code availability
The Python code used for flood detection inference, along with the
trainedmodel artifact, is publicly available in the GitHub repository at:
https://github.com/microsoft/ai4g-flood46. Documentation and
instructions for running the model using the provided artifact are
available within the repository.
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