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Deepmolecular profiling of synovial biopsies
in the STRAP trial identifies signatures
predictive of treatment response to biologic
therapies in rheumatoid arthritis

Myles J. Lewis 1,2,37 , Cankut Çubuk 1,2, Anna E. A. Surace 1,2,
Elisabetta Sciacca 1,2, Rachel Lau 1,2, Katriona Goldmann1,3, Giovanni Giorli1,
Liliane Fossati-Jimack 1,2, Alessandra Nerviani 1,2, Felice Rivellese 1,2,
Costantino Pitzalis 1,2,4,37 & the STRAP collaborative group*

Approximately 40% of patients with rheumatoid arthritis do not respond to
individual biologic therapies, while biomarkers predictive of treatment
response are lacking. Here we analyse RNA-sequencing (RNA-Seq) of pre-
treatment synovial tissue from the biopsy-based, precision-medicine STRAP
trial (n = 208), to identify gene response signatures to the randomised thera-
pies: etanercept (TNF-inhibitor), tocilizumab (interleukin-6 receptor inhibitor)
and rituximab (anti-CD20 B-cell depleting antibody). Machine learningmodels
applied to RNA-Seq predict clinical response to etanercept, tocilizumab and
rituximab at the 16-week primary endpoint with area under receiver operating
characteristic curve (AUC) values of 0.763, 0.748 and 0.754 respectively
(n = 67-72) as determined by repeated nested cross-validation. Prediction
models for tocilizumab and rituximab are validated in an independent cohort
(R4RA): AUC0.713 and0.786 respectively (n = 65-68). Predictive signatures are
converted for use with a custom synovium-specific 524-gene nCounter panel
and retested on synovial biopsy RNA from STRAP patients, demonstrating
accurate prediction of treatment response (AUC 0.82-0.87). The converted
models are combined into a unified clinical decision algorithm that has the
potential to transform future clinical practice by assisting the selection of
biologic therapies.

Over the past 20 years, targeted biological disease-modifying anti-
rheumatic drugs (b-DMARD) have led to major improvements in the
outlookofpatientswith rheumatoid arthritis (RA).However, individual
bDMARDs have an ~40% failure rate, while 5–20% of patients are
refractory to currentmedications1,2. Thus, predictingwhether a patient

will respond to a particular therapeutic agent remains a major goal.
Previous small observational studies in blood and synovium have
reported a number of possible biomarkers predictive of response to
TNF inhibitors (reviewed in refs. 3,4). Some of the stronger candidates
include serum measurement of the B-cell attracting chemokine
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CXCL135, which is implicated in synovial lymphoid neogenesis6, and
themyeloidmarker complex serum calprotectin7. Potential predictors
of response to the anti-CD20 B-cell depleting agent rituximab include
specific blood memory B-cell and plasmablast sub-populations,
immunoglobulin J-chain mRNA levels (IgJ) and Fc gamma receptor IIIa
levels8–10, whole blood transcriptomic signatures including low levels
of interferon response genes11,12, synovial gene expression profiles13,
and serum cytokines including IL-33 and CCL1914,15. Putative bio-
markers predictive of response to IL6 pathway inhibitors include
genetic markers such as SNPs at the IL6R locus, transcriptomic sig-
natures again including blood interferon response genes, serum mar-
kers including cytokines IL6, IL-8 and the adhesion molecule soluble
ICAM-15, and cellular biomarkers such as NK cells (reviewed in ref. 16).
However as yet none of these proposed biomarkers have been suc-
cessfully translated to clinical grade assays for stratifying individuals to
different treatments.

Major progress in this area was made through the R4RA trial, a
biopsy-driven, open-label randomised controlled trial (RCT) in which
patients underwent ultrasound-guided synovial biopsy and, following
stratification into B-cell-rich and B-cell-poor through a CD20 immu-
nohistochemical score, were randomised to either rituximab or
tocilizumab17. R4RA tested the hypothesis that in patients stratified for
low/absent synovial CD20+ B-cells (the target for rituximab), tocilizu-
mab, a specific IL6-receptor inhibitor, would be superior. Of relevance,
when using the histological CD20 B-cell-poor classification, the pri-
mary endpoint (CDAI ≥50% improvement) was not met.

However, when patients were classified as B-cell poor using a
validated RNA-Seq based biomarker panel of 73 B-cell-specific genes18,
both the primary endpoint (CDAI ≥50%) and low disease activity (CDAI
<10.1) reached statistical significance, while machine learning model-
ling of synovial biopsy RNA-Seqdata identified signatures predictive of
response to rituximab and tocilizumab treatment19.

Here, following the same strategy, we applied deep molecular
phenotyping and machine learning modelling to synovial RNA-seq
from patients included in the recently published biopsy-driven,
stratified-medicine STRAP trial20.We identifieddifferentially expressed
genes between responders and non-responders and examined the
relationship between single-cell RNA-seq21,22, cell subset modules and
response to each drug using deconvolution. Additionally, we defined
predictive RNA-seq-based models of response for the three rando-
mised drugs in STRAP, etanercept, tocilizumab and rituximab20, that,
when converted into nanoString panels tested in available synovial
RNA from STRAP patients, could accurately predict actual observed
response in 79–85% of patients (AUC 0.82–0.87).

Results
Differential gene expression analysis of synovial tissue RNA-seq
identifies signatures of responsiveness to etanercept, tocilizu-
mab and rituximab
About 223 patients were included in the primary analysis of the STRAP
trial20, of which 208 had post-quality control RNA-Seq data from
synovial biopsies; of these, 67 had been randomised to etanercept, 69
to tocilizumab and 72 to rituximab. Baseline characteristics, disease
activity, and synovial B cell group are reported in Supplementary
Table 1. Patients were assessed for clinical response 16 weeks after
starting treatment using the ACR20 criteria (the original primary
endpoint measure), with 38 (57%) responding to etanercept, 51 (74%)
responding to tocilizumab and 44 (61%) responding to rituximab.
Differentially Expressed Gene (DEG) analysis using DESeq2 identified
44 genes differentially expressed between responders and non-
responders to etanercept, 90 genes in tocilizumab and 44 genes for
rituximab response (FDR <0.05, Supplementary Data 1) in baseline
synovial biopsies (Fig. 1a, c, e). Etanercept and rituximab response
were associated with increased expression of B-cell genes, including

immunoglobulin chain genes (IGHD, IGKV1-37), and B-cell surface
receptorsMS4A1 (CD20), CD22, BAFF receptor (TNFRSF13C) and B-cell
differentiation genes (BLK, PAX5). Tocilizumab response was asso-
ciated with upregulation of the acute-phase reactant SAA2 (serum
amyloid A2), while tocilizumab non-response genes included IL18RAP,
which has been previously linked to therapeutic response in RA23.
Collagen genes (COL23A1, COL11A2) and matrix metalloproteinase 9
(MMP9), consistent with tissue remodelling, were associated with non-
response to both etanercept and rituximab. Differential expression
analysis was repeated with adjustment for biopsy joint size as a cov-
ariate, but this didnot significantly alter or improve the overall analysis
(Supplementary Fig. 2).

QuSAGE modular analysis of differentially expressed genes
showed an increase in multiple B cell modules in responders to eta-
nercept, which were the only q value significant modules for this drug.
(Fig. 1b and Supplementary Data 2). For tocilizumab, on the other
hand, the same S46 B cell module was associated with tocilizumab
non-response (Fig. 1d). Dendritic cells and interferon alpha modules
were upregulated in responders to tocilizumab. For rituximab, several
modules related to B cells, T peripheral helper cells (Tph), and NK and
T-cells were increased in responders, while fibroblast-associated
modules were associated with non-response (Fig. 1f).

Defining shared and differential gene signatures of response/
resistance among etanercept, tocilizumab and rituximab
To investigate common molecular patterns of response/resistance to
treatment, we conducted a drug-independent analysis comparing
responders (n = 133) and non-responders (n = 75) in the whole cohort.
DEG analysis (Fig. 2a and Supplementary Data 3) showed 20 upregu-
lated genes (FDR <0.05) in the responder group that were associated
with inflammation, immunoregulatory interactions and B-cell pro-
liferation such as the Fc receptor-like 1 and 2 (FCRL1-2), BAFF receptor
(TNFRSF13C), B lymphocyte kinase (BLK), interleukin 9 receptor (IL9R),
CD22 and PAX5. This is confirmed by the pathway enrichment analysis
(Fig. 2b and Supplementary Data 3). Genes upregulated in the non-
responder groupweremore abundant and heterogeneous (75 genes at
FDR <0.05). Some of them are linked to altered fatty acid metabolism
(e.g. SCD and FASN), others are pro-fibrotic genes such as SCN7A, CNN1
and MMP9 (Fig. 2a, b). A protein phosphatase catalytic subunit (PPP)
was also found to be upregulated in this group (PPP1R14A), as well as
Proenkephalin (PENK), which plays an important role in the modula-
tion of pain perception.

The heterogeneity of resistance mechanisms found in the DEG
analysis led to a separate analysis aimed at identifying and comparing
the different molecular signatures driving resistance to each drug. To
analyse specific differences between drugs, genes associated with lack
of response to each drug were visualised with a three-way polar plot
(Fig. 2c). This revealed nine genes specifically upregulated in non-
responders to etanercept, 22 in rituximab and 30 in tocilizumab,
respectively. Drug-specific responder genes are shown in Fig. 2d,
revealing greater abundanceof genes along the tocilizumab responder
axis (59 genes), and fewer genes for the rituximab-specific and
etanercept-specific groups (8 and 24 genes, respectively). These
comparisons highlighted the differential impact of immune-related
genes like CR2, LTF and TCL1A, all significantly upregulated in tocili-
zumab non-responders and in rituximab responders, with CR2 and
TCL1A also upregulated in the etanercept responder group (Fig. 2c–e).
High levels of B-cell genes (MS4A1, PAX5, CR2) were significantly
associated with response to etanercept and rituximab (Fig. 2e), while
being upregulated in non-responders for the tocilizumab group. On
the opposite trend, the keratin gene KRT10 was upregulated in tocili-
zumab and rituximab responders, while higher expressions could be
observed in non-responders for the etanercept group. A similar trend
could be observed for MMP9 (Fig. 2e).
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Cellular composition determined by clustering analysis and
single-cell RNA-Seq subset deconvolution is associated with
different patterns of drug response
To explore the association of immune cells with response to treatment
(ACR20), we used clustering analysis and a modular enrichment
approach to estimate the relative abundance of cells in the synovial
tissue of RA, including fibroblasts, macrophages, B-cells and T-cells
based on single-cell RNA-Seq subsets identified in RA synovium by

ref. 21 Clustering of patients using their immune cell subset profiles at
baseline was performed to examine the RNA-seq data for underlying
structure and the presence of biological subgroups. This revealed four
clusters, which partially mapped to the three pathotypes as deter-
mined by histology (Fig. 3a). The pauci-immune fibroid patients were
split across two clusters, namely cluster 1, which was almost entirely
composed of fibroid patients and cluster 2, which contained the
remainder of fibroid patients. Cluster 3 contained amixture of diffuse-

Fig. 1 | Synovial signature of response to biologics at baseline. a, c, e Volcano
plots of differentially expressed genes from DESeq2 analysis of RNA-sequencing of
baseline synovial biopsies of rheumatoid arthritis individuals receiving treatment
with a etanercept (n = 67), c tocilizumab (n = 69) or e rituximab (n = 72) comparing
ACR20 responders vs non-responders at the 16-week primary endpoint.
DESeq2 statistical analysis uses generalised linearmodelling of count data using the
negative binomial distribution. The model included a single covariate based on
principal component analysis applied to 17 muscle tissue-specific genes (see

Methods). P values were calculated by a two-sided Wald test with FDR correction
(Storey’s q value) for multiple testing. Genes in blue are significant at FDR <0.05,
genes in grey are non-significant. b, d, f Modular analysis applying QuSAGE statis-
tical testing with blood-derived gene modules (Li et al., 2014) and synovium-
derivedWGCNAmodules for 16-week ACR20 responders versus non-responders to
etanercept (b), tocilizumab (d) and rituximab (f). Log2-fold change of responders
(positive values) and non-responders (negative values) are plottedwith dots colour
coded for unadjusted p value.
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myeloid patients and lympho-myeloid patients, while Cluster-4 was
almost entirely composedof lympho-myeloidpatientswith thehighest
levels of B/T-cells by CD20/CD3 histology score and plasma cells by
CD138 score. Estimated abundance of DKK3+

fibroblasts (SC-F3) and
CD34+ sublining fibroblasts (SC-F1) delineated cluster 1, while CD55+

lining fibroblasts andNUPR1+macrophages defined cluster 2, the other
fibroid-associated cluster, with intermediate levels of both cells in
cluster-3. This suggests that specific synovial single cell subtypes can
define additional subgroups into which the original three
pathotypes18,24 can be further subdivided, consistent with the most
recently published study from the AMP Consortium22.

These findings allowed us to conduct the following analyses by
either combining all samples or analysing separately for each treat-
ment. Differential abundanceof predicted synovial single cell subtypes
between responders and non-responders to any of the drugs com-
bined (Fig. 3b)was comparedwith differential abundance to eachdrug
specifically (Fig. 3c). This showed that HLA-DRAhigh sublining fibro-
blasts (SC-F2), a pro-inflammatory subset associated with leucocyte-
rich synovial infiltration inRA, was significantly higher (PF2_any = 0.008)

in responders in the any treatment comparison, which is in parallel to
previousfindings reported earlier in theR4RAcohort19. In R4RA,DKK3+

sublining fibroblasts (SC-F3) were increased in patients refractory to
treatment. Here, DKK3+ sublining fibroblasts (SC-F3) showed a trend to
a non-significant increase in etanercept and rituximab-treated
patients, while CD34+ sublining fibroblasts (SC-F1) were significantly
increased in non-responders to etanercept.

Patients treated with rituximab did not show significant changes
in the populations of monocyte/macrophage subsets; however, those
who responded to etanercept had a significantly higher proportion of
estimated IL1B+ pro-inflammatory macrophages (SC-M1) compared to
non-responders, and tocilizumab responders had a higher proportion
of NUPR1+ and IFN-activated macrophages (SC-M2 and SC-M4). The
signatures for predicted IGHD+CD27– naive (SC-B1) and IGHG3+CD27+

memory (SC-B2) B-cell subsets were significantly higher in responders
who received etanercept and any treatment at baseline (PB1_eta = 0.036,
PB1_any = 0.018, PB2_eta = 0.032 and PB2_any = 0.004). The Tph subset (SC-
T3) showed one of the greatest fold change among all immune cell
subsets and was significantly upregulated in the three responder

Fig. 2 | Analysis of common and differential molecular signatures of respon-
siveness/resistance to etanercept, tocilizumab and rituximab. a Volcano plot
showing differentially expressed genes between all ACR20 responders (n = 133)
and non-responder (n = 75) patients to tocilizumab, etanercept and rituximab
combined following 16 weeks of treatment. Statistical analysis by negative bino-
mial distribution, generalised linear regression of count data via DESeq2. P values
were calculated by a two-sidedWald test with FDR correction (Storey’s q value) for
multiple testing. b Shared enriched pathways across tocilizumab/etanercept/
rituximab responders and non-responders. Grey dashed lines indicate p-value
cutoff for FDR <0.05. c Three-way polar plot comparing genes associated with

resistance to each individual drug. Red genes (n = 9) are significantly upregulated
only in non-responder patients treatedwith etanercept. Genes in green (n = 22) are
significantly upregulated in rituximabnon-responders only. Blue genes (n = 30) are
significantly upregulated in the tocilizumab non-responder group. d Three-way
polar plot of significantly upregulated genes in responder patients to etanercept
(24 genes, red dots), rituximab (eight genes, green dots) and tocilizumab (59
genes, blue dots). e Forest plots of individual genes showing different log2FC
(responders/non-responders) in each drug. ***p <0.001, **p <0.01, *p <0.05, ‘.’
p <0.10 using FDR-adjusted two-sided Wald test p values. Precise p values are
available in the supplementary material. Error bars show 95% confidence intervals.
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groups: etanercept, rituximab and any treatment (Fig. 3c, d). A sig-
nificant increase in estimated FOXP3+ regulatory T-cells (SC-T2) was
seen in the any treatment comparison and in rituximab responders
specifically. Similarly, SC-T4 (GZMK+CD8+ T-cells) and SC-T6 (GZMK+/
GZMB+ T-cells) were predicted to be increased in responders in any
treatment comparison. A three-way comparison between cell subtypes

in responders specifically across each of three treatment groups did
not show significant differences between responders for each drug
(Supplementary Fig. 3a). A similar analysis looking for cell subtype
differences specific to non-responders also produced non-significant
results for all cell subtypes and treatment pairs tested (Supplementary
Fig. 3b).
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Unbiased clustering of synovial RNA-seq in STRAP patients
defines three distinct molecular groups, confirmed in the inde-
pendent R4RA biopsy cohort
To establish an unbiased definition of gene expressions at baseline, we
plotted aheatmapof themosthighly expressedgenes (n = 3411), which
revealed the presence of three molecular clusters (Fig. 4a and Sup-
plementary Data 4). Patients belonging to the first cluster (n = 37)
showed improved response to therapy according to DAS28-CRP cri-
teria, with only one patient classified as a non-responder out of 37
(p = 0.006, Supplementary Table 3). The second cluster (n = 75) was
dominated by the fibroid pathotype, with 28 fibroid samples out of 34
falling into cluster 2. Coherently, this cluster was also associated with
samples histologically classified as B-cell poor and with lower levels of
CD138 (p <0.001, Supplementary Table 3). The third cluster (n = 96)
showed the highest percentage of rheumatoid factor (RF) and anti-
citrullinated protein autoantibodies (ACPA) positive samples
(p = 0.004, Supplementary Table 3).

To investigate the presence of these clusters in an independent
cohort, we generated an analogous heatmap of the most highly
expressed genes (n = 2259) in the baseline population of the R4RA
clinical trial (Fig. 4b)17,19. Interestingly, the resulting heatmap revealed
three unsupervised clusterswhose genes significantly overlappedwith
the corresponding clusters found in STRAP (Fig. 4d). Building on these
findings, we conducted a functional enrichment analysis to assess the
role of the genes found in each cluster. The first cluster (983 genes) is
mostly associated with L13a-mediated silencing of ceruloplasmin and
with regulation of expression of SLITs And ROBOs (Fig. 4c and Sup-
plementary Data 4). Ceruloplasmin levels are high during inflamma-
tion, and its silencing is typically initiated by the cytokine interferon-
gamma (IFN-γ), which triggers a signalling cascade that leads to the
phosphorylation of the ribosomal protein L13a. Phosphorylated L13a
then dissociates from the 60S ribosomal subunit. The SLIT-ROBO
pathway is involved in regulating inflammatory responses and neuro-
nal axon guidance. For example, SLIT2 has been found to have anti-
inflammatory properties, inhibiting leucocyte chemotaxis25, while
Denk et al suggested that SLIT3 might have a protective role in RA by
limiting synovial fibroblast invasion26. Other pathways associated with
this cluster are Axon Guidance, which is known to be linked to SLIT-
ROBO signalling, cellular response to hypoxia, and negative regulation
of NOTCH4 Signalling. Hypoxia often characterises the RA joint
microenvironment and can regulate the expression of Notch recep-
tors, including NOTCH427. Its negative regulation suggests mitigation
of its pro-angiogenic role28. However, NOTCH1 and especially NOTCH3
have been more heavily implicated in pathogenic RA fibroblast
signalling29. Pathways associated with cluster 2 (1420 genes) include
multiple extracellular matrix related pathways highly correlated with
fibroblasts activation (Fig. 4c). The third cluster (1008 genes) showed
clearmolecular signature of inflammation driven by cytokines (Fig. 4c)
with neutrophil degranulation, cytokine signalling and signalling by
interleukins being the most upregulated pathways.

Finally, to compare thesemolecular groupswith the histologically
defined pathotypes we plotted a principal component analysis (PCA)
colour codedbypathotypefirst, andby thenewmolecular groups later

(Fig. 4e). The resulting plots highlighted overlap of the second mole-
cular cluster with the fibroid pathotype, as already observed in the
heatmap (Fig. 4a), while lymphoid and myeloid samples were present
in both cluster 1 and 3, suggesting additional heterogeneity within
these pathotypes.

Machine learning models define synovial signatures predictive
of drug response to etanercept, rituximab and tocilizumab
Machine learning (ML) predictive models were constructed to estab-
lish the ability of baseline synovial tissue gene expression and clinical
parameters to predict treatment response. In order to develop a pre-
dictive test to be used in clinical practice, we aimed to convert RNA-
Seq signatures to an nCounter-based assay. Models were built from
baseline clinical parameters and RNA-Seq data restricted to a synovial
specific 524-gene nCounter panel (507 target genes, 17 housekeeping
genes), custom-made in collaborationwith nanoString, covering genes
linked to synovial biology, pathotypes, RA pathogenesis and response
gene signatures from previous RNA-Seq studies18,19,24,30 through a
three-stage design process (summarised in Supplementary Fig. 4).

Performance was tested in an unbiased manner, maintaining
separation of samples for training and testing using amachine learning
pipeline (Fig. 5a) involving 10 × 10-fold nested cross-validation with 25
repeats31. Eight machine learning model types were tested (see Meth-
ods). Predictive performance was measured by AUC (area under ROC
curve) for response to each drug, comparing the primary endpoint
ACR20 response against five other response endpoints (Supplemen-
tary Figs. 5–7). This showed that for etanercept and tocilizumab, the
best prediction of response was seen for target DAS28-ESR (<3.2),
which was thus selected for model optimisation. DAS28 has a major
advantage over ACR20/50/70 response criteria in that DAS28 only
requires 28 joints to be assessed by clinicians, whereas the ACR criteria
require a total of 68 joints to be assessed. Although theACRcriteria are
a gold standard for use in RCT, DAS28 is in widespread use and can be
assessed in routine clinical practice. Therefore, we chose to train
models to predict a DAS28-based outcome as these would be more
readily validated in future. Due to difficulties with training a binary
response model for rituximab, ordinal regression on DAS28-ESR
response categorised into four levels was used for model training
(seeMethods), followed by converting the fitted regressionmodel to a
binary response for final performance estimation by AUC.

For etanercept, the best model system was an elastic net regres-
sion model (glmnet) (Fig. 5b), with a final 19-parameter model of 17
genes and two clinical parameters with nested CV AUC of 0.763
(Fig. 5c). For tocilizumab the final model was a 28-parameter gradient
boosted machine model (gbm) using 26 genes and two clinical para-
meters with a nested CV AUC of 0.748. The final rituximab extreme
gradient boosting model (xgbLinear) contained three clinical para-
meters and 25 genes, leading to a nested CV AUC of 0.754. All three
models showed reasonable accuracy (range 71.6 to 75.4%) and
balanced accuracy (70.2 to 71.6%) (Supplementary Tables 4, 5). In
comparison, anti-CCP and rheumatoid factor (RF) titre as continuous
variables were relatively poor predictors of response to each of the
three drugs in STRAP and the two drugs (tocilizumab and rituximab)

Fig. 3 | Single-cell subset patterns of responder and non-responder patients to
etanercept, tocilizumab and rituximab. a Heatmap showing estimated immune
cell subset profiles of all individuals at baseline, calculated by gene module score
using Seurat. Individuals (columns) were clustered using the Euclidean distance
metric and complete linkage clustering method. Upper tracks show ESR, CRP, cell
type (B cell rich/poor), pathotype, ACR20 and ACR50 response, randomised
medication (treatment) and histological scores for CD3, CD20, CD138, CD68L
(lining) andCD68SL (sublining).b Forest plot showingmean fold-changesof single-
cell subsets that are differentially present in any responders compared to any non-
responders. Error bars show 95% confidence intervals. Statistical analysis (two-

sided) by linear model using limma. Significant fold-changes are indicated with
asterisks (*p <0.05, **p <0.01, ***p <0.001). Precise p values are available in the
supplementary material. c Forest plot showing fold-changes of single-cell subsets
that are differentially present in responders compared to non-responders sepa-
rately in each medication. d Box plots showing module scores of SC-B2
(IGHG3+CD27+ memory B-cell), SC-T3 (PD-1+ Tph/Tfh) T-cell subsets for etanercept,
rituximab and any treatment (either etanercept, rituximab or tocilizumab) groups.
Box plots showmedian, upper and lower quartiles, withwhiskersdenotingmaximal
and minimal data within 1.5 × interquartile range.
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used in R4RA (Supplementary Fig. 8). Anti-CCP/RF seropositivity
(binary) showed modest associations with increased response to eta-
nercept and rituximab in STRAP using different endpoints (Supple-
mentary Table 8), but no associations were observedwith tocilizumab.
However, these associations between CCP/RF seropositivity and
response endpoints disappeared when STRAP and R4RA were com-
bined (Supplementary Table 8).

To interpret the models, variables were ranked according to their
importance in models which was averaged across the outer CV folds
and the final model to give a reliable estimate of variable importance
and its variance (Fig. 5d). These plots also demonstrate how many
times each gene was selected across the outer CV folds, showing how
stable usage of each gene was across repeated models. This showed
that the most important genes were consistently utilised in models
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across different outer CV folds. The aggregated ranking of variable
importance values from outer CV folds, as well as the final model,
showed a similar pattern of consistent ranking of variables by model
importance (Supplementary Fig. 9).

Validation of STRAP synovial signatures predictive of drug
response to rituximab and tocilizumab in the independent
R4RA cohort
In order to validate the machine learning models in an independent
cohort, the models for rituximab and tocilizumab, which were trained
on STRAP data, were applied to existing data from the R4RA trial
(n = 133), where these two biologics repeated the randomised study
drugs17. Of the original 164 patients randomised on entry to the R4RA
trial, 133 patients had good-quality baseline synovial RNA-Seq post-
QC19. Predicted response based on tocilizumab and rituximab pre-
dictive models was compared to actual response in R4RA participants
treated with tocilizumab (n = 65) or rituximab (n = 68), with response
defined as patients achieving low disease activity (DAS28-ESR <3.2) at
the 16-week endpoint. Each model showed a prediction ability for
tocilizumab response with an AUC of 0.713 and of 0.786 for rituximab
response (Fig. 5e) and balanced accuracy of 0.752 and 0.680 (Sup-
plementary Table 6), confirming validation of each of these models in
an external, independent RA cohort.

Full models were also compared against models built using clin-
ical parameters alone (Supplementary Fig. 10). These showed sig-
nificantly inferior prediction for all three drugs (etanercept AUC0.601,
tocilizumab AUC 0.673, rituximab AUC 0.642) in STRAP compared to
the full models including synovial gene expression. In addition,
retesting of the clinical-only parameter models trained in STRAP
against response to tocilizumab and rituximab in R4RA also showed
poorer response prediction (tocilizumab AUC 0.624, rituximab
AUC 0.653).

Rebuilding models using pooled STRAP and R4RA data
For comparison purposes, RNA-Seq data and clinical data from
patients in STRAP and R4RA treated with tocilizumab (n = 134) and
rituximab (n = 140) were combined in order to build models using the
largest possible datasets. Machine learning using the same repeated
nested CV pipeline applied to this enlarged data resulted in an 11-
parameter glmnet model for tocilizumab prediction and ten-
parameter partial least-squares regression (pls) model for rituximab
prediction with nested CV AUC of 0.785 and 0.750 respectively (Sup-
plementary Figs. 11, 12), which were comparable to results obtained
using STRAP alone for training with similar accuracy and balanced
accuracy. Confusion matrices (Supplementary Table 7) showed that
the prediction models enriched the delineation of responders and
non-responders: individuals predicted to be tocilizumab responders
showed an enriched response rate of 75% (61/81) compared to 32%
(17/53) response in predicted non-responders. Similarly, rituximab
predicted responders showed an actual response rate of 76% (16/21)
compared to 18% (21/119) response in the predicted non-response
group. In contrast in STRAP & R4RA combined, RF or CCP positive
patients showed no difference in response rates compared to ser-
onegative patients following treatment with tocilizumab (57% vs
61–63%) and only a moderate increase in response rate with rituximab
(28–30%vs 17–19%) (SupplementaryTable 8). Thus, the newprediction

models provide additional benefit above and beyond simple ser-
opositivity for predicting response to biologic therapies.

Conversion of machine learning models into nCounter panels
demonstrates high predictive value for patient stratification by
response to specific biologics
RNA-Seq is a highly effective research tool, but technical and analytical
barriers prevent its use in routine clinical practice, while nCounter is a
rapid multiplexed gene expression assay, which has achieved FDA
certification for clinical adoption in the field of breast cancer32. Thus,
we converted the RNA-seqmachine learningmodels into an nCounter-
based system, which we validated using available RNA from synovial
biopsies (n = 118) from the STRAP trial, utilising the custom 524-gene
nCounter panel mentioned above. The custom nCounter panel was
designed in a three-stage process, shown in Supplementary Fig. 4 and
described in full in the Methods. In brief, an initial set of 798 genes
linked to RA pathotypes18, genes encoding proteins interacting with
known important RA therapeutic targets (TNF/TNFR, IL6/IL6R, etc.),
genes fromprevious RA treatment response predictionmodels19,20,24,30,
cell-specific genes from scRNA-seq studies21,22,33 and synovium-specific
housekeeping genes based on analysis of PEAC, R4RA and STRAPRNA-
seq data were submitted for the first custom panel. This was tested on
48 synovial biopsy RNA samples. A second stage 523-gene panel was
redesigned to improve background noise detected in negative control
probes and tested on a further 48 samples. The finalised panel inclu-
ded a total of 507 target genes and 17 housekeeping genes (a total of
524 genes, Supplementary Data 5).

Comparison of nCounter normalised counts against RNA-Seq on
the same samples showed strong correlation between nCounter and
RNA-Seq for the vast majority of genes (Supplementary Fig. 13). To be
able to input nCounter gene counts into the machine learning models
constructedon theRNA-Seqdata (Fig. 5c, d), wedeveloped an algorithm
to convert nCounter count data for each gene to RNA-Seq scale
(pseudo-RNA-Seq), using linear models fitted for each gene. Figure 6a
outlines the pipeline used to test the validity of the nCounter biomarker
panel for predicting response to each of the three biologic drugs ran-
domised in STRAP. nCounter data for each cohort (etanercept n= 39,
tocilizumab n =34, rituximab n=45, total n= 118) was converted to
pseudo-RNA-seq and inputted into the relevant MLmodel (described in
Fig. 5c, d) for each cohort. We tested predicted response against actual
response at 16 weeks (reference) to the drug received by each patient in
the STRAP trial. A balanced accuracy of 0.79 was achieved for the eta-
nercept and tocilizumab models and 0.81 for the rituximab model
(Fig. 6b), while an AUC of 0.87 was observed for etanercept response,
0.82 for tocilizumab response and 0.87 for rituximab response (Fig. 6c).
Thus, all three RNA-Seq derived machine learning models were suc-
cessfully converted and validated using an alternative, non-sequencing-
based assay. This led to the development of an algorithm for future
clinical use where the nCounter biomarker panel can assign patients to
either (i) a TNF-inhibitor, (ii) an IL6-inhibitor, (iii) a B-cell depleting
agent, or (iv) a biomarker-negative group if patients have lowprobability
(all <50%) of responding to all three classes of drugs (Fig. 6d).

Discussion
We performed a comprehensive analysis of RNA-Seq data from syno-
vial biopsies from the STRAP trial that led to the identification of gene

Fig. 4 | Unsupervised clustering reveals molecular groups of patients that are
reflected in an independent cohort. a Unsupervised k-means clustering on the
3411most expressedgenes fromall baseline samples (n = 208) reveals threedistinct
subgroups of patients. Upper tracks show histological scores for CD3, CD20,
CD68L, CD68SL, CD138, cell type (B cell rich/poor), pathotype and DAS28 CRP
response. b Unsupervised k-means clustering on the 2259 most expressed genes
fromall baseline samples (n = 133)of theR4RAcohort reveals subgroups of patients
that share common molecular signatures with the clusters found in the STRAP

cohort. Upper tracks show histological scores for CD3, CD20, CD68L, CD68SL,
CD138, cell type (B cell rich/poor), pathotype and DAS28 CRP response. c Pathway
analysis of the three gene clusters identified in the STRAP cohort (cluster 1 = 983
genes, cluster 2 = 1420 genes, cluster 3 = 1008 genes). d Venn diagrams showing
numbers of distinct and shared genes in the three clusters independently obtained
in STRAP and R4RA. e The PCA plots from baseline samples of the STRAP cohorts
colour codedby pathotype (top) and unsupervisedmolecular clusters identified by
k-means clustering (bottom).
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signatures associated with response to etanercept, tocilizumab and
rituximab (Fig. 1a, c, e). B-cell gene modules had a strong theme pre-
dicting response to both rituximab and etanercept (Fig. 1b, f), while
chemokine and cytokine genemodules were associated with response
to tocilizumab (Fig. 1d). Comparative analysis identified both shared
gene response and non-response signatures (Fig. 2a, b) with Fc
receptor mediated inflammatory signalling as a strong underlying

theme. Drug-specific response signatureswere also dissected, showing
that specific genes could be associated with response to one drug and
non-response to another, for example selected fibroblast genes such
as KRT10 being associated with response to tocilizumab and non-
response to etanercept, while B cell associated genes MS4A1 which
encodes CD20 and the B cell-specific transcription factor PAX5 were
upregulated in etanercept responders.
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The association of increased tissue B-cells with greater response
to rituximab inherently fits with themechanism of action of rituximab,
whichdepletes B-cells, in keepingwith theprevious observations in the
R4RA trial17. There are multiple reasons why etanercept response
might be affected by the level of B-cell infiltration. Synovial B cells
express TNF receptor 2 (p75)34,35, which drives lymphocyte activation
and proliferation36. Etanercept is unique among anti-TNF inhibitors for
its added ability to block the B-cell-promoting cytokine lymphotoxin-
alpha37. Synovial B-cell infiltration is the defining feature of the ‘lym-
pho-myeloid’ pathotype, which was renamed from its earlier name
‘lymphoid’, because of the observation that patients with this patho-
type also had the most inflammatory synovial tissue containing the
highest amount of macrophages18. Synovial macrophage infiltration
has historically been associatedwith radiographic progression38 aswell
as therapeutic response to multiple agents33,39,40, and synovial B-cell
infiltration has shown a similar association with accelerated bone
erosion20,24. B-cell genes as a signature for anti-TNF response could be
interpreted as a marker for those samples with the highest macro-
phage infiltration, as well as the highest levels of tissue inflammation,
with the most complex inflammatory cell infiltrates with ectopic lym-
phoid structure formation41. So it is plausible that a high synovial B-cell
gene signature would be a marker of enhanced response to anti-TNF
therapy and etanercept specifically.

Deconvolution of the bulk RNA-Seq data using gene modules of
single cell subsets from the Accelerated Medicines Partnership (AMP)
consortium21 showed that specific estimated cellular subsets were
associated with response, for example SC-M2 and SC-M4 macrophage
subsets were associated with tocilizumab response while SC-M1 mac-
rophage, and SC-B1 and SC-B2 B cell subsets were associated with
etanercept response (Fig. 3b, c). These results are consistentwith other
recent single-cell work examining the role of specific synovial macro-
phage subsets in maintaining or limiting remission in RA patients33.
Single-cell subset analysis of the bulk data segregated with pathotypes
(Fig. 3a), but suggested greater complexity than the original descrip-
tion of the pathotypes18,24, with for example the pauci-immune fibroid
pathotype being split into two clusters based on predicted cell types
including DKK3+ (SC-F3) and CD34+ (SC-F1) fibroblasts in cluster 1 and
CD55+ fibroblasts (SC-F4) in cluster 2. This is consistent with the recent
cell-type abundance phenotype (CTAP) description by ref. 22, where
the original pathotypes we described18,24 were re-defined according to
the different distribution of single cell subsets and validated in the
R4RA cohort19.

Of critical importance, the application of machine learning to the
STRAP synovial gene expression at baseline identified predictive
models of response at 16 weeks to each of the three drugs used in the
trial (Fig. 5c, d). Moreover, in order to develop a predictive test of
clinical utility in rheumatology practice, we converted the synovial
RNA-Seq signatures into a nanoString panel of 524 genes and validated

it using residual synovial RNA from patients (n = 118) originally
recruited to the STRAP trial. This analysis showed that eachmodel was
successfully validated with accuracy ranging from 79 to 85% and AUC
ranging from 0.82 to 0.87 (Fig. 6b, c). Notably, prediction models for
tocilizumab and rituximabwere independently validated in an external
cohort, namely the R4RA biopsy-driven randomised controlled trial
(n = 133) (Fig. 5e)19. This validation is of critical importance for the
generalisability of the predictive signatures since patients were
recruited to the STRAP trial at an earlier disease stage, having only
failed methotrexate-based DMARDs, while patients enroled in R4RA
had failed both methotrexate-based DMARDs as well as at least one
anti-TNF biologic and considered to be a more difficult to treat
population17. These results indicate that synovial signatures reflect the
diverse pathology linked to different pathways, truly representing the
target of the different modes of action of these commonly used tar-
geted biologic therapies.

A major achievement of this study has been the development of a
novel algorithm which can assign patients to one of three classes of
biologics (TNF-inhibitor, IL6-inhibitor, B-cell depleting agent) basedon
their probability of response predicted by machine learning models
applied to nCounter assay on a patient’s synovial biopsy (Fig. 6d). This
algorithm can also predict whether patients have a low probability (all
p <0.5) of responding to all three drugs, inwhich case they are labelled
as 'biomarker negative' and can be offered an alternative therapeutic
class, thus reducing costs and unnecessary drug exposure to agents
unlikely to be effective. This approach paves the way to precision
prescribing in the future, contrary to the current inability to predict
which drug the patient is likely to respond to, because of the lack, up
until now, of predictive response biomarkers. While there has been a
sustained research effort for decades to identify predictive peripheral
blood biomarkers, none have been identified, as documented by
multiple studies and meta-analyses42. Multiple studies have also
investigated whether anti-CCP or rheumatoid factor titre or ser-
opositivity predict response to biologics43. Some of the most com-
prehensive studies include a meta-analysis of four key RCT, which
included 1416 rituximab-treated patients44, and an observational study
of 27,583 RA patients treated with four different biologics45. These
show that seropositive patients have a tendency to modestly higher
response rates when treated with rituximab or tocilizumab, but not
anti-TNF inhibitors. Collectively, these studies reveal that the differ-
ence in response rates between seropositive and seronegative patients
is modest and that anti-CCP and/or rheumatoid factor positivity are
weakpredictors of response. This is consistentwith ourownanalysisof
STRAP and R4RA which shows that CCP and RF titre as a continuous
variablewas not a strongpredictorof response (Supplementary Fig. 8).
However, RF and CCP positivity showed a modest association with
increased response to rituximab and etanercept in STRAP (Supple-
mentary Table 8), but the association with rituximab response was no

Fig. 5 | Machine learning predictive models fitted using ten-by-ten-fold nested
cross-validation for response to etanercept, tocilizumab and rituximab.
a Schema showing a machine learning pipeline. b Box plots of model performance
for each of the three trial drugs. Multiple types of machine learning (ML) models
were fitted to baseline synovial RNA-Seq gene expression data to predict response
to each trial drug at the 16-weekprimary endpoint, with responsedefined asDAS28-
ESR <3.2. Model types: gradient boosted machine (gbm), elastic net regression
(glmnet), mixed discriminant analysis (mda), random forest (rf), support vector
machine (svm) with polynomial (svmPoly) or radial (svmRadial) kernel, extreme
gradient boosting (xgboost) with tree booster (xgbTree) or linear booster
(xgbLinear). Unbiased model performance was determined by 10 × 10-fold nested
cross-validation (CV) with 25 repeats (each point shows one repeat), with the area
under the receiver operating characteristic (ROC) curve as performance metric for
etanercept and tocilizumab. The Coefficient of determination R2 was used as a
performance metric for rituximab models (see Methods), which were fitted to an
ordinal (four-level) response outcome, as this led to improved final binary response

prediction. Box plots show median, upper and lower quartiles, with whiskers
denoting maximal and minimal data within 1.5 × interquartile range (IQR). c ROC
curves for final best models for each drug, showing nested CV ROC and ROC
calculated from inner CV folds. d Variable importance plots showing stability of
variables selected by the final MLmodel for each drug across nested CV. Error bars
show the standard error of mean variable importance, size of points shows fre-
quency with which each gene/predictor was selected by models during nested CV.
Colour of points shows directionality of association with response: red for genes/
predictors upregulated in non-response, blue for genes/predictors upregulated in
response. e Validation of STRAP-trained tocilizumab and rituximab machine
learning models in R4RA. Models for tocilizumab and rituximab shown in c, dwere
applied to synovial RNA-Seq and data from patients randomised to treatment with
tocilizumab (n = 65) or rituximab (n = 68) in the R4RA trial. Predicted outcome was
compared to the real outcome, with response defined as DAS28-ESR <3.2 at the 16-
week primary endpoint of the trial. Predictive model performance was assessed by
ROC AUC.
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longer significant when STRAP and R4RA were combined. No sig-
nificant association was observed for tocilizumab in STRAP/R4RA.

An important limitation of the present study, however, is that the
precision, accuracy and clinical utility of the algorithm will require
additional testing in a purposefully designedprospective RCT,which is
currently ongoing, funded by the EU-Horizon-IMI programme: 3TR
PRECIS-THE-RA46. The 3TR PRECIS-THE-RA trial will directly test

whether assigning RA patients to either a TNF-inhibitor or an IL6-
inhibitor based on the probability of response determined through a
synovial biopsy nCounter assay will enrich for clinical response com-
pared to the control arm, in which patients will receive one of the two
drugs randomly.Other important limitationsof our study are that it is a
post-hoc analysis, and there is a lack of replication for etanercept (no
such biopsy RCT cohort exists). The CDAI score is preferred for
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comparing anti-IL6 therapeutics against other drugs, such as placebo
or standard of care, due to the absence of acute-phase reactants such
as CRP, which are driven down by its mechanism of action and thus
lead to artificially higher response rates according tomeasures such as
DAS28-CRP47. But in our case, we are comparing tocilizumab respon-
ders vs non-responders, i.e. we are comparing tocilizumab against
itself, so the tocilizumab non-responders still represent a valid non-
response group which has less response to tocilizumab compared to
the tocilizumab responder group. We attempted to fit models based
on CDAI 50% response, but were unable to develop reliable models to
predict this outcome measure for any of the three trial drugs. Our
interpretation is that CDAI, which relies on both patient and clinician-
reported measures and includes no biological measures, is more
subjective. However, we were able to develop models which could
predict response defined asDAS28-ESR <3.2. The fact that theDAS28 is
less subjective in that it does not include a clinician-reportedmeasure,
plus the inclusionof ESR as anobjective biologicalmeasureof systemic
inflammation in the endpoint, might have aided the prediction mod-
elling. The optimal choice of clinical response metrics is controversial
and may vary depending on the drug being studied and the scientific
question being asked—no responsemeasure is perfect for all drugs and
all clinical scenarios. Composite scores and subcomponents show
major differences in correlation with functional outcomes such as
future joint damage and function/disability48. Studies have shown that
acute-phase reactants and swollen joint counts are the dominant
predictors of radiographic joint damage49,50. Thus, the development of
models which predict endpoints which include acute-phase reactants
may have a long-term advantage for patients. Overall, however, we
fully accept that in an ideal world, it would be preferable to predict
CDAI response, especially for anti-IL6 therapeutics, but this might
require substantially larger cohorts due to the higher subjectivity of
the CDAI measure.

Sample size also affects the current study insofar as it can impact
the reliability of model performance metrics such as AUC. Thus, we
have provided full confusion matrices for all models (Supplementary
Tables 5–7) aswell as estimates of the variability of AUC and additional
performance metrics across 25 repeats of the nested CV to aid
interpretability.

Another limitation to mention is that current deconvolution
algorithms are limited in accuracy for quantifying single-cell subsets
from bulk RNA-Seq, and the abundance of single-cell subsets shown
are only estimates. On the other hand, currently, it is not experimen-
tally feasible to perform scRNA-Seq on such a large number of biopsies
in a prospective RCT.

In summary, the in-depth analysis presented here has shown that
machine learning identifies synovial biopsy biomarkers that predict
response to three specific commonly used biologic classes, namely
B-cell depleting agents, TNF- and IL6-inhibitors, targeting three major
disease pathways. The machine learning biomarker models were suc-
cessfully translated into an nCounter assay, which was validated in
residual synovial RNA available from STRAP patients, with its perfor-
mance tested against the actual response outcomes observed in the
trial. Thus, this study provides the underpinning evidence towards
changing the prescribing paradigm away from ‘trial-and-error’ to

transform future clinical practice through successful bedside tests to
help stratify patients to the most effective drugs from the disease
outset. It also paves the way for patient-centric molecular-pathology
driven clinical trials to develop new drugs for refractory patients51.

Methods
Patients and intervention
A total of 226patients aged 18 years or over, fulfilling 2010ACR/EULAR
classification criteria for RA who were eligible for treatment with anti-
TNF therapy according to UK National Institute for Health and Care
Excellence (NICE) guidelines, i.e. failing or intolerant to conventional
synthetic disease-modifying anti-rheumatic drug (csDMARD) therapy
were recruited when fulfilling the trial inclusion/exclusion criteria (for
the full study protocol and baseline patient characteristics see the
primary analysis of the trial)20. Due to issues with drug supply, a
separate trial ‘STRAP-EU’ was opened which replicated the STRAP trial
in the UK, and recruitment was expanded to four other countries in
Europe in 2018. For the analyses, the data from both trials were com-
bined. Briefly, patients underwent a synovial biopsy of a clinically
active joint at entry to the trial, performed according to the expertise
of the local centre as either an ultrasound-guided or arthroscopic
procedure52. Following synovial biopsy, patients were randomised to
receive either rituximab as two 1000-mg infusions at an interval of
2 weeks, administered at baseline, tocilizumab 162mg administered as
a weekly subcutaneous injection, or etanercept 50mg administered as
a weekly subcutaneous injection. Patients were followed up every
4 weeks (±1 week) throughout the 48-week trial treatment period,
where RA disease activity measurements and safety data were col-
lected. Follow-up of STRAP patients recruited in the UK after 1st Jan-
uary 2019 ended at 24 weeks from baseline, whereas the follow-up of
all STRAP-EU patients continued to end at 48 weeks from baseline.
Optionally, a repeated synovial biopsy of the same joint sampled at
baseline was performed at 16 weeks. The study was conducted in
compliance with the Declaration of Helsinki, International Conference
on Harmonisation Guidelines for Good Clinical Practice, and local
country regulations. The final protocol, amendments and doc-
umentation of consent were approved by the institutional review
board of each study centre and relevant independent ethics commit-
tees: UK ethics committee approval MREC 14/WA/1209 (Wales REC 3);
Comité d’Ethique Hospitalo-Facultaire Saint-Luc, Bruxelles, Belgium;
Comitato Etico Interaziendale, A.O.U. Maggiore della Carita, Novara,
Italy; Comissão de Ética para a Investigaçāo Clínica (CEIC), Portugal;
Comité Ético de Investigación con medicamentos (CEIm) del Hospital
Clínic de Barcelona, Spain. All patients provided written informed
consent. The trial was supported by an unrestricted grant from the
Medical Research Council. The study protocol is available at http://
www.matura-mrc.whri.qmul.ac.uk/documents.php. These trials are
registeredwith the EUClinical Trials Register, 2014-003529-16 (STRAP)
and 2017-004079-30 (STRAP-EU).

RNA-seq data processing and analysis
A total of 283 paired-end RNA-seq samples from 50 million reads of
150-bp length were mapped to the reference human transcriptome
(Gencode v29, GRCh38.p12), and transcripts were then quantified

Fig. 6 | Conversion and validation of machine learning models using the
nCounter assay. a Flow diagram outlining the process of converting the RNA-Seq
models to a workable nanostring nCounter-based assay. Spare baseline synovial
biopsy samples from STRAP were subjected to nCounter assay using a custom
synovial 524-gene panel. nCounter data was rescaled to RNA-Seq scale (“pseudo-
RNA-Seq”) using linear models for each gene. Rescaled nCounter data was passed
to machine learning models from Fig. 4c, and the performance of each model was
assessed. b Confusion matrices showing predicted versus actual response, accu-
racy and balanced accuracy of nCounter assay applied to baseline synovial biopsies
for prediction of response defined as DAS28-ESR <3.2 after 16 weeks of treatment.

c Receiver operating characteristic (ROC) curve plots and area under the curve
(AUC) measurements for prediction of response to etanercept, tocilizumab and
rituximab from nCounter assay applied to baseline synovial biopsies from STRAP.
d Proposed algorithm for allocation of a new patient to one of three possible
biologic therapy categories (TNF-inhibitor, IL6-inhibitor or B-cell depleting agent)
based on whichever model gives the highest predicted probability of response.
Individuals with low predicted probability (all p <0.5) of response to all three
classes of biologics are categorised as “biomarker negative” and can be offered an
alternative class of therapeutic agent. a, d created in BioRender with modifications
(https://BioRender.com/r4uqilh).
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using Salmon version 0.13.153. Tximport version 1.13.10 was used to
aggregate transcript-level expression data to genes, then counts were
subjected to variance-stabilising transformation (VST) using the
DESeq2 version 1.25.9 package54. Following RNA-Seq quality control,
with principal component analysis (PCA), five baseline and three fol-
low-up, in total eight samples were excluded due to poormapping rate
that was originated from low RNA quality (Supplementary Fig. 1a).
Thus RNA-Seq data from 208 patients were available for subsequent
analysis at baseline (65 samples at later time points are not analysed
here). Baseline characteristics of patients with available RNA-Seq are
shown in Supplementary Table 1.

Histological analysis
A minimum of six synovial biopsies were processed in an Excelsior
tissue processor before being paraffin-embedded en masse at Queen
Mary University of London Core Pathology department. Tissue sec-
tions (3–5-µm thickness) were stained with hematoxylin and eosin and
IHC markers CD20 (B cells), CD138 (plasma cells), CD21 (follicular
dendritic cells) and CD68 (macrophages) in an automated Ventana
Autostainer machine. CD79A (B cells) and CD3 (T-cells) staining was
performed in-house on deparaffinized tissue following antigen retrie-
val (30min at 95 °C), followed by peroxidase- and protein-blocking
steps. Primary antibodies (CD79A (clone JCB117, Dako), CD3 (clone
F7.238, Dako), CD20 (clone L26, Dako), CD68 (clone KP1, Dako) and
CD138 (cloneMI15, Dako)) were used for 60min at room temperature.
Visualisation of antibody binding was achieved by 30-min incubation
with Dako EnVisionTM+ before completion by the addition of 3,3’-
diaminobenzidine (DAB) + substrate chromogen for 10 s, followed by
counterstaining with hematoxylin. Following IHC staining, sections
underwent semiquantitative scoring (0–4), by a minimum of two
assessors, to determine levels of CD20+ and CD79a+ B cells, CD3 + T-
cells, CD138+ plasma cells and CD68+ lining (L) and sublining (SL)
macrophages, adapted from a previously described score55 and sub-
sequently validated18. Hematoxylin and eosin-stained slides also
underwent evaluation to determine the level of synovitis according to
the Krenn synovitis score (0–9)56. Synovial biopsies were classified into
synovial histological patterns, also known as pathotypes, according to
the following criteria: (1) lymphomyeloid, presence of grade 2–3
CD20+ aggregates, CD20 ≥2 and/or CD138 ≥2; (2) diffuse-myeloid,
CD68SL ≥2, CD20 ≤1 and/or CD3 ≥1 and CD138 ≤2; and (3) pauci-
immune-fibroid, CD68SL <2 and CD3, CD20 and CD138 <1.

Differential expression, modular and pathway analysis of RNA-
Seq data at baseline
Patients classed as responders and non-responders based on their 16-
week assessment using ACR20 criteria were compared for each indi-
vidual treatment group as well as for all treatments combined. The
groups showed no significant differences for baseline characteristics,
including histological and molecular B-cell status, gender or disease
duration (Supplementary Table 1). Low-expressed genes (expressed in
fewer than 18 samples with at least a normalised count of 9) were
excluded from analysis. Remaining genes were subjected to differ-
ential gene expression analysis based on general linear regression
models with negative binomial distribution applied to RNA-Seq count
data using DESeq2 (version 1.34.0), which uses a Wald test to compare
differences between treatment response groups in synovium RNA-Seq
samples. To prevent bias of results through potential muscle con-
tamination, a supervised principal component analysis (PCA) was cal-
culated using the prcomp function with the following 17 genes derived
from Reactome skeletal muscle module: ACTA1, ACTN2, MYBPC1,
MYBPC2, MYH1, MYH2, MYH7, MYH8, MYL1, MYL2, NEB, TCAP, TNNC2,
TNNI1, TNNI2, TNNT1 and TNNT3. These genes were checked and
confirmed to be highly specific to muscle tissue in the FANTOM5
CAGE-Seq repository. Muscle gene-specific PC1 was employed as a
covariate in the DESeq2 analysis to adjust for the presence of small

amounts of muscle tissue in a few samples. P values were false dis-
covery rate (FDR) adjusted using Storey’s q value. A cut-off of q <0.05
was used to identify significantly differentially expressed genes (DEG),
illustrated by volcano plots. DEG analysis was repeated with adjust-
ment for biopsy joint size (large = knee, ankle, elbow; small =MCP, PIP,
MTP, wrist), but this had negligible impact on DEG analysis and only
worsened the number of DEG identified for two of the drugs (Sup-
plementary Fig. 2). Biopsy joint size was not significantly different
between responder and non-responder groups (Supplementary
Table 2).

DESeq2 outputs from each individual treatment group were used
for modular analysis using the Bioconductor package quantitative set
analysis for gene expression (QuSAGE, v2.30.0). Weighted gene cor-
relation network analysis (WGCNA) gene modules from ref. 57 were
selected for gene set enrichment, and relevant modules were sum-
marised in plots. DESeq2 outputs from the differential expression
analysis in all treatments were used for functional enrichment using
enrichR (v3.2) with Reactome_2022 as the pathway repository.

2 × 3-way analysis of differentially expressed genes
In order to visualise the specificity of genes for predicting respon-
siveness to each drug, DEGs identified by the responders vs non-
responders contrast in each drug cohort were displayed in three-way
polar plots using the volcano3D R package (version 2.0.6) as a 2 × 3-
way analysis18. DEGs upregulated in responderswere categorised as E+,
R+, T+ based on the Wald Chi-squared test p value significance for
responder vs non-responder analysis for etanercept, rituximab and
tocilizumab, respectively. Genes whose FDR result was significant for
two drugs were labelled as mixed categories (E+ R+, E+ T+ or R+ T+).
Genes significantly upregulated in responders with all three drugs
were excluded. The graphical position of the genes along the three
axes of the polar plot was calculated using the estimated log fold
change for each gene. The same procedure was applied with direc-
tionality reversed to plot genes significantly upregulated in the non-
responder group of each drug.

Gene expression integration into cell-specific modules
Modular approaches for gene set enrichment analysis and relative
quantification of cell subsets are widely used in recent molecular
studies58,59. Here, we integrated gene expression into cell-specific
modules to characterise the association of synovial immune cells in RA
with multidrug resistance. For the enrichment of 18 single-cell subsets
identified in scRNA-Seq of RA synovial tissue21 that are composed of
four fibroblast subtypes (SC-F1: CD34+ sublining, SC-F2: HLA+ sublin-
ing, SC-F3: DKK3+ sublining and SC-F4: CD55+ lining), four macro-
phages subtypes (SC-M1: IL1B+ pro-inflammatory, SC-M2: NUPR1+, SC-
M3: C1QA+, SC-M4: IFN-activated), six T-cell subtypes (SC-T1: CCR7+
CD4+, SC-T2: FOXP3+ Tregs, SC-T3: PD-1+ Tph/Tfh, SC-T4: GZMK+
CD8+, SC-T5: GNLY+ GZMB+, SC-T6: GZMK+/GZMB+), and four B-cell
subtypes (SC-B1: IGHD+CD27- naive, SC-B2: IGHG3+ CD27+ memory,
SC-B3: Autoimmune associated, SC-B4: Plasmablasts), we scored each
subtype using a modular approach that integrates previously pub-
lished gene signatures21. The top five exclusively differentially
expressed genes (based on AUC scores) were utilised as cell subtype-
specific gene sets. Module scores for each subtype were calculated
using the AddModuleScore function from the R package Seurat. Lin-
ear model method as implemented in R package Limma, was used to
detect the differentially abundant cell sub-populations when com-
paring responders and non-responders.

The main aim of the STRAP clinical trial is to test the utility of
analysing synovial B-cell infiltrates as a potential biomarker to guide
therapeutic decisions in patients failing DMARD therapy. To stratify
patients according to their synovial B-cell infiltrates into B-cell poor/
rich pathotypes, we used the B-cell module gene set that contains 71
genes derived from FANTOM5 (see Supplementary Fig. 1c)60. First, we
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assigned themean of normalised and scaled gene expression values to
this module as previously described and validated18. Then, patients
were categorised as B-cell poor or B-cell rich using a predefined cut-off
of −0.0413, themedianB-cellmodule values of RApatients recruited in
the R4RA clinical trial17.

Unsupervised clustering of baseline gene expressions
To perform unbiased heatmap clustering on the entire baseline
population, genes were filtered based on expression levels. For the
STRAP cohort, genes were stringently filtered to only highly expressed
genes using the edgeR package (version v4.2.0) function filter-
ByExpr with arguments min.count set to 20 and min.total.count
set to 5e5. Since R4RA had a smaller sample size (n = 133), min.to-
tal.countwas reduced to 3e5. Expression levels underwent variance-
stabilising transformation (VST) normalisation and Z-score scaling for
visualisation with ComplexHeatmap (v2.14.0). Euclidean distance was
employed to calculate row distances, while Pearson correlation dis-
tance was utilised for column distances. Hierarchical clustering was
performed on columns using the complete linkage method, whereas
k-means clustering was applied to rows. Genes within each resulting
cluster were used for pathway analysis with enrichR (v3.2) using the
Reactome_2022 database.

Building classifier models for the prediction of response
Machine learning models were built to predict target DAS28ESR, target
DAS28CRP, ACR20 response, CDAI 50% response, EULAR DAS28-ESR
good vs moderate/non-response and EULAR DAS28-CRP good vs
moderate/non-response to either rituximab, tocilizumab, or eta-
nercept treatment at the primary endpoint (16 weeks).

The model feature space was created using RNA-Seq data
restricted to 507 target genes relevant to synovial biology basedon the
nCounter custom panel (see description of the panel below). Baseline
clinical parameters were included to improve response prediction.
These included: tender joint count (TJC), swollen joint count (SJC),
arthritis activity (patient visual analogue score), rheumatoid factor
titre (RF), anti-CCP titre, erythrocyte sedimentation rate (ESR) and
C-reactive protein (CRP). TJC, SJC and ESR were square root trans-
formed (sqTJC, sqJSC and sqESR) to be on a Gaussian distribution, and
CRP was log-transformed (logCRP). Genes were filtered to those with
mean expression ≥6 on the VST scale to remove low-expressed genes,
which were less reliably detected by nCounter.

Following processing, data was split into 10 × 10 nested CV folds
using the nestedcv R package (version 0.7.9)31. Feature selection was
performed within outer CV folds using a t-test filter, with the top n
genes by two-tailed t-test p value being retained for fitting of models.
An alternative feature selectionmethod, which was used for rituximab
response prediction models, was based on fitting a glmnet elastic net
regression model to the whole data and selecting genes which were
retained in the glmnet model. The number of features selected was
chosen to limit model size to between 25 and 40 predictors to design
practicalmodelsmore likely to be feasible in real-life clinical situations.
Model hyperparameters were tuned by an inner tenfold cross-
validation based on log loss. Overall model performance was deter-
mined by tenfold outer cross-validation with 25 repeats to give aver-
aged unbiased estimates of model accuracy. Elastic net penalised
regression using the glmnet package was compared against seven
machine learning models from the caret package (version 6.0): ran-
dom forest (RF), least-squares support vector machine (SVM) with
radial basis function kernel (svmRadial), least-squares SVM with poly-
nomial kernel (svmPoly), gradient boosted machine (GBM), mixture
discriminant analysis (MDA), extreme gradient boosting (xgboost)
using trees (xgbTree) or linear regression (xgbLinear). None of these
models, with the exception of glmnet, are sparse, which means that
they incorporate all predictors duringmodelling. This leads to models
with large numbers of predictors, which have a tendency to fail

validation in real clinical situations. Hence, feature selection was used
to limit model size to between 25 to 40 predictors to design practical
models more likely to be feasible in a real-life clinical situation. Pre-
vious studies have shown that with gene expression data, filtering
genes with a simple t-test often performs better than more complex
feature selectionmethods61. Thus, formodels predicting etanercept or
tocilizumab response, we used a t-test filter. However, it was more
difficult to obtain a good-quality prediction model for rituximab, so a
glmnet-based filter was used. In this two-step process, a LASSO
regression model was fitted to the training folds to select optimal
features, which are then passed to other models for fitting.

To evaluate overall model performance from each repeat of
10 × 10-fold nested CV, predictions from left-out outer CV test folds
were pooled, and performance was determined compared to the
ground truth. Multiple metrics were used including area under curve
(AUC) from receiver operating characteristic (ROC) curves com-
puted using R package pROC, accuracy and balanced accuracy.
Tuning parameters for the final model were determined by a final
round of CV on the whole dataset with the final model fitted to the
whole dataset.

Performance of each model for predicting response to each drug
was measured by AUC (area under ROC curve) with 25 repeats of
10 × 10 nested CV to compare the primary endpoint ACR20 response
against five other response endpoints to identify the optimal endpoint
(Supplementary Figs. 5–7): DAS28-ESR/CRP <3.2 (target DAS28-ESR/
CRP); CDAI 50% response, EULAR good vs moderate/non-response for
DAS28-ESR/CRP. This showed that for etanercept and tocilizumab, the
best prediction of response was seen for target DAS28-ESR (<3.2).
Therefore, this response outcome measure was selected for model
optimisation. For etanercept and tocilizumab, models were trained
with a binary outcome, with response defined as DAS28-ESR <3.2 at
16 weeks. For the rituximabmodel, due to difficulties with obtaining a
reliable binary classification model, an ordinal outcome was used,
namely DAS28-ESR status at 16 weeks which has four levels: high
(DAS28-ESR >5.1), moderate (3.2 <DAS28 <5.1) or low disease activity
(2.6<DAS28<3.2) and remission (DAS28 <2.6). This four-level outcome
fits alongside the original binary outcome as low disease activity/
remission corresponds directly to response, and moderate/high dis-
ease activity at 16 weeks corresponds to non-response. Rituximab
prediction models were fitted to this ordinal outcome as a regression,
then converted to abinary outcomeafter thefinalmodelwasfitted and
performance calculated for the binary outcome.

Feature importancewasmeasured across outer CV folds as well as
the finalmodel to rank predictors in terms of importance and estimate
stability of variables in models by the frequency with which variables
were selected across outer CV folds and estimate the variance across
variable importance across the outer CV folds and final model.

Validation of machine learning models in R4RA
Two of the machine learning models built on STRAP data were vali-
dated in the independent R4RA cohort. In the R4RA trial, patients
(n = 164)were randomised to tocilizumabor rituximab (not etanercept
or anti-TNF)17. Therefore, only these two models were tested in R4RA.
Of the 164 patients randomised on entry to the R4RA trial, good-
quality RNA-Seq was available on n = 133 post-QC19. R4RA baseline
synovial RNA-Seq data (n = 133) was batch corrected against STRAP
RNA-Seq data using the ComBat function from the SVA R/Bio-
conductor package (version 3.52.0). Baseline clinical parameters
required for each predictive model underwent identical transforma-
tion as in STRAP (square root for TJC, SJC, ESR; log for CRP). The
tocilizumab and rituximab model-predicted response was compared
against the actual DAS28-ESR response defined as DAS28-ESR <3.2 in
individuals treated with tocilizumab (n = 65) or rituximab (n = 68) at
the 16-week primary endpoint of the R4RA trial. Model performance
for predicting response to each drug was measured by ROC AUC.
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Development of the custom synovium nCounter panel
The nCounter platform provides the flexibility to customise assay con-
tent with up to 800 user-defined targets to meet specific project
demands. Our custompanel, also called the biologic screening panel for
arthritis, was created using an iterative development process. The initial
panel was designed with five gene sets that contained a total of 798
unique genes related to synovial pathobiology. These gene sets inclu-
ded: (i) genes associated with synovial pathotypes from the PEAC RNA-
Seq study18 (258 genes), (ii) protein-protein interaction networks of RA
drug targets retrieved from the STRING database (https://www.string-
db.org, 166 genes), (iii) gene predictors from previously developed
treatment response prediction models (320 genes)19,24,30, cell-type-
specific genes from single-cell and spatial transcriptomics datasets
(147 genes)21,22,33,62,63, and 20 housekeeping genes for data normalisation
identified through analysis of PEAC, R4RA and STRAP RNA-Seq data.
Even though nCounter panels are completely customisable, the content
of the manufactured panels may differ significantly from the original
design because not all genes have probes available. In our case, issues
with the probe design led to the exclusion of 33 genes from the panel
before the manufacturing of the first cartridge. Then we tested our first
panel on 48 samples, including synovium RNA isolates, Universal
Human Reference RNA (Thermo Fisher QS0639) and water. Unexpect-
edly, in all samples, the negative control probes generated signals which
were excessively strong for QC, with negative signals apparently higher
than signals collected from some valid gene probes. We observed that
from the first iteration that, in order to prevent extreme outliers from
suppressing the signal of the other probes and reduce the noise signal in
synovial tissue, it was optimal for application to synovial tissue to reduce
the content of custom panels to around 600 genes with probes within a
specific dynamic range of expression levels. Therefore, to refine the
gene list, less informative genes which were either excessively highly
expressed (an average count of >10,000) or very low expressed (max-
imumcounts <100)were removed from the panel. Selected problematic
probes were redesigned by Nanostring scientists, when possible. Probes
identified as problematic (‘sticky’) by the manufacturing company were
removed, as well as probes located in untranslated regions.

In the second round, we submitted a refined list of 458 genes with
an additional gene set that was a collection of genes associated with
JAK-STAT, TNF and IFN signalling pathways identified from the KEGG
database (206 genes). This resulted in 526 unique genes. Three gene
probes were subsequently discarded from the panel as their probes
had low specificity and were predicted to predispose to high back-
ground signal. The second version was synthesised with 523 unique
genes and tested on a further 48 synovial samples. Subsequently, the
LYZ gene probe was redesigned and included in the final, third version
of the panel. Test runs of version 2 onwards did not report abnormal
signals from control probes, and the final version with 524 genes (507
target genes and 17 housekeeping genes, Supplementary Data 5) was
manufactured for this study. Expression stability of the housekeeping
genes was assessed using data collected from the test runs, and due to
less stable expression patterns, three housekeeping genes (ISY1,
STK11IP and TFRC) were removed from the data normalisation process.
Supplementary Fig. 4 illustrates the entire process and contains all the
information regarding the development of the custom panel.

nCounter analysis
The final custom synovium nanoString nCounter panel developed
contained 507 genes relevant to synovial pathobiology based on pre-
vious studies of synovial gene expression (Supplementary Data
5)18,19,24,30. The panel also contained 17 housekeeping genes (i.e. a total
of 524 genes) selected for detectable and stable expression in synovial
tissue and technical probes (six positive and eight negative). RNA
samples were assayed using the nanoString nCounter Sprint Profiler
from 100 ng of synovial tissue RNA, following the manufacturer’s
instructions. Raw nCounter counts were extracted from RCC files and

normalised using nanoString’s official R package (nanoStringNCTools
version 1.6.0). Housekeeping genes and panel standard probes (syn-
thetic oligos) normalisation methods were applied to the raw data to
scale and standardise the data.

nCounter pseudo-RNA-Seq conversion and prediction using
machine learning models
Linear models for each gene were fitted between variance stabilised
transformed bulk RNA-Seq gene counts and log-transformed normal-
ised nCounter gene counts. The nCounter assay data were converted
to RNA-Seq scale (referred to as pseudo-RNA-Seq) based on stored
regression models for each gene. Using predefined linear regression
components (intercept and slope coefficient), nCounter data was
converted to pseudo-RNA-Seq and then passed as fresh data input into
the finalised machine learning fitted nestedcv package model objects
(glmnet model for etanercept; gbm model for tocilizumab; xgbLinear
model for rituximab) to determine a predicted probability of response
for each sample. Predicted response probability was compared with
actual outcome in the STRAP trial to determine confusion matrices of
predicted binary response vs actual response, accuracy, balanced
accuracy and ROC AUC for the nCounter assay.

Statistical analysis
Statistical analysis of RNA-Seq gene expression data were performed
using negative binomial general linear models using the DESeq2 R
package. For differential gene expression, p-values were false dis-
covery rate (FDR) adjusted using Storey’s q value. A cut-off of q <0.05
was considered significant. Statistical analysis of gene modules was
performed using QuSAGE with FDR adjustment, and a cut-off of
q <0.05 was considered significant (unless otherwise stated). Two-
tailed tests were used throughout.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current
study are available on an interactive web interface that allows direct
data exploration (https://strap.hpc.qmul.ac.uk/). A searchable inter-
face allows users to examine relationships between individual synovial
gene transcript levels and histological and clinical parameters, and
clinical response at 16 weeks. The website was constructed using R
Shiny server 1.5.16, with interactive plots generated with R plotly 4.9.3.
RNA-Seq data is available at ArrayExpress accession ID E-MTAB-13733.
All data are included in the Supplementary Information or available
from the authors, as are unique reagents used in this Article. The raw
numbers for charts and graphs are available in the Source Data file
whenever possible. Source data are provided with this paper.

Code availability
The nestedcv R package31 used to build and test the machine learning
models is publicly available for installation from theCRANR repository
(https://doi.org/10.32614/CRAN.package.nestedcv). The source code
is also available on GitHub at https://github.com/myles-lewis/
nestedcv. Scripts used for figure generation, model building and per-
formance testing are available from https://github.com/EMR-
bioinformatics/STRAP.
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