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ToxACoL: an endpoint-aware and task-
focused compound representation learning
paradigm for acute toxicity assessment

Jiang Lu 1,2,3,7, Lianlian Wu 1,2,7, Ruijiang Li 2, Mengxuan Wan4, Jun Yang5,
Peng Zan 4, Hui Bai 6 , Song He 2 & Xiaochen Bo 1,2,3

Multi-species acute toxicity assessment forms the basis for chemical classifi-
cation, labelling and risk management. Existing deep learning methods
struggle with diverse experimental conditions, imbalanced data, and scarce
target data, hindering their ability to reveal endpoint associations and accu-
rately predict data-scarce endpoints. Here we propose a machine learning
paradigm, Adjoint Correlation Learning, for multi-condition acute toxicity
assessment (ToxACoL) to address these challenges. ToxACoL models end-
point associations via graph topology and achieves knowledge transfer via
graph convolution. The adjoint correlation mechanism encodes compounds
and endpoints synchronously, yielding endpoint-aware and task-focused
representations. Comprehensive analyses demonstrate that ToxACoL yields
43%-87% improvements for data-scarce human endpoints, while reducing
training data by 70% to 80%. Visualization of the learned top-level repre-
sentation interprets structural alert mechanisms. Filled-in toxicity values
highlight potential for extrapolating animal results to humans. Finally, we
deploy ToxACoL as a freeweb platform for rapid prediction ofmulti-condition
acute toxicities.

Today, explosive growth,massiveproduction,widespreadapplication,
and long-term emissions of various chemicals have induced a huge
threat to human health and the environment1–3. Multi-species acute
systemic toxicity assessment forms the basis for chemical classifica-
tion, labeling and risk management4,5. Acute toxicity assessment is
typically conducted as the initial phase of the entire safety
assessment6–9 and is usually mandatory to the regulatory procedures
of new chemicals, directly determining whether the chemicals can
enter subsequent industrial use or clinical trials10–12. Acute toxicity
evaluates the unwanted effects that occur either immediately or at a

short time interval after a single or multiple administration of a
substance13. In some cases, acute systemic toxicity datamaybe used to
establish doses for longer-term studies, identify target organs for
toxicity, and assess the hazard of accidental ingestions of chemical
contaminants14. Due to ethical and legal restrictions, large-scale
experimental testing on humans or certain unconventional species,
such as wildlife, is not feasible. Conventional animal testing remains
the primary method for acute toxicity assessment15,16. These tests
involve diverse conditions, such as various species, administration
routes, and assessment indicators17. However, the experimental results
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for the same compound vary significantly under different species and
different testing conditions. When extrapolating test doses and toxi-
city from experimental species to humans and other unconventional
species, significant gap in physiological structures and metabolic
mechanisms often lead to inaccurate toxicity assessments18. Especially
in drug discovery, toxicity to the human body often appears in clinical
trials or after market launch although no toxicity was found in pre-
clinical animal testing, leading to the failureof drugdiscovery. A classic
example is troglitazone. No toxicity was found in vitro and in animal
testing. Shortly after it was approved for the treatment of type 2 dia-
betes, it was withdrawn from themarket due to its hepatotoxicity. This
emphasizes the importance of accurately predicting or extrapolating
the toxicity of compounds to humans.

Modern toxicology emphasizes the 3Rs (replacement, reduction,
and refinement) principle in animal testing, seeking alternative meth-
ods for toxicity assessment19,20. Computationalmethodshave emerged
as powerful tools for replacing animal testing. Among them, machine
learning (ML) and deep learning (DL) have demonstrated significant
advantages over traditional quantitative structure–activity relation-
ship (QSAR) statistical methods in terms of prediction scope and
accuracy, especially in the context of rapidly growing toxicity data21–24.
For the convenience of ML modeling, several ML-ready toxicity data-
bases have been established, providing extensive acute toxicity data
resources. For example, in our previous work, TOXRIC database25, we
collected 59 multi-species, multi-endpoint acute toxicity values, cov-
ering over 80,000 compounds. Luechtefeld et al.4,26 constructed a
database of 10,000 chemicals and 800,000 toxicological studies,
focusing on acute oral toxicity among other endpoints.

There were several reports indicating that ML trained on masses
of toxicity data is so good at predicting some toxicities and sometimes
outperforms expensive animal studies16,27–29. Studies have developed
MLalgorithms for acute toxicity assessment, encompassing single-task
learning (STL), multi-task learning (MTL) methods, and consensus
modeling. In acute toxicity prediction under STL paradigms, existing
studies have reported that random forest (RF) exhibits optimal per-
formance among traditional ML algorithms including support vector
machines (SVM), artificial neural networks (ANN), message-passing
neural networks (MPNN), gradient boosting (GB), Xgboost (XGB), and
generalized linear models (GLM)30–32. Luechtefeld et al.28 developed
read-across structure–activity relationship (RASAR) models that
employ binary fingerprints and Jaccard similarity to construct chemi-
cal adjacency matrices, with data Fusion RASAR improves predictive
accuracy by integrating multi-property features to train RF. While
graph-based algorithms employing molecular graph inputs, such as
graph convolution network (GCN) and attentive fingerprint (Attentive
FP)33, have shownbetter performance over RF and other traditionalML
algorithms34,35. However, they lack the ability to integrate multi-
condition acute toxicity data for training, resulting in poor perfor-
mance on small-sized endpoints with insufficient data. MTL models
recognize the correlations between multiple endpoints and train on
multi-condition toxicity data. They extract molecule representations
via a shared encoder and use a multi-channel regression module to
simultaneouslypredictmulti-conditionacute toxicity. Previous studies
have proven thatmulti-task deep neural network (MT-DNN) andmulti-
task graph convolution network (MT-GCN) can effectively improve
average performance across all endpoints compared to all STL
implementations for acute toxicity prediction17,32,36,37. Their superiority
over STL indirectly indicates that the shared learning strategy among
diverse endpoints can mutually boost each other38. Additionally, con-
sensus models integrate multiple model (STL or MTL) outputs,
demonstrating better performance compared to individual models.
Jain et al.17 developed a consensus framework named DLCA that inte-
grates multiple MT-DNNs with different feature inputs, showing
improved performance compared to individual models. Mansouri
et al.5 constructed consensus models for five endpoints of acute

toxicity, and proposed a weight-of-evidence (WoE) approach with
weighted integration to generate consensus predictions of the five
endpoints. Effective performance improvement was achieved at single
endpoints.

However, due to the inherent complexities of acute toxicity
endpoints, such as diverse experimental conditions, scarce target
endpoint data, and imbalanced endpoint data, existing ML methods
struggle to reveal relationships among multi-condition endpoints, fail
to accurately predict data-scarce endpoints (especially in humans),
and have not explored the extrapolation patterns between species.
Firstly, acute toxicity in vivo experiments involve various species (e.g.,
mouse, rabbit, and dog, etc.), administration routes (e.g., intravenous,
skin, oral, etc.), and measurement indicators like median lethal dose
(LD50), lethal dose low (LDLo) and toxic dose low (TDLo). These
diverse experimental conditions across studies make it difficult to
model the relationships among multi-condition endpoints using a
unified mathematical logic or general methodology. Additionally,
ethical and legal restrictionsmake it difficult to obtain training data for
target endpoints, such as humans and certain unconventional species.
Large-scale reference data for expensive experimental species are also
scarce, resulting in extreme data imbalance across endpoints. While
existing MTL models effectively improve the average performance
across all endpoints, they struggle to make accurate predictions for
data-scarce target endpoints. This may be due to the varying toxicity
intensity of compounds across species, which creates a significant gap
between endpoints39. This further emphasizes the importance of
identifying and modeling the relationships between multi-condition
endpoints. Moreover, such modeling supports the exploration of
extrapolation patterns between species. Understanding the differ-
ences in toxicity responses across species and identifying which spe-
cies exhibit toxicity patternsmost similar to humans are key questions
that warrant further exploration.

To address these challenges, We introduce a machine learning
paradigm, Adjoint Correlation Learning, for multi-species acute toxi-
city assessment of compounds, named as ToxACoL. We first collect
multi-species, multi-condition acute toxicity data from some public
chemical databases, such as TOXRIC25 and PubChem40, which involve
various test species, administration routes, and measurement indica-
tors. Based on these data, ToxACoL is designed to apply graph
topology to model relationships between multi-condition endpoints,
incorporating an adjoint correlation mechanism to process and inte-
grate multi-endpoint information with compound representations in
parallel. In ToxACoL, graph convolution is employed to propagate
information on multi-endpoints and their relationships, while a feed-
forward network with residual connections is used to propagate
compound embeddings. The two branches interact through a corre-
lation operation to learn endpoint-aware compound representations.
Comprehensive analyses on a 59-endpoints acute toxicity dataset
demonstrate that ToxACoL effectively captures relationships among
multi-condition endpoints and achieves balanced performance across
them. By learning the relationships across endpoints, ToxACoL sig-
nificantly improves prediction accuracy for data-scarce endpoints,
including human-oral-TDLo, women-oral-TDLo, and man-oral-TDLo,
with performance increases of 56%, 87%, and 43%, respectively, com-
pared to state-of-the-art methods. Meanwhile, ToxACoL reduces the
required training data for sparse endpoints by ~70–80%, aligning with
the global 3Rs principle of reducing animal testing. Then, tested on
two additional benchmark datasets (115-endpoint dataset and study of
Mansouri et al.5), ToxACoL demonstrates robust performance com-
pared to representative acute toxicity prediction models. AD analysis
depicts the chemical space where ToxACoL achieves reliable predic-
tions. Furthermore, analysis of ToxACoL’s top-level representations
assists in identifying structural alerts, uncovering potential mechan-
isms of acute toxicity, and providing insights for extrapolating animal
test results to humans. Finally, an online platform for the prediction of
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acute toxicity was developed that integrates the ToxACoL model,
serving as a freely accessible and useful resource for regulatory
applications.

Results
ToxACoL models relationships among multi-condition end-
points by introducing the adjoint correlation mechanism
ToxACoL introduces the adjoint correlation mechanism to parallelly
learn multi-condition labels and multi-type sample information
(Fig. 1a), achieving good performance inmulti-condition acute toxicity
assessment. This paradigm insists on bidirectional learning from
compounds (samples) and multi-condition endpoints (labels) simul-
taneously. By capturing endpoint-to-endpoint dependencies, the
relationships between multi-condition endpoints are captured and a
multi-condition endpoint graph is constructed. The adjoint correlation
mechanism facilitates interaction between the two learning branches,
i.e., compounds and endpoints, at each layer, enabling the extraction
of endpoint-aware and task-focused compound representations.

The construction of the endpoint graph is based on existing stu-
dies about large-scale acute toxicity datasets, that involve multi-
condition acute toxicity endpoints, and each endpoint provides
information of test species, administration route, and measurement
indicator. Taking our previous study, the TOXRIC database25 for
example, which includes 59 various toxicity endpoints with 80,081
unique compounds represented using SMILES strings, and 122,594
usable toxicity measurements described by continuous values with a
unified toxicity chemical unit: −log(mol/kg). The 59 acute toxicity
endpoints involve a total of 15 test species, 8 administration routes,
and 3 measurement indicators, ensuring comprehensive information
coverage. However, the size of samples across 59 endpoints is highly
imbalanced and sparse (Fig. 1b). Some endpoints involve tens of
thousands of available measurement samples, while some endpoints
only contain about 100 samples, with a high rate of missing data
(Supplementary Table 1). To address this issue, we constructed an
endpoint graph to capture inter-endpoint relationships and leverage
multi-condition endpoint information to enhance performance on
data-scarce endpoints. For each pair of endpoints, we first count their
shared training compounds, and then calculate the Pearson correla-
tion coefficients (PCC)41 of toxicity measurements based on their
shared compounds if the quantity of these shared compounds is
acceptable (Fig. 1c). Two endpoints are considered dependent, and
thus an edge is formed between them, only if the shared compound
count exceeds a certain threshold and their toxicitymeasurements are
highly correlated (see the “Methods” section). Basedon thisdeduction,
we can construct an acute toxicity endpoint graph, where nodes
represent toxic endpoints and edges represent the dependency
between two endpoints. Considering that each endpoint contains
three attributes: test species, administration route, and measurement
indicator, we separately encodes each attribute into a one-hot sub-
vector and then concatenates the three subvectors to initialize graph
node features, serving as the initial endpoint embeddings (Fig. 1d).

Next, the adjoint correlation learning is applied between the
compounds and the acute toxicity endpoint graph. Avalon fingerprints
is adopted as the initial representation for compounds, as previous
studies17,42 have shown that it is the cutting-edge feature for predicting
acute toxicity. The adjoint correlation layer is designed to process the
compounds and the endpoint graph in parallel, where compound
embeddings are processed by feed-forward layers with residual con-
nections and endpoint embeddings are processed by graph convolu-
tion. Critically, the new endpoint embeddings are correlated with the
compound embeddings, and then accumulated onto the previous
compound embeddings in the form of residuals. The compound
embeddings after the residual operation, as well as the new endpoint
graph after graph convolution, are used together as inputs for the next
adjoint correlation layer. In thisway,multiple adjoint correlation layers

are cascaded sequentially. The endpoint embeddings outputted by the
topmost graph convolution are treated as toxicity regressor weights
for the corresponding endpoints. These weights are then combined
with a top regression layer to assess the toxicity intensity for multiple
endpoints.

ToxACoL successfully balances performance across multi-
condition endpoints
We first evaluate the predictive performance of ToxACoL and existing
state-of-the-art methods under benchmark setting of the 59-endpoint
acute toxicity dataset from TOXRIC, which include single-task deep
neural networks (ST-DNN)17, single-task random forest (ST-RF)17, graph
attention network (GAT)43, graph convolution network (GCN)44,
attentive fingerprint (Attentive FP)33,43, multi-task deep neural net-
works (MT-DNN)17, multi-task graph convolution network (MT-GCN)17,
and deep learning consensus architecture (DLCA)17,42. These baseline
models have been extensively studied in17,42–44, and the MTL and con-
sensus models among them still maintain the leading performance for
acute toxicity assessment to this day. We maintained the same
experimental settings as these baselines to ensure fairness, such as
selecting the same Avalon fingerprints as our molecular features and
adopting the same 5-fold dataset split for cross-validation. The per-
formance is evaluated using the metrics of determination coefficient
(R2) and root-mean-squared error (RMSE), which respectively reflect
the fitness or deviation between the predicted toxicity intensity by
computational models and the ground-truth intensity.

We first compared the average performance of these models on
all the 59 endpoints via 5-fold cross-validation (Fig. 2a, Supplementary
Tables 3 and 4). The results indicated that ToxACoL yielded an
improvement in overall average performance to other baseline mod-
els. Concretely, ToxACoL achieved an averaged R2 of 0.5843 and a
smaller averaged RMSE of 0.6396, surpassing the previously best-
performing algorithm (DLCA). Considering the acute toxicity data is
very imbalanced, we investigated the performance of differentmodels
in dealing with the dilemma of data imbalance between endpoints. A
ridge diagram (Fig. 2b) fitting the performance of eachmodel on all 59
endpoints was drawn based on kernel density estimation (KDE)45, to
intuitively present the overall distribution of toxicity estimation per-
formance of eachmodel on all endpoints. On the one hand, the overall
performance of ToxACoL is superior to other baselines. On the other
hand, the performance distribution of ToxACoL is more concentrated
with a significantly smaller standard deviation than other models,
indicating that ToxACoL can more robustly and evenly handle the
data-imbalanced multi-condition acute toxicity evaluation tasks.

To further compare these models on single endpoints, we statis-
tically analyzed their performance rankings on each endpoint and
visualized the proportion of these rankings via stacked histograms
(Fig. 2c). Our ToxACoL ranked in the top two on the vast majority of
endpoints. Based on these endpoint-wise rankings, we further made a
Friedman and Nemenyi test46 to intuitively display the averaged per-
formance ranking gap of different models on 59 endpoints via the
critical difference (CD) diagram (Fig. 2d). It can be seen that ToxACoL
ranked ahead of other baseline models concerning both R2 and RMSE,
demonstrating its holistic superiority to other baselinemodels. Finally,
the endpoint-wise performance of all models were summarized in
increasing order of their toxicitymeasurement samples (Fig. 2e), and it
can be observed that ToxACoL surpassed other baseline models on
most toxic endpoints.

To verify the indispensability of the adjoint correlation mechan-
ism in ToxACoL, we provided an ablation study to compare the stan-
dard ToxACoL and its variant. In this variant model, the feed-forward
layer and graph convolution layer in ToxACoL no longer interact at any
layer, but independently handle compound embeddings and endpoint
embeddings, respectively. We tested six sets of network structures
with different depths and recorded the average R2 through 5-fold
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cross-validation. We found that the standard ToxACoL consistently
outperformed its variant regardless of network depth (Supplementary
Fig. 1). Moreover, as the network becomes deeper, the performance of
the variant model has sharply declined, which is mainly caused by the
inherent over-smoothing problem existing in conventional GCN47–49.
On the contrary, the standard ToxACoL appears less sensitive to
increasing network layers, and thus the performance gap between the
two models widens. It is because the adjoint correlation mechanism
can guide ToxACoL to learn better endpoint-aware representations at
feed-forward layers, and the extra gradients from adjoint correlation

can regularize the learning of endpoint embeddings in GCN. In brief,
introducing the adjoint correlation mechanism can effectively over-
come the intractable over-smoothing of graph convolution at deeper
layers.

ToxACoL achieves a substantial improvement in performance
on data-scarce endpoints especially human-related endpoints
In real world, the primary focus of acute toxicity assessments for
compounds is on humans and unconventional species (such as
specific wildlife). However, toxicity data for these species are
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and agraph convolution layerwasdesigned toprocess compoundembeddings and
endpoint embeddings parallelly, and the two branches internally interact via a
correlation operation. After a cascade of multiple adjoint correlation layers, the
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will serve as the toxicity regressor for the corresponding endpoint, and then per-
form the toxicity regression with the top-level compound embedding, finally out-
putting toxicity intensity value concerning the corresponding endpoint.
b Illustration of data imbalance and data sparsity of the large-scale multi-condition
acute toxicity dataset. c Two examples for calculating pairwise dependencies

between endpoints, which were based on the training compounds shared by the
two endpoints. The dependency was evaluated via a two-sided Pearson correlation
coefficient (PCC) analysis. There exists a significant correlation between mouse-
intravenous-LD50 and rabbit-intravenous-LDLo, as well as for mouse-intravenous-
LD50 and mouse-skin-LD50. The center line in the correlation plots represents the
regressed line and the error band denotes the confidence interval of 0.95 for linear
regression. d The one-hot entity encoding strategy encompassing three endpoint
attributes was developed for initializing endpoint embeddings in graph. Credits:
the icons of bottles, chemicals, and animals including mouse, rabbit, cat, and man,
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dropper, are sourced from https://creazilla.com/. Source data are provided as a
Source Data file.
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difficult to obtain, resulting in severe data scarcity for these tar-
get endpoints. This challenge is frequently overlooked in existing
studies, leading to poor predictive performance for human-
related endpoints. Next, we specifically assess ToxACoL’s com-
petitiveness in addressing data-scarce endpoints, with a parti-
cular focus on human-related endpoints. To explicitly distinguish
between small/large-sized endpoints, we quantitatively classified
all endpoints, where endpoints with less than 200 toxicity mea-
surements were considered small-sized endpoints, and those with
more than 1000 measurements were treated as large-sized end-
points. In total, there are 21 small-sized endpoints and 11 large-
sized endpoints in the 59-endpoint dataset from TOXRIC. The
three human-related endpoints, human-oral-TDLo, women-oral-
TDLo, and man-oral-TDLo, are typical small-sized endpoints, with

only 140, 156, and 163 available toxicity measurement samples,
respectively. In addition, the assessment indicator inside the
three endpoints is TDLo, which only appears in them, while the
other 56 animal endpoints do not contain it. Therefore, the three
human endpoints have significant semantic and biological gaps
with other endpoints, making it difficult to effectively transfer
knowledge learned from animal endpoints to the three human
endpoints, which is why other baseline models perform poorly on
the human endpoints.

We first compared the average R2 of these models after 5-fold
cross-validation on the human-related endpoints (Fig. 3a, c, and
e). ToxACoL brought significant performance improvements in
the three human endpoints. The R2 achieved by ToxACoL on the
three endpoints are 0.50, 0.43, and 0.40, respectively,
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Fig. 2 | Performance comparison for multi-condition acute toxicity estimation
on the 59-endpoint dataset. a Average R2 and RMSE on all toxic endpoints via
5-fold cross-validation. The two-sided Wilcoxon signed-rank test was selected to
compute the significant differencebetween ToxACoL and other baselines across all
endpoints. It can be seen that the p-values are small, indicating that the improve-
ments by our ToxACoL are statistically significant. The five dots on each box plot
represent the results of five cross-validation experiments; the center line in the box
represents the median among the five results, excluding outliers; the lower and
upper bounds of the box represent the first (Q1) and third (Q3) quartiles, respec-
tively; the lower and upper bounds of the whiskers represent the minima and
maxima, excluding outliers, respectively. b Overall performance distribution of
differentmodels on 59 endpoints, fitted using Kernel density estimation (KDE). The
59 dots in the ridge plot represent the endpoint-wise performance of the

corresponding method on the 59 endpoints. The more concentrated their dis-
tribution and the smaller their standard deviation, the more balanced the model’s
performance on all endpoints. c The proportion of different models in perfor-
mance rankings on all 59 toxic endpoints. d The Friedman and Nemenyi test with
the critical difference (CD) for all models. The CD diagrams illustrate the average
performance ranking of each model on 59 endpoints, calculated based on R2 and
RMSE. The length of the horizontal thick line segments is shorter than the CD value,
indicating that the differences between the twomodels covered by these thick line
segments are not significant. e The heatmap of endpoint-wise performance
achieved by all models. All endpoints were arranged from left to right in ascending
order of their sample sizes of toxicitymeasurements. Source data are provided as a
Source Data file.
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outperforming the previous state-of-the-art results by a large
margin (56% for human-oral-TDLo, 87% for women-oral-TDLo, and
43% for man-oral-TDLo). We selected one of the 5-fold cross-
validation experiments to directly present the acute toxicity
estimation results of ToxACoL on the test fold (Fig. 3b, d, and f).
The toxicity intensity values predicted by ToxACoL can maintain
a good consistency with the ground-truth toxicity intensity of the
test compounds, and for some certain compounds, ToxACoL
predicted them accurately, despite the scarce training measure-
ment samples and the isolated endpoint attributes for the three
human endpoints.

The performance of ToxACoL on more small-sized endpoints
was further examined (Fig. 3g, Supplementary Fig. 2a). We set dif-
ferent thresholds for the sample size of toxicity measurements to
observe the average R2 of different models on all the small-sized
endpoints whose sample size of measurements is less than the
threshold. The improvement from ToxACoL on these small-sized
endpoints is universal and significant, leading by nearly 15% on the
average R2 over 21 small-sized endpoints. Moreover, the R2 achieved
by ToxACoL is more balanced over all small-sized endpoints (with a
more concentrated dot distribution and smaller standard deviation
on histograms). We also compared the average R2 on the 11 large-
sized endpoints and found that ToxACoL had little performance gaps
to the other advanced baseline models (Fig. 3h, Supplementary
Table 5, Supplementary Fig. 2b), as the large sample size of toxicity
measurements was sufficient to saturate all models. This further
indicates that the advantages of our adjoint correlation learning
mechanism over other baseline models mainly focus on small-sized
acute toxic endpoints.

ToxACoL exhibits strong potential in reducing required training
data for data-scarce endpoints
Collecting acute toxicology measurements via in vivo animal testing is
time-consuming, labor-intensive, and expensive12, and its sample size
will not be too large due to the 3Rs principle, especially for data-scarce
experimental subjects such as humans. Therefore, reducing the num-
ber of training measurements required for AI models on these small-
sized endpoints is of great significance. This sectionmainly focuses on
the acute toxicity estimation performance of ToxACoL on fewer
training measurements for data-scarce endpoints.

In this test, the quantity of trainingmeasurements for the 21 small-
sized endpoints was randomly reduced at one certain reduction ratio,
while their test sets remained unchanged. We evaluated six different
reduction schemes, which reduced the sample size of training mea-
surement of small-sized endpoints to 80%, 50%, 40%, 30%, 20%, and
10% of their original size, respectively. Correspondingly, we retrained
and evaluated our ToxACoL six times based on these reduced training
datasets.Meanwhile, we alsoevaluated the performance of other state-
of-the-art methods when the sample size of the small-sized endpoints
was reduced to 30%.

An exciting experimental conclusion is that compared to other
methods, ToxACoL only needs to use 20–30% of their training mea-
surements on small-sized endpoints to match the previously optimal
performance for the state-of-the-art methods (Fig. 4, Supplementary
Tables 6 and 7, Supplementary Fig. 3), showing its strong potential in
reducing animal toxicity testing. Taking the human-oral-TDLo for
example (Fig. 4a), the original sample size of training measurements
averaged over 5-fold cross-validation was 95, and ToxACoL achieved
an R2 of 0.38 with only 30% of the training measurements (≈29
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Fig. 3 | The performance comparison between ToxACoL and baseline models
on small-sized acute toxic endpoints. a, c, and e Average R2 of different models
over 5-fold cross-validation on human-oral-TDLo, women-oral-TDLo, andman-oral-
TDLo. Their significant differences were analyzed on the basis of a two-sided Stu-
dent t-test. b, d, and f Acute toxicity estimation curves of ToxACoL for testing
compounds at three human-related endpoints. Here, ToxACoL was trained using
four folds of the whole toxicity dataset, and the testing compounds are all from the
remaining one test fold. g Comparison between ToxACoL and advanced baseline
methods on more small-sized endpoints. Taking the first subgraph for example, it

considered the 4 endpoints (n = 4) with sample size of measurements <130, and so
on for the following three subgraphs. The dots on the bar represent R2 values at
single endpoints, and the bar with the error bar denotes the mean R2 value with
standard deviation over the n small-sized endpoints (from left to right, n = 4, 8, 14,
21, respectively).hComparison betweenToxACoL and advanced baselinemethods
on 11 large-sized endpoints (n = 11). The bar with the error bar represents the mean
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provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-60989-7

Nature Communications |         (2025) 16:5992 6

www.nature.com/naturecommunications


measurements), surpassing the previous best R2 of 0.32 achieved by
MT-DNN. Even with only 10% of the training measurements (≈10
measurements), ToxACoL can significantly outperform baseline
models such as ST-DNN, ST-RF, GAT, GCN, and MT-GCN. Similar con-
clusions can also be observed for women-oral-TDLo (Fig. 4b) andman-
oral-TDLo (Fig. 4c). At these two endpoints, ToxACoL only requires
30% (≈32 measurements) and 40% of the training samples (≈44 mea-
surements), respectively, to surpass previously best-performing
baseline models.

Statistically, we investigated the average R2 on 21 small-sized
endpoints concerning training measurement reduction (Fig. 4d). The
original sample size of training data per endpoint was about 120, and
ToxACoL achieved an average R2 of 0.51 with only 30% of the training
samples (≈36 measurements per endpoint), surpassing the previously

best averageR2 of 0.50achievedbyDLCA.Withonly 10%of the training
measurements (≈12 measurements per endpoint), ToxACoL also
reached an average R2 of 0.43, greatly surpassing most of the state-of-
the-art methods (ST-DNN: 0.08, ST-RF: 0.28, GAT: 0.17, GCN: 0.21,
Attentive FP: 0.33) and highly competitive with MTL or consensus
models (MT-DNN: 0.48, MT-GCN: 0.44, DLCA: 0.50). We can also
observe that when the training samples of the small-sized endpoints
were reduced to 30%, the performance of other comparison methods
significantly declined and falls far behind our ToxACoL. These results
highlight the prospect of ToxACoL in few-shot learning and its
robustness to the reduction of toxicity measurements at data-scarce
endpoints. In addition, the reduction of the trainingmeasurements for
data-scarce endpoints does not weaken the performance of ToxACoL
on large-sized endpoints (Supplementary Fig. 4).
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Fig. 4 | The acute toxicity evaluation performance of different methods with
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Source Data file.
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ToxACoL demonstrates robust performance in additional
benchmark datasets
Next, to assess the robustness of ToxACoL’s prediction, we conducted
comparative experiments against other methods on two additional
benchmark datasets. First, to explore the performance of the models
on a broader range of acute toxicity endpoints, we collected and
constructed a brand-new 115-endpoint acute toxicity dataset based on
PubChem database40. Compared with the previous 59-endpoint acute
toxicity dataset, this new dataset is more challenging for all current
acute toxicity prediction models, since it has a more abundant and
comprehensive number of toxicity endpoints, a larger number of
small-sized endpoints with fewer available measurements, and more
severe data imbalance and sparsity rate (see the “Methods” section).
Similarly, the random 5-fold cross-validation was adopted.

On this more challenging dataset, the advantage of ToxACoL
compared to other state-of-the-art methods is more significant
(Table 1, Supplementary Figs. 5 and 6). First, the averageR2 of ToxACoL
across all 115 endpoints is ~31% higher than that of DLCA (ranked sec-
ond) with a lower standard deviation, indicating more balanced per-
formance across all endpoint tasks (Supplementary Fig. 5c).
Importantly, the average R2 of ToxACoL across 68 small-sized end-
points is ~57% higher than that of the second-best DLCA, and it also
outperforms all other methods on the 11 human-related endpoints. In
addition, judging from theperformance rankings of allmethods across
the 115 endpoints (Supplementary Fig. 5b, d), ToxACoL ranks first in
terms of performance at the vast majority of endpoints. These results
once again strongly demonstrate the superiority of ToxACoL and its
powerful few-shot learning ability for acute toxicity prediction.

In addition, the U.S. Interagency Coordinating Committee on the
Validation of Alternative Methods (ICCVAM) Acute Toxicity Work-
group developed a five-endpoint prediction project. The five acute
toxicity-related endpoints include LD50 value, U.S. Environmental
Protection Agency (U.S. EPA) hazard (four) categories, Globally Har-
monized System for Classification and Labeling (GHS) hazard (five)
categories, very toxic chemicals (LD50 ≤50mg/kg), and nontoxic che-
micals (LD50 ≥ 2000mg/kg). We next test ToxACoL with the repre-
sentative models on the reported LD50 datasets.

For the five endpoints, Mansouri et al.5 proposed a consensus
modeling framework, Collaborative Acute Toxicity Modeling Suite
(CATMoS), which consolidates predictive models from all participat-
ing teams, effectively leveraging the strengths of each model. To
address conflicts in results across these five endpoints, the authors
proposed a WoE approach with weighted integration to generate
consensus predictions. Specifically, for the LD50 endpoint (rat-oral-
LD50), the WoE method refined the original predictions, significantly
enhancing performance. To demonstrate the superiority of ToxACoL,
we compared it with CATMoS and the improved WoE method on the

LD50 dataset using the same data partitioning strategy (6398 mole-
cules for training and 2196molecules for evaluation). The results show
that ToxACoL achieved performance improvements of 8.24% and
21.54% in R2 metrics on the training and evaluation sets, respectively,
compared to the WoE optimization proposed by Mansouri et al.
(Table 2). This breakthrough highlights the significant advantages of
ToxACoL in terms of prediction accuracy and generalization
capability.

ToxACoL derives clear compound representation manifolds to
various toxic endpoints
To explore the effectiveness of the molecular representations
learned by ToxACoL, we visualized the top-level embeddings gen-
erated by ToxACoL in the latent space. Specifically, we randomly
selected one of the 5-fold cross-validation experiments and applied
the well-trained ToxACoL via the 59-endpoint dataset from TOXRIC
to the test fold to extract the top-level embeddings for the testing
compounds. The t-SNE algorithm50 is used to visualize these
embeddings, showcasing their local relationships and distribution
patterns in low-dimensional space. The clear clustering manifolds
concerning toxicity intensity were shown across different acute
toxicity endpoints including both large- and small-sized endpoints
(Fig. 5a). For large-sized endpoints, the model learns excellent
molecular representations due to sufficient training data. Despite the
limited data for small-sized endpoints, their representations still
form distinct clusters and clear manifolds, demonstrating the strong
predictive and representation learning capabilities of ToxACoL.

We selected data-scarce experimental species, such as cats,
dogs, and guinea pigs, to perform joint embedding visualizations
under different conditions within the same species (Fig. 5b).
These compound embeddings of the same species can still be
distributed in a well-defined manifold, forming similar clustering
patterns and distributions regarding varying toxicity intensities,
although they are tested under different conditions. This

Table 1 | The average performance and standard deviation of various methods on the new 115-endpoint acute toxicity dataset
via 5-fold cross-validation

Methods All 115 endpoints 68 Small-sized endpoints 11 Human endpoints

R2
↑ RMSE↓ R2

↑ RMSE↓ R2
↑ RMSE↓

ST-DNN 0.11 ± 0.47 1.10 ± 0.38 −0.13 ± 0.45 1.28 ± 0.34 −0.50 ±0.24 1.70 ±0.32

ST-RF 0.21 ± 0.42 1.01 ± 0.35 0.01 ± 0.42 1.16 ± 0.32 −0.39 ±0.25 1.60 ±0.30

GAT 0.08 ±0.32 0.94 ±0.26 −0.01 ± 0.38 1.00 ±0.30 −0.06 ±0.24 1.23 ± 0.26

GCN 0.12 ± 0.43 0.91 ± 0.29 −0.04 ±0.48 1.00 ±0.32 −0.01 ± 0.19 1.19 ± 0.21

Attentive FP 0.32 ± 0.22 0.82 ± 0.24 0.26 ± 0.25 0.87 ± 0.27 0.24 ±0.12 1.06 ±0.24

MT-DNN 0.36 ±0.37 0.77 ± 0.32 0.22 ± 0.40 0.88 ±0.34 −0.22 ± 0.23 1.34 ± 0.30

MT-GCN 0.34 ±0.35 0.80 ±0.32 0.20 ±0.38 0.91 ± 0.33 −0.25 ± 0.20 1.34 ±0.31

DLCA 0.39 ±0.32 0.76 ± 0.29 0.28 ±0.35 0.86 ±0.32 −0.15 ± 0.18 1.28 ± 0.29

ToxACoL 0.51 ±0.24 0.68 ±0.23 0.44 ±0.28 0.73 ±0.26 0.28 ± 0.24 1.02 ±0.26

A small-sized endpoint contains nomore than 200 available toxicity measurement data. An upward arrow next to each metric indicates that higher values represent better performance, while the
upward arrow indicates the opposite. Best performance among all methods for each metric is shown in bold.

Table 2 | Theperformance comparisonbetweenToxACoL and
representative consensus models on the LD50 endpoint
dataset containing 6398 molecules for training and 2196
molecules for evaluation (WoE: weight of evidence)

Methods Training Evaluation

R2
↑ RMSE↓ R2

↑ RMSE↓

Step 1: End point (Mansouri et al.5) 0.83 0.31 0.67 0.47

Step 2: WoE (Mansouri et al.5) 0.85 0.30 0.65 0.49

ToxACoL 0.92 0.25 0.79 0.41

Best performance among all methods for each metric is shown in bold.
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phenomenon also conforms to our toxicology priors, that is, for a
certain type of compound that has strong toxicity to the same
animal, regardless of the administration route and measurement
indicator, its toxicity results are generally relatively strong. This
demonstrates that ToxACoL can indeed capture potential
dependency relationships between endpoints and guide the
learning of more scientific compound representations.

Latent space clustering patterns predicted by ToxACoL can
reveal the structural alerts of high-toxicity compounds
To further investigate the structural patterns of compounds with high
acute toxicity and uncover their potential mechanisms, we performed
an in-depth analysis of the embedding manifold’s morphology. It is
well-established that a compound’s structure is closely linked to its
biological activity and toxicity. Certain highly reactive molecular
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Fig. 5 | Analysis of model interpretability and practicality. a and b The t-SNE
visualization of top-level embeddings learned by ToxACoL concerning various
acute toxic endpoints. Here, ToxACoL was trained using four-fold data of the 59-
endpoint acute toxicity dataset, and the displayed compounds are all from the
remaining test fold. The darker the dot’s color, the greater its toxicity intensity.

Visualization of single endpoints (a) andmultiple endpoints belonging to the same
species (b). c Several compound examples of structural alerts discovered by Tox-
ACoL from the high-toxicity clusters at different endpoints, including quaternary
ammonium cation, aromatic nitro, and halogenated dibenzodioxin, which have
been highlighted by masks.
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fragments, which can be presented in the parent compound or its
metabolites after biochemical transformation by human enzymes
(bioactivation), have been confirmed to possess strong toxic
potential51,52. The clustering within ToxACoL’s latent space embed-
dings could potentially reveal key molecular fragments or functional
groups shared by highly toxic compounds, which is critical for
understanding the mechanisms behind acute toxicity.

For the testing compounds, we focused on clusters representing
highly toxic compounds and analyzed the molecular characteristics
within the same cluster in all the endpoints (Fig. 5a). The results
showed that compounds in the same region typically sharedmolecular
fragments, which may play a dominant role in influencing acute toxi-
city intensity. Thesemolecular fragments are commonly referred to as
structural alerts. Extensive studies show that structural alerts are
effective markers for toxicity assessment and mechanistic under-
standing across diverse endpoints, with their presence indicating high
toxic potential in compounds53–56. In high-toxicity clusters across
multiple endpoints, we identifiedwell-known structural alerts (Fig. 5c).

For example, in the endpoints such as mouse-intraperitoneal-
LD50, mouse-subcutaneous-LD50, and mouse-oral-LD50, we identified
that ~10–25 compounds within the high-toxicity clusters contain qua-
ternary ammonium cations, which are considered typical structural
alerts. The structure of quaternary ammonium cation includes one
hydrophobic hydrocarbon chain linked to a positively charged nitro-
gen atom, along with other alkyl groups, predominantly consisting of
short-chain substituents such asmethyl or benzyl groups57. Long-term
exposure to lowdoses of quaternary ammoniumcompoundsmay lead
to acute toxicity in aquatic organismsorhumans58–60. In addition to the
aforementioned endpoints, a considerable proportion of compounds
containing quaternary ammonium cation structures, ranging from
approximately 10% to 30%, was also observed in endpoints with fewer
high-toxicity molecules, such as rabbit-intravenous-LDLo, mouse-oral-
LDLo, and rabbit-subcutaneous-LDLo. Notably, we found that in nearly
all mouse-related endpoints, as well as other mammal-related end-
points, compounds containing quaternary ammonium cation struc-
tures account for a significant proportion of high-toxicity clusters. In
contrast, suchmoleculeswere nearly absent in avian species, including
birds, chickens, and quails. This discrepancy may be attributed to
interspecies differences in physiological structures, metabolic capa-
cities, and excretion mechanisms.

In various mammal- and avian-related toxicity endpoints, such as
mouse-oral-LD50, rat-oral-LD50, dog-intravenous-LDLo, and chicken-
oral-LD50, compounds containing nitro groups and aromatic nitro
structures were found to have a high prevalence in high-toxicity clus-
ters. It is reported that Nitro-containing compounds exhibit a broad
range of toxic effects, including acute toxicity, carcinogenesis61, and
systemic impacts on various biological systems such as the repro-
ductive, immune, nervous62, digestive, respiratory, cardiovascular, as
well as specific organs like the liver63,64, kidney, and stomach65.
Nitroaromatic compounds are widely used as pesticides, explosives,
pharmaceuticals, and chemical intermediates in industrial synthesis66.
They are potent toxic or carcinogenic compounds, presenting a con-
siderable danger to the human population66–68.

Additionally, halogenated dibenzodioxins are identified as a
structural alert in the guinea pig-oral-LD50 endpoint. Halogenated
dibenzodioxins, as a subclass of dioxins, are recognized as persistent
environmental pollutants characterized by extreme toxicity69. Their
primary emission sources include waste incineration facilities and
industrial combustion processes70. Although the detection frequency
of this structure across multiple toxicity endpoints is lower than the
structural alerts discussed earlier, this discrepancymay stem from the
limited samples of environmental contaminants in the current dataset.
Notably, the ToxACoL successfully identified the high toxic potential
of this structure through representation learning, demonstrating its

capability to uncover latent hazardous properties even in sparsely
populated data domains.

In summary, we believe that the latent space clustering patterns
predicted by ToxACoL can help identify structural alerts responsible
for acute toxicity, facilitating the analysis of structural differences
across species. Thisoffers valuable insights for further exploration into
the underlying mechanisms of acute toxicity.

Exploring the extrapolation patterns from animals to humans
The preceding discussion illustrates the similarities and differences in
the distribution of acute toxicity values, latent space representations,
and alert structures among endpoints of different species. This sug-
gests that interspecies extrapolation may follow specific patterns in
both toxicity values and latent space distributions71. Furthermore, to
more thoroughly assess the toxicity effects of compounds on data-
scarce species such as humans, this section delves into the extra-
polation patterns from experimental species to humans. We used all
the acute toxicity data from TOXRIC to train the ToxACoL model and
took three human-related endpoints and the compounds associated
with these endpoints as the research references. In TOXRIC, the
number of available compounds for the human-oral-TDLo, woman-
oral-TDLo, and man-oral-TDLo endpoints were 140, 156, and 163,
respectively. The trained ToxACoLwas applied to predict and fill in the
missing acute toxicity values for these selected reference compounds
across all endpoints. Based on these filled-in toxicity values and pre-
viously existing toxicity values, we explored the toxicity responses of
compounds across different species and the extrapolation patterns.

We applied PCC values to quantify the proximity of the toxicity
values of all experimental species-related endpoints to those of
humans (Fig. 6a and Supplementary Figs. 7–9). The endpoints with the
highest PCCvalues associatedwith human-oral-TDLo are the other two
human-related endpoints: woman-oral-TDLo (0.912) and man-oral-
TDLo (0.903) (Fig. 6a). Similar results were observed for the other two
human endpoints, which aligns with theoretical expectations and
validates the reliability of the model’s predictions. Beyond human
endpoints, the cat-intravenous-LDLo, frog-subcutaneous-LDLo, and
mouse-intravenous-LDLo showed the highest PCC values among all
animal endpoints when compared to the three human endpoints. This
demonstrates that these three animal endpoints have a stronger linear
correlation with human endpoints, making them more suitable for
transferring and extrapolating to human oral toxicity responses, indi-
cating potentially robust extrapolation models. Additionally, we
extracted the latent space representations for cat-intravenous-LDLo,
human-oral-TDLO, woman-oral-TDLo, and man-oral-TDLo to examine
their latent space patterns (Fig. 6b). The data distributions and trends
in toxicity intensity for the human endpoints and cat-intravenous-
LDLo are consistent, with highly toxic compounds being closely situ-
ated in the embedding space, further demonstrating the potential of
extrapolating cat-intravenous-LDLo results to human endpoints.

Othermammalian species such as guinea pig, rabbit, and dog also
show relatively high PCC values with human endpoints. In contrast,
avian species like duck, chicken, and quail exhibit results that are sig-
nificantly different from the human endpoints. Regarding the admin-
istration route, intravenous measurements are more concordant with
human oral results, whereas other administration routes show less
consistency with the target endpoints. Exploring the reasons for this
phenomenon, intravenous delivers drugs directly into the blood-
stream, allowing them to quickly reach effective concentrations while
avoiding digestion and metabolism processes. This may make intra-
venous data better reflect how oral medications ultimately work in the
human body. We also highlight two endpoints with poor consistency
to human endpoints, quail-oral-LD50 and rat-subcutaneous-LD50

(Fig. 6a), which may be attributed to differences in species, adminis-
tration routes, and measurement indicators.
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Applicability domain analysis of ToxACoL
Based on Eq. (11) (see the “Methods” section), we defined the AD of
ToxACoL to delineate the chemical space where the model achieves
reliable predictions. We systematically evaluated the dynamic chan-
ges in prediction performance (R2, RMSE) and coverage rates inside
and outside the AD under varying parameters (k = 10, Z∈ [1, 9.5])
(Fig. 6c). As the threshold increases, the coverage of in-AD samples
decreases sharply from 99.96% (Z = 1, ST = 0.247) to 4.62% (Z = 9.5,
ST = 0.927), while prediction accuracy improves significantly: R2 rises
from 0.58 to 0.75, and RMSE decreases from 0.64 to 0.46. This
demonstrates that stricter AD thresholds effectively screen high-
confidence predictions by narrowing the chemical space. Notably,
the predictive performance for in-AD samples at all Z-values sig-
nificantly outperforms the full-dataset test results, validating the
necessity of AD demarcation for enhancing reliability. By balancing
prediction accuracy and coverage, Z = 6 (ST = 0.647) was selected as
the globally optimal parameter, achieving 69.33% in-AD coverage,
R2 = 0.60, and RMSE = 0.61, thereby addressing both predictive
robustness and practical applicability.

We further analyzed out-of-AD samples. The R2 for out-of-AD
samples increases from0.16 to 0.55with higher ST thresholds (Fig. 6c).
Whenout-of-ADmolecular coverage reaches 51.82%,R2 attains0.51 and
continues to rise, indicating ToxACoL’s partial generalization cap-
ability for extrapolation beyond the AD. This phenomenon likely stems
from ToxACoL’s latent feature extraction capability enabled by deep
representation learning, which may capture cross-chemical-space
patterns to achieve reliable predictions in certain out-of-AD regions,

offering useful perspectives for expanding the model’s applicability
boundaries.

ToxACoL online prediction web platform enables rapid assess-
ment of multi-condition acute toxicity and GHS category
In order to enable all researchers to directly use our pre-trained Tox-
ACoL, we have integrated ToxACoL into an online web platform
(https://toxacol.bioinforai.tech/). Users can simply upload single or
multiple molecular SMILES, and obtain predictions for various toxic
endpoints and GHS classifications, with results downloadable in mul-
tiple formats. Notably, acute toxicity in practice is used to determine
thepotencyof a substance (usually asGHSclasses). Thus, theToxACoL
online web platform also provides the predicted GHS classification of
chemicals as a toxicity endpoint. In alignment with GHS hazard clas-
sification criteria, ToxACoL converts predicted rat-oral-LD50 and rat-
skin-LD50 values into corresponding oral and dermal hazard cate-
gories. Among them, Category 1 is the highest hazard category, while
Category 5 applies to substances of lower acute toxicity but may still
pose risks to vulnerable populations under specific conditions. Full
classification criteria are provided at ToxACoL online web.

Figure 7 illustrates the interfaces of the ToxACoL online predic-
tion web platform. On the homepage (Fig. 7a), users can manually
input or upload a CSV file containing single or multiple SMILES strings
through the “Input SMILES Structures” module, followed by clicking
the “Submit” button to initiate the analysis. Upon completion within
seconds, the prediction results comprise two functional modules
(Fig. 7b): the “Download” section for downloading and viewing all
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Fig. 6 | Extrapolation pattern analysis and applicability domain analysis.
a Pearson correlation coefficient (PCC) values between human-oral-TDLo and the
remaining 58endpoints. Note that there are a total of 140 compounds in thedataset
that have available toxicitymeasurement values at human-oral-TDLo endpoint. The
missing toxicity intensity values of these 140 compounds at the other 58 endpoints
were filled in by the predicted intensity values of ToxACoL. Thus, the PCC value
between the two endpoints was calculated based on the two groups of toxicity
intensity values of the 140 compounds concerning the two endpoints. The Pearson
correlation analysis is two-sided. The center line in the correlation plots represents
the regressed line and the error band denotes the confidence interval of 0.95 for
linear regression. b Latent space representation distribution for cat-intravenous-

LDLo, human-oral-TDLo, woman-oral-TDLo, and man-oral-TDLo. Here, ToxACoL
was trained using four-fold data of the whole acute toxicity dataset, and the dis-
played compounds are all from the remaining test fold. c Performance metrics
(R2, RMSE) of in-AD and out-of-AD samples under varying thresholds within the AD
defined in this study, averaged across 59 endpoint tasks. The X-axis represents the
AD threshold ST corresponding todifferent Zparameters. The left Y-axis (blue lines)
indicates metric values, while the right Y-axis (red lines) denotes the proportion of
extracted samples relative to the total (Coverage). Blue lines and shaded areas
represent the mean and standard deviation of five-fold cross-validation results.
Source data are provided as a Source Data file.
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predictions, and the “Single SMILES Analysis” module for individual
compound results. The “Download”module allows users to download
comprehensiveprediction results for all input SMILES in three formats:
“Predicted values (mg/kg)” provides toxicity values in mg/kg units
“Predicted values (−log(mg/kg))” offers dimensionless normalized
scores, and “Predicted values (GHS class)“ supplies GHS classification
outcomes. Below this, the ”Single SMILES Analysis” module enables
users to click on any valid SMILES to view its detailed predictions
across 59 toxicity endpoints and GHS classifications. Toxicity end-
points are classified by species. GHS classes are divided into two
exposure routes, oral and dermal (Fig. 7c). A “Download”buttonwithin
the individual SMILES result section facilitates the download of all
predictions for the selected compound. We believe this platform can
offer a new path for validation processes, in the hope of becoming a
useful resource for regulatory applications.

Discussion
Acute toxicity assessment is commonly the initial step in evaluating the
safety of compounds and plays a crucial role in determining whether a
compound can proceed to chemical development and industrial

application. The emergence of ML algorithms offers an excellent
solution for implementing the 3Rs principle, providing an alternative
to animal testing for acute toxicity. By leveraging existing animal
experimental data, ML can predict acute toxicity across various con-
ditions.However, the complexity of toxicity testing including spanning
different species, administration routes, and measurement indicators,
combined with imbalanced data, presents significant challenges, par-
ticularly in predicting toxicity for data-scarce species like humans.

In this study, we model the relationships between endpoints
under various experimental conditions by constructing a multi-
condition endpoint graph. An adjoint correlation learning paradigm
is designed to simultaneously learn both sample representations and
multi-condition label information. This embeds experimental condi-
tion data into the representation learning process, allowing the model
to capture fine-grained toxicity patterns. Learning the relationships
between species and conditions enables the model to transfer
knowledge effectively when data is scarce. For example, although
human experimental data is limited, the model can improve its pre-
diction accuracy by learning the relationships between humans and
other species like mice and rats. Beyond the focus of this study on

ToxACoL Return

Results

Download
Click to download acute toxicity prediction results for valid SMILES:

Predicted values (mg/kg) Predicted values (-log(mol/kg)) Predicted values (GHS Class)

Click on a single valid SMILES to analyze its multi-condition acute toxicity.

Valid SMILES strings: 3

CCCC(O)C=CC=O

CCS(=O)CCOP(=O)(OC)OC=C(Cl)Cl

Cc1cc(=S)c(N)nn1C

Invalid SMILES strings: 0

No invalid SMILES.

Download

Mouse Rat Rabbit Guinea Pig Cat Dog Mammal (unspecified) Bird-Wild Chicken Duck Frog Quail Huma

Endpoint Predicted Value (mg/kg) Predicted Value (-log(mol/kg))

intraperitoneal LD50 48.14 3.4253

intraperitoneal LDLo 56.18 3.3582

intravenous LD50 34.26 3.5731

intravenous LDLo 52.86 3.3847

oral LD50 362.45 2.5485

oral LDLo 320.45 2.602

unreported LD50 132.56 2.9854

skin LD50 374.35 2.5345

subcutaneous LD50 107.82 3.0751

subcutaneous LDLo 156.64 2.9129

intramuscular LD50 118.43 3.0343

65.34 3.2926

ToxACoL

Multi-condition Acute Toxicity Assessment

About ToxACoL

ToxACoL is designed for multi-condition acute toxicity
assessment. It predicts the toxicity outcomes of
compounds (input as SMILES) across 13 species
(e.g., mouse, rabbit, human, etc.), 8 administration
routes (e.g., intravenous, dermal, oral, etc.), and 3
measurement indicators (e.g., LD50).

13 Species
From mouse to human

8 Routes
Various administration
methods

3 Indicators
Comprehensive
measurements

Fast Results
Quick and accurate
predictions

Input SMILES Structures
Enter one or more SMILES strings (comma-separated):

Example: CCCC(O)C=CC=O,CCS(=O)CCOP(=O)(OC)OC=C(Cl)Cl,Cc1cc(=S)c(N)nn1C

Insert Example Data

Submit Or upload a CSV file:

Choose a File to Upload No file selected

The CSV file should contain a column named 'smiles' with the SMILES strings.

Multi-Species Analysis

Compare toxicity profiles across 13
different species for comprehensive

assessment

Batch Processing

Process multiple compounds
simultaneously using comma-

separated SMILES or CSV files

Easy Export

Download results in multiple formats
for further analysis and reporting

a b

c

CCCC(O)C=CC=O

Predicted values (mg/kg) Predicted values (-log(mol/kg)) Predicted values (GHS Class)

parenteral LD50

CCCC(O)C=CC=O Download

Mouse Rat Rabbit Guinea Pig Cat Dog Mammal (unspecified) Bird-Wild Chicken Duck Frog Quail Huma

Exposure route GHS Category

Oral (Test species: rat) 4

Dermal (Test species: rat) 3

Notes:

1. Classification criteria follow the Globally Harmonized System of Classification and Labelling of Chemicals (GHS).

2. Category 1 is the highest hazard category, while Category 5 applies to substances of lower acute toxicity but may still pose
risks to vulnerable populations under specific conditions.

3. The N/A result indicates that the LD50 estimates are greater than 5000 mg/kg.

4. The criteria for acute toxicity hazard categories (unit: mg/kg):

Category 1 Category 2 Category 3 Category 4 Category 5

Oral (Test species: rat) ATE≤5 5<ATE≤50 50<ATE≤300 300<ATE≤2000 2000<ATE≤5000

Dermal (Test species: rat) ATE≤50 50<ATE≤200 200<ATE≤1000 1000<ATE≤2000 2000<ATE≤5000

ATE: acute toxicity LD50 estimates.

Fig. 7 | Interface of the ToxACoL online prediction web platform. a Homepage,
where users can input molecular SMILES in the “Input SMILES Structures” section
and click “Submit” to initiate the acute toxicity analysis. b The result page of acute

toxicity prediction. c The result page of GHS classification. Credits: the icons of
molecular structure and animals are sourced from https://creazilla.com/. Source
data are provided as a Source Data file.
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acute toxicity prediction, the adjoint correlation learning framework
also offers valuable insights for other multi-task learning problems
with multi-label settings, rich label information, and significant data
imbalance.

Basedon thedesignedAdjoint Correlation Learning,wepropose a
multi-condition acute toxicity prediction model, ToxACoL. Before our
work, the learning process of most QSAR models72,73 employed for
computational toxicity prediction was unidirectional from compound
data to toxic endpoints. Taking the MTL paradigm as an example
(Supplementary Fig. 10), it uses a deep network to extract high-level
compound representations and amulti-channel linear regression layer
to predict toxicity intensity at various endpoints. In ToxACoL, we
propose synchronous bidirectional learning from compound data and
toxic endpoints. We use graph topology to model endpoint associa-
tions and graph convolution for cross-correlation and develop the
adjoint correlation mechanism to process compound and endpoint
embeddings simultaneously, maintaining their interaction. Impor-
tantly, we use the top-level endpoint embeddings as toxicity regressor
weights, which incorporate the learned relationships between end-
points into the final prediction step. Unlike the MTL models’ inde-
pendent regressors, the multi-endpoint toxicity regressors generated
by ToxACoL are interdependent due to graph convolution, incorpor-
ating multi-endpoint biological priors. This enables parameter propa-
gation, reducing training data reliance. Also, the top-level feed-forward
layer’s compound embeddings are endpoint-aware, facilitating amore
task-focused compound representation learning. These designs are
the key factors that enable the performance improvement of small-
sized endpoints.

ToxACoL’s effectiveness and application value are validated
through various experimental scenarios. These scenarios include
comprehensive multi-endpoint performance evaluation, performance
improvement for scarce species endpoints, reduced training data
testing, latent space manifold analysis, structural alerts clustering
analysis, species extrapolation pattern exploration, AD analysis, and
online prediction platform development. First, ToxACoL balanced
performance across multi-condition endpoints. Due to the highly
imbalanced training dataset, existing algorithms typically performwell
on large-sized endpoints but poorly on small-sized ones. ToxACoL
demonstrated robust handling of imbalanced multi-task datasets.
Second, the performance improvement evaluation for scarce species
endpoints focused on three small-sized human-related endpoints
(100–200 samples), thus confirming its practical value. Results showed
remarkable improvements over baselines, with R2 performance
increases of 56%, 87%, and 43% for the three endpoints, respectively.
Third, in real-world applications, human and unconventional animal
experimental data often do not exceed 100 samples. We further
reduced training data for scarce species endpoints to observe model
performance. Results indicated that ToxACoL requires only 20–30% of
training data (~20–40 samples) to outperform state-of-the-art meth-
ods, demonstrating strong competitiveness in few-shot learning.
Fourth, the embeddings learned by ToxACoL’ revealed clear clustering
manifolds based on toxicity intensity, consistent across both large and
small endpoints. Fifth, further analysis of ToxACoL’s learned repre-
sentations revealed that compounds in the same clusters shared
common substructures. High-toxicity clusters contained well-known
structural alerts, suggesting that ToxACoL can assist in identifying
unknown structural alerts while predicting acute toxicity for unseen
compounds or endpoints, thus aiding the exploration of toxicity
mechanisms. Sixth, since it is difficult to obtain experimental data for
scarce species like humans, we explored interspecies extrapolation
patterns by completing toxicity values across multiple endpoints. The
results showed that toxicity values in cats were closer to humans than
those of other species. Additionally, intravenous administration in
animal experiments showed closer results to human oral than other
routes. These findings may offer valuable insights for toxicity

extrapolation research. Seventh, AD analysis of ToxACoL provides a
detailed analysis of in-AD and out-of-AD samples and depicts the
chemical space where the model achieves reliable predictions. Finally,
for the convenience of researchers in using ToxACoL, we have devel-
oped an online web platform. Users can simply upload single or mul-
tiple molecular SMILES, and obtain predictions for various toxic
endpoints and GHS classifications.

In future work, ToxACoL should be extended to accommodate a
broader spectrum of acute toxicity tasks even other chemical-related
tasks. First, Mansouri et al.5 proposed that regulatory agencies gen-
erally require three types of acute toxicity outcomes: (1) an LD50 value
estimate, (2) a binary outcome based on a single threshold, and (3) a
multiclass schemebased ondifferent thresholds. In this study, wehave
developed predictive models for LD50 estimation across multiple
species and under various administration routes. Based on the LD50

estimates for oral and dermal routes, we applied GHS classification
criteria to achieve GHS class-based multiclass prediction. Both pre-
diction results are accessible on the ToxACoL online platform. While
the other two binary classification scenarios should be supported,
including the prediction of whether it is very toxic or nontoxic. This
classification requirement can also be addressed by setting appro-
priate thresholds on the predictions generated by ToxACoL. Addi-
tionally, Mansouri et al. have provided ML-ready datasets for LD50

estimation, binary classification, andmulticlass classification based on
GHS and US EPA classification criteria. These datasets can be used to
train models separately and then combined through weighted aver-
aging to produce integrated prediction results, thereby improving the
accuracy of chemical hazard predictions.

Second, ToxACoL has the potential to be adapted for other che-
mical assessment tasks beyond acute toxicity. ToxACoL is specifically
designed for predictive tasks involving multi-condition labels and
heterogeneous sample types. Its innovative dual-path learning para-
digm, adjoint correlation learning, combined with multi-condition
endpoint graph modeling capabilities, renders it particularly suitable
for complex MTL architectures. Additionally, the modular design of
ToxACoL demonstrates significant transfer learning potential across
diverse chemical assessment scenarios. For instance, inmulti-objective
optimization for drug discovery, the dual-path interaction architecture
can be extended to incorporate optimization targets like target inhi-
bition potency, therapeutic indication prioritization, and pathway
activation modulation as multi-condition endpoints. By constructing
multi-modal endpoint graphs comprising drug–target–disease-path-
way nodes, ToxACoL will systematically encode efficacy–endpoint
correlations, thereby providing a computational framework to accel-
erate lead compound optimization. This adaptability highlights Tox-
ACoL’s capacity to transcend traditional toxicity prediction paradigms
and fosters cross-domain applications in computational chemistry.

Third, these multi-endpoint-shared, high-weight structural alerts
identified by ToxACoL enable early-stage toxicity flagging during vir-
tual screening. By automatically filtering candidates containing known
alerts, ToxACoL may accelerate hit-to-lead pipelines while minimizing
downstream attrition risks. In future work, ToxACoL’s multi-endpoint
toxicity predictions can be integrated as penalty terms in optimization
objectives of molecule generation, prioritizing structures with alert
replacement.

Methods
Acute toxicity data
This work involves two large-scale acute toxicity datasets (59-endpoint
dataset, 115-endpoint dataset) and a benchmark dataset from Man-
souri et al.5. Unlike typical toxicity classification datasets, these acute
toxicity datasets are more complex as they focus on fitting acute
toxicity intensity values.

The 59-endpoint dataset is sourced from the TOXRICdatabase25, a
public and standardized toxicology database for compounddiscovery.
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This dataset includes 59 various toxicity endpoints with 80,081 unique
compounds represented using SMILES strings, and 122,594 usable
toxicity measurements described by continuous values with a unified
toxicity chemical unit: −log(mol/kg). The larger the measurement
value, the stronger the toxicity intensity of the corresponding com-
pound towards a certain endpoint. The proportion of “very toxic”
(LD50≤50mg/kg) molecules ranged from 3.58% (mouse-oral-LD50) to
85.06% (cat-intravenous-LD50) across endpoints, while “non-toxic”
(LD50 ≥ 2000mg/kg) molecules varied between 2.83% (mouse-intra-
venous-LD50) and 67.63% (rabbit-skin-LD50). These classification cri-
teria are based on studies by Mansouri et al., Tran et al., and GHS5,74.
The 59 acute toxicity endpoints involve 15 different species including
mouse, rat, rabbit, guinea pig, dog, cat, bird wild, quail, duck, chicken,
frog, mammal, man, women, and human, 8 different administration
routes including intraperitoneal, intravenous, oral, skin, sub-
cutaneous, intramuscular, parenteral, and unreported, and 3 different
measurement indicators including LD50, LDLo, and TDLo. In this
dataset, each compound only has toxicity measurement values con-
cerning a small number of toxicity endpoints, so this dataset is very
sparse with nearly 97.4% of compound-to-endpoint measurements
missing (Fig. 1b, Supplementary Table 1). Meanwhile, this dataset is
also data-unbalancedwith someendpoints having tens of thousandsof
toxicity measurements available, e.g., mouse-intraperitoneal-LD50 has
36,295 measurements, mouse-oral-LD50 has 23,373 measurements,
and rat-oral-LD50 has 10,190 measurements, etc., while some end-
points contain only around 100 measurements like mouse-intrave-
nous-LDLo, rat-intravenous-LDLo, frog-subcutaneous-LD50, and
human-oral-TDLo, etc. The sparsity and unbalance of this dataset
present acute toxicity evaluation as a challenging issue. Among the 59
endpoints, 21 endpoints with <200 measurements were considered
small-sized endpoints, and 11 endpoints with more than 1000 mea-
surements were treated as large-sized endpoints. Three endpoints
targeting humans, human-oral-TDLo, women-oral-TDLo, and man-
oral-TDLo, are typical small-sized endpoints, with only 140, 156, and
163 available toxicity measurements, respectively.

The 115-endpoint dataset is built based on PubChem database40, a
publicly available and free chemical database. First, we collected the
acute toxicity effects of 120K chemicals from the PubChem database,
involving information on species, administration route, measurement
indicators, and corresponding toxicity values. Second,weobtained the
data of a total of 636 acute toxicity endpoints. However, most of these
endpoints only contained 1–3 available compounds. In order to
properly conduct the design of the AI model and implement the 5-fold
cross-validation, we only retained the acute toxicity endpoints with no
less than 30 available samples for each endpoint. Eventually, a new
acute toxicity dataset with 115 endpoints was formed. Third, similar to
the operation of acute toxicity data in the TOXRIC database, we also
unified the various units of all toxicity measurement values of the
above new data into—log(mol/kg), so that the AI model can better
regress the acute toxicity values. Overall, the “very toxic” proportions
spanned 4.71% (mouse-oral-LD50) to 84.38% (cat-intravenous-LD50),
with “non-toxic“ proportions ranging from 0.68% (guinea pig-
intravenous-LD50) to 42.88% (rabbit-skin-LD50). Compared with the
previous 59-endpoint acute toxicity dataset fromTOXRIC, the number
of acute toxicity endpoints in this new dataset has doubled, adding
more possible species (like goat, monkey, hamster, etc.), administra-
tion routes (like intracerebral, intratracheal), and measurement indi-
cators (like LD10, LD20). It should be emphasized that the sample
imbalance among endpoints and the data missing rate of this dataset
are more severe. Its sparsity rate reaches 98.7%, and it contains 68
small-sized acute toxicity endpoints (i.e., endpoints with <200 toxicity
measurement data), among which the endpoint with the fewest sam-
ples has only 30 availablemeasurement data (Supplementary Table 2).
Therefore, this dataset ismore challenging for all current acute toxicity
prediction models.

The benchmark dataset is collected from the study of Mansouri
et al.5. To adapt to ToxACoL’s regression framework, we exclusively
utilized the LD50 dataset reported in this study (6398 molecules for
training and 2196 molecules for evaluation), which was collected from
rat oral experiments with units of mg/kg. Then, we standardized the
provided toxicity values into—log(mol/kg) using the same method
applied to the aforementioned two datasets, enabling compatibility
with ToxACoL for experimental validation.

Design of ToxACoL
Construction of acute toxicity endpoint graph. This operation is
performed on training data. Taking the experiments on the 59-
endpoint dataset, for example, the graph includes 59 nodes, denoting
59 acute toxicity endpoints. The edges represent the dependency
between two endpoints. For each pair of endpoints (i, j), we count the
total number of compounds shared by the ith endpoint and the jth
endpoint, denoted by NUM(i, j), and then calculate the PCC of the
corresponding toxicity measurements between the two endpoints
based on their shared compounds (if necessary), denoted by PCC(i, j).
Only if their shared compounds are enough and the toxicity mea-
surements of these shared compounds at both endpoints are highly
correlated, can the two endpoints be considered dependent, and thus
an edge is considered to exist between them:

A½i, j�= 1 if i≠j & NUMði, jÞ ≥ λ & PCCði, jÞ ≥ τ

0 otherwise,

�
ð1Þ

where λ and τ are two predefined hyperparameters (we set λ = 15 and
τ =0.75). After traversing all possible edges, we can construct the
adjacency matrix A of the acute toxicity endpoint graph.

Workflow inside adjoint correlation layer. Each adjoint correlation
layer takes compound embeddings and endpoint embeddings from
the previous adjoint correlation layer as inputs, and outputs the new
compound embeddings and endpoint embeddings as inputs for the
next adjoint correlation layer:

EðlÞ
c ,EðlÞ

e =Adjoint Correlation LayerðlÞ Eðl�1Þ
c ,Eðl�1Þ

e

� �
, ð2Þ

where EðlÞ
c 2 RB×dl denotes the compound embeddings outputted by

adjoint correlation layer l (B is the batch size when training), and
Eðl�1Þ
c 2 RB×dl�1 denotes the compound embeddings outputted by

previous layer l−1. EðlÞ
e 2 RN ×dl denotes the N endpoint embeddings

outputted by the graph convolution in adjoint correlation layer l, and
Eðl�1Þ
e 2 RN ×dl�1 denotes theN endpoint embeddings of previous layer l

−1. Next, we explain in detail the implementation of the adjoint cor-
relation layer. Based on endpoint graphA, a graph convolution layer is
designed to process the endpoint embeddings in each adjoint corre-
lation layer. In thisway, the embeddingof eachendpoint is amixtureof
the embeddings of its neighbor endpoints from the previous layer. We
adopted the following operation to perform the graph convolution on
endpoint embeddings:

EðlÞ
e = σðÂ� Eðl�1Þ

e �WðlÞ
G Þ, ð3Þ

where ⊗ denotes matrix multiplication, Â 2 RN ×N is the normalized
adjacency matrix of the N-endpoint graph, WðlÞ

G 2 Rdl�1 ×dl is a trans-
formationmatrix, and is learnable in the training phase, σ( ⋅ ) denotes a
non-linear activation operation (here we used Leaky ReLU with a
negative slope of 0.1). Note that Eð0Þ

e 2 RN ×d0 is the initial embeddings
of the N endpoints and an entity encoding strategy produces it.
Concretely, three attributes of the endpoint (species, administration
route, and measurement indicator) were separately encoded into
three one-hot subvectors and then concatenated to form the initial
endpoint embedding. The 59-endpoint dataset involved 15 species, 8
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routes, and 3 indicators, so the dimension of initial endpoint
embeddings is d0 = 15 + 8 + 3 = 26. Critically, endpoint embeddings
EðlÞ
e will interact with the compound embeddings:

EðlÞ
c = f

θðlÞ ðEðl�1Þ
c Þ � ðEðlÞ

e Þ> �WðlÞ
L + f

θðlÞ ðEðl�1Þ
c Þ, ð4Þ

where ⊤ is a matrix transpose operation. f
θðlÞ ð�Þ : Rdl�1 ! Rdl is the

feed-forward layer in adjoint correlation layer l, which consists of
Linear layer, BatchNorm layer, Dropout layer, and ReLU activation,
connected in series. θ(l) denotes the learnable parameters in the feed-
forward layer. WðlÞ

L 2 RN ×dl is the learnable parameter of the Linear
layer (green block in Fig. 1a) in adjoint correlation layer l, aiming at
restoring the dimension of compound embeddings. The operation of
f
θðlÞ ðEðl�1Þ

c Þ � ðEðlÞ
e Þ> achieves the correlation calculation between

compound embeddings andN endpoint embeddings, and the addition
term in Eq. (4) achieves a residual connection. Note that Eð0Þ

c 2 RB×d0
0 is

initial compound embedding, and we adopted the 1024-dimensional
Avalon fingerprints as Eð0Þ

c 2 RB× 1024, which can be generated from the
SMILES of compounds.

Top regression layer. After connecting multiple adjoint correlation
layers in series, a top regression layer was devised to output the final
estimation results concerning multiple endpoints. Specifically,
assuming there are a total of L adjoint correlation layers (we selected
L = 4 in our experiments), then thefinalpredictive resultsYe 2 RB×N of
the B compounds in a mini-batch can be computed as

Ye =E
ðLÞ
c �WR +E

ðLÞ
c �WT, ð5Þ

where WT 2 RdL ×N denotes the weights of the top linear layer.
WR = ðÂ� EðL�1Þ

e �WðLÞ
G Þ> 2 RdL ×N denotes the N pre-nonlinear end-

point embeddings outputted by final layer L, which is treated as the N
endpoint-wise regressors to fit the toxicity intensity at various
endpoints.

Loss function. We assume that in a data mini-batch containing B
compounds, the ground-truth toxicity intensity value of the ith com-
pound with respect to the jth endpoint is yi,j, 1 ≤ i ≤B, 1 ≤ j ≤N. Due to
the extreme sparsity of the dataset, yi,j only has available values on a
few (i, j) pairs, and inmost cases, it is NULL. Certainly, each compound
has the ground-truth toxicity intensity value at least at one endpoint,
i.e., ∑1 ≤ j ≤ N I(yi,j ≠NULL) ≥ 1, ∀i. So, we designed the following mini-
batch loss function to train ToxACoL:

LðB,NÞ=
P

1≤ i ≤B

P
1 ≤ j ≤N Iðyi, j ≠NULLÞðYe½i, j� � yi, jÞ2P
1≤ i ≤B

P
1≤ j ≤N Iðyi, j ≠NULLÞ

, ð6Þ

where Ye[i, j] is the estimated toxicity intensity of the ith compound
with regard to the jth endpoint. I(yi,j ≠NULL) is an indicator function,
equal to 1 if yi,j is an available value and 0 when it is missing. This loss
filters out themissing compound-to-endpointmeasurements and fully
utilizes the existing supervision information provided by the sparse
acute toxicity dataset.

Quantification and statistical analysis
For each endpoint, the determination coefficient, R2, is used as the
main evaluation metric:

R2 = 1�
Pn

i= 1ðŷi � yiÞ2Pn
i= 1 ð�y� yiÞ2

, ð7Þ

where n is the total number of compounds at this endpoint, yi and ŷi
denote the ground-truth toxicity value and the estimated toxicity
intensity value for the ith compound, 1 ≤ i ≤ n, respectively, while �y is

the average toxicity intensity value over all the n compounds at this
endpoint. We also calculated the RMSE for each endpoint as an

additional evaluation metric: RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i = 1 ðŷi � yiÞ2

q
. Unless other-

wise specified, the R2 or RMSE metric values we reported are the
average results after 5-fold cross-validation.

The Friedman test and Nemenyi test46 were employed to analyze
the performance difference among various methods over all N acute
toxic endpoints. The Friedman test is a nonparametric test equivalent
to the analysis of variance (ANOVA), used to ascertain whether there
are statistically significant differences in the means of three or more
methods tested on identical endpoints. Assuming Rankj =

1
N

PN
i = 1 rank

i
j

denotes the average performance ranking of the jth method over N
endpoints (rankij is the ranking of the jth method on the ith endpoint),
The null hypothesis believes that the performances of all methods are
equal. The Friedman statistic in the following equation obeys the
χ2F-distribution with (K−1) free degrees:

χ2F =
12N

KðK + 1Þ
XK
j = 1

Rank2j �
KðK + 1Þ2

4

" #
, ð8Þ

where K is the total number of methods. Furthermore, the statistic in
the following equation obeys the F-distribution with free degrees of (K
−1) and (K−1)(N−1):

FF =
ðN � 1Þχ2F

NðK � 1Þ � χ2F
: ð9Þ

Next, the Nemenyi test was used to evaluate the performance differ-
ence between pairwise methods, deeming the pairwise methods sig-
nificantly different if their average ranking gap exceeds the critical
difference (CD):

CD= qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK + 1Þ

6N

r
, ð10Þ

where qα is based on the Studentized range statistic divided by
ffiffiffi
2

p
and

α is the corresponding confidence level.
In addition, we adopted kernel density estimation45, a powerful

non-parametric statistical method used to estimate unknown prob-
ability density functions, to fit the overall performance distribution of
different models on all endpoints and then compare the performance
balance of different methods on all endpoints. Two-sided Wilcoxon
signed-rank test75 was used to compute the significant difference
between the two methods.

Baseline models
Several state-of-the-art STL, MTL, and consensus models for acute
toxicity prediction were compared with ToxACoL. ST-DNN: training a
deep neural network for each endpoint and taking the Avalon finger-
prints as inputs. The complexity of the single-task neural network for
each endpoint varies with the sample size of the available toxicity
measurement about this endpoint. ST-RF: building a random forest for
each endpoint, and the total number of trees varies with the sample
size concerning this endpoint. It also takes the Avalon fingerprints as
inputs. GAT: combining a graph neural network with an attention
mechanism that determines the relative importance of neighboring
nodes.GCN: operating on themolecule graph structure of compounds
using convolutional neural networks rather than on fingerprint vec-
tors. Attentive FP: a graph architecture that representsmolecules using
molecular fingerprints and a graph attention mechanism. MT-DNN: a
multi-channel deep neural network for all endpoints, where the ante-
rior feature encoder in this network for all endpoints is shared but the
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regressors for various endpoints are independent. Its input is also the
1024-dimensional Avalon fingerprints. MT-GCN: a multi-task graph
convolution network, where the input is the molecule graph structure
of compounds and the molecule graph learning module is shared
across all endpoints while the final regressors towards endpoints are
independent. DLCA: a consensus learning architecture that averages
the outputs of separatemulti-task networks, including four descriptor-
based networks and one descriptor-free network. The four descriptor-
based networks were trained using four different types of molecular
representation (Avalon, Morgan, AtomPair fingerprints, and RDKit
descriptors). The one descriptor-free network was realized based on
SMILES strings, consisting of a convolutional network with 1D con-
volutional layers and GlobalMax pooling layers followed by fully con-
nected layers and multi-channel regression layers.

Model configuration and computational resource
The split of the training and testing sets in the dataset is completely
consistent with the baseline models17, which was randomly divided 5
times for 5-fold cross-validation. The results we reported mostly came
from a ToxACoL model with four adjoint correlation layers, where the
embedding dimensions are designed as d1 = 768, d2 = 512, d3 = 384,
and d4 = 64, respectively. The channel number of the top regression
layer was designed to match the total number of toxic endpoints. The
initial compound embeddings are the 1024-dimensional Avalon fin-
gerprints, and the initial endpoint embeddings are the 26-dimensional
(59-endpoint dataset) or 35-dimensional (115-endpoint dataset) binary
vectors concatenated by three one-hot subvectors corresponding to
the three attributes of the endpoints. The dropout rate in feed-forward
layers was maintained at 0.1. The non-linear activation function of
graph convolution was set to Leaky ReLU with a negative slope of 0.1.
The SGD with Nestrerov momentum76 was used as the optimizer,
where the momentum factor is 0.9, the weight decay is 5e−4 and the
initial learning rate is 0.01. Our ToxACoL model was trained for 120
epochswith a batch size of 32, and the optimalmodel and another nine
models obtained from its nine nearest epochs were saved. For infer-
ence on testing compounds, the average outputs from the 10 well-
trained models were treated as the final estimation results.

The model was implemented via Python 3.10, and the main
dependent packages only include Torch, Pandas, and Rdkit. When
training, the codes were run on an Intel I9-13900KF processor and an
NVIDIA RTX4090 GPU, with the configuration deployed on an Ubuntu
22.04 LTS system. The training takes ~15min. During the inference
phase, the toxicity of chemical compounds can be inferred entirely
using the CPU environment.We conducted tests on a laptop equipped
with an ordinary Intel Core i5 processor, and the model only takes
about 0.8 s to predict the toxicity of a singlemolecule on various acute
toxicity endpoints. Such low-demand computing resources can enable
many researchers to use our model.

Reduction of toxicity measurements for training
For the experiments of reducing training measurements for the 59-
endpoint dataset, the data reduction was made on the 21 small-sized
endpoints, where the available measurements for each small-sized
endpoint in the training set were randomly discarded according to a
certain ratio, like 80%, 50%, 40%, 30%, 20%, and 10%. This was done by
randomly replacing the ground-truth toxicity intensity of some avail-
able measurements with NULL. Technically, we can achieve it just by
modifying the indicator function value of the randomly selected
training measurements from I( yi,j ≠NULL) = 1 into I( yi,j ≠NULL) = 0
during the ToxACoL training process.

Calculation of applicability domain
According to the Organization for Economic Co-operation and
Development (OECD) guidelines, QSARmodeling requires defining the
AD to ensure reliable predictions. The reliability of a model’s

prediction depends on whether the queried compound falls within the
AD defined by the model77–79. We quantify the AD of ToxACoL using
Tanimoto similarity based on molecular fingerprints. First, we calcu-
late the Tanimoto similarity matrix between the test set and training
set using chemical Avalon fingerprints. The AD threshold ST is calcu-
lated using the equation:

ST = γ +Zσ, ð11Þ

where γ and σ represent the mean and the standard deviation of the
Tanimoto similarities between all compounds in the training set,
reflecting the overall similarity level within the training set. Z is an
adjustable confidence parameter. Next, for each compound in the test
set, we calculate its Tanimoto similarity to all compounds in the
training set. The top k compounds from the training set with the
highest similarity to the test compound are selected (k is set to 10 as a
predefined value). If the average similarity of these k compounds
exceeds the threshold ST, the compound is considered within the AD
otherwise, it is classified as outside the AD.

Extrapolation experiment
Different from the previous 5-fold cross-validation experiment, we
used all the data in the 59-endpoint acute toxicity dataset to train our
ToxACoL in the extrapolation experiment. Since we need to study the
potential associations of toxicity responses between animal endpoints
and human endpoints, we selected the three human-related endpoints
in TOXRIC as the control benchmarks and took the compounds with
existing toxicity values for these three endpoints as research objects.
Among them, the number of available compounds for the human-oral-
TDLo, woman-oral-TDLo, andman-oral-TDLo endpoints were 140, 156,
and 163, respectively. Taking the human-oral-TDLo as an example, we
used the trained ToxACoL to predict the acute toxicity of these 140
compounds at the other 58 endpoints and filled in themissing toxicity
values in the dataset. After this operation, we can obtain the acute
toxicity values of the same set of compounds at different endpoints.
Based on this, we can conduct Pearson correlation analysis and sta-
tistical tests to explore the extrapolation relationships between dif-
ferent animal endpoints and the human-oral-TDLo endpoint.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 59-endpoint acute toxicity dataset used in our study is freely
available on the published data platform TOXRIC25 at https://toxric.
bioinforai.tech/home, and the 115-endpoint acute toxicity dataset is
freely available on the PubChem database40 at https://pubchem.ncbi.
nlm.nih.gov/. The two datasets have also been organized by us and
published at https://doi.org/10.6084/m9.figshare.27195339.v5with
DOIs and citations80. Source data are provided with this paper.

Code availability
The code used to develop the model, perform the analyses, and gen-
erate results in this study is publicly available and has been deposited in
GitHub at https://github.com/LuJiangTHU/Acute_Toxicity_FSL, under
CC-BY 4.0 license. The specific version of the code associated with this
publication is archived in Zenodo and is accessible via 10.5281/
zenodo.1506359581. In addition, to enable all researchers to directly use
our pre-trained ToxACoL, we have integrated our ToxACoL into an
online software using theDocker containerization platform. This online
software can accurately predict the acute toxicity values and the GHS
classes of chemical compounds on different acute toxicity endpoints. It
can be freely accessed and used at https://toxacol.bioinforai.tech/, in
the hope of becoming a useful resource for regulatory applications.
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