Table 1 Optimization of reaction conditions with butane-2,3-diyldibenzenea

From: Electro-oxidative amination of benzylic C(sp³)–C(sp³) bonds in aromatic hydrocarbons

View full size image

Entry

Electrolyte

Ecell

Acid

Additive

Yield (%)

1

Et4NBF4

2.4 V

0.5 mL TFA

26

2

LiClO4

2.4 V

0.5 mL TFA

6

3

Et4NOTs

2.4 V

0.5 mL TFA

3

4

Et4NBF4

2.6 V

0.5 mL TFA

18

5

Et4NBF4

2.8 V

0.5 mL TFA

18

6

Et4NBF4

2.4 V

100 μL TfOH

33

7

Et4NBF4

2.4 V

100 μL MeSO3H

53

8

Et4NBF4

2.4 V

100 μL MeSO3H

1.0 mL HFIP

79

9b

Et4NBF4

2.4 V

100 μL MeSO3H

1.0 mL HFIP

83 (80)c

10

Et4NBF4

100 μL MeSO3H

1.0 mL HFIP

0

11 d

Et4NBF4

2.4 V

100 μL MeSO3H

1.0 mL HFIP

47

12e

Et4NBF4

2.4 V

100 μL MeSO3H

1.0 mL HFIP

69

13 f

Et4NBF4

2.4 V

100 μL MeSO3H

1.0 mL HFIP

64

14

Et4NBF4

i = 10 mA

100 μL MeSO3H

1.0 mL HFIP

58

15 g

Et4NBF4

2.4 V

100 μL MeSO3H

1.0 mL HFIP

71

  1. aReaction conditions: S1 (0.3 mmol), electrolyte (0.1 M), MeCN (3.0 mL), carbon cloth anode, Pt plate cathode, rt, in an undivided cell with constant voltage for 16 h under air. Yields determined by 1H NMR analysis using 1,1,2,2-tetrachloroethane as internal standard. b11 h. cIsolated yield. dNi as cathode. eStainless steel as cathode. fGF020 as anode. gMeCN (40 eq.), DCM (2 mL) were used as solvent. DCM Dichloromethane, HFIP 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol, TFA trifluoroacetic acid, TfOH trifluoromethanesulfonic acid, Me methyl, Et ethyl, Ac acetyl.