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Accelerated brain ageing during the COVID-
19 pandemic

Ali-Reza Mohammadi-Nejad 1,2,3, Martin Craig 2, Eleanor F. Cox1,4,
Xin Chen 5, R. Gisli Jenkins6,7,8, Susan Francis1,4,
Stamatios N. Sotiropoulos 1,2,3,9 & Dorothee P. Auer 1,2,3,9

The impact of SARS-CoV-2 and the COVID-19 pandemic on brain health is
recognised, yet specific effects remain understudied. We investigate the pan-
demic’s impact on brain ageing using longitudinal neuroimaging data from the
UK Biobank. Brain age prediction models are trained from hundreds of multi-
modal imaging features using a cohort of 15,334 healthy participants. These
models are then applied to an independent cohort of 996 healthy participants
with two magnetic resonance imaging scans: either both collected before the
pandemic (Control groups), or one before and one after the pandemic onset
(Pandemic group). Our findings reveal that, even with initially matched brain
age gaps (predicted brain age vs. chronological age) and matched for a range
of health markers, the pandemic significantly accelerates brain ageing. The
Pandemic group showson average 5.5-monthhigher deviationof brain agegap
at the second time point compared with controls. Accelerated brain ageing is
more pronounced in males and those from deprived socio-demographic
backgrounds and these deviations exist regardless of SARS-CoV-2 infection.
However, accelerated brain ageing correlates with reduced cognitive perfor-
mance only in COVID-infected participants. Our study highlights the pan-
demic’s significant impact on brain health, beyond direct infection effects,
emphasising the need to consider broader social and health inequalities.

Apart from the well-documented respiratory and systemic manifesta-
tions of SARS-CoV-2, compelling evidence highlights its neurotropic
nature, showing high rates of persistent respiratory symptoms, fati-
gue, depression, post-traumatic stress disorder, and cognitive
impairment in COVID-19 survivors1. Emerging research has revealed
potential associations between COVID-19, cognitive decline, brain
changes2, and the molecular signatures of brain ageing3. Significant

psychological distress and mental health issues were also reported
during the early pandemic phases, especially among younger and
vulnerable individuals4. Conversely, recent reviews suggest variable
reductions inmental health serviceuse5 and, across 134 cohort studies,
no overall rise in mental health conditions was found in the general
population, with minimal increase in depression symptoms and small
negative effects in women6. Understanding the pandemic’s effects on
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brain health, considering infection status and socio-demographic
factors, is crucial for addressing its long-termhealth consequences and
broader public health implications.

The neuroinvasion of SARS-CoV-2 is well established7, with virus
persistence detected up to 230 days post-infection8. Central nervous
system manifestations have been linked to direct neuroinvasion, vas-
cular damage, and immune responses9. Recent studies suggest that
COVID-19 may accelerate neurodegenerative processes or contribute
to age-related cognitive impairments10. Longitudinal assessments
indicate a higher risk of cognitive decline among COVID-19 survivors
compared with controls11. Serial brain magnetic resonance imaging
(MRI) analyses have demonstrated widespread structural brain chan-
ges, including reductions in bothgreymatter (GM) thickness andwhite
matter (WM) integrity, potentially due to neurodegeneration, neu-
roinflammation, or sensory deprivation2. Beyond direct infection
effects, the pandemicmayhave independently influencedbrain ageing
due to psychosocial stressors, social disruptions, and lifestyle changes,
particularly among vulnerable groups such as older adults12 and indi-
viduals experiencing economic hardship.

While indirect evidence suggests that COVID-19 infection may
accelerate brain ageing, comprehensive studies examining the pan-
demic’s broader impact on brain health remain limited. Advanced
neuroimaging and machine learning approaches have enabled the
development of brain age prediction models, which estimate devia-
tions from typical ageing trajectories—captured as the brain age gap
(BAG), defined as the difference between estimated brain age and
chronological age. Seminal works13–15 laid the foundation for these
models, refined with large-scale datasets, multi-modal imaging16,17,
extensions to brain tissue-specific models to delineate different
aspects of brain ageing18, and proven associations with mortality. Uti-
lising these methodologies, we estimated brain age and investigated
the impact of COVID-19 and the pandemic on brain age using long-
itudinal neuroimaging data.

We hypothesise that COVID-19 infection and the pandemic
accelerated brain ageing. To test this, we utilised serial neuroimaging
data from the UK Biobank (UKBB) study19. We trained a model using
multi-modal imaging-derived phenotypes (IDPs) to predict individual
BAG. The trained model was then applied to unseen participants with
two brain scans, one before and one after the pandemic (Pandemic
group) or both scans before the pandemic (Control group).We further
assessed the impact of COVID-19 infection within the Pandemic group
and explored putative moderating factors on brain ageing, such as sex
and deprivation indices, and the interrelation with cognitive decline.

Results
A brain age prediction model16 (Fig. 1a) was trained on MRI scans col-
lected pre-March 2020 from 15,334 healthy middle-aged and older
UKBB19 participants (‘training set’: 8407 female; age [mean ± SD]:
62.6 ± 7.6 years). From the full neuroimaging dataset of > 42,000
individuals, only participants classified as healthy, with no history of
chronic disorders (e.g., heart disease, diabetes, dementia, kidney dis-
ease, major depression – see full list of exclusions in Supplementary
Table 1 as in refs. 18,20) were included in this training set. This mini-
mised the potential confounding effects of disease and comorbidities
on brain age predictions. Hundreds of multi-modal IDPs were
extracted21 and used as regressors in the model after PCA-based
dimensionality reduction (Fig. 1b). As COVID-19 may affect differently
WM and GM2,18,22,23 and susceptibility to neurological diseases can vary
across sexes24, separate models were trained based on GM and WM
features, and for males and females18.

These models were then applied to our unseen study cohort with
two MRIs, comprising 996 healthy participants (552 female; age:
58.8 ± 6.2 years; mean inter-scan intervals (ΔT) of ~ 34 months – Sup-
plementary Fig. 1), where participants with major chronic conditions
before both scans were excluded to maintain consistency in health

status across all subjects. The studycohort included thePandemicgroup
(G1: N=432, 255 female) with one brain scan before and one after the
pandemic, and the Control group (G2: N= 564, 297 female) with both
scans before thepandemic. The groupswere adjusted to bematched for
age, sex, and other health markers (see Supplementary Table 2), and
only participants with a minimum inter-scan interval of 2 years, who did
not develop an interim health condition, were considered25 (Supple-
mentary Fig. 1d). Using the trained models, brain age was estimated for
both time points of each participant. The difference between estimated
brain age and chronological age (BAG) was then obtained at both time
points, and the rate of change in BAGwas calculated and normalised for
the inter-scan intervals as RBAG = (ΔBAG/ΔT).

Performance of brain age prediction models
Scatter plots in Fig. 1c depict the relationship between chronological
and predicted brain age for each brain tissue type and sex (males
shown in Supplementary Fig. 2). We employed an unbiased estimation
approach for brain age16, ensuring BAG is orthogonal to chronological
age. All models demonstrated relatively similar prediction accuracy,
with Pearson’s r ranging from 0.905 (WM female model, p <0.0001,
95% CI = 0.901–0.909; Mean Absolute Error (MAE) = 2.90 years) to
0.894 (WMmalemodel, p <0.0001, 95%CI = 0.890–0.899;MAE = 3.09
years), indicating that neuroimaging features captured a large pro-
portion of chronological age variance, consistent with previous
methodologically rigorous studies18,26.

We further confirmed that our model’s estimated brain age was
unbiased towards the group mean27, and that participants’ age dis-
tribution was Gaussian16. For the remainder of this paper, unless
otherwise stated, we aggregated the predicted brain age gap for male
and female models across different brain tissue types and participant
groups separately. Figure 1d shows that there was also no significant
correlation between the estimated BAG and chronological age when
applying the trained model to unseen data (Pearson’s r < 0.001). As
expected, we found very high correlations between predicted brain
ages of participants at the two time points (Fig. 1e, Pearson’s r >0.96,
FDR-corrected p < 4.0e-234), demonstrating high scan-rescan model
reproducibility. The intraclass correlation coefficient (ICC) further
supported this reproducibility, with an ICC of 0.981 (95% CI:
0.977–0.985) for the Pandemicgroup and0.983 (95%CI: 0.980–0.985)
for the No Pandemic group, indicating stability of estimated brain ages
over time. In addition, partial correlation analysis, controlling for
chronological age at each scan, yielded high partial correlations
(Pandemic group: r = 0.86, 95% CI = [0.83–0.88], FDR-corrected
p = 6.3e-120; No Pandemic group: r = 0.88, 95% CI = [0.87–0.90], FDR-
corrected p = 6.5e-307). These results suggest that the reproducibility
of brain age estimates reflects individual brain health properties.

No differences in mean predicted BAG was found between the
training and unseen cohort’s firstMRI data (Mann-Whitney two-sample
t-test, GM: FDR-corrected p =0.44, WM: FDR-corrected p =0.99),
demonstrating the model’s generalisability (Fig. 1f). Importantly, the
estimated BAG for the first scan for the Pandemic group was not sig-
nificantly different from the corresponding BAG for the Control (No
Pandemic) group (GM: FDR-corrected p =0.23, WM: FDR-corrected
p =0.28), confirming that our matching (Supplementary Table 2)
effectively achieved comparable baseline BAGs.

Accelerated Brain ageing is associated with the COVID-19 pan-
demic, regardless of infection
Although BAGs were not statistically different between the Pandemic
and Control groups at the first time point, the pandemic’s effect on
brain ageing became evident with the second scan. Figure 2 presents
the rates of change in BAG between the two scans (RBAG). The Pan-
demic group displayed significantly higher RBAG compared with the
Controls (GM Cohen’s d = 0.606, WM Cohen’s d =0.697; FDR-
corrected p < 0.0001), indicating accelerated brain ageing.

Article https://doi.org/10.1038/s41467-025-61033-4

Nature Communications |         (2025) 16:6411 2

www.nature.com/naturecommunications


Fig. 1 | Study design, analysis framework, and accuracy assessment of brain age
predictionmodels. aAbrain agepredictionmodelwas trainedusing 20-fold cross-
validation on healthy participants with a single pre-pandemic scan (training set).
The model was applied to an unseen set comprising the Pandemic group (G1) and
the No Pandemic group (G2). G1 was further subdivided into Pandemic–COVID-19
(G3) and Pandemic–No COVID-19 (G4). b Imaging-derived phenotypes (IDPs) were
extracted from grey matter (GM) and white matter (WM) across scan times.
Separate prediction models were trained by tissue type and sex using pre-
pandemic data, and then applied independently to scans fromdifferent timepoints
to estimate brain age gap (BAG). Statistical analyses assessed pandemic- and
infection-related effects using longitudinal data. c Scatter plots show predicted vs.
chronological age for GM and WM models in females (males shown in Supple-
mentary Fig. 2). The diagonal line indicates perfect prediction. ‘N’ is the number of
subjects used for training. Model performance was evaluated using Pearson’s
correlation (r) and mean absolute error (MAE), averaged across 100 repetitions.

d Relationship between BAG and chronological age for GM and WM models,
aggregated across sexes. The black regression line indicates no age-related bias.
e Predicted brain ages at two time points show high reproducibility in both groups
(Pearson’s r >0.96). Intraclass correlation coefficients were 0.981 (95% CI:
0.977–0.985) for the Pandemic group and 0.983 (95% CI: 0.980–0.985) for the No
Pandemic group, confirming temporal stability. Partial correlation analyses, con-
trolling for chronological age, yielded r =0.86 (95%CI: 0.83–0.88) for the Pandemic
group and r =0.88 (95% CI: 0.87–0.90) for the No Pandemic group. f Boxplots
compare BAG distributions between the training set (N = 15,334) and unseen (first
scan) set (N = 996), and between Pandemic (N = 432) and No Pandemic (N = 564)
groups for GM and WM models. No significant differences were observed (GM:
p(FDR) = 0.44, 0.23; WM: p(FDR) = 0.99, 0.28). Each scatter point represents a
participant. Asterisks (****) indicate FDR-corrected p ≤0.0001; ‘ns’ denotes non-
significant differences.
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To further investigate whether SARS-CoV-2 infection specifically
influenced accelerated brain ageing, the Pandemic group was sub-
divided into: Pandemic–COVID-19 (G3), with participants who had
COVID-19 (134 participants–78 females, Supplementary Fig. 1g), and
Pandemic–No COVID-19 (G4), with individuals without reported
infection before the second scan (298 participants–177 females, Fig. 1a
and Supplementary Fig. 1a, b). Notably, these subgroups were also
adjusted to be matched to controls to ensure comparability (Supple-
mentary Table 2). As illustrated in Fig. 2, both G3 and G4 had higher
RBAG values than No Pandemic controls (Cohen’s d =0.518 (0.599) for
No COVID-19 vs Controls in GM (WM) and Cohen’s d =0.65 (0.693) for
COVID-19 vs Controls in GM (WM), respectively), with no significant
difference between subgroups for either GM or WM models (Supple-
mentary Fig. 3 shows brain age gapdistributions at various time points
across groups). This suggests increased positive brain age deviation
(accelerated brain ageing) during the pandemic, regardless of SARS-
CoV-2 infection.

Effects of age and sex on longitudinal brain ageing (rate of
change in BAG)
While the estimated BAG was designed to be independent of chron-
ological age at a single time point, biologically plausible longitudinal
effects on RBAG cannot be excluded. Understanding whether brain age
acceleration varies across different age groups can reveal periods of
increased vulnerability and potential dependencies on infection status
and tissue specificity28–30. To examine this, we regressed RBAG against
the average chronological age between the two scans t1 and t2, cal-
culated as AvgAge= ðAget1 +Aget2 Þ=2, following previous studies18,31.
Using the average age rather than individual time points in a long-
itudinal analysis helps mitigate potential biases and accounts for var-
iations in scan intervals across participants32,33.

Across all groups, a positive association was observed between
average chronological age and accelerated brain ageing (Supplemen-
tary Fig. 4), suggesting that older individuals exhibited greater
increases in BAG over time. This effect was strongest in the Pandemic
group (Fig. 3a), where participants with a higher average age exhibited
more pronounced RBAG acceleration compared with Controls.

In Controls, each 1-year increase in average chronological age was
associated with an approximate BAG acceleration of 3 days for both
GM (FDR-corrected p =0.0027) and WM (FDR-corrected p =0.002)
models. In contrast, participants in the Pandemic group demonstrated
a twofold higher rate of BAG acceleration, with each additional year of

average age corresponding to 7 days in GM (FDR-corrected
p =0.0048) and 8 days in WM (FDR-corrected p =0.0005) (Supple-
mentary Fig. 4).

Further stratification revealed an age-related acceleration of BAG
based on infection status. The strongest age-related BAG increase was
observed in the Pandemic–COVID-19 subgroup (G3),where each 1-year
increase in average age between the two scans was linked to a 9-day
acceleration inGM (FDR-correctedp =0.004) and 10days inWM(FDR-
corrected p =0.0069) (Fig. 3a). In contrast, the Pandemic–No COVID-
19 subgroup exhibited a slightly lower but still significant effect (6 days
for GM, FDR-corrected p =0.007; 8 days for WM, FDR-corrected
p =0.0069).

The pandemic’s impact on accelerated brain ageing (higher RBAG

compared to Controls) was evident in both male and female partici-
pants (Fig. 3b; Cohen’s d >0.660, FDR-corrected p < 0.0001). We used
two-factor, two-level permutation tests (5000 permutations) to assess
the interplay between the pandemic, sex, and their interactions on
brain ageing. These tests confirmed the pandemic as a significant
factor for RBAG (FDR-corrected p =0.002 in bothmodels—less than the
95% CI [0.0443–0.0564], calculated using the Wilson method34). In
addition, sex was a significant factor in the GMmodel (FDR-corrected
p =0.036—less than the 95% CI [0.0443–0.0564]), but not in the WM
model. Interestingly, a significant interaction (FDR-corrected
p =0.008—less than the 95% CI [0.0443–0.0564]) between sex and
pandemic statuswas also found (for theGMmodel), indicating that the
combination of the pandemic and being amale led to the highest RBAG

increases (33% more in males vs. females). The interaction plots
(Fig. 3b) demonstrate divergence between males and females when
comparing the No Pandemic with the Pandemic group, highlighting
the interaction between sex and the pandemic on GM-related brain
ageing.

Increased brain age gap rate during pandemic in deprived areas
Besides age and sex, socio-demographic factors can influence brain
health, cognitive reserve, and resilience to the detrimental effects of
the pandemic35–37. The effects of deprivation indices (available in the
UK Biobank) as drivers of poor brain health—such as health, employ-
ment, education, housing, and income—on brain ageing were
examined.

The month-based clocks in Fig. 4a illustrate the extent of accel-
erated brain ageing among participants with varying deprivation
levels, highlighting changes from before to during the pandemic. The

Fig. 2 | Effect of COVID-19 and the pandemic on brain ageing. This figure illus-
trates the distribution of the rate of change in brain age gap (BAG) across different
brain tissue models and subject groups. The left panel corresponds to the Grey
Matter (GM)model, while the right panel represents theWhiteMatter (WM)model.
Each group is displayed using coloured half-violin plots: orange for the Pandemic
group (G1, N = 432), blue for the No Pandemic group (G2, N = 564), red for the

Pandemic–COVID-19 group (G3,N = 134), andgreen for the Pandemic–NoCOVID-19
group (G4, N = 298). The y-axis indicates the rate of change in brain age gap in
monthsper year. Pairwise comparisonsbetweengroupswereperformedusing two-
sample t tests, with p-values corrected for multiple comparisons using FDR.
Cohen’s d values, which quantify the effect size of group differences, were also
calculated.
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largest increases were seen in participants with different employment
scores (despite all considered participants being free from major
chronic health conditions), showing a difference of about 5 months
and 23 days in the GM model. This suggests an average increase of
5.8months inRBAG between participantswith low vs. high employment
scores following exposure to the pandemic. Similarly, substantial
changes were noted for low vs. high health indices (4 months and
9 days increase), and low vs. high income levels (1 month and 17 days)
in the GMmodel. The WMmodel showed significant RBAG changes for
low health index (5 months and 27 days increase), low employment
index (5 months and 2 days), low education (4 months and 13 days),
and low income (1 months and 8 days).

Further analysis revealed significant differences (FDR-corrected
p <0.0001) in brain ageing patterns between the Pandemic and No

Pandemic groups across the deprivation indices (Fig. 4b–d). Generally,
the increase in RBAG between the Pandemic and Control groups was
higher for participants with high deprivation scores (low health, low
education, and low employment) compared to those with low depri-
vation scores (high health, high education, and high employment).
This was true for both GM and WM models, indicating potential
interactions between the pandemic’s effects and deprivation on brain
ageing differences.

To further explore such interactions, we conducted non-
parametric two-factor, two-level permutation tests. These tests con-
firmed the pandemic significantly drove the differences in predicted
RBAG between the Pandemic and Control groups. Several deprivation
indices also influenced differences between low and high deprivation,
including employment (GM: FDR-corrected p = 0.0004; WM: FDR-

Fig. 3 | Impact of SARS-CoV-2 infection and the COVID-19 pandemic on brain
ageing, and the role of age and sex. a Rate of change in brain age gap (BAG) is
plotted against the average chronological age between two scans for the
Pandemic–COVID-19, Pandemic–No COVID-19, and No Pandemic groups. Solid
lines show best-fit associations; dot-dashed curves indicate 95% confidence inter-
vals. b Violin plots display the distribution of the rate of change in brain age gap
stratified by sex and pandemic status. For females: Pandemic group (G1), N = 255;
No Pandemic group (G2), N = 297. For males: G1, N = 177; G2, N = 267. Cohen’s d-

values, representing effect sizes, are reported for each comparison, alongside the
FDR-corrected p-values from two-sample t tests between the groups. Interaction
plots on the right highlight distinct patterns in greymatter (GM) and (whitematter)
WM between groups. Stars in the interaction plots indicate significant results,
based on the FDR-corrected p-values of the interaction analysis determined by the
two-factor, two-level permutation test. GM model results are displayed on the left
and WM model results on the right in both panels.
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corrected p =0.0004), health (GM: FDR-corrected p =0.0009; WM:
FDR-corrected p =0.0004), education (GM: FDR-corrected
p =0.0007; WM: FDR-corrected p = 0.0004), and income score levels
(GM: FDR-corrected p = 0.0033; WM: FDR-corrected p =0.0004) (all
below 95%CI [0.0443–0.0564]). Housing scores were not significant in
either model.

Significant interactions between pandemic status and deprivation
factors were also found (95% CI [0.0443–0.0564]). After applying FDR
correction for multiple comparisons, interactions between pandemic
status and employment (GM: p = 0.0053; WM: p =0.002), health (GM:
p =0.014; WM: p = 0.003), and education scores (WM: p =0.0268) on
brain ageing were found to be significant. Figure 4b–d depict
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interaction plots comparing distinct patterns in GM and WM models
between the Pandemic and No Pandemic groups, highlighting socio-
demographic factors’ role in brain ageing during the pandemic. As sex
significantly interacted with pandemic status only in the GM model
(Fig. 3b), we also analysed the interplay of each deprivation index and
pandemic status separately for female and male participants. Results
showed that even in sex-specific models, all previous findings and
interactions between pandemic and deprivation remained significant
(Supplementary Fig. 5).

Cognitive performance, accelerated brain ageing, and COVID-19
exposure
To assess the impacts of COVID-19 and the pandemic on cognitive
performance related to longitudinal brain ageing, we analysed per-
formance changes over time among individuals who completed cog-
nitive tests at both scans. This analysis included the three groups (No
Pandemic, Pandemic–COVID-19, and Pandemic–No COVID-19), focus-
ing on the top 10 cognitive tests related to dementia risk within
the UKBB2.

Among these tests, the Pandemic–COVID-19 group showed a
significantly greater decline in performance (i.e., more time to com-
plete the test) from baseline to follow-up only for one cognitive test—
the trail making test (TMT) (Fig. 5, insets). Specifically, participants in
this group showed a significant increase in completion time for both
TMT-A (numeric) and TMT-B (alphanumeric) compared with both the
Control and Pandemic–No COVID-19 groups (Fig. 5). To account for
differences in inter-scan intervals across participants, we repeated the
analysis by normalising the longitudinal change in performance rela-
tive to the inter-scan interval. This adjustment did not alter the
observed patterns, confirming a notable decline in cognitive function
among individuals who had contracted COVID-19 (Supplemen-
tary Fig. 6).

Further analysis examined the relationship between RBAG and
TMT-A performance using full and partial correlation analysis that
excluded the effect of chronological age (Supplementary Fig. 7). A
significant positive correlation was observed only in the
Pandemic–COVID-19 group, suggesting that within this group,
greater brain ageing changes were associated with a decline in cog-
nitive performance. In addition, the Pandemic–COVID-19 group
showed a more pronounced and non-linear decline in cognitive
performance with higher RBAG, suggesting a more prominent
threshold effect for WM models and TMT-B performance. These
findings suggest that while BAG increase during the pandemic was
independent of COVID-19 infection, it was only associated with a
decline in one cognitive test (TMT), and only in those with recorded
COVID-19 (G3).

Discussion
Using longitudinal neuroimaging data from the UKBB, we estimated
individual brain age and its change rate compared to chronological
ageing in two matched cohorts: one scanned before and during the
COVID-19 pandemic (Supplementary Fig. 1e), and the other scanned

twice before the pandemic.We found that theCOVID-19 pandemicwas
detrimental to brain health and induced accelerated brain ageing for
GM and WM-derived models, regardless of SARS-CoV-2 infection.
Accelerated brain ageing during the pandemic was more pronounced
in older individuals and males based on the GM model, and in those
from deprived backgrounds for both models. Cognitive performance,
particularly in flexibility and processing speed tasks, declined sig-
nificantly in COVID-19 infected individuals, correlating with acceler-
ated GM ageing. Conversely, participants who experienced the
pandemic without reported infection had similar age-related declines
as controls, demonstrating that pandemic-related accelerated brain
ageing alone was insufficient to lead to cognitive decline.

For the brain age prediction models, we relied on neuroimaging
data exclusively from the UKBB19, hence minimising potential con-
founds from scanner variability and protocol differences inherent to
datasets pooled across different studies. At the same time, we lever-
aged the rich set of imaging-derived features available in thousands of
UKBB participants. By training using only healthy participants without
chronic disorders, we effectively constructed normative brain age
models with a substantial sample size. Importantly, we employed a
bias-correction step to ensure that brain age delta was independent of
chronological age, mitigating potential skewing effects that could
influence ageing estimates16,26,38. In our study, we achieved high accu-
racy and lowMAE in brain age prediction, aligning with prior unbiased
methodologies. For instance, Smith et al. 16 reported MAEs of ~ 2.9
years using orthogonalized brain age gap prediction models, con-
sistent with the MAEs observed in our study (2.9–3.08 years). This
unbiased approach, as further supported by refs. 26,39, consistently
achieves lower MAEs compared to biased models, as highlighted by
ref. 38. These findings confirm the robustness of our model and
demonstrate its comparability to state-of-the-art methods in the field.

Our findings provide valuable insight into how the COVID-19
pandemic affected brain health, demonstrating that the general pan-
demic effects alone, without infection, exerted a substantial detri-
mental effect on brain health, augmented by bio-social factors (age,
health, and social inequalities) in a healthy middle-aged to older
population. Notably, the extent of accelerated brain ageing over a
matched pre-pandemic control group, observed in grey and white
matter,was similar inboth non-infected and infected sub-cohorts. This
highlights the major role of pandemic-related stressors such as anxi-
ety, social isolation, and economic, and health insecurity on brain
changes that may be sufficient to explain the observed accelerated
brain ageing. In other words, our findings suggest that a full bio-
psycho-socialmodel is needed to understand the negative brain health
effects of COVID-19 infection during a pandemic, which previous
research, such as Douaud et al.2, has not accounted for.

Male vulnerability to brain ageing was particularly pronounced
during the pandemic, consistent with prior evidence of sex differences
in neurobiology. Studies (e.g.,40,41) have highlighted greater male sus-
ceptibility to cortical atrophy and neuroinflammation under stress,
which aligns with our findings of heightened pandemic-related brain
ageing inmales. These disparities underscore the potential interaction

Fig. 4 | Influence of socio-demographic factors on brain ageing during the
COVID-19 pandemic. a The effects of socio-demographic factors, represented by
indices of deprivation, on brain ageing in participants groupedby pandemic status.
Each clock represents the difference in the mean rate of change in brain age gap
(BAG) between individuals with low and high levels of specific socio-demographic
factors. The clocks are presented separately for GM and WM models, with one set
depictingparticipants in theNoPandemicgroup and another for participants in the
Pandemic group. The socio-demographic factors studied include housing score,
health score, employment score, income score, and education score. b–d Violin
plots display the distribution of the rate of change in BAG for the Pandemic and No
Pandemic groups, stratified by socio-demographic scores for (b) employment (No
Pandemic:N = 111 low, N = 129 high; Pandemic:N = 105 low, N = 102 high), (c) health

(No Pandemic: N = 110 low, N = 159 high; Pandemic: N = 111 low, N = 123 high), and
(d) education (No Pandemic: N = 223 low, N = 126 high; Pandemic: N = 157 low,
N = 95 high). High and lowgroups are colour-coded as purple and red, respectively.
Each panel includes two plots for GM (left) andWM (right) results. Cohen’s d effect
sizes and FDR-corrected p-values are reported for group comparisons based on
two-sample t tests. Small plots on the right side of each panel depict interaction
plots, suggesting the presence of interaction effects. These plots visualise how the
mean rate of change in BAG deviates between the No Pandemic and Pandemic
groups in both GM and WM models. Stars in the interaction plots indicate sig-
nificant results based on the FDR-corrected p-values, calculated based on a two-
factor, two-level permutation test, highlighting the interaction between the two
factors.
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between stress, sex-specific neural mechanisms, and accelerated age-
ing trajectories.

Our findings align well with reports of increased internalising
symptoms, reduced cortical thickness, and accelerated brain ageing in
adolescents during the pandemic12. However, in the middle-aged to
older population we studied, advanced brain ageing is a direct

indicator of poor brain health, without the complexities of adolescent
brainmaturation. A plausible explanation for the observed accelerated
brain ageing is chronic stress, potentially linked to pandemic-related
factors such as social isolation, economic insecurity, and health con-
cerns, consistent with well-documented sequelae like neuroin-
flammation, structural and functional brain changes in preclinical
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Fig. 5 | Impact of COVID-19 on cognitive performance across rates of change in
brain age gap. The figure illustrates the percentage change in completion time for
the Trail Making Test A (TMT-A, top row) and Trail Making Test B (TMT-B, bottom
row) over two imaging time points across varying rates of change in brain age gap
(BAG). Results are shown for the Pandemic–COVID-19 (G3, N = 134; red),
Pandemic–No COVID-19 (G4, N = 298; green), and No Pandemic (G2, N = 564; blue)
groups, using both grey matter (GM, left panels) and white matter (WM, right
panels) models. A three-year sliding window was used to smooth the curves.
Standard error is indicated using shaded areas: light blue (G2), light green (G4), and
light red (G3). Boxplots (upper left of each row) display the raw distribution of

percentage change inTMTperformance, without a slidingwindow, for GMandWM
models. Participants with COVID-19 (G3) showed greater decline in performance
(i.e., longer completion times) compared to the Control group (G2), with FDR-
corrected p-values of 1.0e-6 (TMT-A) and 9.1e-5 (TMT-B). Significant differences
were also observed between COVID-infected (G3) and non-infected (G4) Pandemic
participants (FDR-correctedp-values: 7.2e-4 (TMT-A) and 7.4e-4 (TMT-B)). Asterisks
indicate statistical significance: *** denotes FDR-corrected p ≤0.001; **** denotes
FDR-corrected p ≤0.0001. Group differences were assessed using two-sample
t tests.
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models42–46. Previous studies in humans confirm that social isolation
and perceived loneliness contribute to structural and functional brain
changes47,48 that are expected to drive the observed accelerated brain
ageing.

We further explored how pandemic-related stressors, including
economic hardships, healthcare disruptions, and broader social
inequalities, interact with pre-existing health disparities and age to
influence brain health49,50. These stressors disproportionately affect
vulnerable populations, worsening mental health challenges and
amplifying socio-economic inequalities51,52. Our analysis revealed sig-
nificant associations between deprivation and pandemic-related
accelerated brain ageing, particularly in individuals with low employ-
ment, low education, and poor health scores. The observed interac-
tions provide quantitative evidence for the differential effect of the
COVID-19 on brain health across the population, with substantial
widening of the brain age gap in socially and economically dis-
advantaged groups53,54. It remains unclear whether these brain ageing
effects may be at least partially reversible, but the strong link to
deprivation further emphasises the urgent need for policies addres-
sing health and socio-economic inequalities, as the pandemic has
exacerbated pre-existing disparities37,55,56.

Previous studies have documented SARS-CoV-2’s neural and vas-
cular impacts, including inflammation and secondary systemic infec-
tion effects22,57. Our findings provide additional evidence of
accelerated brain ageing in middle-aged to older participants with
asymptomatic and mild-to-moderately affected COVID-19 infection
without major comorbidities. This accelerated BAG effect was inde-
pendent of infection status. Severity of COVID-19 infection, scan time
since infection (Supplementary Fig. 1f), and the potential for long
COVID are factors that could influence brain ageing results. However,
as noted by Douaud et al. 2, the UK Biobank cohort predominantly
comprises individuals with mild cases of COVID-19, which likely
reflects a preselection of participants volunteering for re-imaging
sessions as part of the UK Biobank recruitment approach. In our con-
sidered cohort, only 5 out of 134 participants (< 4%) required hospi-
talisation (Supplementary Fig. 1h), while the remaining participants
experiencedmild disease. Importantly, all participants tested negative
within 2–3 weeks post-infection.

We showed a complex and partially differential effect of old age.
While the BAGmodel was by design independent of chronological age,
BAG change was higher in older age in all groups, including Controls,
suggesting that age-related mechanisms contribute to the observed
accelerated brain ageing58. This effect was strongest for the COVID-19-
infected participants, whichmay offer an explanation for the observed
differential effect on cognition. Cognitive decline is well-documented
in ageing35,59, and we confirm faster cognitive decline in older
appearing brains in all groups. However, we report a distinctly more
pronounced age effect in COVID-infected participants (with an
apparent threshold in WM), suggesting a complex model of cognitive
decline due to more pronounced accelerated brain ageing from
infection-related factors in older people. This supports the concept of
brain resilience loss leading to faster cognitive decline, consistent with
existing neurodegeneration and dementia research2,23,60,61 and recent
epigenetic models62,63.

It is conceivable that additional factors may have contributed to
accelerated brain ageing during the pandemic2,64 in both infected and
non-infected subgroups such as reduced physical activity, poorer
diets, and increased alcohol consumption, all negatively impacting
brain health65–67. Our study focused on cumulative, easier to interpret
brain ageing effects, limiting the ability to dissect region andmodality-
specific features that may disentangle diverse pathomechanisms.
Nevertheless, differences in our findings derived from GM and WM
models highlight potential implications for understanding neurode-
generation and other brain health issues2,68. Further research should
explore specific GM and WM features driving acceleration of brain

ageing that may allow to disentangle tissue, regional, and imaging
marker-specific features that can be linked to neuro-glial-vascular
mechanisms of brain ageing.

Our study has notable strengths and limitations. Employing BAG
models provided an interpretable, brain-wide health marker that was
sensitive to disentangle contributory biopsychosocial factors, lever-
aging the power of a longitudinal imaging-rich population study
before and during the pandemic. We extended evidence on brain
changes due to COVID-19 and socio-economic deprivation2,37. The
subgroup comparisons highlight that the main brain ‘cost’ of the
pandemic was not solely due to infection itself, though causal infer-
ence cannot be claimed69. More research is needed to clarify causal
relationships between deprivation factors and accelerated brain age-
ing, considering complex interactions. The study is further limited by
access to only two time points, prohibiting assessment of potential
reversibility. Longer follow-ups after the pandemic are needed to
investigate persistent brain ageing effects and their long-term con-
sequences beyond acute cognitive impacts in the infected subgroup.
Furthermore, a limitation of our study is the difference in interscan
intervals (ISI) between the Pandemic and No Pandemic groups (with a
wider spread in the Pandemic group compared with Controls), which
can potentially influence effect estimation33. To minimise biases
introduced by differences in ISI, we prioritised participants with longer
follow-ups, as shorter intervals can introduce noise and increase sus-
ceptibility to outliers25. Furthermore, to account for potential biases
related to differing inter-scan intervals, we applied multiple com-
plementary statistical approaches tailored todifferent analyses. Across
these approaches, including adjustments for age and normalisation by
inter-scan intervals, we found that the results were stable and con-
vergent, reinforcing the robustness of our findings. While ISI differ-
ences remain an inherent feature of the dataset, their impact on the
reported effects appears minimal. Our study design deliberately
excluded individuals with major mental health conditions, reducing
the likelihood that pre-existing depression or anxiety influenced our
findings. In addition, most available mental health data in the UKBB
dataset were collected years before the pandemic, limiting their rele-
vance to pandemic-specific effects. While we matched groups for
household size (Supplementary Table 2)—an indirectmeasure of social
contact and isolation—the considered deprivation indices did not
capture state-dependent psychological stressors. Future researchwith
longitudinal mental health data is needed to better understand the
interplay between deprivation, stress, and brain ageing.

In conclusion, theCOVID-19 pandemic profoundly impactedbrain
health, shown as accelerated brain ageing, influenced by bio-psycho-
social factors, especially social and health deprivation. Notably, the
main effects were independent of infection status, except for inter-
actions between COVID-19 infection, brain ageing, old age, and cog-
nitive decline. Our findings highlight the need to address health and
socio-economic inequalities in addition to lifestyle factors to mitigate
accelerated brain ageing. Continued research and targeted policies are
crucial to improve brainhealth outcomes in future public health crises.

Methods
Study design and neuroimaging data
We drew participants from the UK Biobank (UKBB) imaging study,
which provides multi-modal brain imaging data19 from over 42,677
participants (released in April 2023), aged 45 and older. The UKBB has
approval from the North West Multi-Centre Research Ethics Commit-
tee (MREC) to obtain and disseminate data and samples from the
participants (http://www.ukbiobank.ac.uk/ethics/), and these ethical
regulations cover thework in this study.Written informed consentwas
obtained from all participants. UKBB data were collected at four sites
using identical protocols, ensuring consistency in imaging. Before the
COVID-19 pandemic, approximately 3000 participants underwent a
second imaging scan as part of a longitudinal study. Beginning in
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February 2021, an additional 2000 participants were re-scanned to
investigate the impact of SARS-CoV-2, bringing the total number of
repeat scans close to 5000. Participants selected for re-imaging met
specific criteria, including no incidental findings in their initial scans,
residence within a defined catchment area, and high-quality imaging
data at baseline.

In our study, to minimise confounding factors in brain age pre-
dictions, we excluded participants with chronic disorders18,20 such as
dementia, diabetes, heart and kidney disease, and depression (see full
list in Supplementary Table 1), before both their first and second scans.
This ensured a focus on healthy individuals and reduced potential
biases associated with disease-related brain changes. The same
exclusion criteria were applied consistently across both the training
and unseen datasets. In addition, participants with low-quality anato-
mical MRI data21 or unreliable brain IDPs were removed. Technical
outliers—defined as IDP values exceeding five standard deviations
from the cohort mean—and participants with substantial missing or
unreliable IDPs in any session were also excluded.

For training the brain age prediction model16, we included only
participants with one imaging session collected before March 2020,
ensuring they were free from chronic disorders or data quality issues, as
detailed above (Fig. 1a, N= 15,334; 8407 female; age range: 45.1–82.4
years; mean ±SD: 62.6 ± 7.6 years). The trained model was applied to
unseen groups of participants who underwent two imaging sessions
(N =996; 552 female; age range: 47.1–79.5 years; mean± SD: 58.8 ±6.2
years). These individuals were categorised into two main groups: The
Pandemic group (G1), which included participants scanned both before
and after the pandemic onset (N=432; 255 female), and the No Pan-
demic group (G2, Control), consisting of individuals scanned twice
before the pandemic onset (N= 564; 297 female). Within the Pandemic
group, participants were further categorised into the Pandemic–COVID-
19 group (G3), comprising individuals who contracted COVID-19
(N = 134; 78 female), and the Pandemic–No COVID-19 group (G4), con-
sisting of those who did not contract the virus (N=298; 177 female)
(Fig. 1a). COVID-19 cases (G3) were identified using diagnostic tests,
primary care records, hospital records, or antibody tests. To minimise
potential confounding effects, all groups (G1–G4) were matched based
on sex, age, BMI, alcohol intake, smoking, blood pressure, education,
deprivation index, and general health metrics (Supplementary Table 2
and Supplementary Fig. 1).

The inter-scan intervals differed between groups, with a wider
spread in the Pandemic group compared to Controls, due to the timings
of the data acquired during the pandemic and lockdown interruptions
(Supplementary Fig. 1c). The Control group had a narrow distribution of
inter-scan interval around ~ 2.25 years, while for the Pandemic group
shorter delays as low as 1 year could be found (Supplementary Fig. 1c).
Motivated by ref. 25, which highlights the importance of longer follow-
up durations in improving the reliability of detecting brain changes in
longitudinal data, we kept participants with longer follow-ups and
excluded the lowest 10% (i.e., < 2.0 years) of short-term follow-ups
(Supplementary Fig. 1d). Changing this lower threshold from 10% to 20%
did not change any patterns. Also, matching groups formean instead of
thresholding out low inter-scan intervals did not change any patterns in
the results, but increased subjectswith excessiveBAGestimates– results
available on preprint first version70.

Participants’ sex was determined based on self-report collected at
enrolment and confirmed using genetic sex data provided by the UK
Biobank. This ensured internal consistency across all participants. Sex
was explicitly considered in the study design, with separate brain age
models trained for males and females and sex-stratified analyses
conducted where appropriate.

Brain age modelling
We trained a multivariate regression model to estimate brain age by
regressing imaging-derived phenotypes (IDPs) against participants’

ages. This resulted into an individual’s brain age YB and a brain age gap
(BAG), defined as δ = YB � Y , where Y is the chronological age. A
positive δ (δ >0) indicates an older-appearing brain, while a negative δ
(δ <0) indicates a younger-appearing brain. Age was modelled as a
function of M imaging-derived phenotypes, YB = f Xð Þ, with X being a
matrix of dimensionsN ×M, whereN is the number of participants.We
used a general linear regressionmethod introduced by Smith et al. 16 to
ensure an unbiased δ orthogonal to chronological age.

Following established methodologies18, separate models were
trained for males and females, and for grey matter (GM) and white
matter (WM), using IDPs derived from a healthy cohort free from
chronic medical conditions (Fig. 1b). To mitigate dimensionality chal-
lenges inherent to large-scale imaging features, we applied singular
value decomposition (SVD), retaining the top 50 components, con-
sistent with the findings of ref. 16. This choice of 50 components bal-
ancesmodel interpretabilitywith predictive performanceby capturing
the majority of variance within the data, while minimising overfitting.
The variance explained by these retained components was stable
across cross-validation folds, as detailed in the Supplementary Mate-
rials, with minimal variation observed across models (e.g., mean var-
iance explained for female GM: 57.8% ± 0.014, male GM: 57.9% ± 0.028,
female WM: 79.0% ±0.019, male WM: 78.7% ±0.010). Reproducibility
of patterns for different numbers of SVD components (from30 to 100)
was confirmed (Supplementary Fig. 8).

A 20-fold cross-validation process was used to train the model. In
each iteration, a linear regression model was trained on 19 folds, and
thefitted coefficients were applied to the held-out fold to predict brain
age. During prediction, we de-confounded test set measures using the
regressor’s weights from identified confounding variables in the
training set, following the approach used by Miller et al. 19. Notably,
age-dependent confoundswere not removed from the IDPs. To ensure
robustness, this cross-validation process was repeated 100 times with
randomassignment to folds in each trial, affirming the reliability of our
brain age estimation model.

Post-training, the age prediction models were applied to unseen
data from G1 and G2 groups, for both females and males (Fig. 1a).
Predictions were performed independently for initial (t1) and repeat
scans (t2) of participants, allowing estimation of brain age gaps δt1 and
δt2, respectively. The rate of change in BAG (RBAG) was then calculated
as δt2 � δt1

� �
=ΔT , where ΔT is the inter-scan intervals18,31.

Unless otherwise stated, BAG values were aggregated acrossmale
and female participants within each group and tissue type for all
group-level analyses.

Feature selection for brain age modelling
To build predictive models for brain age estimation, we selected IDPs
that focused on GM and WM regions (Fig. 1b). For the GM model, we
used structural IDPs extracted from T1-weighted MRI scans19,21 which
included measures such as the volume of subcortical structures, cor-
tical/cerebellar regions, cortical surface area, cortical thickness, and
GM/WM intensity contrast. This resulted in a total ofM = 1422 IDPs. For
theWMmodel, we used allWM-related IDPs derived fromT1-weighted
data, a single IDP derived from T2-weighted (total volume of WM
hyperintensities), and IDPs derived from diffusion MRI scans, which
reflected tissue complexity and integrity using diffusion tensor ima-
ging (DTI) and neurite orientation dispersion and density imaging
(NODDI) metrics. These metrics included fractional anisotropy (FA),
mean diffusivity (MD), and eigenvalue maps, among others, resulting
in 443 IDPs. CSF-related IDPs were excluded. Brain IDPs were obtained
directly from the UK Biobank imaging data release and were used
without any additional post-processing. These measures were gener-
ated using the UK Biobank’s standardised image-processing pipeline,
applied consistently across participants and imaging sites. Full details
of the image acquisition, processing, and quality control procedures
are described in Miller et al. 19 and Alfaro-Almagro et al. 21. A complete
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list of the selected IDPs included in our analysis is provided in Sup-
plementary Tables 3 and 4.

All IDPs underwent de-confounding procedures to minimise the
influence of potential confounders. This involved adjusting for 46
variables, including head size, sex, head motion, scanner table posi-
tion, imaging centre, and scan-date-related drifts, while explicitly
excluding age-related confounds to ensure unbiased brain-age
predictions19,71,72 (see Supplementary Table 5 for the full list of
variables).

Model performance evaluation
To assess model performance, we report the Pearson correlation
coefficient (r) between chronological age and predicted brain age, as
well as the mean absolute error (MAE) between these values. These
metrics were averaged across all cross-validation folds. Specifically, we
computed them over 100 repetitions of 20-fold cross-validation to
ensure robustness.

Modelling age effects in longitudinal brain ageing
To account for potential biases introduced by varying inter-scan
intervals33, RBAG was regressed against the average chronological age
between the two scans rather than age at one of the time points. This
approachhas beenused inprevious longitudinal neuroimaging studies
(e.g.,18,31) to provide amore balanced estimate of age-related effects on
brain ageing.

Interaction effects against socio-demographic factors
After calculating IDP-based brain age gaps and rates, we investigated
interactions between brain ageing and socio-demographic factors
using permutation-based inference with FSL PALM73.

We conducted a series of 2-way analyses (permutation-based
ANOVA) to examine the rate of change in BAG between two time
points. Factor 1 was the pandemic presence; Factor 2 included socio-
demographic variables: sex, regional employment, health, education,
housing, and income scores. The latter five factors are indicators of
deprivation (detailed descriptions of these indices can be found in
theSupplementaryMaterials). Participantswere categorised into ‘high’
and ‘low’ levels for each socio-demographic factor using the following
thresholds: those scoring above the 70th percentile were classified as
‘high’, while those scoring below the 30th percentile were classified as
‘low’. These percentiles were derived both from the entire UK Biobank
population and separately basedon the countries inwhichparticipants
resided.

For each model tested, we assessed whether significant main
effects existed—specifically, whether factor 1 (pandemic presence) or
factor 2 (socio-demographic variable) had a discernible impact on
brain ageing. In addition, we explored interaction effects to determine
if the combined influence of both factors produced a different impact
on brain aging compared to their individual effects.

Cognitive scores
We selected the top 10 cognitive tests from the UKBB that have
been associated with dementia risk2 (see Supplementary Table 6).
To compare participants’ cognitive abilities across different
groups, we calculated the percentage change in their cognitive scores
between the two scans2,74. This was done using the formula:
Percentage change= Scoret2 � Scoret1

� �
× 100=Scoret1, where Scoret2

and Scoret1 represent the cognitive test results at the second and first
time points, respectively.

To account for potential effects introduced by variations in inter-
scan intervals (ISI)33, we also tested an alternative normalisation
method by dividing the change in score by the ISI. This was done using
the formula: Rate of change = Scoret2 � Scoret1

� �
=ΔT , where ΔT is the

inter-scan intervals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this studywere obtained from the UK Biobank (https://
www.ukbiobank.ac.uk/), a large-scale biomedical database and
research resource. The data are available to bona fide researchers
through an application process and subject to UK Biobank’s terms of
access. Researchers can apply for access via the UK Biobank Access
Management System (https://www.ukbiobank.ac.uk/enable-your-
research/apply-for-access). This study was conducted under UK Bio-
bank application number 43822 (PI: Stamatios Sotiropoulos).

Code availability
Scripts for estimating brain-age using imaging-derived features and
the pretrained models are available on GitHub https://github.com/
SPMIC-UoN/BrainAge_COVID-19.
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