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Racial disparities in the clinical outcomes of triple-negative breast cancer

M Check for updates

(TNBC) have been well-documented, but the underlying biological mechan-
isms remain poorly understood. To investigate these disparities, we employed
a multi-omic approach integrating imaging mass cytometry and spatial tran-
scriptomics to characterize the tumor microenvironment (TME) in self-
identified Black American (BA) and White American (WA) TNBC patients. Our
analysis revealed that the TME in BA patients is marked by a network of
endothelial cells, macrophages, and mesenchymal-like cells, which correlates
with reduced patient survival. In contrast, the WA TNBC microenvironment is
enriched in T-cells and neutrophils, indicative of T-cell exhaustion and sup-
pressed immune responses. Ligand-receptor and pathway analyses further
demonstrated that BA TNBC tumors exhibit a relatively “immune-cold” profile,
while WA TNBC tumors display features of an “inflamed” TME, suggesting the
evolution of a unique immunosuppressive mechanism. These findings provide

insight into racially distinct tumor-promoting and immunosuppressive
microenvironments, which may contribute to the observed differences in
clinical outcomes among BA and WA TNBC patients.

A profound racial disparity has been identified between Black Amer-
ican (BA) women and their White American (WA) counterparts with
respect to the incidence' and clinical trajectory®* of breast cancer
(BCa). Specifically, BA women develop BCa at a relatively younger age®,
have a two-fold higher chance of developing Triple Negative (TN)
tumors’, with more aggressive disease features (early onset, higher
tumor grade, larger tumor size, ER-negative status, distant
metastasis)®. In addition, the incidence and mortality of the particu-
larly aggressive triple-negative breast cancer (TNBC) subtype are
higher in Black women than in White women”®. Importantly, cancer-
related disparities in mortality between BA and WA women was higher

for TNBC than other subtypes, even after adjusting for age, stage,
treatment, socio-economic status, poverty index, and treatment
delay’’®. Genetic, environmental, and healthcare access/utilization
factors may all contribute to this disparity. Many studies have
examined the genetic component to understand the biological
underpinnings of racial disparity.

Studies examining global discovery of gene expression signatures
that distinguish BA vs WA TNBC tumors have reported distinct tumor-
associated immunologic profiles in BA patients”™ and in patients of
African descent'®”. The bulk-level RNA sequencing approach used in
these studies revealed heterogeneity in TNBC and provided cues on
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the involvement of unique cellular-level interactions in the tumor
microenvironment (TME)*®, which were not defined. Notably, varia-
tions in the composition of the TME between BA and WA BCa patients
have been reported®*°, wherein computational deconvolution of bulk
samples has predicted the existence of cell types in various combina-
tions in spatial niches. These include Tregs and naive B cells that have
been shown to exhibit positive correlations with African ancestry',
while activated mast cells negatively correlated with African ancestry'.
Further, the level of tumor-associated lymphocytes was found to be
similar between BA and WA TNBCs". Controversies regarding the
composition of TME and cellular interactions in BA and WA TNBCs
could not be resolved due to the limitations of bulk sequencing and
the reliance on computational deconvolution. We believe that pre-
dicted cell types could exist in multiple different combinations, in
distinct spatial niches, that could be associated with differences
in clinical outcomes in TNBC. Hence, dissecting the spatial granularity
in niches within the TME would be of paramount importance to obtain
deeper insights into the altered biology associated with BA and
WA TNBC.

While recent studies employing spatial proteomic*?* and
transcriptomic® technologies have provided insights into the mole-
cular, cellular, and spatial phenotypes governing cancer metastasis**
and tumor recurrence”, they have not been extended to the study of
BA and WA TNBCs. Previous multi-omics experiments have facilitated
the creation of predictors for treatment response and enhanced our
understanding of the biological mechanisms behind molecular cancer
phenotypes®* . Basic spatial profiling of proteins demonstrated dif-
ferences between BA and WA BCa patients, despite that these differ-
ences were not associated with survival”. Moreover, spatial
transcriptomics analysis demonstrates that there are racial differences
in hypoxic tumor content and regions of immune-rich infiltrates
among those with TNBC®. However, the composition and spatial
heterogeneity of these immune-rich infiltrates remain unclear. Fur-
thermore, whether racial differences exist in the spatial interactions
between various components within the TME and their association
with disease outcomes remains unknown. Although imaging mass
cytometry (IMC)*, multiplexed ion beam imaging (MIBI)*%, and single-
cell RNA sequencing® have been used to characterize the TME of
TNBC, all patients included in these studies were of European descent.

The multifactorial social construct, race, encapsulates both
genetic ancestry and the lived environment. Further, we posit that the
experience of racism and being a member of a racialized group dif-
ferentiates the lived experience of BA and WA women in multiple ways,
all of which together result in biological differences. In this study, we
examine these biological differences that may be especially pertinent
to understanding the poorer outcomes among BA compared to WA.
To date, much of the research examining these biological factors has
been done on WA women. An unintended consequence of this is that it
can lead to improving treatment options and therapy that are largely
developed to address the health of WA. This results in widening dis-
parities in outcomes as we become better at treating BCa in WA, but
not BA*. Indeed, as BCa treatment and therapy options have increased
over the last three decades, resulting in better BCa outcomes overall,
there has also been a stark increase in the inequity of BCa outcomes
between WA and BA women over this same time period®. Under-
standing the differences in the molecular and cellular interactions in
BA women is pertinent to ensuring that racial disparities in outcomes
do not widen further. We believe that a spatial multi-omics study of a
racially diverse TNBC cohort, as described here, should permit one to
understand the biological factors underpinning the large survival gap
currently experienced by BA patients with TNBC, while also laying the
foundation to develop therapeutic interventions that are inclusive of
BA women with BCa. In this spatial multi-omics study, we uniquely
conduct an integrative analysis combining information obtained from
spatial single-cell level IMC** and re-analysis of spatial transcriptomics

data® to uncover racially enriched spatial cell-cell interactions and the
larger cell communities that define unique BA and WA TNBC-
associated niche. These cell-cell interactions and race-specific niche
correlate with patient survival and infer molecular characteristics of
WA and BA tumors with a spatial resolution. IMC data measured the
expression of 30 proteins at the single cell level, which was then
integrated with existing 10X Visium ST data®, followed by validation of
the findings using an independent IMC, 10X ST and Nanostring region
of interest (ROI)-based transcriptomics analysis.

Our results uniquely highlight the existence of multicellular
niches and immunosuppressive mechanisms involving tumor cells,
immune cells, and endothelial cells in TNBC that differ between BA and
WA. Of note, these insights were not discernible from previous bulk-
level RNA sequencing studies, as well as from unimodal studies of
spatial proteomics or transcriptomics, thus underscoring the impor-
tance of spatial multi-omics integration to understand race-specific
biological mechanisms.

Results

Description of the multi-omic cohort, discovery, and validation
datasets

We collected triple-negative breast cancer (TNBC) patient specimens
from multiple sources and divided them into discovery and validation
cohorts (Fig. 1a). Imaging mass cytometry (IMC) was performed on a
discovery cohort of 57 patients (26 BA and 31 WA) from Baylor Scott
and White Hospital (BSW), followed by validation in an independent
cohort of 46 patients (15 BA and 31 WA) from Roswell Park Compre-
hensive Cancer Center (Roswell Park) and an additional 10 patients (5
each BA and WA) from BSW (BSW?2). For spatial transcriptomics (ST),
10X Visium ST was conducted on 9 patients (4 BA and 5 WA) from
BSW2, and the data were integrated with Visium ST results from 10
patients (6 BA and 4 WA) from a community hospital in Georgia (PI: Dr.
Aneja) and 20 patients (10 each BA and WA) from a previously pub-
lished TNBC ST dataset by Bassiouni et al. (BAS). The BAS dataset was
utilized for initial discovery, while the BSW2 and Georgia datasets
served for validation of BA and WA-specific spatial niche gene sig-
natures. To further support our findings, Nanostring GeoMX DSP was
applied to the BSW-Discovery cohort for region-of-interest (ROI) and
compartment-based mRNA assessments, providing additional valida-
tion for BA and WA-associated niche gene signatures. In total, this data
collection effort resulted in spatial immune proteomics data from 113
TNBC patients and spatial gene expression data from 39 TNBC
patients, enabling robust identification of spatial niches associated
with tumor behavior disparities between BA and WA TNBC patients.
Figure 1b summarizes the analyses conducted, which include identifi-
cation of cell-cell interactions and community detection using IMC
data, assessment of the prognostic significance of cell communities,
spatial localization of cell communities in Visium ST, determination of
extended gene signatures (ESG), and ligand-receptor analysis to reveal
underlying drivers within the spatial niches.

Overview of IMC discovery set

We examined a racially balanced and clinically matched cohort of 57
surgically resected TNBC tissue samples, comprising 26 self-reported
BA and 31 self-reported WA women (see Supplementary Table 1 for
clinical details, and Supplementary Fig. 1 for H&E images). Self-
reported race provides a more accurate representation of individuals’
lived experiences, which may influence the biological factors con-
tributing to cancer-related health disparities. All patients in the cohort
had survival outcome data available for up to 10 years. There was no
statistically significant difference in overall survival between BA and
WA patients in this cohort (Table 1; univariate analysis for race). In
addition, the mutational status of PIK3CA and TP53® did not differ
significantly between BA and WA patients in our study (Supplementary
Table 1).
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Fig. 1| Imaging Mass Cytometry (IMC) Profiling of Self-Reported Black Amer-
ican (BA) and White American (WA) Triple Negative Breast Cancer (TNBC).

a Schematic representation of the clinical cohorts analyzed, and the corresponding
types of analyses performed for each group. For the Baylor Scott & White (BSW)2
validation cohort sample numbers 10/9 describe samples examined using imaging
mass cytometry and 10X spatial transcriptomics, respectively. b Overview of the
analytical workflow employed throughout the study. ¢ Diagram illustrating the
imaging mass cytometry-based immune cell profiling process applied to BA and WA
TNBC tumors, utilizing a tissue microarray (TMA) format. ROI: Region Of Interest.

Figure created in BioRender. Sreekumar, A. (2025) https://BioRender.com/cOtobe3.
d Unsupervised clustering of individual cells, segmented from IMC data of BA and
WA TNBC tumors, identified 20 distinct clusters. The differential protein markers
and their corresponding nomenclature (columns) across these 20 clusters (rows)
are shown. Source data are provided in Github (10.5281/zenodo.15353111).

e Representative t-SNE plots illustrating the distribution of the 20 clusters as
described in panel (d) within the expression space. f Overlay of expression patterns
for E-Cadherin, CD45RA, CD31, CD68, and Vimentin onto the t-SNE plots.

To investigate the single-cell spatial interaction landscape, we
performed IMC on multiple ROIs (see Supplementary Fig. 2) selected
from individual tumors, which were arranged in a tissue microarray
(TMA) format (each core with a diameter of 3 mm), using a panel of 26
antibodies targeting immune-regulatory, stromal, and epithelial pro-
teins (overview in Fig. 1c). ROIs were chosen based on H&E-stained
images by a breast pathologist and were subsequently confirmed by a

second pathologist. The selected ROIs included areas containing
tumor cells intermixed with tumor microenvironment (TME)-related
immune and stromal cells. These ROIs were selected from both the
tumor center and periphery, categorized as either immune-rich or
immune-poor (Supplementary Fig. 3). An equal number and category
of ROIs were chosen from tumors of BA and WA patients (Supple-
mentary Table 1).
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Table 1| Cox Proportional Hazard Analysis for the Baylor Scott
and White Discovery Data. P-values: Wald test, 1-sided

Hazard Ratio (HR) P-value
Univariate model
Race 1.55 0.5
Stage 1.76 0.14
Grade 0.82 0.35
Age 0.98 0.59
Body Mass Index (BMI) 1.02 0.6
Diabetes Mellitus Status 0.86 0.85
PIK3CA Mutation Status 0.75 0.53
RAS Mutation Status 0.40 0.2
TP53 Mutation Status 0.40 0.18
BA-communities-all 3.45 0.06
WA-communities-all 118 0.40
Multivariate model
Adjusting for age:
BA-communities-all 3.38 0.065
WA-communities-all 115 0.417
Adjusting for race:
BA-communities-all 3.73 0.066
WA-communities-all 1.4 0.315
Adjusting for stage:
BA-communities-all 4.66 0.037
WA-communities-all 1.02 0.49
Adjusting for age, race, and stage:
BA-communities-all 5.35 0.037
WA-communities-all 1.21 0.397
Adjusting for age, race, BMI, stage:
BA-communities-all 7.69 0.021
WA-communities-all 1.27 0.368

We initially segmented over 270,000 single cells based on these
ROIs. Through unsupervised clustering with multiple initializations, we
identified 16 distinct single-cell types and four multi-cell type clusters
based on marker protein expression (Fig. 1d, clusters 1a to 20a; multi-
cell type clusters indicated by asterisk). Differential analysis revealed
unique protein expression profiles within each of the 20 clusters,
which were named according to co-expressed markers (e.g., Exhausted
Cytotoxic T cell, Cluster 7a, characterized by CD152 and CD8a). Six
clusters were associated with tumor characteristics (Fig. 1d, red fonts),
while 14 clusters were associated with immune profiles (Fig. 1d).
Immune clusters covered diverse cell types such as exhausted T cells
(cluster 7a), helper T-cells (15a), naive T cells (20a), macrophages (12a,
1a), and dendritic cells (5a and 3a). Tumor compartment covered cells
of diverse states, such as proliferative (18a), hypoxic (9a), mesenchy-
mal (4a), and angiogenic (16a) states. The t-SNE plot clearly demarcates
the clusters (Fig. 1e), and Fig. 1f overlays the expression of E-Cadherin,
CD45RA, CD31, CD68, and Vimentin on the t-SNE, highlighting distinct
clustering patterns.

Spatial cell-cell interactions, rather than cluster abundances,
distinguish BA and WA TNBC

We analyzed cluster abundances across tumors from patients of both
racial groups. While most clusters exhibited similar abundances, sev-
eral were enriched in specific patient subsets based on race (Supple-
mentary Fig. 4a). For example, naive T cells, represented by Cluster 20a
(CD31, CD45RA), were more abundant in BA TNBC, whereas exhausted
cytotoxic T cells, identified by Cluster 7a (CD152, CD8a), and were
more prevalent in WA TNBC. However, due to the unique marker

combinations expressed in each patient’s tumor, cluster abundance
alone was insufficient to segregate patients based on self-reported race
(Supplementary Fig. 4b).

Given that differences in relative cluster abundances could not
fully explain the racial disparities in BA and WA TNBC, we hypothesized
that spatial cell-cell interactions might better capture race-associated
variations and their clinical implications. To test this, we analyzed cell-
cell interactions across 20 clusters using spatial proximity enrichment/
depletion analysis with Giotto® (see Methods and Supplementary
Fig. 5 for details). This analysis involved shuffling cell type labels within
each ROI to establish a ROI-specific baseline of interactions, account-
ing for cellular heterogeneity and abundance differences, and count-
ing interactions against the background. Differential interactions
between BA and WA patients were identified using a linear mixed
model (LMM), which incorporated repeated and hierarchical obser-
vations of tumor ROIs from each patient. The resulting landscape of
cell-cell interactions, along with specific differential interactions, is
shown in Fig. 2a, b, where positive BA/WA coefficients indicate enri-
ched interactions and negative coefficients indicate depleted interac-
tions in the respective race.

Our analysis revealed six BA- and five WA-specific spatial cell-cell
interactions with statistical significance (Padj <0.05) (Fig. 2b c).
Although cluster abundances did not differ significantly between racial
groups (Supplementary Fig. 4b), spatial interactions highlighted dis-
tinctive differences. In BA tumors, key interactions involved naive T
cells—naive T cells, endo-mesenchymal—tumor cells, and M2 macro-
phages—mesenchymal cells (Fig. 2b). In contrast, WA tumors exhibited
interactions in a TME, featuring helper T—helper T cells, and myeloid
cell—cytotoxic cell, and T cell-cytotoxic cell interactions, with a
notable presence of exhaustion marker (CD152) and hypoxia (HIF 1o)
(Fig. 2c). Leave-2-patient-out cross-validation for each race confirmed
the robustness of the identified interactions, with consistent coeffi-
cients and significance across all subsamples (see 95% Cl in Fig. 2b, c).
Importantly, when the evaluation was confined solely to the low-grade
tumors, highly similar BA/WA coefficients and sets of prioritized spa-
tial cell-cell interactions were obtained, validating the LMM modeling
(Supplementary Fig. 6).

Figure 2d illustrates the spatial distribution of the top-ranked BA
and WA cell-cell interactions across patient samples, with BA tumors
showing enrichment in BA-specific interactions. In BA tumors, inter-
actions between M2 macrophages (orange), endothelial cells (black),
tumor cells in an epithelial-mesenchymal transition (EMT) state
(green), and naive T cells (blue) are highly clustered. These clustered
interactions are not observed in WA tumors. In contrast, WA tumors
display increased WA-specific interactions (Fig. 2e), such as interac-
tions between cytotoxic cells in the hypoxic TME (orange) and
exhausted T cells (pink), which are more dispersed compared to the
clustered interactions seen in BA tumors. Multiplex immuno-
fluorescence staining in BA TNBC confirmed the endothelial-
macrophage interaction (CD31-CD163, Fig. 2f). Co-localization analy-
sis of CD31 and CD163 (Fig. 2g) revealed significantly higher co-
localization in BA TNBC (n=27 patients) compared to WA TNBC
(n=44 patients), even after adjusting for cell numbers per image
(Fig. 2h). These findings further validate the spatial cell-cell interac-
tions identified by IMC.

Racially distinct cellular interactions also exist in other IMC
cohorts

To investigate whether similar racially distinct cell-cell interactions are
present in other patient cohorts, we performed IMC experiments on
TMAs from two additional TNBC patient groups: Roswell Park (see
Supplementary Table 2 for clinical data, 46 patients) and Baylor Scott
and White (BSW2, 10 patients), referred to as validation cohorts. We
applied strict quality controls, excluding cores with low cell counts,
limited tumor content, or partial cores. Next, we performed cell
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segmentation, unsupervised single-cell clustering, and spatial proxi- cells, proliferating tumor cells, and naive T cells (Supplementary
mity analyses to identify BA- and WA-specific cell interactions. Each ~ Fig. 7b). Similarly, in BSW2, significant BA interactions featured cells
cohort yielded 20 distinct cell-type clusters, labeled with suffixes “b”  undergoing epithelial-mesenchymal transition (EMT), endothelial
(Roswell Park; Supplementary Fig. 7a) or “c” (BSW2; Supplementary cells, macrophages, and naive T cells (Supplementary Fig. 8b), vali-
Fig. 8a), respectively. dating findings from the BSW discovery cohort (Fig. 2b).

In Roswell Park, differential BA-specific cell interactions were For the WA group, Roswell Park showed WA interactions among
identified, revealing interactions involved myeloid cells, endothelial exhausted T cells, Tregs, memory T cells, and M2 macrophages within
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Fig. 2 | Spatial Proximity Analysis Uncovers Distinct Cell-Cell Interactions in
Black American (BA) and White American (WA) Triple Negative Breast Cancer
(TNBC) Using Imaging Mass Cytometry (IMC). a Landscape of cell-cell interac-
tions in BA (left) and WA (right) TNBC, based on pairwise interactions between the
20 cell clusters defined in Fig. 1d. Race-specific interactions were identified using a
linear mixed model, where the interaction score is modeled as score - race +
patient, with race as a fixed effect and patient as a random effect. Coefficients for
the BA (left) and WA (right) terms are shown, with positive coefficients indicating
enriched interactions and negative coefficients indicating depleted interactions.
Significant BA-specific interactions are highlighted with red boxes, while significant
WA-specific interactions are highlighted with blue boxes. b Top six spatially
resolved cell-cell interactions in BA TNBC (blue bars) compared to WA TNBC (red
bars), with significance determined by -logl0 P values (green bars). P-values are
derived from 1-sided F-test, adjusted for multiple comparisons. BA TNBC tumors
are characterized by Endothelial-Macrophage-Mesenchymal (Endo-Mac-Vim)
interactions. Error bars represent the 95% confidence interval (CI) derived from 100
leave-2-patient-out subsampling. ¢ Same as panel (b) but showing the top five
spatially resolved cell-cell interactions in WA TNBC (red bars) compared to BA
TNBC (blue bars), with significance computed by -logl0 P-values (green bars). P-
values are derived from 1-sided F-test, adjusted for multiple comparisons. WA

TNBC tumors are marked by immune exhaustion-related interactions. Error bars
represent the 95% Cl derived from 100 leave-2-patient-out subsampling. d Spatial
illustration of key BA-associated cell-cell interactions identified by IMC, showing co-
localization of Endothelial (black) and Macrophage (orange) clusters in BA patients.
e Spatial illustration of key WA-associated cell-cell interactions identified by IMC,
highlighting the prominent interactions between Cytotoxic cells (orange) and
Exhausted T cells (pink) in WA tumors, suggesting immune exhaustion. f Multiplex
immunofluorescence validation of Endothelial (CD31)-Macrophage (CD163) inter-
actions in BA TNBC, but not in WA TNBC. Representative images from three BA and
three WA TNBC patients are shown. Magnified images (from the large white box) of
areas marked by small white boxes are included as insets. Scale Bar: 40 um.

g, h Pixel-level co-localization quantification of Endothelial-Macrophage interac-
tion, shown in panel (f), across the entire tumor tissue (g) and per cell within the
tumor (h) in BAand WA TNBC. In each boxplot, N = 40 images were used for the BA
group (27 patients) and N = 63 images were used for the WA group (44 patients). P-
values for panels (g) and (h) were calculated using the Mann-Whitney test. Box plots
represent the median (center line), interquartile range (25-75%; bounds of the box),
and whiskers extending to the 1.5 IQRs. Points that fall outside this range are dis-
played independently. All data points are used; no outlier exclusion was applied.
Source data are provided as a Source Data file.

a hypoxic TME (Supplementary Fig. 7c). BSW2 demonstrated WA-
specific interactions involving exhausted T cells, helper T cells, den-
dritic cells, and M2 macrophages (Supplementary Fig. 8c). These are
consistent with the exhausted T cell phenotype in the BSW discovery
cohort (Fig. 2c). Importantly, despite differences in cluster definitions
across the three IMC datasets due to unsupervised clustering, a con-
sistent set of cell types emerged across each race within the respective
cohorts. Therefore, we next sought to determine if these recurrent
interactions formed higher-order cellular communities and if these
communities had prognostic implications.

Cellular interactions analyzed in multiple IMC cohorts reveal
existence of recurrent cell community structure that further
associate with clinical outcomes in each cohort

To investigate whether cell-cell interactions extend beyond pairwise
relationships to form organized cellular communities within the
TME, we expanded the list of differential interactions (with FDR=
0.20) for each cohort and performed community detection. This
involved identifying connected components followed by pruning
(see “Methods”). As the number of interactions increased, distinct
communities began to emerge, showing a high degree of consistency
in the BA- and WA-specific communities across the three indepen-
dent IMC datasets (BSW discovery, BSW2, and Roswell Park valida-
tion). A total of two and four communities, respectively, were
identified for the BA and WA groups (Fig. 3a, b and Supplementary
Fig. 9). The dominant community in BA (termed BA-Community-1)
was characterized by recurring interactions involving “M2
Macrophages-Endothelial Cells-Mesenchymal Cells-Naive T Cells”
(Fig. 3a). In contrast, the top community in WA (termed WA-Com-
munity-1) was composed of “Exhausted Cytotoxic CD8 T Cells-Helper
T Cells-M2 Macrophages-Hypoxia” (Fig. 3b).

We subsequently assessed the prognostic value of the BA- and
WA-specific communities by examining their prevalence within the
ROIs and correlating these with overall survival (OS) in patients. As
previously reported, race did not significantly influence OS between
the two patient groups in both the BSW Discovery and Roswell Park
(Tables 1and 2, Race). To evaluate the collective impact of the BA and
WA communities, we computed a composite interaction score for
the communities by initially aggregating the individual cell-cell
interaction scores within each BA and WA community for each
patient sample, then summed across all identified BA or WA com-
munities to form a BA or WA-community-all score per patient.
Patients were stratified into high- and low-score groups based on the
average community-all score across patients. The association of

these scores with OS was examined using Kaplan-Meier (KM) curves
in both the BSW-Discovery and Roswell-Validation IMC cohorts.
Notably, after adjusting for age, race, and stage, higher BA-
community scores were linked to worse OS in both the BSW-
Discovery and Roswell-Validation cohorts (Fig. 3c, d). In contrast, the
WA-community score was only prognostic in the Roswell Park-
Validation cohort (Fig. 3d). We next assessed the prognostic value of
BA- and WA-associated communities in each race group. BA-
associated communities were a significant predictor of OS for BA
patients across both the above-mentioned cohorts (Supplementary
Fig. 10a, c). WA-communities were a significant predictor of OS for
the WA patients in both the cohorts (Supplementary Fig. 10b, d).
Specifically, the prognostic value of the WA-communities were more
pronounced for WA vs BA TNBC patients (Supplementary Fig. 10 b,
d). Furthermore, combining the BA and WA-interaction scores was no
longer prognostic, highlighting the unique prognostic attributes of
BA and WA-associated interaction scores (Supplementary Fig. 11a, b).

Consistent with these findings, in the multivariate analysis, the BA-
associated community remained significantly associated with OS even
after adjusting for age, race, and stage in both datasets (Tables 1 and 2).
In the BSW-Discovery cohort, the BA-associated community also
maintained significance when adjusted for BMI (Table 1, P=0.021).
Conversely, the WA-associated community was significant in the
multivariate analysis only in the Roswell Park-Validation cohort
(Table 2). However, none of the single-cell clusters were prognostic in
BA or WA patients in the BSW Discovery data (Supplementary Table 3).
Therefore, we conclude that single-cell abundances do not influence
race-specific survival outcomes. In contrast, Fig. 3 in our manuscript
highlights the association between communities, made of interacting
cell clusters, and overall survival in both a race-dependent and inde-
pendent manner.

Taken together, our analysis demonstrates that the BA-
associated community is a robust prognostic marker for overall
survival across multiple patient cohorts, independent of clinical
factors such as age, race, and stage. This highlights the potential of
cell-cell interactions within the BA community as a key determinant
of tumor progression. In contrast, the WA-associated community’s
prognostic value appears to be cohort-specific, warranting further
investigation into its role in specific patient populations. These
findings underscore the importance of cellular interactions in shap-
ing the TME and suggest that targeting community-specific interac-
tions may offer promising therapeutic avenues for improving patient
outcomes.

Nature Communications | (2025)16:6584


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61034-3

Roswell Park IMC

BSW Validation IMC

BSW Discovery IMC
4a12a14a20a 1a 19a13a 15b 9b 6b

> Paa » 15b
P 12a » > ob

P 14a > b

> >20a . >8b
> 1a - >

> :19a >14b
13a 19b

Vim AR», CD163 CD68p,
CD45RA CD45p-, CD31p,
PD1PLK1»

BA-Community-1: M2 Macrophage-Endothelial-Mesenchymal-Naive T cells

CD31»,CD16 CD68», Foxp3
CD4p», Vim PLK1», CD45RA M-

8b 2b 14b 19b 2 4c 17¢ 13c 20¢
» 2c
p 4c
n P 17c
b 13c
> B 20c

Vim ARp, CD163 CD16 CD68»,
CD31p», CD45RA CD45» GzmBp»

11a15a9a 7a 12a 10a 14a 6a

> P P11a p-1b
>153 »17b
> oq . 10b

>7a »9b
>12a » b>16b
>10a » p-18b
) 14a » P50
6a . P 140

CD152 CD8apk-, CD3 CD4», CD16
CD163 CD68», CD45 CD45RO M,

1b 17b 10b 9b 16b 18b 15b 14b

Foxp3»,CD11c

15¢ 3c 12c 14c 13c 8c 4c 1c 9¢c

» p15¢c
3c
»12¢c

- p14c
»13c
8c
pac
»1ic
p-9c
CD152 CD8a»,CD163 CD16
CD68», CD3 CD4p», CD45ROM,

> >

HIF1a GzmB», CD163 CD68», CD8a
CD152p, CD4 CD45ROM, CD4

, PLK1 PD-1/PD-L1»

HIF1a GzmB» CD11ck, GzmB HIF1ap, PD-1
PLK1»
WA-Community-1: Exhausted Cytotoxic CD8 T cells, Helper T cells, M2 Macrophages,
Hypoxia
BSW Discovery IMC Roswell Park IMC
c d
BA-Communities WA-Communities BA-Communities WA-Communities
T 10— : T 10— © 10— © 10—
2 R ™ 2 2
g -':\?_LN—*‘ s M 2 2
03)03— U:JM— (?)o.a~ cgo,d
® T T T
© 06— o 06— @ 0.6— © 06
3 P=0.021 3 P=0.368 3 P=0.032 3 P=0.025
2 .BA-commun?ties-high 2" @WA-communities-high| Z**"| @ BA-communities-high | 2"*"|@ WA-communities-high
Bz @ BA-communities-low 5 02 @ WWA-communities-low | 5 ,, | @ BA-communities-low |3 o2-|@ WA-communities-low
| S S SR S Y N A T 2 & & & 10 1o 1 | PN SO S S A | S S SR S K B
Months Months Months Months

Fig. 3 | Identification of Recurrent Cellular Communities and Their Association
with Clinical Outcomes in Black American (BA) and White American (WA)
Triple Negative Breast Cancer (TNBC) Cohorts. a BA-Community-1: In the BA
cohort, community detection of cellular interactions, derived from expanding
differential interactions (FDR = 0.20) and identifying connected components,
revealed a dominant community (BA-Community-1) characterized by recurring
interactions between “M2 Macrophages-Endothelial Cells-Mesenchymal Cells-
Naive T Cells.” Each heatmap shows the cell-type interactions between specific cell-
type clusters (indicated in row and column labels) in each IMC dataset. A com-
munity is defined as a group of connected cell-type interactions. So, for example,
BA-Community-1 in Roswell Park IMC is made of connecting interactions between
clusters 15, 9, 6, 8, 2, 14, and 19b. Members of the community are indicated at the
bottom of each community. This BA-community-1 was consistently observed
across the Baylor Scott & White (BSW) discovery, BSW2, and Roswell Park datasets

and was associated with clinical outcomes in BA TNBC. b WA-Community-1: Using
the approach described in (a), in the WA cohort, the dominant community (WA-
Community-1) comprised “Exhausted Cytotoxic T Cells-Helper T Cells-
Macrophages-Hypoxia.” This community was consistently found across the BSW
discovery, BSW2, and Roswell Park datasets. For additional detected communities
in BA and WA, see Supplementary Fig. 9. ¢ Kaplan Meier (KM) plot showing sig-
nificantly poor overall survival among TNBC patients when patients were stratified
by the sum of scores of all BA communities (1&2) after adjusting for age, race and
stage, in the Imaging mass cytometry (IMC) profiles of BSW-discovery and Roswell
Park validation cohort. d KM plot showing the stratification of TNBC patients based
on the sum of scores of all WA communities (1-4) after adjusting for age, race and
stage, in the IMC profiles of BSW-discovery and Roswell Park validation cohort.
Stratification into the high and low groups was performed using the average. All P-
values computed using a one-tailed log-rank test.
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Table 2 | Cox Proportional Hazard Analysis for the Roswell
Park Validation Data. P-values: Wald test, 1-sided

Cox-proportional Hazard Ratios (for Roswell Park Cohort)

Hazard Ratio P-value
Univariate model
stage 1.75 0.125
age 1.03 0.061
race 1.61 0.264
BA-communities-all 215 0.113
WA-communities-all 416 0.036
Multivariate model, adjusting for stage, age, race
BA-communities-all 3.75 0.032
WA-communities-all 6.1 0.025

Tumor microenvironment (TME) architecture of BA tumors is
composed of endothelial cells, macrophages, and tumors in a
mesenchymal state

To extend our analysis beyond the limited coverage of protein markers
examined with IMC, we integrated spatial transcriptomic data to gain a
more comprehensive understanding of the distinct multicellular
niches in BA and WA TNBC. We combined our IMC results with a
publicly available, racially balanced spatial transcriptomic dataset
from 20 TNBC patients (n =10 each for BA and WA) derived from flash-
frozen tumor samples®’. Genes encoding proteins associated with the
top BA and WA communities identified through IMC were interrogated
within this spatial transcriptomic dataset to assess their spatial locali-
zation across the 20 TNBC tumors (Fig. 4a, b). To start, protein markers
identified by IMC, such as CD31 and CD45RA, were converted to their
corresponding genes, PECAMI and PTPRC, in the spatial transcriptomic
dataset. Then, the genes belonging to each BA-Community 1 or WA-
Community 1 (Fig. 4b) were spatially plotted to reveal their spatial
localization patterns in tumors.

Notably, the localized regions demonstrating the co-expression of
BA-Community-1 genes (characterizing the Endo-Mesenchymal-Mac-
Naive T niche) are significantly more spatially clustered in BA patients
compared to WA patients (Fig. 4c, black outlines, and spatial clustering
score Fig. 4d). Strong spatial clustering observed across 10 BA TNBC
patients indicates that this is a recurrent feature in BA tumors. Con-
versely, WA patients exhibited a random and uniform distribution for
these genes (Fig. 4c, WA), suggesting that endothelial markers and
vimentin (mesenchymal marker) are either not co-expressed or
expressed at diminished levels in WA patients. Taken together, these
findings imply that the mesenchymal cell, endothelial cell, and mac-
rophage form a multi-member multicellular TME niche that is dis-
tinctly recurrent across BA TNBC.

In contrast to our observations with the BA query, the localized
spots for the WA-Community-1 query genes are uniformly distributed
throughout the entire tumors (Supplementary Fig. 12) rather than
confined to any region, suggesting an infiltration of exhausted T cells
throughout the tumors. Instead, WA tumors were characterized by a
higher presence of WA-Community-1 spots, irrespective of their spatial
configuration (Supplementary Fig. 12). In summary, WA interactions
are chiefly characterized by exhaustive immune and hypoxic envir-
onments (illustrated by the diffused co-localization of markers GZMB,
CTLA4, HIFIA) in WA TNBC.

Niche-specific differential expression analysis reveals additional
players associated with BA and WA-tumor associated
multicellular niches

To further delineate molecular factors underlying race-associated
communities, we extracted ST spots that exhibit high and low

expression for each community and performed niche-specific gene
signature analysis (refer “Methods”). In this context, spots character-
ized by elevated expression of BA- or WA-community genes were
compared with spots exhibiting low expression within the respective
ST samples, to identify co-expressed genes called extended signature
genes (ESGs). A differential analysis of ESGs between BA and WA
tumors further identified race-associated ESGs that could suggest
additional cell types in the niches (Fig. 5a). With these ESGs, we also
observed a higher number of spots localized to each respective race-
associated community (Fig. 5d).

As illustrated in Fig. 5b, ESGs associated with the BA-Community-1
query implicated endothelial cells and macrophages, and additionally
Cancer Associated Fibroblasts (CAFs). The cell-type specific expression
profiles reveal that the expression of the ESG genes are markedly
higher in BA than WA tumors within these specific cell type compart-
ments (Fig. 5b). Notably, CAFs are marked by the higher expression of
SPARC, COL4A1, TAGLN, CALD1, FBLNI1, RARRES2, CCDC80, SFRP2, and
VCAN in BA patients. Intriguingly, BA-niche ESGs lack markers of B-
cells, T-cells, neutrophils, and epithelial cells. Gene set enrichment
analysis (GSEA) of the BA-associated ESGs revealed a strong associa-
tion with processes such as extracellular matrix organization (P=2.3E-
28), epithelial-mesenchymal transition (EMT, P= 6.6E-28), tumor vas-
culature development (P =1.2E-46), and endothelial cell activity (P =1E-
18) in BA TNBC (Fig. 5e).

In contrast, the ESGs associated with the WA-Community 1
(Fig. 5¢) included genes that characterize T cells and additionally
neutrophils. GSEA of the WA-associated ESGs highlighted alterations in
immune signaling pathways within WA TNBC (Fig. 5f). These ESGs
included SI00A8 and S100A9, which are well-established markers for
neutrophils, as well as CD3E, IL2RG, and LTB, which are indicative of T
cell populations. Importantly, the WA-niche ESGs did not include
markers for CAFs or endothelial cells (Fig. 5c). Notably, neutrophils
were not evaluated in the initial BSW-discovery IMC panel, as it was
devoid of any neutrophil marker; however, it was identified by this ST-
derived ESG analysis. Therefore, to corroborate these results, in for-
mulating the IMC antibody panel for the BSW2 and Roswell validation
cohorts, we incorporated the neutrophil marker Myeloperoxidase
(MPO) to measure its expression. Our results showed that the
expression of MPO strongly correlated with WA-Community-1. Speci-
fically, MPO expression was highly enriched in cluster 9¢c of the BSW2
dataset and cluster 1b of the Roswell Park IMC dataset (Supplementary
Fig. 13a, b). The interaction between neutrophils and exhausted T cells
is more pronounced in WA vs BA TNBC (Supplementary Fig. 13¢c, d).
These findings confirm the presence of neutrophils within the top WA
community and confirm the approach of using ESGs to identify addi-
tional niche constituents.

Drivers in BA and WA tumor niches, and the predominance of
exhausted T cells in WA niches

To investigate the drivers within the racially distinct spatial environ-
ments, we used ESGs, as described earlier, to extract and reveal a
unique set of ligand-receptor pairs within the BA and WA niches
(Fig. 6a). In the BA niche, most ligand-receptor interactions were linked
to processes such as cell-cell communication, platelet-derived growth
factor (PDGF) signaling, epithelial-mesenchymal transition (EMT, TGF-
beta), Wnt/Notch signaling, endothelial/extracellular matrix remodel-
ing, vascular endothelial growth factor (VEGF) signaling, and integrin-
mediated signaling. These interactions primarily involved
perivascular-like cells, endothelial cells, CAFs, and macrophages
(Fig. 6b). In contrast, the ligand-receptor interactions in the WA niche
were primarily associated with immune cells, as supported by the
normalized frequencies of the interactions between neutrophils,
T cells, and myeloid cells (Fig. 6¢). Notably, inflammatory cytokines
such as CXCL9, and CXCL11 showed prominent interactions with the
CXCR3 receptor. These ligand-receptor interactions may have
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spatial co-localization for BA-community 1in 10 BA and 10 WA TNBC samples from
the ST dataset. BA-community 1 genes show strong co-localization (marked by
black outlines) in BA TNBC, but not in WA TNBC. The scale bar represents the
strength of co-localization, defined as the averaged log-transformed normalized
read count. d Quantification of spatial clustering of co-localized spots for BA-
community 1in BA (blue) and WA (red) TNBC tumors. Each bar represents the
average of 10 BA and 10 WA samples shown in panel (c). Spatial clustering of BA-
community 1 was significantly higher in BA TNBC compared to WA TNBC, with
statistical significance determined by the T-test. Source data are provided as a
Source Data file.

downstream consequences on the expression of target genes and
activities of signaling pathways.

To further explore the functional state of T cells within the WA
niches, we examined the expression of a T-cell exhaustion signature in
the ESGs associated with the WA niche. As shown in Fig. 6d, the WA-
associated niche (WA-Community-1) exhibited the presence of an 11-
gene T-cell exhaustion signature, including TRBC2*, LAG3*, HAVCR2*,
and CSFI*°. The number of spots expressing these exhaustion genes
was significantly higher in WA tumors compared to BA tumors
(Fig. 6e). Collectively, these results underscore the unique TME fea-
tures in BA and WA TNBC, with the WA TME exhibiting a signature
characterized by exhausted T cells, along with neutrophils and mye-
loid cells, contributing to a distinct immune landscape.

Validation of BA and WA-ESG signatures in independent clinical
cohorts

We then validated the BA and WA-associated ESGs described in Fig. 5
by employing a combination of 10X Visium ST and Nanostring GeoMx
DSP systems. As previously outlined in Fig. 1, tumor microarrays
(TMAs) were created and Visium ST profiling was conducted on two
independent cohorts: BSW2 (9 samples, 5 BA and 4 WA, Supplemen-
tary Figs. 14 and 15 for H&E images) and Georgia-Validation (10 sam-
ples, 6 BA and 4 WA, Supplementary Figs. 16 and 17 for H&E images).
Using both cohorts, we confirmed the significantly higher expression
of BA-ESGs, which encode endothelial-macrophage-EMT interactions,
in BA tumors, and WA-ESGs, which encode exhausted T cells and
neutrophils, in WA tumors (Fig. 7a for the BSW2 cohort, and Fig. 7b for
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the Georgia cohort, highlighting the top BA-Community-1 and WA-
Community-1). In addition, through spatial localization, we observed
that BA-community genes spatially clustered strongly within and
between themselves in BA tumors, whereas no such clustering was
seen in WA tumors in both validation cohorts (Fig. 7c).

Nanostring GeoMx evaluation of 26 BA and 31 WA TNBC tumors,
employed for imaging mass cytometry in Fig. 1 (refer to
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Supplementary Fig. 2 for indicated regions of interest), further sub-
stantiated the increased expression of ESGs linked with the BA niche in
BA tumors and the WA niche in WA TNBC (Fig. 7d). Importantly, the
immune compartment (CD45-positive) demonstrated a notable
increase in ESG expression (Fig. 7d), while the epithelial compartment
(PanCK-positive) did not exhibit such an increase (Supplementary
Fig. 18), highlighting the compartment-specific characteristics of the
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Fig. 5 | Distinct Gene Signatures Define Unique Cell Types in Black American
(BA) and White American (WA) Tumor Niches. a Overview of the approach used
to identify niche-associated gene signatures. For BA- and WA-associated commu-
nities (BA-community 1 and WA-community 1), extended signature genes (ESGs)
were derived based on co-expression within the query (i.e., BA-community 1 or WA-
community 1 genes), co-localized spots. ESGs were computed per sample and
compared between BA and WA, with genes significantly elevated in BA (i.e., BA>
WA for BA-niche) or in WA (i.e., WA > BA for WA-niche) selected for further analysis.
Each query generated a distinct BA-niche and WA-niche, composing of ST spots
uniquely expressing BA-community 1 or WA-community 1 genes. b Representative
heat map showing cell-type-specific expression of ESGs associated with the BA
niche defined by expansion of BA-community 1. These ESGs correspond to various

cell types, including Cancer-Associated Fibroblasts (CAF), endothelial cells, and
myeloid cells, while the BA-niche is poor in T-cells and neutrophils. ¢ Same as in (b),
but for the heat map showing cell-type-specific expression of ESGs associated with
the WA niche defined by expansion of WA-community 1. ESGs in this niche pre-
dominantly correspond to exhausted T-cells and neutrophils, while the WA-niche is
poor in CAFs and endothelial cells. d Average quantification of the number of co-
localized Visium spots per sample across 10 BA (blue) and 10 WA (red) TNBC
samples corresponding to BA- and WA-associated niches. Statistical significance
was computed using a T-test. e, f Gene set enrichment analysis (GSEA) of ESGs
associated with the BA-niche (e) and WA-niche (f), with -logl0 P-values shown. P-
values were derived from a 1-sided hypergeometric test, adjusted using g:SCS
method (g:Profiler). Source data are provided as a Source Data file.

BA and WA cellular communities. Collectively, these findings offer
insights into the distinct spatial ecosystems underlying WA-specific
immunosuppression.

Discussion

In this study, we introduce an integrated multi-omics analysis exam-
ining the distinct tumor microenvironments (TMEs) of BA and WA
patients with TNBC. Using advanced spatial technologies like IMC and
spatial transcriptomics, we identified race-associated spatially
resolved cell-cell interactions, community structures, and niche sig-
natures (i.e., ESGs) in BA and WA TNBC tumors. Importantly, the
robustness and generalizability of these observations were reinforced
through reproducibility across three independent IMC datasets (over
100 patients), confirming the distinct TMEs are not cohort-specific. In
addition, validation in two independent cohorts, BSW2 and Georgia,
using complementary 10X Visium and Nanostring GeoMx Digital Spa-
tial Profiling (DSP) technologies further substantiated our findings.

Our study builds upon recent studies that have highlighted dif-
ferences in TNBC between BA and WA patients'*?**#4%* which fre-
quently relied on bulk transcriptomics and proteomics analyses. While
these studies uncovered distinct molecular features between these
groups, they often lacked insights at the single-cell level. Specifically,
the bulk approach cannot resolve the complexities of the TME, nor can
it account for the spatial relationships between various cell types. Our
study addresses this gap by using single-cell spatial proteomics
alongside transcriptomics to map the cellular architecture and inter-
actions within the TME of both BA and WA TNBC, revealing how these
spatially organized cell communities may drive tumor progression and
influence clinical outcomes.

Focusing on the biological insights derived from these spatial
patterns, our spatial analysis identified distinct racial differences pri-
marily in the spatial arrangement and interaction patterns of cell types,
even though the overall abundances of major cell clusters were com-
parable between BA and WA patients. BA tumors showed tightly
clustered, immune-suppressive communities involving naive T cells,
dendritic cells, and M2 macrophages, often located within hypoxic
regions; these structures appear capable of promoting immune tol-
erance, EMT, and potentially metastasis* through localized signaling
interactions. Conversely, WA tumors displayed communities char-
acterized by interactions of exhausted T cells and myeloid cells, indi-
cative of chronic immune suppression. This type of TME may hinder
effective anti-tumor immunity and contribute to poor treatment
response. Overall, our study emphasizes that the spatial organization
of cellular communities and their interactions in the TME, rather than
just cell composition, are key drivers of racial disparities in TNBC.

While IMC-derived single-cell interactions provide valuable bio-
logical insights, its capacity is limited by the number of measurable
markers, restricting the range of cell-cell interactions that can be
examined. To overcome this constraint, we utilized IMC-identified
protein markers indicative of race-associated communities as “quer-
ies” and integrated them with spatial transcriptomic data. This inte-
gration allowed us to reconstruct the multicellular niche structure,

architecture, and composition in BA and WA TNBC tumors more
comprehensively. This strategy enabled us to extend the scope of race-
associated cell-cell interactions and gain deeper insights into other
relevant cell types and their interactions within the TME. Through this
approach, we identified race-associated ESGs, which uncovered pre-
viously unrecognized aspects of the TME in both BA and WA tumors—
insights that were not apparent through prior global clustering
methods. These findings align with earlier research emphasizing the
advantages of niche-specific analysis for understanding complex
tumor ecosystems*¢,

Analysis of the integrated data revealed distinct ESG signatures
that further elucidated the biological differences and potential ther-
apeutic vulnerabilities between the racial groups. The BA-niche char-
acteristics emphasized the significant role of cancer-associated
fibroblasts (CAFs) and enrichment in pathways promoting EMT, vas-
cular development, TGF-B, Wnt/Notchl signaling, and extracellular
matrix (ECM) organization. These signatures indicated that BA tumors
had niches rich in macrophages, accompanied by suppressed CD8 + T
cell function. This phenotype aligns with known mechanisms of
immune suppression, including that driven by TGF-p through ECM
remodeling®’, and metabolic reprogramming and reduction in argi-
nine, along with the secretion of ornithine by tumor-associated
macrophages®’ that suppress T cell functions. In addition, the pre-
sence of vascular development genes (VEGF and thrombospondin®®)
within BA-associated ESGs suggests potential resistance mechanisms
to anti-PD1 treatments, a finding requiring further investigation.
Notably, similar findings in a metastatic melanoma study identified
angiogenesis-related genes as contributors to immunotherapy
resistance**°, Conversely, WA-associated ESGs showed enrichment of
exhausted T cell and neutrophil markers, paralleling patterns observed
in chemotherapy-induced immune suppression in ovarian cancer.
Specifically, chemotherapy treatment in ovarian cancer can instill a
spatially exhausted T cell environment™. This suggests WA patients
may harbor TMEs pre-disposed to certain therapy resistances, being
less responsive to chemotherapy, highlighting distinct immunosup-
pressive mechanisms in WA TNBC.

Contextualizing these observations, our findings can be posi-
tioned within the landscape of known TNBC heterogeneity. Although
TNBC lacks the expression of the three hormonal receptors, recent
studies have identified additional molecular subtypes, including basal-
like immune-suppressed, immunomodulatory, luminal androgen
receptor (LAR), and mesenchymal-like subtypes®. Furthermore, spa-
tial immune classifications have emerged; Hammerl et al.” found that
TNBC tissues could be divided into three phenotypes: excluded,
ignored, and inflamed. This latter finding builds upon the work of
Gruosso et al.**, which showed the presence of immune-cold, immune-
desert, fully inflamed, stroma-restricted, and margin-restricted TNBC
tumors. Applying these subtypes to our data, as shown in Supple-
mentary Fig. 19, we suggest that WA tumors frequently resemble the
inflamed spatial phenotype (P=8.9 x10"7) whereas BA tumors tend to
align more closely with the Excluded (P=0.0009) and Ignored phe-
notypes (P=1.6 x107) defined by Hammerl et al.*>. This finding further
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supports the notion that tumors in BA patients are more likely to be
immunologically cold, and consequently resistant to immunotherapy.
Consistent with this, the BA-Community-1 identified in our study
overlaps significantly with the LAR and mesenchymal-like subtypes
described by Jiang et al.’”>. The presence of androgen receptor
expression in BA-Community-1 further supports its resemblance to the

LAR subtype. In addition, the TME in BA tumors also exhibits features
of the margin-restricted (showing exclusion of T cells) and immune-
desert subtypes described by Gruosso et al’*. In contrast, WA-
associated community-1 resembles the immunomodulatory subtype
described by Jiang et al. and the fully inflamed subtype described by
Hammerl et al.”’. Future functional validation, potentially through
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Fig. 6 | Ligand-Receptor Interactions and ESG Analysis in Black American (BA)
and White American (WA) Niches Reveal Distinct Mechanisms of Tumor Pro-
gression and Immune Suppression. a Ligand-receptor interactions derived from
ESGs associated with the BA niche (BA-community 1) reveal the activation of mul-
tiple tumor-promoting pathways, including those involving cell surface proteins,
adhesion molecules, extracellular matrix components, endothelial cells, and key
signaling pathways such as platelet-derived growth factor receptor (PDGFR),
Transforming Growth Factor beta (TGF-8), WNT, Notch, Thrombospondin, and
Placental Growth Factor (PGF). In contrast, ligand-receptor interactions in the WA
niche (WA-community 1) are dominated by cytokine activities and pathways related
to T-cell exhaustion. b Normalized frequencies of ligand-receptor interactions in
the BA-niche, analyzed using ESGs from BA-community 1, are presented in a matrix
format with ligands (rows) and receptors (columns). ¢ Normalized frequencies of
ligand-receptor interactions in the WA-niche, analyzed using ESGs from WA-

community 1, are similarly presented. d Average expression of genes associated
with T-cell exhaustion® in WA-community 1in WA and BA TNBC tissues. The
expression of T-cell exhaustion-related genes was significantly higher in WA TNBC
compared to BA TNBC, with significance computed using a T-test. e Quantification
of the average number of spots containing genes associated with T-cell exhaustion
in N=10 BA and N=10 WA TNBC spatial transcriptomics (ST) samples®’. Each ST
sample is an independent TNBC patient and contains between 1500 and

2500 spots. The number of co-localized spots was significantly higher in WA TNBC
compared to BA TNBC, with significance determined using a Kolmogorov-Smirnov
test. Box plots represent the median (center line), interquartile range (25-75%;
bounds of the box), and whiskers extending to the 1.5 IQRs. Points that fall outside
this range are displayed independently. Source data are provided as a Source
Data file.

assessment of immune signaling activity or localized cytokine profiling
within these niches, is warranted to confirm these phenotypic char-
acterizations. Nonetheless, these observations underscore the impor-
tance of spatial datasets for accurately assessing the function of
immune cell types, revealing complexities that may be underestimated
by cell type abundances or deconvoluted proportions from bulk
RNAseq studies, especially when comparing BA and WA patients.
Consequently, previous conclusions® regarding relative abundances
of T cells or Treg cells between races and their functional implications
might require reassessment using spatial technologies, and using
spatial immunophenotypes such as ones described in this work and
others (Gruosso et al. and Hammerl et al). Our work further expanded
this knowledge by including additional cell-cell interactions and
community network architectures as defining features of race-specific
TNBC tumors.

Moving beyond classification, the implications of finding unique
spatial niches are significant, extending to therapeutic avenues and
prognosis. Our study revealed architectural differences within the TME
between these groups, which may influence both tumor progression
and response to treatment. These findings provide preliminary evi-
dence supporting the potential development of therapeutic strategies
targeting the endothelial-macrophage-EMT axis, which appears parti-
cularly prominent and thus may be especially beneficial for BA patients
with TNBC. The identification of ligand-receptor interactions that
regulate this axis—such as integrin-TGF-B**, Wnt/Notchl, and VEGF
signaling—highlights several actionable targets®. For example, clinical-
grade Wnt/Notchl inhibitors, which affect endothelial cells*® and
EMT*’*%, could represent a promising avenue for BA patients with
TNBC. In addition, therapeutic regimens targeting macrophages have
shown promise in preclinical models of TNBC®. The identification of a
neutrophil-rich TME co-existing with exhausted T cells in WA tumors is
particularly intriguing, a feature that was confirmed using myeloper-
oxidase as a neutrophil marker in our validation cohort. Recent studies
suggest that neutrophils can promote tumor progression®® and may
do so independently of macrophages®, exerting an immunosuppres-
sive function® These findings, in conjunction with previous
studies®®?, suggest that WA patients with TNBC often have inflamed
tumors that have nonetheless evolved distinctive immunosuppressive
mechanisms that involve neutrophils, providing further insight into
resistance to current therapies.

Building on the discussion of the TME biology associated with
racial differences, our findings suggest that race-specific cell-cell
interactions have important implications for survival outcomes in
TNBC. Crucially, our analysis indicates that these spatial interactions
and community structures provide prognostic information beyond
what simple cell abundance reveals. As demonstrated (Supplementary
Table 3), single-cell abundance alone often lacked significant prog-
nostic value, whereas the spatial context—reflecting the proximity
required for direct signaling and localized immune modulation, par-
ticularly within the suppressive BA niches—proved significantly

associated with survival outcomes. While the presence of BA-tumor
associated communities was correlated with poor OS in both BA and
WA populations, the impact of WA-tumor associated communities on
OS was more pronounced in WA patients. Specifically, WA-
Community-1 was associated with poor OS primarily in WA patients
in the Roswell cohort. We acknowledge that cohort-specific differ-
ences in prognostic associations, such as this WA-Community-1 find-
ing, primarily in the Roswell cohort, could potentially be influenced by
unmeasured factors. Within the measured ones, these associations
remained significant after adjusting for key clinical factors such as age,
race, and stage, highlighting the robustness of these TME features as
potential prognostic indicators.

Clinically, these niche-specific signatures hold potential utility
beyond prognosis; they could serve as biomarkers to stratify patients
for clinical trials evaluating niche-targeting therapies (e.g., CAF or
macrophage inhibitors in BA-like niches) or to predict response to
existing immunotherapies based on the specific immune architecture
(e.g., inflamed vs. excluded). The ability to identify specific cellular
communities and their interactions within the TME offers promising
avenues for understanding how these interactions influence disease
progression in a race-dependent and independent manner and in
shaping immunotherapy responses in breast cancer patients®”, further
validating the significance of these findings for the development of
personalized therapies.

It is crucial to recognize that while our study focuses on the bio-
logical and clinical aspects of race in TNBC, race itself is a social con-
struct deeply intertwined with structural inequities. These inequities,
including limited access to healthcare, lack of culturally appropriate
care, poor nutrition, environmental exposures, poor built environ-
ments, and higher levels of chronic stress, disproportionately affect
minority populations and contribute to poorer health outcomes.
Addressing these socioeconomic factors would be an area of future
investigation where such data are available. Moreover, health inequi-
ties extend beyond race and are prevalent across various groups
experiencing social stratification, which compounds the challenges
faced by marginalized populations. While advancements in medical
treatment and prevention have reduced overall mortality rates,
structural inequalities have led to a widening gap in health outcomes
for disadvantaged groups®. Our research suggests that the unique
TME observed in BA patients’ tumors, characterized by endothelial-
macrophage-EMT axis alterations, could represent a biological mani-
festation influenced by such factors and potentially be amenable to
targeted therapies that are currently under investigation. By con-
ducting racially inclusive research, we can better understand how
different social determinants may shape the biology of cancer, thus
paving the way for more equitable therapeutic strategies. Ultimately,
addressing these inequities through comprehensive biological and
socio-epidemiological research is necessary to reduce the disparities in
breast cancer outcomes, ensuring that health improvements do not
leave behind underserved populations.
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In conclusion, our study provides compelling evidence of racial
differences in the spatial interactions and associated gene signatures
within the TME of TNBC patients, as illustrated in Fig. 8. The char-
acterization of the TME predominantly found in BA patients shares
significant similarities with the previously described “Tumor Micro-
environment of Metastasis (TMEM) doorway” model®°, In the BA
TME (Fig. 8a), perivascular macrophages, mesenchymal cancer cells,

BAROIs WAROIs BAROIs WAROIs

and endothelial cells form a tightly connected network hypothesized
to promote endothelial cell junction dissociation, thereby creating
vascular openings that enable cancer cells to intravasate. These unique
spatial interactions characteristic of many BA tumors are strongly
correlated with poor survival outcomes in both racial groups, under-
scoring their clinical relevance. In contrast, the WA TME (Fig. 8b) is
characterized by distinct niches enriched in exhausted T cells and
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Fig. 7 | Independent Validation of Black American (BA) and White American
(WA) Niches Using Spatial Transcriptomics and GeoMX DSP System (Nano-
String). a Spatial Transcriptomics Validation in Baylor Scott & White (BSW) 2
Cohort: Top panel: Spatial transcriptomics analysis of 4 independent FFPE BA
tumors and 5 WA tumors from the BSW2 validation cohort verifies the elevated
expression of extended gene signatures (ESGs) associated with BA-community 1in
BA TNBC compared to WA. Bottom panel: The same analysis verifies the elevated
expression of ESGs associated with WA-community 1in WA TNBC compared to BA.
P-values were derived from 1-sided paired ¢ test. b Spatial Transcriptomics Valida-
tion in Georgia Cohort: Top panel: Spatial transcriptomics analysis of 6 FFPE BA
tumors and 4 WA tumors from the Georgia validation cohort confirms the elevated
expression of ESGs associated with BA-community 1in BA compared to WA TNBC.
Bottom panel: The same analysis verifies the elevated expression of ESGs asso-
ciated with WA-community 1 in WA compared to BA TNBC. P-values were derived

from 1-sided paired ¢ test. ¢ Representative Co-localization of ESGs Associated with
BA-Niche: Spatial co-localization of ESGs associated with BA-niche is observed in BA
TNBC (left), but not in WA TNBC (right). Representative images of 4 tumors per
group are shown. d GeoMX Validation of BA and WA Niche Enrichment: Community
analysis of Nanostring GeoMx data from M =46 BA ROIs (26 BA patients) and M =51
WA ROIs (31 WA patients), which are the same TNBC tumors used for IMC in Fig. 1.
Results show significantly higher enrichment of BA-community 1 (Endo-Mac-EMT)
in the immune compartments (CD45 positive) of BA compared to WA TNBC. Similar
analysis shows significantly higher enrichment of WA-community 1 (exhausted

T cells) in the immune compartments of WA compared to BA TNBC. Significance
was computed using T-tests. Box plots represent the median (center line), inter-
quartile range (25-75%; bounds of the box), and whiskers extending to the 1.5 IQRs.
Points that fall outside this range are displayed independently. Source data are
provided as a Source Data file.

neutrophils. This finding raises important questions regarding the
potential and immunosuppressive roles of neutrophils in this context,
which require further investigation. Collectively, these findings
emphasize the importance of incorporating racially diverse samples in
TME research to fully appreciate the complex biological and clinical
implications of racial differences in TNBC. Understanding these dif-
ferences could pave the way for more personalized and effective
therapeutic strategies that address the unique needs of patients from
diverse racial backgrounds.

Methods

TNBC patient tissue microarrays

All the human studies were performed under IRB (Institutional Review
Board) protocols 020-393 and 130559 (Baylor Scott and White Hos-
pital), H-28445 (Baylor College of Medicine), H21060 (Georgia State
University), 300009407 (University of Alabama at Birmingham) and
Roswell Park Comprehensive Cancer Center. The approved BSW IRB
protocol 020-393 waived the requirement of authorization based on
45 CFR 164.521(i)(2)(ii)) and determined informed consent is not
required as allowed under 45 CFR 46.116 (g). Patients from Roswell
Park Comprehensive Cancer Center were consented. For patients from
the Georgia cohort, the IRB H21060 from Georgia State University
approved that patient consent will not be required since all samples
used are archival and were de-identified to maintain patient privacy
and anonymity.

De-identified breast cancer patient samples with at least 10-year
follow-up and self-reported race were obtained from Baylor Scott and
White Hospital (BSWH), Temple, Texas, in the form of formalin fixed
paraffin embedded (FFPE) tissue. Tissue cores from 57 tumors (26 BA
tumors and 31 WA tumors) spread across 8 tissue microarrays (TMAs)
were used for this study. In addition to the self-reported race, clinical
information such as body mass index (BMI), receptor status, tumor
grade, chemotherapy status, presence of metastases, time to clinical
follow up, PIK3Ca and TP53 mutation status, and information on Dia-
betes Miletus (DM), as well as detailed histopathology of the tumors
were available to us (refer Supplementary Table 1 for clinical infor-
mation and Supplementary Fig. 1 for H&E images). 2 BA and 2 WA
patients received neoadjuvant chemotherapy, the remaining patients
were treatment naive at the time of sample collection. All tumors were
collected at surgery. Following this, in the adjuvant setting, all the
patients were treated at the same hospital using the standard of care
regimens. None of them received immune checkpoint therapy. Two
patients were enrolled in a Southwest Oncology Group (SWOG) clinical
trial. These samples obtained from Baylor Scott and White Hospital
were used for generating BSW-Discovery data and Nanostring Geo Mx
spatial transcriptomics validation data.

In addition, for validation studies using IMC, five FFPE TNBC tis-
sues, each from BA and WA, were obtained from Baylor Scott and
White, and the data from these samples were termed BSW2 validation.

Also, 46 FFPE TNBC tissues (15 BA and 31 WA) from Roswell Park
Comprehensive Cancer Center were used for IMC-based validation.

For 10X Spatial Transcriptomics, we examined five WA and four
BA TNBC samples described above from the Baylor Scott and White
(BSW2 validation) hospital. In addition, 10X spatial transcriptomics
data for four WA and six BA samples from the Georgia cohort was
obtained in collaboration with Dr. Aneja from the University of Ala-
bama at Birmingham.

Region of Interest (ROI) selection and segmentation

For each patient core (in the BSW Discovery cohort, 3 mm diameter)
analyzed using imaging mass cytometry, 10X spatial transcriptomics or
Nanostring Geo Mx Digital Spatial Profiling (DSP), ROIs were selected
based on two parameters- tumor location (center vs periphery) and
amount of immune infiltration observed in the H&E section (immune
rich vs immune poor). This was performed by Dr. Asirvatham, breast
pathologist and independently verified by Dr. Danika (resident
pathologist, Supplementary Fig. 2). A total of 98 ROIs (each 600um-by-
600um) were selected across the 8 TMAs (and 56 TNBC tissues), each
belonging to one of four categories- Tumor Center Immune Rich
(TCIR), Tumor Center Immune Poor (TCIP), Tumor Periphery Immune
Rich (TPIR), and Tumor Periphery Immune Poor (TPIP). Supplemen-
tary Table 1 describes the number of ROIs belonging to each of these
four groups across all the specimens analyzed. Importantly, the
number of TCIR, TCIP, TPIP and TPIR analyzed were comparable across
tumors from both BA and WA patients (Supplementary Table 1). Fur-
thermore, H&E-based stratification of tumor-associated ROIs into
immune-rich and immune-poor regions was confirmed by quantifica-
tion of CD45 +immune cells (Supplementary Fig. 3). Notably, IMC and
Nanostring GeoMx analysis were conducted on adjacent TMA sections
containing identically marked ROIls.

The following guidelines were used to select the ROIs. TMA cores
were at least 3 mm in diameter. Tumor periphery was defined as within
1 mm of the tumor perimeter when identifiable. The tumor center was
defined as greater than 1mm from the tumor perimeter. Stromal
tumor infiltrating lymphocytes were determined using the Interna-
tional TILs Working Group 2014 guidelines®” on H&E slides, following
completion of available tutorials at tilsinbreastcancer.org. Less than
10% was considered immune poor, and greater than 50% was con-
sidered immune rich. A single pathologist (JRA) selected all ROIs at a
single sitting. These ROl were verified by a second reviewer (PBD) with
100% agreement.

Imaging mass cytometry (Mass CyTOF), BSW-Discovery data set
For the discovery data, a panel of 26 antibodies were selected based on
the markers expressed in common immune cell populations- including
T cells, macrophages, dendritic cells, and natural killer (NK) cells- as
well as those expressed on tumor cells- including markers for hypoxia,
angiogenesis, proliferation, epithelial mesenchymal transition (EMT),
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Fig. 8 | Distinct Tumor Microenvironments (TME) in Black American (BA) and
White American (WA) Triple Negative Breast Cancer (TNBC). a BA Tumor
Microenvironment (TME): The TME in BA TNBC is defined by a dynamic and highly
integrated interaction between endothelial cells, macrophages, and tumor cells
undergoing epithelial-mesenchymal transition (EMT). In this model, tumor cells
express vimentin, a key marker of EMT, which enhances their motility and ability to
invade surrounding tissues. A critical feature of the BA TME is the presence of a
Tumor Microenvironment of Metastasis (TMEM), where the interplay between
endothelial cells and macrophages creates specialized “doorways” that facilitate
the intravasation of tumor cells into the bloodstream. These TMEM “doorways” are
regions where the endothelial cells undergo modifications that increase perme-
ability, enabling tumor cells to enter the vasculature more easily. The macrophages
in this context are key players, secreting factors that promote endothelial cell
destabilization and fostering the creation of these metastatic niches. The resulting
tumor-promoting environment is immune-suppressive, limiting the ability of host
immune cells to effectively target and eliminate the tumor. This BA-specific TME,
combined with the TMEM mechanisms, supports tumor progression and the
establishment of metastatic lesions. b WA Tumor Microenvironment (TME): In
contrast, the WA TME is marked by a prominent immune exhaustion phenotype.
Here, exhausted T-cells and neutrophils are prevalent, set against a backdrop of
myeloid cells that drive immune suppression. This immune-suppressive environ-
ment is in part maintained by the interactions between exhausted T-cells and the
cytokine milieu, which promotes immune dysfunction. While the WA TME does not
exhibit the same TMEM “doorways” as seen in BA TNBC, the immune-exhaustive
nature of this microenvironment still creates challenges for tumor-targeting
immune responses. In this context, the accumulation of myeloid cells, particularly
macrophages, perpetuates a cycle of immune suppression, preventing effective
anti-tumor immunity and allowing the tumor to persist and potentially metastasize.
Figure 8A created in BioRender. Sreekumar, A. (2025) https://BioRender.com/
x2oyoly. Figure 8B created in BioRender. Sreekumar, A. (2025) https://BioRender.
com/dka48j4.

and immunosuppression. In terms of the distribution of ROIs among
patients in this BSW-Discovery cohort, a total of 98 ROIs were exam-
ined that included 47 ROIs from 26 BA patients and 51 ROIs from 31 WA
patients. This included one BA patient with 3 ROIs, 19 BA patients with
2 ROIs and 6 BA patients with 1 ROI. For WA, we had 20 patients with 2
ROIs and 11 patients with 1 ROL.

Mass CyTOF antibody conjugation and staining were done in
collaboration with the Aneja lab at Georgia State University. Lantha-
nide metal-labeled and Iridium intercalator antibodies were purchased
from Fluidigm. Unconjugated antibodies were conjugated using the
Max Par X8 labeling kits from Fluidigm. The concentrations of the
conjugated antibodies were assessed using the NanoDrop system, and
the final concentration was adjusted to 500 pg/ml. The conjugated
antibodies were stored in an antibody stabilizer at 4 degrees Celsius.
Descriptions of antibodies and isotope tags are described in Supple-
mentary Table 4.

Staining of the tissues was performed as previously
described™**5, Briefly, slides were de-paraffinized in xylene and
rehydrated in alcohol. Antigen retrieval was performed with pre-
heated Tris-EDTA buffer (pH 9) at 95 degrees Celsius in a de-cloaking
chamber (Biocare Medical). The slides were cooled and blocked with
3% BSA (in PBS) for 1h. Slides were then incubated with metal-tagged
antibodies (1:50) overnight at 4 degrees Celsius. Counterstaining of the
nuclei was performed with Iridium intercalator (1:200 dilution).

Image acquisition by Hyperion and data analysis

Image acquisition was done in collaboration with the Flow Cytometry
core at Baylor College of Medicine. Tissue analysis was performed
using a Helios time of flight mass cytometer coupled to the Hyperion
Imaging System (Fluidigm). Prior to acquisition, the imaging system
was auto tuned using a 3-element tuning slide (Fluidigm) according to
the manufacturer’s instructions. ROIs for imaging were selected as
described in Supplementary Fig. 2. Following the flushing of the
ablation chamber with Helium, the tissue sections were ablated in a
spot-by-spot fashion by a UV laser spot at 200 Hz frequency and 1pm
resolution. The results were stored in Fluidigm’s MCD format and
exported as 16-bit OME TIFF format for downstream quantification.

Imaging mass cytometry (Mass CyTOF), BSW-2 and Roswell Park
Validation data sets

Here, 5 WA and 5 BA TNBC FFPE tumors (whole sections) were analyzed
from the BSW-2 validation cohort, and 15 BA and 31 WA TNBC FFPE
tumors (1 mm core size) were analyzed from the Roswell Park validation
cohort (Summarized clinical data in Supplementary Table 2). Regions of
Interest (ROIs) were selected by Drs. Asirvatham and Gutierrez,
respectively, for the two cohorts. In the BSW-2 validation cohort, the ROI
size was 700 um by 700 um. For the Roswell Park validation cohort, ROI
size was 600 pm-by-600 um, and each ROI covered the entire 1 mm
core. The IMC analyses were done by the Immune Monitoring Core at
the Houston Methodist Research Institute. Sample preparation com-
menced with the staining of tissues using pathologist-verified, metal-
tagged antibodies, which were optimized for the CyTOF® imaging
system®. A total of 27 and 32 metal-tagged antibodies respectively, were
used to examine the BSW-2 and Roswell Park validation samples (refer
Supplementary Tables 5 and 6) These antibodies allowed comprehen-
sive analysis of immune, stromal, and tumor cell heterogeneity, in
addition to various cell subsets and functional phenotypes within the
tumor microenvironment (TME). All the antibodies were prepared
according to the manufacturer’s protocols provided by Standard Bio-
Tools, measured for absorbance, and stored in Candor PBS Antibody
Stabilization solution (Candor Bioscience) at 4 °C. FFPE tissue sections
were subjected to baking, dewaxing in xylene, rehydration through
graded alcohols, and heat-induced epitope retrieval in an EZ-Retriever
System (BioGenex) at 95°C using a Tris-Tween20 buffer at pH 9 for
20 min. After blocking with 3% BSA in TBS, the sections were incubated
overnight with an antibody master mix, followed by washing, and
staining for nuclear identification using Cell-ID Intercalator (Standard
BioTools). Subsequently, the slides were washed, air-dried, and stored
for ablation. The sections were then ablated using the Hyperion system
(Standard BioTools) for data acquisition. Data acquisition followed the
method described earlier for the Discovery data set.
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10X Visium spatial transcriptomic profiling
Here, 9 WA and 10 BA TNBC FFPE tumors from two independent
cohorts were analyzed (4 BA and 5 WA from BSW2 and 6 BA and 4 WA
from the Georgia cohort, See Supplementary Fig. 14-17 for H&E images
and ROI markings). The 10X spatial transcriptomics analyses were
conducted by the Immune Monitoring Core at the Houston Methodist
Research Institute for the BSW2 cohort, and the Advanced Genomics
Core at University of Michigan for the Georgia cohort.

cDNA libraries were prepared following the guidelines outlined in
the Visium CytAssist Spatial Gene Expression for FFPE User Guide. FFPE
tissue sections of 5 um thickness were mounted on Superfrost™ Plus
Microscope Slides (Fisherbrand™) and subjected to H&E staining after
deparaffinization. Following imaging, the cover slips were removed
from the sections, and the sections were processed for hematoxylin
de-staining and de-crosslinking. The glass slide bearing the tissue
section underwent processing using the Visium CytAssist instrument
(10x Genomics) to facilitate the transfer of analytes to a Visium
CytAssist Spatial Gene Expression slide, which features a 0.42 cm?
capture area with 4,992 spatial barcodes. Subsequent to this, the probe
extension and library construction were carried out according to the
standard Visium for FFPE workflow, following the manufacturer’s
protocol, but outside the instrument. The libraries were then
sequenced using paired-end dual-indexing (28 cycles for Read 1, 10
cycles for i7 index, 10 cycles for i5 index, and 50 cycles for Read 2) on
an lllumina NovaSeq X platform, achieving an average of 30,000 reads
per spot. The resulting FASTQ files, together with the H&E images,
were processed using Space Ranger version 2.1.0 (10x Genomics),
using the GRCh38-2020-A reference genome.

Gene expression analysis using GeoMX DSP system (NanoString)
The nanoString platform was used to profile the patient samples in the
BSW-Discovery cohort, the same patient cohort used in the BSW-
Discovery IMC data. Supplementary Figs. 1 and 2 describe the H&E
images, selected ROIs and the immunofluorescence staining with
PanCK and CD45 for each tissue. The latter was used as the morphol-
ogy markers to segment the tissues into epithelial and immune cell
compartments as described below. Supplementary Table 1 describes
the various categories of ROIs selected by the breast pathologist, Dr.
Asirvatham, for the Nanostring analysis.

We queried the transcriptome in these samples using the GeoMX
Human Whole Transcriptome Atlas (WTA), which measures ~-18,000
protein-coding genes. GeoMX DSP analysis was performed as previously
described™. In brief, the 8 TMAs were stained with mRNA hybridization
probes attached to UV-photo cleavable indexing oligonucleotides. The
slides were stained with two morphology markers- Pan Cytokeratin
(PanCK, to identify tumor cells), and CD45 (to identify immune cells), in
addition to a nuclear stain (DAPI). Specific regions of interest (ROIs)
were selected by the breast pathologist, Dr. Asirvatham (and confirmed
by an independent pathologist, Dr. Binsol) under the guidance of the
morphology markers. Each ROI was thus divided into three segments
based on the positive/negative staining of the morphology markers-
Tumor segment (PanCK +ve CD45 - ve), Immune segment (PanCK - ve
CD45 + ve), and Stroma segment (PanCK - ve CD45 - ve). 293 segments
(98 tumor segments, 98 immune segments, and 97 stromal segments)
were generated in this fashion, from 57 tumors (26 BA and 31 WA
tumors, respectively). Since the stromal segment was defined using
negative selection, it contained a mixed population of cells, and hence
was not considered for downstream analysis. The slides were exposed to
UV light, thereby releasing the indexing oligonucleotides. The oligonu-
cleotides from each ROI were then collected into specific wells of a
microplate and counted using the nCounter system.

Multiplex Immunofluorescence Analysis
This was used to validate the co-localization of endothelial cells and
macrophages in BA TNBC. The samples used were the BSW-Discovery

patient cohort, the same used to generate BSW-Discovery IMC data
and Nanostring GeoMx DSP data. These tissues were distributed across
8 TMAs. Briefly, FFPE patient TMA slides were subjected to baking at
60 °C for two hours and washed with xylene to remove excess paraffin.
Subsequently, the slides underwent rehydration by incubating in a
series of ethanol solutions at various concentrations (100, 95, 70, 50,
30, and 0%). After rinsing with PBS, the slides were immersed in 1x
Target Retrieval Solution, pH 9 (Dako, S2367) at 115 °C for 15min in a
pressure cooker for antigen retrieval. Following antigen retrieval, the
tissue sections were permeabilized and blocked using 10% normal
donkey serum in PBS-GT (2% fish gelatin, 0.1% Triton-X100 in PBS) for
1h at room temperature. Primary antibodies (goat anti-CD31, R&D,
AF3628; rabbit anti-CD163, Abcam, ab182422) were diluted to 1:100 in
PBS-GT and applied to the tissue sections, which were then incubated
in a humid chamber at 4 °C overnight. The following day, the slides
were washed with PBS three times and incubated with secondary
antibodies (Alexa Fluor 488-conjugated Donkey anti-Rabbit 1gG, Jack-
son ImmunoResearch, 711-545-152; Alexa Fluor 555-conjugated Donkey
anti-Goat IgG, Thermo Scientific, A-21432) diluted to 1:500 in PBS-GT
for 2 h at room temperature.

After two washes with PBS, the slides were stained with Hoechst
(20 pg/mL) in PBS for 5min at room temperature, followed by two
additional PBS washes. ProlongTM Gold antifade mountant was
applied, and a cover slip was carefully placed. The slides were left to
cure in the dark at room temperature overnight. Finally, images were
acquired using a Zeiss LSM 780 confocal microscope, and the fluor-
escent images were processed using Zen software (Zeiss).

Immunofluorescence quantification and co-localization
Multi-channel TIFF images were initially separated into individual color
channels: Red - representing CD31, Green - CD163, and Blue -
Hoechst. We conducted pixel-level co-localization between CD31 and
CD163 channel images in ImageJ”. To begin with, the individual
channel was smoothed using Gaussian Blur at the default setting. Then,
signal intensities per channel were auto-thresholded to preserve the
upper 5-10% of the image histogram. Signal intensities were seg-
mented by using the Find Maxima function in ImageJ, and locations of
segmented pixels of CD31 and CD163 intensities were recorded into
the Region of Interest (ROI) Manager. Next, we computed co-
localization frequencies between CD31 and CD163 segmented pixels
by the following procedure. The number of pairs of pixels (where one
from the CD31 pixel list and one from CD163) that are separated by a
< 40-pixel Euclidean distance apart was quantified per image. This was
repeated for all 103 immunofluorescent images of WA and BA TNBC
tumors that were acquired.

Imaging mass cytometry analysis

Our IMC data, stored in MCD files, were processed using the imctools
to generate multichannel TIFF images for protein markers. For cell
segmentation, we used tools such as HistoCAT®, CellProfiler’?, and
CellPose”. We started by applying a Gaussian Blur in Image)’™* to
smooth the Ir191 and Ir193 DNA channel images, enhancing signal
continuity within cell nuclei. Deep learning tool CellPose was applied
to perform cell segmentation on DNA channels. For images with
unsatisfactory segmentation, ilastik”> was used for semi-supervised
pixel classification; a few cells were manually segmented to train the
classifier for segmenting the entire image. HistoCAT uses cell masks to
compile a cell-by-protein matrix, summarizing pixel intensities for
each cell and protein marker. Cell position was determined by the
centroid position of cell masks obtained from DNA channel
segmentation.

Clustering and differential protein analysis
We applied log-transformation and z-scoring, initially across all cells
and then across all protein markers. Next, we used K-means clustering
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with a high number of random starts (nstart=100,000) for reliable
centroid generation. This was used because K-means promoted
greater tolerance for noise and variation in data processing, was less
sensitive and more robust to outlier expression, and avoided the
generation of ROI (region of interest)-specific clusters. We determined
20 K-means clustering showing robust cluster-specific expression. We
next determined differentially expressed proteins across clusters by
performing all one-vs-one comparisons. Statistical significance was
reached if P<=0.05. We deemed a protein to be differentially
expressed for a cluster C, if the protein is significant in 17 out of 19 one-
vs-one comparisons between C, and C,, where n=1...N excluding k.
After that, each cluster was named by the list of differential markers
expressed in the cluster.

Spatial interaction analysis in IMC

We constructed a Delauney spatial graph for single cells in each ROI and
used it with cluster labels for spatial proximity analysis in the Giotto
pipeline®. Giotto’s Cell Proximity Enrichment tool, coupled with
1000 simulations, identified cell-type interaction enrichment or deple-
tion compared to random simulations with shuffled labels. This analysis
generated a z-score for each cell-type pair, indicating enrichment
(positive z-score) or depletion (negative z-score) of interactions per ROL.
Giotto is a validated pipeline for inferring spatial interactions from
Multiplexed lon Beam Imaging (MIBI), IMC and compatible data. We
have previously illustrated an example of analyzing an MIBI TNBC
dataset” in the Giotto paper®. Next, we conducted group-wise com-
parisons to extract racial group-associated cell-cell interactions (CCls).
For this analysis, race groups were self-reported Black American (BA) or
White American (WA) TNBC patients. We used a mixed linear statistical
model to find the racial group associated CCls. The linear mixed model
accounts for variations derived from patients while allowing each
patient to have repeated observations in the form of multiple ROIs per
patient’. This approach yields more accurate P-values than standard
tests that falsely assume independence between ROIs. We used the Ime4
R package for this analysis™. In this linear model, we write the design
function as “score+ race+(1|patient)”, where score is the interaction
score of a particular cell-type pair in ROI, race is either BA or WA, and
patient is the patient identifier of ROI. Multiple ROIs are associated with
each patient (i.e., making patient the random effect), whereas race is
the main (or fixed) effect. The alternative null model has the design
function “score ~ 1+ (1|patient)” which excludes the race-associated
effect. ANOVA testing was performed between these two models to
select only the interaction pairs whose scores are most affected by race.

Cell Community detection in IMC

Racially distinct cell-cell interactions that pass the FDR cut off 0.20,
with a positive BA-coefficient (for BA-specific CCI) or positive WA-
coefficient (for WA-specific CCI) in the linear model, were selected to
form cell communities. For the selected race-specific CCls, X, con-
sisting of interactions a—b, where q, b are cell type clusters, we form a
graph G where nodes are the clusters, and the edges connect two
clusters if there is a CCI between them. We next obtain connected
components of G, which will result in an initial set of cell communities.
Each community will undergo pruning steps: If a community consists
of just one node with self-interaction, it is removed. If a community
consists of weak “bridging” edges between sub-communities, these
bridging edges are removed, and the resultant sub-communities will
become communities. Such bridging edges are usually apparent from
the topology of the community graph, since there is usually one
bridging edge connecting two sub-communities (if sub-community
structure exists within the community).

Community matching between IMC datasets
Cell community matching is possible between the 3 IMC datasets uti-
lized in this study, since all datasets use the same or similar protein

antibody panel with >90% of antibodies shared across datasets. Thus,
to match cell communities that are found independently from each
IMC dataset, each community is initially reduced to a set of member
cell clusters and further reduced to these clusters’ differentially
expressed protein markers. We next performed matching at the pro-
tein marker levels. The two communities (one in each IMC dataset)
with the highest number of protein marker matches are declared a
matching community. The top-matched communities are termed BA-
Communityl and WA-Community1, respectively, for each race. In the
special case where a community in dataset 1 looks to be a union of two
communities in dataset 2 (which would produce an equally likely
match to each of two communities), we will go to dataset 3 to decide
whether or not to split the community in dataset 1 or join the two
smaller communities in dataset 2 in matching with dataset 1. BA- and
WA-Community1 represent the top-matching community across the 3
IMC datasets. Weaker scoring matches are termed Community2, 3, etc.
Dataset-specific communities are ranked last.

Pre-processing of 10X visium spatial transcriptomics data

We have used Space Ranger to align the reads to human hg38. Following
this, we loaded the resulting HDFS file into Giotto for preliminary ana-
lyses. This includes dimensionality reduction, UMAP (Uniform Manifold
Approximation and Projection), and KNN-based Leiden clustering. We
preprocessed each spatial transcriptomics sample in Bassiouni et al.*°
and in our own TNBC cohorts (used for validation) to generate nor-
malized gene expression matrices per ST sample with Giotto®.

Targeted analysis of spatial transcriptomic datasets

Query co-localization in ST dataset. Each community was converted
from protein names to gene names. The list of gene names in the
community forms a race-specific query, such as BA-community 1. For a
given query, we computed a query co-localization score (QCS) per spot
x per ST sample A by summing the scaled and log-normalized
expression of query genes in the spot:

QCS, 4= > EXpr, 4(q) @

1

lQl 70

QCs, 4, was deemed significant if it exceeded (P < 0.05) the sum-
med score of the randomly shuffled case, whereby the expression of
each query gene was randomly distributed among all the in-tissue
Visium spots in the sample and thus destroys the dependence among
query genes. A per-sample QCS score is next quantified as
QCS,4=1QCS, 4 > QCSgpyffiea, ol Which is equal to the total number of
Visium spots with significant QCS scores. This QCS, was compared
between the BA and WA groups.

Spatial clustering

In addition to QCS, we also quantified a Spatial Clustering score and
conducted cross-query correlation analysis. In the former, to compute
Spatial Clustering, we adopted the silhouette coefficient metric pre-
viously described in Zhu et al.”’ that measures the spatial coherence of
gene expression pattern. Here, the pattern was represented by spots
showing significant QCS (given the label 1) against the background of
remaining spots (given the label 0). Spatial Clustering (6), computed
by silhouette coefficients, was next assessed individually for each
query (i.e., BA-Community-1):

6=1/|Ly| > (m; — ny)/ max(m;, n;) )

s;el;

This silhouette coefficient’ assesses the spatial distance asso-
ciated with two sets, L; (spots given label 1) and L (spots given label 0).
For a given spot s; in set L;, m; is defined as the average distance
between s; and any spotin L, and n; is defined as the average distance
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between s; and any spot in L. For distance, we used rank-normalized,
exponentially transformed distance, which prioritizes local physical
distance between two spots. The distance between spots s; and s; is
defined as r(s;, s;)=1— qrvkai5)-1 where rank(s;,s) is the mutual
rank” of s; and s; in vectors of Euclidean distances {Euc(s;,*)} and
{Euc(s;, *)}. g is arank-weighting constant, set at 0.95. Spatial clustering

was then compared between the BA and WA patient groups.

Derivation of extended signature genes of BA- and WA-
associated communities

To derive extended signature genes (ESGs) of BA- and WA- race-
associated communities, for each community query (say BA-Commu-
nity-1), we stratified the Visium spots per ST sample into interact-high
and interact-low groups based on the QCS score of that community
query per spot. The community-high group consists of Visium spots in
the top 10% of spots with the highest QCS. The community-low group
consists of spots in the bottom 10% with the lowest QCS. These high-
and low-groups were defined per ST sample. Per-sample differential
gene expression analysis was next performed between the community-
high and community-low spots within the ST sample, forming Exten-
ded Signature Genes of the query. Recurrent BA-associated ESGs were
next derived by requiring ESGs to be present in at least 50% of BA
patient samples, and the percentage of BA patients with ESGs as a
signature must be higher than the percentage in WA patients.

Cell-type specific expression of extended signature genes of BA-
and WA-associated niches

We integrated single-cell RNA sequencing data of breast cancer atlas®
with spatial transcriptomics to derive cell-type specific gene expres-
sion profiles in BA- and WA- interaction-targeted niches. The cell-type
specific expression of gene g in cell type ¢, in a niche N that is defined
by WA or BA-Community, shortened as Expr, . y, was derived from:

Exprg’ N =AugExprg’ X Vg, N 3)

where AvgExpr, . is the average expression of g in cell type c in the
scRNAseq data, and V, y is the ST average-subtracted expression of g
in spot s in niche N in 10X Visium sample. Niche is made up of spots in
the community-high group defined earlier. Briefly, V, y is defined as:

Van=Y VExpry  /IN|=> VEXprg /|S| @)

seN se§

Here, VExpr,  is the Visium expression of g in spots. V,, y is the result
of subtracting the background expression (summed over all spots S in
the ST sample) from the niche expression (summed over only spots in
niche N). For cell types, we iterated over all Cancer Associated Fibro-
blasts (CAF), endothelial, Peri-Vascular Like (PVL) cell types, as well as
all subsets of immune cells in Wu et al.?°, and Wigerblad et al.*', and
Alvarez-Breckenridge et al.*?, which provided the neutrophil subsets.

Ligand-receptor pair analysis

We download all human ligand-receptor pairs from CellPhoneDB
database®. We next computed enrichment of ligand-receptor pairs
within ESGs of BA- and WA-associated cell niches by identifying pairs
where both the ligand and receptor genes were present within the
ESGs. This information was mapped to different niches, BA-
Community-1 and WA-Community-1. Ligand-receptor pair results
were next summarized into a cell-type interaction network as shown in
Fig. 6a by the following procedure. The cell-interaction score C/
between two cell types c; and c, is given by:

I(LR, ¢, ¢5)
N(LR) )

Clc,c)=>

LR

Where LR is a ligand-receptor pair - we iterated over all ligand-
receptors that are enriched among the ESGs. /(LR, c;, ¢,) is an indicator
function thatis 1Lif LR is expressed in ¢; and c,, and O otherwise. N(LR)
is the total number of cell type pairs in which ligand-receptor is
expressed, defined as:

N(LR)=> "> "I(LR,¢;, ) (©6)

a &

Overlap analysis with existing TNBC subtype gene signatures
Inflamed, Excluded, and Ignored signatures of TNBC were downloaded
from Hammerl et al.>®> supplementary material. To compare these
existing phenotype signatures with our WA-niche associated ESG sig-
natures, we computed the number of overlapping genes and its sta-
tistical significance using the hypergeometric distribution test.

Gene-set enrichment analysis of niche-genes

We used the g:Profiler®* web server to compute gene-set enrichment
statistics against the gene-set database® compiled by the Bader lab.
This database has compiled all current GO Biological Process, and all
pathway gene sets and continuously updated. We downloaded
Human_GOBP_AllPathways_no_GO _iea.gmt and uploaded it directly to
g:Profiler for enrichment analysis of BA- and WA-associated ESGs.
Default enrichment settings were used for the analysis.

NanoString GeoMx DSP validation analysis

We interrogated the CD45+ immune and PanCK epithelial compart-
ment gene expression matrices to compare the expression level of
race-associated niche genes in TNBC BA and WA patients (see Sup-
plementary Figs. 1 and 2). For each patient and each ROI, a summary
score was computed for each niche-associated ESG gene set based on
summing log-normalized gene expression for all genes in each niche-
gene set. The score was compared between BA and WA samples, and ¢
test statistics (testing WA >BA or BA>WA depending on the niche)
were computed.

10X Visium spatial transcriptomics validation analysis

We validated the niche-specific ESGs by asking whether these ESGs are
higher in BA patients or higher in WA patients in two independent
validation cohorts (19 TNBC, 10 BA and 9 WA, see Supplementary
Figs. 14-17). Specifically, for each community query, BA-Community-1
and WA-Community-1, we extracted community-high and -low spots
per ST sample in our validation cohort. Next, for the corresponding
niche specific ESGs, for each gene g we computed

angxprg, high
Iog2 (aUgEXprg, low @

using the high and low spots that were defined and compared this log-
fold change in BA samples and WA samples in validation cohort.

Kaplan Meier (KM) survival analysis

Survival analysis was performed using the survival R package and
visualized using the ggplot2 package autoplot function. In the BSW-
Discovery and Roswell Park cohorts, survival analysis was done inde-
pendently per cohort based on IMC-derived community profiles
observed in patient ROIs. Specifically for each patient, we derive a per-
community-score as follows: we compute the sum of interaction
scores of the constituent cell-cell interactions of the community,
deriving a community score. Then we sum the community scores of all
BA-identified communities or WA-identified communities, deriving a
community-all score per BA-communities or WA-communities.
Patients are next stratified based on whether the community-all score
of each patient is higher or lower than the average across all patients.
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Kaplan Meier curves were next created using the survival library in R.
We further examined the association between BA- and WA-associated
communities with overall survival in a univariate and multivariate
setting using Cox Proportional Hazard Analysis (Supplementary
Table 2). In the latter, we controlled for age, race and stage.

Cox proportional hazard analysis

We are interested in associating the BA-community and WA-
community scores with patients’ survival in the BSW-Discovery and
Roswell Park Validation cohorts. Each cohort has documented patient
attributes such as age, stage, race, BMI, and mutation status, in addi-
tion to 10-year survival status. We built both univariate models to
examine the association of BA-/WA-Community scores to survival, and
multivariate models to examine these associations while accounting
for covariates such as age, stage, and race. In the univariate setting, the
association was performed by the coxph function in R by setting
“Surv(time,status)-BAscore” where BAscore is the BA-Community score
for the individual patient. In the multivariate setting, the association
was made by setting “Surv(time, status)- BAscore + bmi + age + stage +
race”. This examines the association of BAscore while accounting for
other covariates. Both the aforementioned simple model and the race-
stratified Cox model were attempted (e.g., “Surv(time, status)
~BAscore + bmi + age + stage + strata(race)”), and similar coefficients
and P values were obtained.

Visualization

Spatial gene expression profiles were plotted using the scatter func-
tion in the Python matplotlib library. Correlation maps were plotted
with the seaborn library, the heatmap function, and the plasma col-
ormap. Gene expression heatmaps were plotted with the seaborn
library clustermap function with colormap set to Spectral. Protein co-
localization figures (IMC) were generated for defined cell clusters
using the scatter function. Lastly, we used the lineplot function (sea-
born package) to compare gene expression between WA and BA
groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available within the
paper and its Supplementary Information. The 10X VisiumSpatial
Transcriptomic data of TNBC patients, including the minimum dataset
from the Georgia cohort, has been deposited in Zenodo under the
following URL: https://doi.org/10.5281/zenodo.12797059. The Nano-
string GeoMx data has been deposited into Zenodo under the fol-
lowing URL: https://doi.org/10.5281/zenodo.12752405. The Imaging
Mass Cytometry (IMC) data has been deposited into Zenodo under the
following URL: https://doi.org/10.5281/zenodo.15115492. Source data
are provided in this paper.

Code availability

The codes used to analyze the TNBC disparity data in this study were
developed using R, Python and Shell. The codes used to analyze the
data in this study are deposited in GitHub under the URL link https://
gianzhulab.github.io/suppl/TNBC.scripts/table_of content.html. DOI
has been created from Github: https://doi.org/10.5281/zenodo.
15353111.
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