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Bipartite reweight-annealing algorithm of
quantum Monte Carlo to extract large-scale
data of entanglement entropy and its
derivative

Zhe Wang1,2, Zhiyan Wang1,3, Yi-Ming Ding1,3, Bin-Bin Mao4 & Zheng Yan 1,2

Entanglement entropy (EE) plays a central role in the intersection of quantum
information science and condensedmatter physics. However, scanning the EE
for two-dimensional and higher-dimensional systems still remains challenging.
To address this challenge,wepropose aquantumMonteCarlo schemecapable
of extracting large-scale data of Rényi EE with high precision and low technical
barrier. Its advantages lie in the following aspects: a single simulation can
obtain the continuous variation curve of EEwith respect to parameters, greatly
reducing the computational cost; the algorithm implementation is simplified,
and there is no need to alter the spacetime manifold during the simulation,
making the code easily extendable to variousmany-bodymodels. Additionally,
we introduce a formula to calculate the derivative of EE without resorting to
numerical differentiation from dense EE data. We then demonstrate the fea-
sibility of using EE and its derivative to find phase transition points, critical
exponents, and various phases.

With the rapid development of quantum information, its intersection
with condensed matter physics has been attracting increasing atten-
tion in recent decades1,2. One important topic is to probe the intrinsic
physics of many-body systems using the entanglement entropy (EE)3–7.
For example, among its many intriguing features, it offers a direct
connection to the conformal field theory (CFT) and provides a cate-
gorical description of the problemunder consideration8–27. Using EE to
identify novel phases and critical phenomena represents a cutting-
edge area in the field of quantum many-body numerics. A particularly
recent issue is the dispute at the deconfined quantum critical point
(DQCP)28–30. The EE at the DQCP, e.g., in the J-Q model31,32, exhibits
markedly different behaviors comparedwith those in normal criticality
within the Landau-Ginzburg-Wilson paradigm21,33–37. According to the
prediction from the unitary CFT38,39, the EE with a cornered cutting at
the criticality should follow the behaviors s = al − blnl + c, where s is the

EE and l is the length of the entangled boundary, in which the coeffi-
cient b cannot be negative. However, some recent quantum Monte
Carlo (QMC) studies show that b is negative, which seemingly suggests
that the DQCP in the J-Qmodel is not a unitary CFT, possibly indicating
a weakly first-order phase transition23,35,36. In contrast, another recent
work indicates that the sign of b depends on the cutting form of the
entangled region. For a tilted cutting, b is positive and consistent with
the emergent SO(5) symmetry at the DQCP34. All in all, the relationship
between the EE and condensed matter physics has been growing
increasingly closer in recent years.

However, obtaining high-precision EE via QMC40–50 with reduced
computational cost and a low technical barrier remains a significant
challenge in large-scale quantum many-body computations. Although
many algorithms have been developed to extract the EE7,51–59, some of
which can achieve high precision, the details of these algorithms have
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become increasingly complex. Specifically, the nth order Rényi
entropy is defined as SðnÞ = 1

1�n lnR
ðnÞ
A . The key point in extracting the

Rényi ratio RðnÞ
A = Z ðnÞ

A =Zn is to calculate the ratio of two partition
functions within different space-timemanifolds Z ðnÞ

A and Z n directly51,55.
In commonstudies, people usually fix the Rényi order n = 2 as shown in
Fig. 1a, b. Due to the area law of EE, Rð2Þ

A / e�al decays to zero rapidly in
large systems, where l is the perimeter of the entangled region. Once
the ratio Rð2Þ

A ! 0, obtaining high-precision Rð2Þ
A values by QMC based

on sampling becomes extremely difficult. To overcome this difficulty,
the incrementalmethod of the entangled regionwas introduced51,52. Its
main spirit is one by one adding the lattice sites to increase the
entangled region and multiply the ratio of all these intermediate pro-
cesses to obtain the final ratio. It can be written as:
Rð2Þ
A =Z ð2Þ

A =Z2 =
QNA�1

i=0 Z ð2Þ
Ai+ 1

=Z ð2Þ
Ai
, where the i denotes the number of

lattice sites in the entangled region, i.e., Z ð2Þ
A0

=Z2 and Z ð2Þ
ANA

=Z ð2Þ
A . In this

way, a super small value has been divided into a product of several
larger values. By calculating each intermediate ratio Z ð2Þ

Ai+ 1
=Z ð2Þ

Ai
, high-

precisionRð2Þ
A canbe extracted. The shortcoming of thismethod is that

the number of lattice sites must be an integer, which means the pro-
cess must be split into a finite number of steps, and some ratios
Z ð2Þ
Ai+ 1

=Z ð2Þ
Ai

may still be close to zero even after splitting. Moreover, we
mustnote that the replicamanifold changes during the calculation due
to the intermediate processes in this scheme, which increases the
technical barrier of QMC.

To address the finite splitting problem mentioned above, a con-
tinuously incremental algorithm of QMC has been developed7,54. This
algorithm involves a virtual process described by a general function

~Z
ð2Þ
A ðλÞ, where ~Z

ð2Þ
A ðλ= 1Þ= Z ð2Þ

A and ~Z
ð2Þ
A ðλ=0Þ=Z2. The problem then

becomes calculating the ratio ~Z
ð2Þ
A ðλ= 1Þ=~Z ð2Þ

A ðλ=0Þ, which can be

expressed as
Q

λi
~Z
ð2Þ
A ðλi+ 1Þ=~Z

ð2Þ
A ðλiÞ. Here λ is a continuous parameter

ranging from 0 to 1; thus, the interval [0,1] can be divided into any
number of segments {λi} according to the computational require-
ments. This method improves the calculation of EE to unprecedented
accuracy and enables the study of systems of unprecedented size.
However, the introduction of additional detailed balance (where the
entangled region needs to be varied during the simulation in this
method) imposes specific technical requirements on the code imple-
mentation. Moreover, due to the virtually non-physical intermediate

processes, the results of these intermediate processes ~Z
ð2Þ
A ðλ≠1, 0Þ

cannot be effectively utilized, leading to waste.

In this paper, we propose a simple method that does not alter
the space-time manifold during simulation, and the intermediate
process values are physically meaningful and valuable. High-precision
EE can now be obtained with lower computational cost and a low
technical barrier. Moreover, an efficient scheme for extracting the
derivative of EE is proposed for the first time to probe phase transition
points.

Results
Method
The EE of a subsystem A coupled with an environment B is defined by
the reduced density matrix ρA =TrBρ, where ρ = e−βH/Z and Z =Tre�βH

(H is theHamiltonian). Asmentioned in the introduction, the nth order
Rényi entropy is defined as SðnÞ = 1

1�n ln½Trðρn
AÞ�= 1

1�n lnR
ðnÞ
A , where

RðnÞ
A =Z ðnÞ

A =Zn. The different space-time manifolds of the two partition
functions Z ð2Þ

A and Z2 (considering n = 2) are shown in Fig. 1. From the
above equations, we know that Z ðnÞ

A / Trðρn
AÞ while Z n is the propor-

tional factor. The normalization factor Z n is sometimes not important,
for example, when we are only concerned with the dynamical infor-
mation of the entanglement Hamiltonian (e.g., the entanglement
spectrum)27,60–64. In these cases, only the manifold of Z ðnÞ

A needs to be
simulated. However, when we consider the calculation of the EE, the
factor becomes non-negligible for obtaining the detailed value. In fact,
the hardest difficulty of calculating EE comes from the ratio
RðnÞ
A =Z ðnÞ

A =Zn. This is why the EE algorithms often have to change the
manifold between Z ðnÞ

A and Z n.
Unlike the traditional method that directly calculates the ratio

RðnÞ
A , we calculate Z ðnÞ

A and Z n respectively to avoid the hardness. Let us
introduce why we do not need to change the manifold during the
simulation. Given a distribution function Z ðnÞ

A ðJÞ (where Z ð1Þ
A � Z with-

out losing generality), and J is a general parameter (e.g., temperature,
coupling constants in the Hamiltonian, etc.), the ratio of Z ðnÞ

A ðJ0Þ and
Z ðnÞ
A ðJÞ can be simulated via QMC sampling:

Z ðnÞ
A ðJ0Þ

Z ðnÞ
A ðJÞ

=
W ðJ0Þ
W ðJÞ

� �
Z ðnÞ
A ðJÞ

ð1Þ

where the notation h:::iZ ðnÞ
A ðJÞ indicates that the QMC samplings have

been performed under the manifold Z ðnÞ
A at parameter J. The weights

W ðJ0Þ and W(J) represent the corresponding weights for the same
configuration sampled by QMC, but with different parameters J0 and J,
respectively. This means that we simulate the system at parameter J to
obtain a set of configurations with weight W(J). Simultaneously, we
estimate the corresponding weightW ðJ0Þ by treating the parameter as
J0 for the same configuration. The ratio ofW ðJ0Þ=W ðJÞ can be calculated
for each QMC sample to determine the final average, as given in Eq.(1).

In principle, the ratio Z ðnÞ
A ðJ0Þ=Z ðnÞ

A ðJÞ for any J0 and J can be solved
using themethoddescribed above. However,we need to consider how
tomaintain the importance sampling in ourQMC simulation. Clearly, if
J0 and J are sufficiently close, the weight ratio W ðJ0Þ=W ðJÞ is close to 1,
making it easier to estimate by sampling. The QMC simulation would
be inefficient when the ratio becomes too small or too large. As shown
in Fig. 1c, if we want to use a known distribution Z ðnÞ

A ðJÞ= P
W ðJÞ to

calculate another distribution Z ðnÞ
A ðJ0Þ= P

W ðJ0Þ by resetting the
weights of the samplings, theweights before and after resetting for the
same configuration should be close to each other. In this sense, it
remains an importance sampling when J0 and J are sufficiently
close65–68. Therefore, we introduce the continuously incremental trick

Fig. 1 | A geometrical presentation of two partition functions within different
space-time manifolds. a Z ð2Þ

A =Tr½TrBe�βH �2 and b Z2 = ½Trðe�βH Þ�2, where H is the
Hamiltonian of the system. a The entangling regions A of two replicas are glued
together along the imaginary time direction and the environment regions B of
replicas are not connected each other. While the glued region is zero, it becomes
back to Z2 as shown in (b). c Reweighting a distribution: the sampled distribution
(black, before reweighting) is used to reweight another distribution (blue, after
reweighting), which is reasonable if these two distributions are close to each other,
as the importance sampling can be approximately kept.
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to address the issue:

Z ðnÞ
A ðJ0Þ

Z ðnÞ
A ðJÞ

=
YN�1

i =0

Z ðnÞ
A ðJi + 1Þ
Z ðnÞ
A ðJiÞ

ð2Þ

where J0 = J and JN = J0, with other Ji values incrementally between the
two. Thus, QMC can maintain importance sampling through this
reweight-annealing approach66,68.

In thisway,weare able toobtain any ratioZ ðnÞ
A ðJ0Þ=Z ðnÞ

A ðJÞ in realistic
simulations even when the J0 and J are far away. However, it still cannot
yet give a solution of Z ðnÞ

A ðJ0Þ=ZnðJ0Þ. The antidote comes from some
well-known points. Considering that we have calculated the values of
Z ðnÞ
A ðJ0Þ=Z ðnÞ

A ðJÞ and Z ðJ0Þ=Z ðJÞ from the method above, the problem
½Z ðnÞ

A ðJ0Þ=ZnðJ0Þ= ?� can be addressed through a known reference point
Z ðnÞ
A ðJÞ=ZnðJÞ. A simple reference point is that Z ðnÞ

A ðJÞ=ZnðJÞ= 1 when the
ground state is a product state ∣Ai � ∣Bi. A product state is easy to
achieve, for example, by adding an external field in a spin Hamiltonian
to polarize all the spins. Of course, other known reference points are
also acceptable, such as the state at infinite temperature or a point
obtained through other numerical methods.

One might be concerned about how to deal with a Hamiltonian
without a product state in its limit of parameters. An easy approach is
to reduce the coupling betweenA andB to 0, allowing the ground state
to become a product state ∣Ai � ∣Bi (in this case, the EE reduces to the
thermal Rényi entropy of isolated A, as discussed in Supplementary
Note 5). In fact, the method of connecting to a reference point is
varied. For example, one can anneal the couplings between separated
parts solvedby exactdiagonalizationor hand-weaving fromzero to the
target value, then the problem has also been addressed. In the Sup-
plementary Note 5, we presented an example where the EE is calcu-
lated by annealing the system size starting from the EE of a small
system that can be exactly diagonalized.

Now the parameter of the incremental process is continuously
tunable, different from the non-equilibrium method7,54, the incre-
mental path of ourmethodbecomesphysical andmeaningful. It can be
set as the real parameter path of a concerned Hamiltonian. In other
words, under similar computational cost, the previousmethod obtains
a single point of EE, while ours gains a curve of EEs. A lot of EEs can be
obtained in a single simulation, as the number of iterations in the
incremental process scales as ~ βLd (d is the space dimension, details
are in the Supplementary Notes 2 and 3). We will demonstrate that the
method is useful for determining the critical points and critical expo-
nents by scanning the EE (see the following section) (It is worth noting
that if the goal is to captureunknownphase transitions by scanning the
EE without requiring the exact value, the number of iterations can be
significantly reduced according to your needs.)

Additionally, we derived a formula to calculate the derivative of
the EE (see Eq.(5) in the following section), which does not require
numerical differentiation from the dense data of EEs and is as simple as
computing the fluctuation of energies in different space-time mani-
folds. The scheme introduced above does not rely on specific, detailed
QMCmethods andmany-bodymodels. To further understand and test
its performance, we will use the spin-1/2 dimerized antiferromagnetic
(AFM) Heisenberg model69,70 as an example in the following. We will
use the stochastic series expansion (SSE) QMC method, which we are
familiar with, to analyze the model40–44,71.

Dimerized Heisenberg model
We simulate a spin-1/2 dimerized AFM Heisenberg model on a two-
dimensional (2D) square lattice as an example to obtain its EE. The
Hamiltonian is given by

H = J1
X
hiji

SiSj + J2
X
hiji

SiSj ð3Þ

where 〈ij〉 denotes the nearest-neighbor bonds; J1 and J2 are the
coupling strengths of the thin and thick bonds, respectively, as shown
in Fig. 2. Its ground-state phase diagram (Fig. 2c) has been accurately
determined by previous QMC studies69,70 where the inverse tempera-
ture β = 2L is sufficient to achieve the desired data quality with high
efficiency. In the following simulations, we fix J2 = 1 and tune J1 from 0+

to 1. It is worth noting that the ground state is a dimer product state
when J1→0, where the Z ðnÞ

A =Zn = 1 if the dimers are not cut by the
entangled edge.

In the SSE framework, the Eq.(1) becomes72

Z ðnÞ
A ðJ10 Þ

Z ðnÞ
A ðJ1Þ

=
J10
J1

� �nJ1
� �

Z ðnÞ
A ðJ1Þ

ð4Þ

where nJ1
is the number of J1 operators in the SSE sampling, regardless

of whether the space-timemanifold Z ðnÞ
A or Z ð1Þ

A � Z being simulated66.
The details of this equation can be found in Supplementary Note 2.

In the realistic simulation, we need to calculate
Z ð2Þ
A ðJ10 Þ=Z ð2Þ

A ðJ1 = 0+ Þ and Z ðJ10 Þ=Z ðJ1 = 0+ Þ respectively. We then obtain
the final ratio ½Z ð2Þ

A ðJ10 Þ=Z2ðJ10 Þ� based on ½Z ð2Þ
A ð0+ Þ=Z2ð0+ Þ�= 1.

Cornerless cutting
Firstly, we calculate the EE with cornerless cutting as shown in Fig. 2a.
According to previous works21,23,24, only the entangled edge without
cutting dimers (thick bonds) gives correct results consistent with CFT
predictions. In Fig. 3a, wepresent several curves of EEdata for different
values of J1. The fitting data based on area law are shown in Table 1.
According to theoretical prediction73, −b =NG/2 = 1 in theNéel phaseof
the spin-1/2 dimerizedHeisenbergmodel,whereNGmeans the number
of Goldstone modes. Our calculations provide consistent results, as
shown in Table 1 with −b ~ 1 at J1 = 1.0, 0.9, 0.8, 0.6. In addition, the
theoretical calculation74 points out that the −b =0 at theWilson-Fisher
O(N) quantum criticality of d ≥ 2 systems. Our result at Jc in the table
also supports this prediction. We further provide a graph of −b as a
function of J1 with some discussions in the Supplementary Note 6. We
note that recent works75 have found that the finite size effect in the
spin-1/2 AFM Heisenberg model is strong, which notably affects the
fitting of the parameter −b = 1, and a good fitting needs some more
corrections considering the finite size effect. However, wefind that the
simple fitting is not bad in our results. The reasonmay be that the total
system we chose is a rectangle, while the region A is a square, whereas
they chose a square total system and a rectangular region A. Other
QMCworks with similar cutting choice as ours also obtains −b~1 using

Fig. 2 | Spin-1/2 dimerized AFM Heisenberg model on 2D lattices. The strong
bonds J2 > 0 are indicated by thick lines. The weak bonds J1 > 0 are indicated by thin
lines. a The entanglement region A is considered as a L × L cylinder on the 2L × L
torus with smooth boundaries and with the length of the entangling region l = 2L.
b The entanglement region A is chosen to be a L

2 × L
2 square with four corners and

boundary length is l = 2L. c The diagram of the model setting strong bonds J2 = 1 in
which quantum critical point (QCP) is J1 = Jc =0.52337(3)69.

Article https://doi.org/10.1038/s41467-025-61084-7

Nature Communications |         (2025) 16:5880 3

www.nature.com/naturecommunications


the non-equilibrium algorithm, but in larger sizes7,23. Our temperature
setting β = 2Lmay coincidentally help us approach the correct number
of Goldstone modes even in smaller sizes.

Another advantage of our method is the natural ability to
obtain the EE for different parameter values, as shown in Fig. 3b. This
allows QMC to probe phase transitions by scanning the EE in 2D and
higher-dimensional systems, similar to how the density matrix
renormalization group does in 1D76–80. In Fig. 3b, the convexity of the
function changes at the critical point, which is more clearly seen in
the derivative of the EE (Fig. 3c). In the following section, we will
introduce a much simpler method to calculate the derivative of the EE
without an incremental process and show that the peak of the deri-
vative is located at the QCP. It is worth noting that sometimes the
original EE function directly probes the phase transition, while other
times the derivative does, which will be carefully discussed in our
upcoming work81.

Cornered cutting
For the cornered cutting case, the value b~0.08 at the (2+1)D O(3)
quantum criticality is also known according to previous theoretical

and numerical works21,23,82–84. In Fig. 3e, the fitting yields a consistent
result of b =0.08(1) at Jc. Similar to the cornerless case, the EE for J1 also
displays a change in the convexity at the QCP, as shown in Fig. 3f.
Combined with the data of EE’s derivative and the fitting of critical
exponent presented in the next sections, we will find that the shape of
the entangled region has little effect on extracting the critical point
and critical exponent of the system.

EE derivative
It has been proved in the Supplementary Note 1 that the derivative of
the nth Rényi EE can be measured in the form:

dSðnÞ

dJ
=

1
1� n

�nβ
dH
dJ

� �
Z ðnÞ
A

+nβ
dH
dJ

� �
Z

" #
ð5Þ

where J is a general parameter, n is the Rényi index, the first average is
simulated on themanifold of Z ðnÞ

A and the second is based on Z. Taking
the spin-1/2 dimerized Heisenberg model as an example, with fixed
J2 = 1 and n = 2, and adjustable parameter J1, the Eq.(5) becomes:
dSð2Þ=dJ1 = 2βhHJ1

=J1iZ ð2Þ
A

� 2βhHJ1
=J1iZ where HJ1

denotes the J1 term of
the H. Since H is a linear function of J1, this transformation is
straightforward. In the SSE framework, this measurement is similar to
measuring energy, which is very simple. Thedetails can be found in the
Supplementary Note 1.

This conclusion inspires us thatwedo not need to calculate dense
data of EE to obtain the derivative numerically. Instead, simulating the
average, 2βhHJ1

=J1iZ ð2Þ
A

� 2βhHJ1
=J1iZ , at the J1 value we concerned is

sufficient. We found a similar approach has been used in calculating
the derivative of Rényi negativity with respect to the inverse
temperature85. Using this method, we have calculated how the deri-
vative of EE goes with J1 in Fig. 3c, g, the peaks of EE derivative locate at
the QCP.

Fig. 3 | 2nd Rényi entanglement entropy S(2) of the spin-1/2 dimerized Heisen-
bergmodel. The entanglement regionA is either cornerless [(a), (b), (c) and (d)] or
cornered [(e), (f), (g) and (h)]. The cornerless/cornered cutting is shown in Fig. 2a/b.
a The relation between S(2) and entangled perimeter l under different couplings J1.
The fitting results are listed in Table 1. e S(2) versus l at the QCP J1 = Jc =0.52337. The

fitting result is S(2)(l) = 0.083(1)l−0.08(1)lnl +0.19(2) with R/P–χ2 are 0.85/0.56.
b, f Scanning S(2) along couplings J1 of different l to identify the critical point.
c, g The derivative of S(2), dS(2)/dJ1 goes with the coupling J1 in different l. The peaks
of dS(2)/dJ1 appear at the QCP Jc. d, h Area-law prefactor a versus J1. The red curve is
the fitting of ∣a(J)−a(Jc)∣~∣J−Jc∣ν.

Table 1 | Fitting results for the data in Fig. 3a with
S(2)(l) = al−blnl + c

J1 a −b −c R/P–χ2

1.0 0.089(2) 1.05(4) 1.61(9) 1.00/0.40

0.9 0.085(2) 1.02(3) 1.54(7) 0.54/0.71

0.8 0.079(2) 1.06(5) 1.6(1) 1.55/0.19

0.6 0.072(2) 1.06(5) 2.0(2) 1.93/0.10

0.55 0.078(3) 0.8(1) 1.6(2) 3.16/0.02

0.54 0.08(1) 0.6(1) 1.2(2) 2.49/0.04

Jc = 0.52337 0.08(1) 0.15(17) 0.1(5) 2.02/0.1

Reduced and p value of χ2 (R/P–χ2) are also listed.
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In fact, this measurement of EE’s derivative also points out
another way to calculate the EE through an integral:

SðnÞðJ0Þ=
Z J0

J0

dSðnÞ

dJ
dJ + SðnÞðJ0Þ ð6Þ

where dS(n)/dJ can be obtained from Eq. (5), and the EE S(n)(J0) at the
reference point should be known. We demonstrate the equivalence of
the two methods (Eq. (4) and Eq. (6)) by taking the spin-1/2 dimerized
Heisenberg model as an example, as shown in Fig. 4, both in the cor-
nerless and cornered cases.

We note that Jarzynski’s equality86 can also be used in our meth-
ods, similar to the previous non-equilibrium algorithms7,54. However,
we found that there is almost no acceleration effect for the non-
equilibrium version compared with the equilibrium QMC (Zhe Wang,
Zhiyan Wang, Yi-Ming Ding, Zheng Yan, et al. In preparation).

EE and critical behaviors
Most previous works have focused on studying the scaling behavior of
EE at a known QCP. In this section, we aim to use EE to probe the QCP
and extract the critical exponent ν of a system. We first consider using
the parameter position corresponding to the peak of the EE’s deriva-
tive to determine theQCPof the system. As shown in Fig. 3, it is evident
that the peaks of the EE’s derivative gradually approach the QCP as the
system size increases. We try to obtain the value of the QCP by
extrapolating it (see Supplementary Note 7). We find Jc =0.521(2) for
cornerless cutting (dashed line in Fig. 3c) and Jc =0.521(3) for cornered
cutting (dashed line in Fig. 3g), which are consistent with the previous
result Jc =0.52337(3) within the error bar69. Performing a fitting of
s = al − blnl + c, we extract in particular the leading area-law coefficient
a, which is shown in Fig. 3d, h as a function of J1 for both cornered and
cornerless cutting. The figures show that a exhibits a non-monotonic
behavior as a function of J1 and develops a local maximum at the
phase transition point. Similar behavior has been observed in the
pioneeringwork84, but inwhich thenormalQMCalgorithmcostsmuch
more computational resources. The behavior of a in the vicinity of Jc
follows an algebraic scaling (considering a (2 + 1)D O(N) QCP):
∣a(J) − a(Jc)∣ ~ ∣J − Jc∣ν, where ν is the correlation length exponent74,84. We
are now using this algebraic scaling to extract the critical exponent.

Let us first consider the case without corners. Setting Jc and ν as
free fitting parameters, we found that Jc = 0.53(1) and ν =0.88(9). The
value 0.53(1) is consistent with 0.52337(3), while ν =0.88(9) is slightly
larger than the (2 + 1)DO(3) universality class ν =0.710(2)69.We thenfix
Jc =0.521 obtained from the EE’s derivative above and found
ν =0.708(31), which is consistent with ν = 0.710(2). For the cornered
case, we found Jc =0.526(2) and ν =0.701(16) when setting Jc and ν as
free fitting parameters, which are consistent with Jc = 0.52337(3) and
ν =0.710(2) within error bars. Note that the above fits are all based on
the data smaller than the QCP (J1 < Jc), because the data larger than the
QCP are non-monotonic and difficultly give meaningful results
through fitting. Using the known QCP and critical exponent, previous
work has already validated ∣a(J) − a(Jc)∣ ~ ∣J − Jc∣ν84. Our method, which
naturally generates dense data, can be used to effectively extract the
QCP and critical exponent.

Discussion
Overall, we develop a practical and unbiased scheme with low tech-
nical barrier to extract the high-precision EE and its derivative from the
QMC simulations. The space-time manifold does not need to be
changed during the simulation, and the measurement is a simple
diagonal observable. The quantities obtained from intermediate
measurements are physical, whichmakes it possible for QMC to probe
novel phases and phase transitions by scanning the EE over large-scale
systems in a wide parameter region.

Taking the spin-1/2 dimerized Heisenberg model as an example
and scanning along the path from the dimerized phase to the Néel
order, we found that a peak of EE’s derivative instead of EE itself arises
at the phase transition point. We have successfully extracted the uni-
versal coefficient of the sub-leading term of EE both at O(3) criticality
and in the continuous-symmetry-breaking phase. Our results demon-
strate that EE and its derivative are useful information-theoretic mea-
sures of quantum phases and criticalities. In addition, our method is
not limited to boson QMC, but can also be applied to other QMC
approaches, such as the fermion QMC for highly entangled quantum
matters87.

Methods
Wehavedeveloped thebipartite reweight-annealing algorithmofQMC
in this work. Details have been explained in the main text.

Data availability
The data that support the findings of this study are available at https://
github.com/ZheWang-WestLake/Bipartite-reweight-annealing.

Code availability
All numerical codes in this paper are available from the authors.
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