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The topological properties of the protein
universe

Christian D. Madsen 1,2, Agnese Barbensi1, Stephen Y. Zhang1,2, Lucy Ham1,2,3,
Alessia David 4, Douglas E. V. Pires 5,6,7 & Michael P. H. Stumpf 1,2,3

Deep learning methods have revolutionised our ability to predict protein
structures, allowing us a glimpse into the entire protein universe. As a result,
our understanding of how protein structure drives function is now lagging
behind our ability to determine and predict protein structure. Here, we
describe how topology, the branch ofmathematics concernedwith qualitative
properties of spatial structures, provides a lens through which we can identify
fundamental organising features across the known protein universe. We
identify topological determinants that capture global features of the protein
universe, such as domain architecture and binding sites. Additionally, our
analysis identifies highly specific properties, so-called topological generators,
that canbeused toprovidedeeper insights into protein structure-function and
evolutionary relationships. We present a practical methodology for mapping
the topology of the knownprotein universe at scale.We then use our approach
to determine structural, functional and disease consequences of mutations.
Our approach reveals andhelps to explain differences in properties of proteins
in mesophiles and thermophiles, and the likely structural and functional
consequences of polymorphisms in a protein. For eukaryotes we find striking
differences between protein topologies in multi-cellular and single-celled
organisms.

Proteins are the executors of cellular function and the main building
blocks of cellular structures. Each protein within the protein universe,
defined as a collection of all proteins from all organisms, has a three-
dimensional (3D) shape (or an ensemble of 3D shapes for a subset of
proteins that contain regions of intrinsic disorder), usually referred to
as protein structure. One of the main principles of protein science is
that the shape of the protein determines its function; therefore,
determination of the protein structure has been a core interest in
molecular biology over the last seven decades. Collectively, structural
biology, structural bioinformatics, and, more recently, deep learning
approaches have jointly amassed vast amounts of exquisitely detailed

data1–4. AlphaFold2, together with a growing suite of similar tools,
represents one of the latest breakthroughs in this area. AlphaFold2 is a
deep learning model for predicting protein structures that has out-
performed accuracy and volumeof other protein structure predictions
methods. Currently, the AlphaFold2 database contains models for
more than 214million unique proteins across all kingdoms of life, thus
likely covering almost the entire protein universe. Direct analyses of
this many structures has thus far been impossible. Capitalising on the
vast computational advances in sequence alignments (e.g.,MMseqs25),
it is now possible to use sequence information as a guiding principle
for the analysis of the AlphaFold2 database. This allows, for example,
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sequence-based clustering of structures6, or sequence-based cluster-
ing followed by structural alignment of a subset of AlphaFold2
structures7. The combination of structural bioinformatics and deep
learning has been recognised with the 2024 Nobel Prize in Chemistry.

However, the majority of commonly used tools for analysing
protein structures and extracting comprehensive and overarching
principles governing protein structure and function have been devel-
oped to handle much smaller datasets (with notable exceptions, c.f.8),
and to our knowledge, no tool has yet been applied in a structural
analysis of the entire AlphaFold2 database. This highlights the need for
developing new methods that can be applied for such analyses to
unravel the organising principles of the protein universe.

Protein structures can be described in terms of topology, a pow-
erful framework for understanding connectivity and arrangement of
secondary structural elements (e.g., α-helices, β-strands and β-sheets)
within a protein9. Mapping of these secondary structural elements and
their relationships provides a reductionist view of complex 3D struc-
tures of the proteins, and represents a powerful strategy for identify-
ing recurring motifs, spatial arrangements and functional regions
within proteins from different organisms and/or protein families10,11.
Therefore, analysis of protein topological features is a cornerstone of
protein science that is often used to understand protein structure-
function relationships, deduce evolutionary relationships, and engi-
neer proteins with novel functions.

In mathematics, topology is the field that focuses on qualitative
features of spatial structures. Qualitative features of spatial structures
include: connectedness, and holes or voids12. Topology considers any
two structures to be identical if they can be turned into one another by
stretching, twisting, bending the structures, but not cutting or gluing
them. The advantage of the topological perspective is that it allows
identification of features that are not strongly dependent on the
(spatial or temporal) scale at which data are interrogated. In terms of
proteins, two proteins that bind the same ligand through similar
interactions and similar pockets can be regarded as topologically
equivalent, irrespective of their size or detailed global tertiary struc-
ture. Therefore, using mathematical topology formalisms to analyse
protein structures could enable the detection of hidden (or latent)
structures in complex multidimensional data13.

This might seem vague and unhelpfully general, but the topolo-
gical perspective has proven advantageous in many settings. Two
examples come from physics, and, more recently and pertinently in
the present context, topological data analysis (TDA). In physics,Morse
theory and Floer homology give exquisite structures to the laws of
quantum field theory and cosmology14–16. Recently, TDA emerged as a
new approach in mathematical topology (i.e., topology)17,18. The
essence of TDA lies in analysing the shape of data using algebraic
concepts. The most effective approach to do that is persistent
homology (PH)19,20, a computational tool that transforms scattered
points into a sequence of revealing shapes, to identify the system’s
features that persist across different scales. When applied to spatial
objects (e.g., protein structures), this corresponds to analysing how
the system’s shape evolves, as its data points become increasingly
more spatially extended, overlap and create changing patterns. Thus,
PH tracks topological features as they appear and vanish over the
course of this spatial filtration, and uses persistence, the measure of
how long the feature exists, to distinguish robust signal from noise, as
the longer a feature persists, the more reliably it captures a feature of
the data13,20. The collection of these features, together with their per-
sistence values, are used as descriptors of the underlying system and
have proven extremely effective for clustering, parameter inference,
and pattern detection in natural and physical systems21–24.

Here, we develop, optimise, and implement a PH-based TDA
method to analyse all 214 million structures predicted by
AlphaFold22,25. We use this approach to statistically derive organising
principles, topology-function relationships, and to obtain a

topological “tour guide” to the vast AlphaFold2 resource. In this
manner, we address the key need for the field and present a systematic
strategy for analysing the currently largest protein structure dataset in
a way that yields insights into structure-function relationships and
protein evolution at an unprecedented scale.

Results
Developing a pipeline for topological analysis of protein uni-
verse reveals its topological richness
A recent advance in PH is the ability to efficiently determine “homology
generators”26 and to analyse them systematically27. Topology generators
pinpoint the specific aspects and regions in the data that are responsible
for the creation of topological features. At the level of a single protein,
topology generators may reveal groups of highly interacting amino
acids that form higher-order structural features, e.g., specific
conformations28, or entanglement in knotted proteins29. Here, we
extended this methodology to analyse more than 214 million protein
structures available in the AlphaFold2 database. In order to be able to
handle the unprecedentedly large set of topology generators, we
developed computational processes for bulk persistent homology cal-
culation and to improve memory requirements. The subsequent analy-
sis of the topological output follows the approachdeveloped in27,29 using
the pipeline in Fig. 1B and Supplemental Fig. 3. As can be seen, in Step 1,
wemodel each protein structure via the α-carbon atoms to generate the
point cloud representation of the structures. The point cloud repre-
sentation has the advantage of reducing the complex 3D shape into a
single point in the (x, y, z) coordinate space for each given residue. The
point cloud is used as an input for PH pipeline to compute persistent
diagrams and topology generators that provide information about
persistence (signal strength or relative relevance/contribution) of each
topological feature (in dimensions 1 and 2, i.e., loops and voids) and
interpretation of abstract topological information as local features of
the data, respectively (Step 2, Fig. 1B). Thus, the output of this step are
topological features, together with their persistence, with each amino
acid having the potential to contribute to several, distinct topological
features, with different persistence values (Step 3). To understand how
important a single region is in affecting the topology of the protein, we
compute the point-wise “topological influence score” (TIF), which pro-
vides a ranking of amino acids based on the persistence of their con-
nections (Step 4). TIFs are computed as normalised centrality values on
the network of topology generators27, and the TIF values are higher for
residues colocated in significant topology generators, see also Supple-
mentary Section 1. Collectively, these steps required circa 10,560 CPU
hours, performed on Oracle Cloud Compute (see “Methods”). These
computations yielded more than 9.85 terabytes of topological data and
mapped the topologyof thecurrently knownproteinuniverse,whichwe
have made freely available online (see ”Methods”).

To examine the resulting data in the broadest and most general
context, we use it to construct the topological tree of life (Fig. 1A). The
tree is visualised as a circle packing plot, with the area of the circle
corresponding to the number of AlphaFold2 predicted structures
available for each species. Next, we connect and rank each genus and
related them one genus at the time, so that the area of higher ranks is
approximately representative of the number of structures (Fig. 1C).
The threedomains of life, bacteria, archaea, and eukaryotes, are all well
represented in the topological tree of life, and include organisms with
vastly varying proteome sizes. Furthermore, we are able to map the
topological richness for each protein, each organism, and across
domains (areas of low richness in light colours, areas of high richness
in dark colours, (Fig. 1D). Topological richness is the measure of how
many unique, persistent topological features each protein has, aver-
aged across all proteins and normalised by number of residues. We
observe that, comparatively speaking, bacterial and archaeal proteins
exhibit lower topological richness, whereas eukaryotes exhibit several
areas of heightened richness, especially within the mammalian class.
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Fig. 1 | The protein universe is topologically rich. The 214M AlphaFold2 protein
structures, organised by species and plotted as a tree of life (A). Their topological
analysis (sketched in the purple box, B) reveals intricacy and variety of topological
features and a remarkable complexity across the evolutionary tree, which we
represent using a circle packing plot. The area of each circle is proportional to the
number of proteins grouped in it (C). Circles saturation represents average topo-
logical richness, which is also shownnumerically for domains, kingdoms, phyla, and
selected species of interest. The average richness is approximated here by

normalising by group-averaged protein size. The colour scale has the upper bound
set by the 95% quantile to ignore outliers and emphasise differences, and has
domain averages indicated by black lines (D). Boundaries of circles are coloured by
topological variance (E). Zooming into humans, each protein is shown as a dot, with
colour saturation proportional to its topological richness. Haemoglobin (G) is
plotted showing its most persistent one-dimensional (left, a loop) and two-
dimensional (right, a void) topological features (H), and below with amino-acids
coloured by their topological influence score (I), with a white-blue-purple scale (F).
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A couple of notable highlights among species include Acinonyx
jubatus (cheetahs) and Pipra filicauda (wire-tailed manakin), while
humans are outliers among other mammals in terms of their relatively
low richness value. It might seem surprising that humans show a lower
richness thanother species in their class.However, similarly to the case
of gene count, which were found to be unexpectedly low for humans,
this arguably reflects that topology is just one among many ways to
assess complexity. In this specific case, human complexity at the
protein level is equally or more likely to arise from intricate layered
regulation and developmental programmes30, alternative splicing, and
the complexity of the protein-protein interaction network31.

The curation of topological properties for millions of proteins
provides a unique opportunity to quantify protein properties emer-
ging at the scale of the known protein universe. For entire domains of
life a pattern emerges differentiating eukaryota from bacteria and

archaea (Fig. 2). By focusing on topologically rich proteins, we observe
a slight shift in the distributions for each domain of life (see Fig. 2A).
Eukaryotic proteins appear to havemore intricate structures, while the
predicted archaeal structures contain more topology with lower
intricacy. Topological richness is defined with a high threshold for
counts of “loops”, which means most protein structures have richness
scoring equal or very close to zero, and are excluded from the density
plot (see Table 1 for protein richness counts).

By comparing the average number of loops and voids an amino
acid in a given protein belongs to, we find that eukaryota containmany
protein examples with large membership (Fig. 2B). For bacteria and
archaea, by contrast, we find amore even, flatter distribution. We next
consider the sizes of the largest loops and voids in each protein (see
Fig. 2C). Again, the eukaryota stand out. We estimate the size of the
largest loop as the simplex count divided by the number of residues.

Fig. 2 | Topological feature distribution of 166 979 444 high quality structures.
Topological richness for high-quality proteins exhibits a slight shift for proteins
from each domain with non-zero richness (A). Shown on a log-scale, see Table 1 for
the numbers of excluded zero-valued entries. Number of topological representa-
tives – either “loops” or “voids” – normalised by protein length to indicate the
average residue’s topological feature membership (B). Size of the single largest
loop and void in terms of the number of simplices normalisedby protein length (C).
For loops, this roughly corresponds to the fraction of a protein contained in its

largest loop. Equalweight is given to each species in calculations of all subfigurebin
frequencies. Each density plot is a scaled histogram, scaled such that the total area
sums to 1. Low-quality structures were filtered out with the threshold mean
pLDDT > 70. We find that proteins from eukaryotes have different topological
tendencies and typically exhibit higher topological complexity than proteins from
the other two domains of life. Source data are provided as a Source Data file in
Source_data/source_data_Figure2ABC.tsv.

Table 1 | Topologically rich proteins from each domain

Domain Proteins Species > 0 (%) = 0 (%) Species with = 0 (%)

Archaea 4,975,906 4023 409,714 (8.2) 4,566,192 (91.8) 3993 (99.3)

Bacteria 130,756,331 89,257 12,986,045 (9.9) 117,770,286 (90.1) 85,347 (95.6)

Eukaryota 31,247,187 727,810 9,917,824 (31.7) 21,329,363 (68.3) 711,484 (97.8)

Proteins: number of protein structures. Species: number of species taxonomy identifiers. > 0: number of topologically rich proteins, i.e., proteins with non-zero topological richness. = 0: number of
proteins excluded from Fig. 2A. Species with = 0: number of species containing at least one protein structure with topological richness equal to zero.
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For loops, this translates into the fraction of a protein sequence that is
contained in the largest loop. Eukaryotic proteins appear to have less
of their structure contained in a single loop or void, and tend to show
increased topological complexity with multiple loops/voids. For bac-
teria and archaea, the distributions over topological features are, by
contrast, relatively uniform.

A yet more striking observation are the pronounced peaks in the
eukaryotic distributions, whereas the distributions of bacteria and
archaea are generally uniform. At this scale of analysis, a uniform
distribution appears more intuitive, as millions of proteins from dis-
tinct species are aggregated. The sharp peaks for eukaryota are
unexpected, and may allude to a very specific level of protein com-
plexity favourable to achieve the intricate regulations within multi-
cellular lifeforms. To explore this further, the eukaryotic data was
divided into two sub-groups for further analysis: one group, repre-
senting multicellular organisms (approximately), was formed by tak-
ing all proteins from the Metazoa and Embryophyta (informally,
animals and land plants); the remaining eukaryotic proteins were
assigned to the other group. The pronounced peaks in Fig. 2 are
confined to the first grouping corresponding (approximately) to the
multicellular organisms (see Supplementary Fig. 17). We should note
that possible biases in the dataset (e.g., those caused by an over-
studied protein family) might be a factor contributing to such peaks.
However, becausewe assign equalweights to the species contributing
to the distribution, we safeguard against highly studied eukaryotic
model organisms skewing the results.

The results in Fig. 2 are normalised by species, meaning that each
species is weighted equally. If this had not been the case, model
organisms would greatly skew the figures in their favour due to the
massive efforts by the research community in sequencing their gen-
omes.Wefind that eukaryoticmodel organismshave lower complexity
when compared to the species-wise distributions, which can also be
seen fromTable 2, wherewe list individualmodel organisms. For some
model organisms, this observations makes perfect sense: they may
have specifically been selected asmodel organisms for their simplicity,
and the protein topology could reflect this. InterestinglyHomo sapiens
is an outlier among themodel organismsand the distribution hasmore
pronounced peaks.

Wemapped the topological variance (Fig. 1E), which can be taken
as a measure of the evolutionary robustness of topological char-
acteristics. The topological variance is computed as the variance of the
number of 1-dimensional topological features in a given circle, nor-
malised by the number of proteins in the circle. The variance is shown
in the figure as the outline colour of discs, using a black-yellow colour
code. Similarly to richness, topological variance is higher for eukar-
yotes than for Bacteria and Archaea. This is particularly evident in
insects, especially at the species level, and suggests an increased
diversity in their topological features. On the other hand, when var-
iance is consistently low across ranks (as for Bacteria), this could be
interpreted as topological complexity levels being preserved through
evolution.

Lastly, we mapped TIFs onto all proteins, which provides insights
at the residue level (Fig. 1F and I). In each protein structure, TIF values
quantify how topologically important individual residues are; this, in
turn, leads us to identify structurally significant regions, and potential
locations for candidate damaging mutations, as we show in Section
Topological analysis detects protein regions enriched for disease-
associated mutations.

We can zoom in on individual proteins such as human hae-
moglobin subunit alpha (Fig. 1G), where our analysis identified its
most persistent loop and void (Fig. 1H), and how they influence the
topology as measured via TIFs (Fig. 1I). Taken together, our method
offers a powerful, flexible, and timely tool for analysing topology of
theprotein universe. Applying our pipeline to thewhole AlphaFold2, a
databasewith close to a quarter of a billion protein structures, reveals

both the intricacies and variety of topological features across the tree
of life.

Topological analysis of the protein universe enables nuanced
protein structure analysis
Wehave recently shown that PH canbe analysed using network theory,
which reveals further relationships between topological features27. To
extract further insights from our topological map of the protein uni-
verse, we interpret protein topology via networks, where edges are
defined by loops (dimension 1) and voids (dimension 2). In this fra-
mework, intensity and overlaps of these connections induce a group-
ing of amino acids into units, which we call “topological clusters”
(Fig. 3). This approach allows us to capture global structural properties
of the protein universe that detect characteristics that are beyond
conventional protein structure analysis strategies.

For example, we observe that topological clusters of dimension 1
(loops) are closely associated with protein domains relating to semi-
independent units of folding, as classified by the CATH Protein
Structure Classification Database32. We illustrate this by examining
more closely the relationship between CATH domains (Fig. 3A) and
topological clusters (Fig. 3B) of a protein kinase (UniProt33 IDQ4DF08)
as a representative example. We note that in this case, as well as many
others, topological clusters of dimension 1 capture the essence of
CATH domain classification; more specifically, we note that here a
single CATH domain is partitioned into multiple topological clusters:
the topological analysis refines on the resolution provided by domain
assignments. We used the homogeneity score to quantify whether the
topological clusters of dimension 1 provide an exact subdivision of
CATH domains (score = 1), or whether the two partitions are com-
pletely unrelated (score = 0).We analysed 38,171 AlphaFold2 structural
predictions, representing different protein families, domains, and
organisms (Supplementary Table 2), which correspond to all non-
redundant, high-confidence AlphaFold2 predictions, containing at
least two distinct identified CATHdomains25,32 (see also “Methods”). As
seen in Fig. 3C (see also Supplemental Fig. 8, showing the same com-
putation, but including redundant structures), the vast majority of
topological clusters belong to a single domain; thus, the topological
analysis refines on the resolution provided by domain assignments,
revealing that many domains are formed by distinct topological fea-
tures. This may have important implications for evolutionary analysis
as well as protein engineering efforts, given that work in these areas
often uses protein domains as the basic unit for analysis. Our results
suggest that, for the majority of proteins, mathematical topology is
consistent with, and sometimes refines into more nuanced features,
known protein domains catalogued in CATH and similar databases.

As CATH domains relate to folding, we may further speculate that
the 1D topological clusters can identify individual folding units. Except
for counting connected components with 0-dimensional topology, the
simplest features are found by dimension 1 topology (loops), which
effectively captures qualitative spatial features of a shape or
structure12,13,20. In the case of proteins, previous work has shown that
loops can subtly capture geometric substructures, including entangle-
ment andother non-trivial spatial features27,29. Our results alignwith this
perspective: we observe that 1-dimensional loops are intricately inter-
woven within CATH domains, while loops traversing separate domains
are obfuscated by the clustering. Experimental folding intermediates
are difficult to obtain, but evidence exists for partial folds of apo-
myoglobin forming within micro- andmilliseconds34–36. In this case, the
1-dimensional topological analysis captures the initial folding core (the
blue cluster in Fig. 3F). While this is encouraging preliminary evidence
that the topological perspective can augment the analysis of protein
folding, as noted elsewhere37, AlphaFolddoes not provide the structural
ensembles necessary to shed light on protein folding dynamics.

Unlike dimension 1 topological features (loops) that could inform
on substructures, dimension 2 (voids) may be associated with binding
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sites. To examine if this is the case, we investigate the distances
between the clusters of voids and the binding sites as defined in the
Mechanism and Catalytic Site Atlas (M-CSA) dataset38. Our analysis
includes 866 AlphaFold2 predicted protein structures (862 predicted
with high confidence), representing a broad range of enzyme families
and other proteins known to engage ligands (Supplementary Table 2).
These structures were obtained by mapping to UniProt all 1033 RCSB
Protein Data Bank (RCSB PDB)39 entries of experimental structures
having M-CSA annotated sites, and then by selecting those corre-
sponding to high-confidence AlphaFold2 predictions. We mapped the

distance in terms of number of residues between the void boundary
and the binding site, and we find that some 70% of binding sites are
either immediately at the boundary of a void or one amino acid away
(Fig. 3D, see also Supplemental Fig. 7, showing the same computation,
but including low-confidence predictions). Again, this makes sense
from a structural perspective, as binding sites must correspond to
areas of accessibility and flexibility, and our topological analysis allows
the detection of such sites across 214 million predicted structures.
Thus, mapping voids has the potential to identify cryptic and/or
unknown binding sites within the protein universe.

Table 2 | Model organism distributions

Organism Proteins Residues A Loops/res Voids/res B Largest loop/res Largest void/res

Aedes aegypti 17359 427.62 ± 251.92 2.22 ± 0.15 1.45 ± 0.15 0.34 ±0.11 0.12 ± 0.05

Apis mellifera 10987 447.53 ± 262.66 2.22 ± 0.11 1.47 ± 0.11 0.32 ± 0.08 0.11 ± 0.04

Arabidopsis thaliana 78842 423.01 ± 250.48 2.21 ± 0.31 1.43 ± 0.30 0.33 ±0.24 0.13 ± 0.12

Azotobacter vinelandii 8851 324.32 ± 200.62 2.23 ± 0.02 1.42 ± 0.02 0.38 ± 0.01 0.16 ± 0.01

Bacillus subtilis 67815 302.46 ± 185.85 2.37 ± 0.21 1.58 ± 0.21 0.39 ±0.17 0.14 ± 0.07

Bacteroides thetaiotaomicron 48267 416.85 ± 257.44 2.31 ± 0.20 1.45 ± 0.21 0.3 ± 0.18 0.13 ± 0.07

Caenorhabditis elegans 17106 400.49 ± 280.59 2.22 ± 0.15 1.47 ± 0.15 0.35 ± 0.12 0.13 ± 0.05

Canis lupus 26159 450.14 ± 284.27 2.23 ± 0.04 1.58 ± 0.03 0.31 ± 0.02 0.13 ± 0.01

Chlamydomonas reinhardtii 11199 376.57 ± 228.87 2.17 ± 0.11 1.42 ± 0.11 0.35 ± 0.09 0.12 ± 0.04

Ciona intestinalis 10492 345.55 ± 228.70 2.15 ± 0.12 1.41 ± 0.12 0.32 ± 0.09 0.12 ± 0.04

Danio rerio 38420 437.22 ± 301.55 2.13 ± 0.22 1.37 ± 0.22 0.32 ± 0.17 0.11 ± 0.07

Dictyostelium discoideum 7440 451.37 ± 354.80 2.20 ±0.10 1.41 ± 0.09 0.33 ±0.08 0.13 ± 0.04

Drosophila melanogaster 20021 412.36 ± 289.59 2.16 ± 0.17 1.41 ± 0.16 0.34 ±0.12 0.12 ± 0.05

Escherichia coli 1231178 317.38 ± 213.47 2.24 ± 1.01 1.45 ± 0.98 0.37 ± 0.73 0.13 ± 0.30

Felis catus 21428 455.05 ± 269.37 2.13 ± 0.16 1.38 ± 0.16 0.33 ±0.12 0.11 ± 0.05

Galleria mellonella 10274 381.47 ± 239.33 2.16 ± 0.12 1.41 ± 0.12 0.33 ±0.09 0.12 ± 0.04

Gallus gallus 19838 431.24 ± 279.30 2.12 ± 0.16 1.36 ± 0.16 0.32 ± 0.12 0.12 ± 0.05

Halobacterium salinarum 10117 297.93 ± 190.55 2.34 ±0.05 1.52 ± 0.05 0.39 ±0.04 0.15 ± 0.02

Haloferax volcanii 9676 293.52 ± 184.23 2.29 ± 0.07 1.49 ±0.06 0.39 ±0.05 0.15 ± 0.02

Homo sapiens 125847 267.58 ± 228.53 2.00 ±0.41 1.19 ± 0.42 0.34 ±0.29 0.13 ± 0.13

Hydra vulgaris 4598 415.93 ± 233.97 2.25 ± 0.07 1.48 ± 0.07 0.33 ±0.06 0.12 ± 0.02

Macaca mulatta 44295 423.04 ± 266.77 2.10 ± 0.24 1.34 ±0.24 0.32 ± 0.17 0.11 ± 0.07

Methanococcus maripaludis 24655 307.42 ± 184.66 2.41 ± 0.11 1.58 ± 0.12 0.40 ±0.10 0.15 ± 0.05

Methanosarcina barkeri 18136 314.44 ± 202.72 2.30 ±0.01 1.51 ± 0.01 0.40 ±0.01 0.18 ± 0.01

Mus musculus 48222 362.49 ± 289.31 2.05 ± 0.29 1.32 ± 0.27 0.33 ±0.19 0.12 ± 0.08

Mycoplasmoides genitalium 1132 291.66 ± 25.62 1.80 ±0.04 0.90 ±0.03 0.42 ± 0.03 0.12 ± 0.01

Neurospora crassa 10707 447.68 ± 243.85 2.21 ± 0.08 1.44 ±0.07 0.36 ±0.06 0.12 ± 0.03

Oryza sativa 81003 408.99 ± 249.70 2.19 ± 0.06 1.41 ± 0.06 0.33 ±0.04 0.13 ± 0.02

Oryzias latipes 58331 474.59 ± 265.89 2.18 ± 0.25 1.40 ±0.26 0.33 ±0.20 0.11 ± 0.09

Pyrococcus abyssi 2003 296.69 ± 185.09 2.08 ±0.01 1.35 ± 0.01 0.31 ± 0.00 0.12 ± 0.00

Pyrococcus furiosus 5648 290.31 ± 177.69 2.36 ±0.01 1.52 ± 0.01 0.41 ± 0.01 0.16 ± 0.00

Rattus norvegicus 23236 426.28 ± 312.62 2.14 ± 0.19 1.40 ±0.18 0.35 ± 0.14 0.12 ± 0.06

Saccharomyces cerevisiae 51363 446.54 ± 257.76 2.28 ± 0.14 1.51 ± 0.13 0.36 ±0.12 0.11 ± 0.04

Salmonella enterica 2010110 331.18 ± 210.85 2.32 ± 0.68 1.51 ± 0.70 0.38 ± 0.53 0.13 ± 0.22

Schizosaccharomyces pombe 4038 437.07 ± 322.44 2.07 ± 0.01 1.37 ± 0.01 0.36 ±0.01 0.13 ± 0.00

Staphylococcus aureus 116248 295.43 ± 199.82 2.26 ± 0.30 1.50 ± 0.29 0.37 ± 0.22 0.13 ± 0.09

Streptomyces coelicolor 13460 338.39 ± 195.27 2.34 ±0.08 1.53 ± 0.08 0.39 ±0.07 0.14 ± 0.03

Strongylocentrotus purpuratus 18147 452.89 ± 253.41 2.21 ± 0.13 1.43 ± 0.14 0.34 ±0.12 0.12 ± 0.05

Sulfolobus islandicus 23763 287.96 ± 183.27 2.09 ±0.01 1.41 ± 0.02 0.33 ±0.02 0.14 ± 0.01

Sus scrofa 66130 461.47 ± 273.30 2.16 ± 0.28 1.40 ±0.28 0.33 ±0.22 0.11 ± 0.09

Tetrahymena thermophila 10721 408.02 ± 245.33 2.25 ± 0.02 1.46 ±0.02 0.37 ± 0.02 0.12 ± 0.01

Xenopus laevis 29810 404.72 ± 250.70 2.14 ± 0.19 1.39 ± 0.19 0.33 ±0.15 0.12 ± 0.06

Zea mays 96737 404.08 ± 256.06 2.17 ± 0.36 1.41 ± 0.33 0.33 ±0.26 0.12 ± 0.11

Proteins = Number of protein structures predicted by AlphaFold2. Residues = Average and stddev. of protein chain length. Loops/res = Average and std. err. for the number of loops divided by
protein chain length. Voids/res = Same as loops, but for voids. Largest loop/res = Averageand std. err. formax. number of loop simplices divided byprotein chain length. Largest void/res = Sameas
loops. Charts A and B depict species-wise distributions for comparisons to Fig. 2A and B, respectively.
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Despite its remarkable accuracy, AlphaFold2 predictions can
sometimes fail to fully capture the structural complexity of certain
proteins37,40,41. One of PH’s most powerful features is its robustness:
input data differing by small to moderate perturbations will have
similar topological fingerprints42. Thus, we can reasonably assume
that topological analyses will be agnostic to possible mis-
interpretation of local 3D conformations. To assess this, we com-
pare the output of our pipeline for experimental structures
catalogued in RCSB PDB with their AlphaFold2 counterpart;
results are shown in Fig. 3E. We quantify the discrepancy between
topological features in the experimental and predicted datasets by
looking at TIFs in dimension 1 and 2; as shown by the bar-plot, per
residue values are highly correlated in both cases, ensuring that the
topological analysis is transferable from simulations to
experiments.

Taken together, these results demonstrate the value of topology
in identifying features of protein structural organisation.

Topological comparison of thermophilic and mesophilic
proteins
How thermophilic proteins achieve stability while maintaining
functionality remains heavily debated in protein science, structural,
and evolutionary biology. Factors such as differences in hydro-
phobicity, secondary structure, ion-pairing, hydrogen bonds,
and numbers and sizes of cavities have been proposed as key
determinants of thermophilic protein stability and function43.
However, the lack of statistical power and the need to correct
meticulously for potentially confounding factors has impeded ana-
lyses. Given the wealth of structural information generated by
AlphaFold2 and the robust nature of topology, we hypothesise that
we can detect topological differences between – even structurally
very similar – thermophilic and mesophilic proteins, and that these
differences may provide insights into how thermophilic proteins
maintain their structure and function. Finding such differences is
especially challenging as, across different organisms, specific

Fig. 3 | Topology provides organising principles for predicted protein struc-
tures. Topological clusters in dimension 1 often provide a refinement of protein
domains. As an example, we see protein kinase, coloured by its two CATH domains
(A) and topological clusters (B).CClustering homogeneity can be used to check if a
topological cluster contains only residues belonging to a single domain, with 1
corresponding to a perfect sub-partition, and 0 to each cluster containing all the
same labels. The bar plot shows the distribution of homogeneity scores for a set of
38,171 non-redundant AlphaFold2 predictions with identified CATH domains.
D Two-dimensional topological cluster boundary points are enriched for binding
sites from the Mechanism and Catalytic Site Atlas (M-CSA) dataset. The bar chart
shows thedistributionof distances (in numberof residues) fromcluster boundaries

to residues of either binding sites or other residues. E The topological analysis is
robust to small perturbations. The bar plot shows the distribution of correlation
coefficients between the topological influence scores for AlphaFold2 predicted
structures and their experimentally solved counterparts. The high values show that
topological features tend to correspond and to interest the same residues.
F Topological clusters for horse apomyoglobin (UniProt accession P68082) dif-
ferentiated by colour. Folding events based on experimental evidence is indicated
by transparency, where fully opaque sections are formed. Source data are provided
as a Source Data file in Source_data/source_data_Figure3C-S8.csv, Sour-
ce_data/source_data_Figure3D.csv, and Source_data/

source_data_Figure3E.csv.
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enzymes often present highly similar, almost super-imposable
structures. This is the case for Glucose-6-phosphate 1-dehy-
drogenase, shown in Fig. 4A in E. coli (mesophile) and M. thermo-
acetica (thermophile).

To address this, we select 10 different Enzyme Commission (EC)
numbersbasedon their relevance to biotechnology (see Supplemental
Table 2 and Supplemental Figs. 9, 10 and 12 for details). The selected
enzymes covered 30 thermophilic and 8 mesophilic organisms, for a
total of 1656 high-confidence AlphaFold2 predictions. We compare
topological features of dimension 2 - i.e., voids - in mesophiles (blue)
and thermophiles (red) (Fig. 4B). For this analysis, we choose to focus
on voids because we are interested in understanding whether more
compact topological features could be associated with high-
temperature preferences.

In addition, we focus on comparing orthologous proteins with
matching amino acid sequence length to minimise potential com-
pounding effects of variable protein sequence length, substrate/
binding partner properties, and function. We observe that voids in
predicted protein structures from thermophilic organisms are smaller
and more compact than their mesophilic equivalents (Fig. 4B). This
difference is statistically significant according to a one-sided
Mann–Whitney U test of void volumes after excluding noise by filter-
ing out persistence < 1 A&ring;ngstrom (p = 2.789 × 10−6 and
U = 7782508. n = 1937 and 8603 voids for thermo- and mesophiles,
respectively.) We conduct an additional test to control for the effect of
EC numbers, where random samples of equal size (1000) are taken
from each EC number for meso- and thermophiles. This test also
indicates a significance difference (p = 8.372 × 10−14 and U = 46624045.

Fig. 4 | Thermophilic and mesophilic proteins are topologically different.
Highly persistent topological features in dimension 2 identify voids in protein
structures. Voids in thermophilic organisms are in general, smaller in volume than
in their mesophilic counterparts, as exemplified here by Glucose-6-phosphate
1-dehydrogenase (A). Theobservation ismade consistently across enzymes from 10
different EC numbers, shown here in a stacked horizontal bar chart (B). Thus, the
area of each bin corresponds to fractions of voids within a certain size range.
Molecules with approximately representative sizes are illustrated for each of the

four bins. Error bars shown in grey around bin boundaries (dotted lines) are cal-
culated as the standard deviation from sampling 1000 voids. Furthermore, no
compensating influence of amino acid frequencies around voids has been detected
to reduce the significance of the results. This is illustrated for each amino acid
(sorted from lowest to highestAAvolume)byTIF distributions, which indicate their
occupancy around voids (C). Dashed lines show averages. TheATP andpolypeptide
icons were produced using BioRender. Source data are provided as a Source Data
file in Source_data/source_data_Figure4C-S16.tsv.
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n = 10000 voids for both thermo- and mesophiles). See Supplemental
Figs. 11 and 12 for visual comparisons.

We next consider whether the differences in voids may be
explained or diminished by compensating differences in amino acid
volumes in the voids. We compare the amino acid constituents of
voids in terms of TIF from two-dimensional homology, as this amino
acid–wise importance measure secondarily indicates the abundance
of a given amino acid in the backbone adjacent to voids (Fig. 4C).
While the shapes of these empirical distributions for each amino acid
are significantly different for meso- and thermophiles (see Supple-
mentary Table 3), we can only detect insignificant differences in
terms of the association between TIFs and AA volumes (see Supple-
mentary Fig. 16). The Pearson’s correlation coefficient in both cases is
0.155, indicating a weak tendency for larger amino acids at voids in
general, which is unsurprising and consistent with our interpretation.
Correlation tests yield p-values < 2.2 × 10−16. (For mesophiles: t-sta-
tistic = 117.04, n = 558297, degrees of freedom= 558295, and 95%
confidence interval from 0.152 to 0.157. For thermophiles: t-statis-
tic = 52.445, n = 112136, degrees of freedom = 112134, and 95% con-
fidence interval from 0.149 to 0.160.) To test if there are
compensating effects from AA occupancies around voids, we use a
simple linear regression displayed as trend lines in the Supplemen-
tary Fig. Just as for the correlations, the 95% confidence intervals of
estimated regression slopes overlap, thus, we cannot detect a com-
pensating effect of AA volumes on TIFs. By contrast, the median AA
volume is slightly higher for thermophiles (140 vs. 138.4). The dif-
ference is significant according to a Mann–Whitney U test (p-value
< 2.2 × 10−16, U = 3.038 ⋅ 1010). Similarly, the estimated regression
slope is marginally larger for thermophiles (9.112 × 10−4 vs.
8.936 × 10−4). This indicates AA volume distribution is not compen-
sating for the difference in void volumes, but may have a slight
influence on compacting thermophilic proteins further.

In light of these results, we suggest that the topological differ-
ences between thermophiles and mesophiles may reflect the different
thermodynamic pressures experienced by the different organisms in
their respective habitats, where binding pockets with larger voids may
neither be able to provide the correct specificity of binding at higher
temperatures, nor adequate thermodynamic stability.

Topological analysis detects protein regions enriched for
disease-associated mutations
Because protein function depends on protein structure and
sequence, we examine whether topological analysis can detect pro-
tein regions that are enriched in damaging, disease-associated
mutations. To test this, we use a dataset of disease-causing and
neutral variants that contains experimental structures of a few hun-
dred wild-type and mutated proteins44,45. This dataset was previously
analysed to establish the link between damaging mutations and their
effect on structures44. As above, we restrict our analysis to structures
predictedwith high confidence. For each of the proteins analysed, we
want to identify residues that are structurally important, and thus,
more likely to accommodate mutations leading to structural
damage, and in turn, to the occurrence of disease-associated poly-
morphisms. TIF values provide a measure of the topological sig-
nificance of each residue; a natural question is whether a high 1- or
2-dimensional TIF directly estimates the influence on structural sta-
bility. Overall, we find that mutations that give rise to structural
variants, those that give rise to disease, and those that give rise to
both disease and structural effects, are more likely to be co-located
with topology generators than non-disease causing variants, or
polymorphic sites that have no known structural role. Figure 5A and
B show the 3D structures of human ACE2 (top) and HBB (bottom),
coloured by their per-residue two-dimensional TIFs. On the right-
hand side, we see the distribution of 2-dimensional TIFs on residues
whose substitution induce polymorphisms that are predicted to be

structurally damaging and associated with disease, or neutral45. In
these examples, the pattern discussed above is clearly visible. A
similar result is observed in other individual proteins (see e.g.,
Human Adenylosuccinate lyase, Fig. 5C, and CTFR, Supplemental
Fig. 15), in the whole dataset considered (Fig. 5B, and Supplemental
Fig. 14), and for 1-dimensional features alike (Supplemental Fig. 13).

Discussion
In this work, we demonstrate that topology can serve as an inter-
pretative tool for the wealth of data contained in AlphaFold2. Our
pipeline provides a topological analysis of all 214 million predicted
protein structures in a time- and cost-effective manner. Topological
information extracts novel and global insights into the features and
properties of the protein universe. We illustrate these insights in sev-
eral use case scenarios, including: using topology to analyse large-scale
structural features, such as domains and binding sites; to identify
differences between thermophiles and mesophiles; and examine
effects of disease-causing mutations. To make this topological per-
spective accessible to the broader research community, we provide
access to all one and two-dimensional persistence diagrams, topolo-
gical features, and TIFs (per residue) via an online resource of
approximately 20 TB.

Overall, this analysis shows how topology allows us to make
sense of the vast amount of protein structural data. Importantly, our
analysis was done using solely structural data on positions of Cα
provided by AlphaFold2 (and the PDB for validation) without addi-
tional biological information, including sequence information. Thus,
in the future, incorporating additional information, such as the bio-
physical and biochemical properties of amino acids and their three-
dimensional arrangements, may capture additional factors that
influence protein function. Already, our work highlights that topol-
ogy adds an additional set of features for function prediction and an
additional dimension to the biophysical analysis of protein structure.
Although topology may not be enough to fully understand (or
design) protein function, we are confident that topology offers a
natural and direct route for making sense of the wealth of data in
AlphaFold2 and that the topological information generated here will
aid the functional and evolutionary analysis of the molecular
machinery of life.

An intriguing direction for future research would be the integra-
tion of secondary structure information into the topological analysis,
as other authors have developed persistent homology–based
approaches incorporating secondary structure or even atomistic
details46,47.While secondary structure annotationhas becomestandard
for solved structures, given a sequence, it remains a matter of
prediction48. Thus, the potential unreliability of AlphaFold2 predic-
tions presents a challenge for additional preprocessing of the raw
structural data.

Methods
Persistent homology
Persistent homology13,20 is a method in computational topology for
analysing the shape of data via topological features. Persistent
homology is built on the concepts of simplicial complexes and sim-
plicial homology12. Intuitively, a simplicial complex is a space con-
structed by gluing together simplices (i.e., points, line segments,
triangles, and their higher-dimensional counterparts), for a formal
definition, see e.g., [12, Ch.2]. Let PC = fp1, . . . ,png � Rn be a point
cloud, i.e., a set of scattered points in the Euclidean space Rn; the
shape of PC can be described by constructing a simplicial complex PCε

that approximates the connectivity of the points pi at a given spatial
scale ε. Common choices of such a simplicial complex are:

• The Vietoris-Rips complex [13, Ch.III.2] PCε =VRε(PC); this is
constructed by adding a k-simplex ½vi0 , vi1 , � � � , vik � if the distance
between all pairs of points in fvi0 , vi1 , � � � , vik g is less than ε.
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Fig. 5 | Topological features are enriched in damaging variants. A The 3D
structures of human ACE2 (top) and HBB (bottom), coloured by their per-residue
two-dimensional TIFs. Structural analysis of missense variants for these genes
predicts a number of them to be damaging44,45. Our topological analysis shows that
amino acid substitutions causing structural damage are more likely to happen
where the TIF is high, as shown by the violin plots on the right-hand site. This
pattern is maintained across a dataset of disease-associated missense variants (B).
As a further example, (C) shows human Adenylosuccinate lyase, with its missense

variants highlighted on the 3D structure, and a plot of its 2-dimensional TIFs on the
bottom. The n damaging and neutral variants for ACE2 are 49 and 200, for HBB are
81 and 396, and overall: 1418 and 6600, respectively. All box plots are shownwith a
box from the first to third quantile, median as a solid line, mean as a dashed line,
and a line from the minimum to maximum value, excluding outliers. Source data
are provided as a Source Data file in Source_data/source_data_Figur-

e5A_ACE2.csv, Source_data/source_data_Figure5A_HBB.csv, and Sour-

ce_data/source_data_Figure5B-S13-S14.csv.
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• The Ĉech complex [13, Ch.III.2] PCε =Cε(PC); this is constructed as
the nerve complex [12, Ch.3] of the union of balls of radius ε
centred in PC.

• The Alpha complex [13, Ch.III.4] PCε = Aε(PC); this is similar to the
Ĉech complex, but has a canonical geometric realisation, and it is
a sub-complex of both the Delanauy complex and the Ĉech
complex.

Note that for each of these choices, PCε1
� PCε2

whenever ε1 < ε2.
More information on these complexes, their differences, and their
properties can be found, e.g., in ref. 13; see also Supplemental Fig. 1 for
one example.

The qualitative features of PCε can be analysed by computing its k-
dimensional simplicial homologyHkðPCε;F2Þ, whereF2 is thefieldwith
two coefficients. For each choice of dimension k, HkðPCε;F2Þ is a
vector space, and its rank corresponds to the number of k-dimensional
topological feature (called homology classes) of PCε. The
0-dimensional homology H0ðPCε;F2Þ counts the “connected compo-
nents” (i.e., separate pieces) that form PCε, while 1 and 2-dimensional
homologies H1ðPCε;F2Þ and H2ðPCε;F2Þ count loops and voids,
respectively. For a formal definition of simplicial homology, see
e.g., ref. 12.

Persistent homology studies the shape of the initial data PC at
different spatial resolutions, by looking at the simplicial complexes PCε

for increasing values of ε > 0, see Supplemental Fig. 1. This results in a
nested sequence of simplicial complexes

PCε0
,!PCε1

,!� � � ,!PCεN

which in turn yields a sequence of vector spaces and maps between
them

HkðPCε0
;F2Þ ! HkðPCε1

;F2Þ � � � ! HkðPCεN
;F2Þ

called the k-dimensional filtered homology of PC.
We are interested in looking at how topological features evolve in

this sequenceof simplicial complexes andhomology spaces. Thanks to
the Structure Theorem [19, Thm2.1], we can summarise the information
contained in each sequence HkðPCε0

;F2Þ ! HkðPCε1
;F2Þ � � � !

HkðPCεN
;F2Þ as a “persistent diagram” PD. This is a finite collection of

points PD = {(bi, di)}, where bi and di are the birth and death scales of
the ith k-dimensional feature. The “persistence” of each feature is given
by the difference d − b, which gives a measure of its significance.

For each homology class, it is possible to compute a “repre-
sentative” or “generator”, that is, a specific set of simplices creating the
corresponding homology feature12. Homology generators provide an
interpretation of the abstract topological information as local, struc-
tural features of the data27–29,49.

Topological analysis of protein structures
The topological analysis of the protein universe follows the metho-
dology developed in refs. 27,29, see Supplemental Fig. 3 for a sche-
matic representation.

Step 1. We model each protein structure as the point cloud given
by its α-carbon atoms, i.e., by the set PC = {p1, …, pn}, where each
pi = (xi, yi, zi) is the triple of the predicted xyz-coordinates of its ith

residue.
Step 2. We then feed the point cloud PC = {p1, …, pn} to the per-

sistent homology pipeline, and compute its filtered homology in
dimension 1 and 2:

H1ðPCε0
;F2Þ ! H1ðPCε1

;F2Þ � � � ! H1ðPCεN
;F2Þ

H2ðPCε0
;F2Þ ! H2ðPCε1

;F2Þ � � � ! H2ðPCεN
;F2Þ:

From these, we compute the persistent diagrams in dimensions 1
and 2.

Step 3. We compute a representative cycle for each homology
class. Note that these correspond to loops and voids appearing in the
sequence of simplicial complexes PCε0

,!PCε1
,!� � � ,!PCεN

.
Step 4. We compute the 1 and 2-dimensional point-wise topolo-

gical influence score (TIF) of residues in PC. This is achieved by first
computing centrality values centrality(res) for each residue, as in
ref. 27 and using spectral methods developed in ref. 50. Then, cen-
trality scores are normalised over all the residues in the protein to
obtain values in [0, 1]:

TIF(res) =
centralityðresÞ

maxr ðcentralityðrÞÞ
:

TIFs provide a ranking of residues based on how often they contribute
to topological features (i.e., how often they appear in generators) and
how persistent these features are.

Software
Persistent diagrams and generators are computed using the Julia
software Ripserer.jl26. Specifically, we use the Alpha filtration to
construct the nested simplicial complexes, and the involutive
algorithm26,51 to compute homology and representatives.

TIFs are computed using the hyperTDA method developed in
ref. 27. Specifically, for each protein structure and dimension con-
sidered, we construct the hypergraph having as vertices the resi-
dues, and having a (weighted) hyperedge for each generator.
Then, we compute node centrality using the software from
refs. 50,52, using the max centrality flavour. More details are con-
tained in the hyperTDA paper27 and the corresponding GitHub
repository.

Similarly, topological clusters are computed as graph-commu-
nities, as explained in ref. 27 and using Python’s Louvain module53.

How we handled computations
Large-scale computations were performed on Oracle Cloud Compute.
All computations were performed on a single instance with 160 CPU
cores and 1 TB memory. The compute shape is named BM.Stan-
dard.A1.160 which is Arm-based Ampere A1 compute (Ampere Altra
processor). A 32 TB block storage volume was attached for storage of
AlphaFold2’s predicted structures as well as general storage, and a
separate 32 TB volume for the outputs of our topological analyses. The
former was mounted at the project root, and the latter at data/
alphafold/PH/.

AlphaFold2 structures were downloaded as sharded proteomes
according to their bulk download instructions.

Benchmarking was performed on a single large structure (acces-
sion “A0A009DWL0”) to assess the computational viability and reduce
time, cost, and environmental impact (Supplemental Fig. 4). Only
homology dimension one was computed. Julia methods were run
multiple times before the recorded run, to remove the impact of
compilation. Note that some bars appear to have zero height, since
methods in compiled languages such as C++ have significantly lower
memory consumption than Julia and Python methods. Considerations
to computational cost were also important in terms of the memory
usage, as the cluster becomes unstable when the 1 TB is exceeded (See
Supplementary Fig. 4). Tools that were benchmarked:

Eirene.jl the initial method used in previous works due to its
ability to compute representative cycles.

Eirene.jl mod a modified version of Eirene.jl, which was
made in an attempt to tailor it to this specific project, however, this
barely improved time at the cost of increased memory consumption.
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giotto-ph a method written in C++ and Python which takes
advantage of CPU parallelisation. It was not considered further, as it
does not compute representatives.

Gudhi a toolkit with numerous Python modules, however no
module was found for computing representative cycles.

Ripser A popular methodwritten in C++54. There is experimental
support for computing representative cycles (in a separate branch).

Ripser.py builds on top of Ripser with computations of
representative cocyles. As it is built on Ripser it might be possible to
also get representative cycles, however, it was not trivial.

Ripser.pysparse an approximate sparsefiltrationwith a sparse
distance matrix tested to reduce computational time.

Ripser++ The only GPU method tested46. Clearly this is a big
advantage, however, it was not possible to compute representative
cycles.

Ripserer.jl a Julia implementation of Ripser26.
Ripserer.jl alpha by default, Ripserer.jl (and all other

listed tools) uses Vietoris-Rips filtration (Supplemental Fig. 1). Alpha
filtration was tested here, which can be much more efficient on low-
dimensional point clouds.

Computational time for Eirene.jl and Ripserer.jl with
Alpha filtration were estimated simply by multiplying the computa-
tional time observed in Supplemental Fig. 4 by 214M and dividing by
160 (Supplementary Fig. 4). The runs are assumed to be completely
parallel since multiple identical calls to Ripserer.jl will be per-
formed, each given a single core. It is a rough estimate since the
average number of residues is around 333, however, computational
time does not scale linearly with residue count; larger point clouds
take up a disproportionate amount of the total time. The estimated
time was more than 16 times longer than the actual. This is partly
explained by the large point cloud used for benchmarking, essentially
making it a worst-case estimate, and partly explained by a few other
optimisations:

TAR iteration Instead of extracting and reading files in the shar-
ded proteomes, it was found to be much more efficient to stream the
content of the TAR archives directly using TarIterators.jl (with a
minor tweak).

CIF parsing Instead of reading the CIF files with a standard CIF
reader, they were instead streamed line-by-line, only reading a
required subset of the file contents.

Centrality on sparse H The hypergraph centrality code was
rewritten and tailored to this project’s specific use-case, particularly
with a sparse representation of the hypergraph H, paired with an effi-
cient implementation of the sparse encoding itself.

The output of the topological analyses was written to compressed
JSONs matching the structure of the shared proteomes, and later
repackaged intoHDF5files toorganise byUniProt accessions33, to allow
for partial read/write and in order to add additional protein metadata.

The topological tree of life
The taxonomy tree is visualised in Fig. 1 of the main text with a circle
packing plot, is generated by constructing circles for each species with
area proportional to its number of AlphaFold2 structures (including
any entries annotated with its subspecies and other lower ranks). Cir-
cles associatedwith child nodes of genuses are then circle packed, one
genus at a time. This process is repeated for each rank, going up, which
means that the area of higher ranks is only approximately repre-
sentative of their number of structures.

The lightness of circles indicates the topological richness of the
proteins belonging to a taxonomy ID. The richness is defined as the
persistence of the 1-dimensional topological features, restricted to
those having persistence≥ 10, dividedby the number of residues in the
protein and averaged across proteins.

Each edge in the taxonomy tree is represented visually as
an outline around the circles. The outlines are sized according to the

taxonomy rank, with slightly thinner outlines for lower
ranks. The outlines are coloured in a black-to-yellow palette, indi-
cating the variance of the number of 1-dimensional topological
features in each protein, normalised by the number of proteins in
the circle. Differences in the outlines are made clearer by a log-
transform, specifically log10 of one minus the correlation.
To check whether the variance was influenced by the
number of residues in each protein, we further normalised by this
quantity. The output of this latter computation has a 0.925 corre-
lation coefficient with the non-normalised one, showing thus high
consistency.

Circles are packed within each container circle with the R library
packcircles55 and visualised with ggplot256. Data is from the tables
TreeNode and TreeEdge from the Postgres database, as well as the
table AF for the zoomed example for Haemoglobin.

Mediaflux
Weshare theoutput of our topological analysis onMediaflux.Here, the
data is organised into three folders: compressed JSON files, HDF5 files,
and a Postgres database. The entire dataset can be downloaded with
the following links: JSON (~ 10 TB), HDF5 (~ 9 TB), and Postgres
database (~ 210GB). The links will not immediately start downloads
but rather prompt for installing a helper utility “MediafluxDataMover”
which will then aid in the download process.

See Supplemental Fig. 5 for an overview of the data structure.
Some data containers are left blank for simplicity.

JSON. Protein structures predicted by AlphaFold2 and topological
data is stored in GZip compressed JSONs. The organisation is similar to
the proteome sharing provided by AlphaFold2. In addition, sharded
proteomes areplaced in folders according to thefirst three numbers of
the taxonomy id. The JSONs contain integers and floats (floating-point
values). Numbers are either provided as a scalar, in a list or lists of lists.
Newline in the figure indicates the highest grouping level for JSON
values.

n number of residues (scalar).
x, y, zα-carbon coordinates in Å (list of floats).
cent1, cent2 TIFs for dimensions 1 and 2 (list of floats).
bars1, bars2Birth and death filtration times for each topological

feature in dimensions 1 and 2 (list of floats).
reps1, reps2 Representative cycles for dimensions 1 and 2.

Stored as a list of lists of integers. Each representative cycle is a set of
either 1- or 2-simplices, provided as node indices (1-indexed).

For each proteome, we also include the topological clusters
computed as graph-communities, as explained in ref. 27 and using
Python’s Louvainmodule53. The result is written to a compressed JSON
with one entry per accession, containing community indexes for each
residue.

HDF5. The data is also provided in Hierarchical Data Format version 5
organised by UniProt accession. Proteins are placed together in HDF5
files based on the first five characters of their accessions. Each protein
is found as an HDF5 group, which contains HDF5 attributes and HDF5
datasets. Here, each dataset is always a table of unnamed columns,
stored as a numerical matrix.

AA One-letter amino acid sequence encoded as an ASCII string.
n Number of residues.
tax, taxv Taxonomy ID and sharding index used by AlphaFold2.
CasValues for each node, i.e., α-carbons. The columns are the x, y,

z coordinates in Å, pLDDT score (AlphaFold2 confidence score), and
TIFs in dimensions 1 and 2.

bars1,bars2Birth andpersistence (death −birth)filtration times
for each topological feature in dimensions 1 and 2.

reps1, reps2 Representative cycles for dimensions 1 and 2. The
first column is an index for the feature, starting at 1. The remaining
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columns are node indexes for members of a simplex (one simplex
per row).

Remark. (Decompression step needed to access files). The HDF5 files
are uncompressed except for the datasets reps1 and reps2, which
require a ZStd plugin (Zstandard) for access. For example, in Python
import h5py, zstandard and in Julia, using HDF5, H5Zzstd will
suffice to read the compressed datasets.

Postgres. Protein metadata is collected in a Postgres database (see
Supplementary Fig. 6 and Supplementary Table 1).

AF The main table, which contains summary statistics computed
on the topological analysis results for each protein.

JSON Path to JSON file for a given UniProt accession.
Tax Taxonomy ID associated with a vast amount of identifiers

(NCBI taxonomy FTP server).
TaxTree Taxonomy ids at the species level or lower, with species

parent indicated. Species as child nodes are also included with them-
selves as parents. This table (in combination with Tax) is used for
connecting any relevant accession to a species.

TaxParent All direct and indirect child nodes for a subset of
taxonomy ranks (Domain, Kingdom, Phylum, Class, Order, Family,
Genus, and Species).

TreeNode Taxonomy tree nodes with summary statistics for the
same subset of taxonomy ranks as in TaxParent.

TreeEdge Taxonomy tree edges and summary statistics between
the nodes from TreeNode.

Figure 1 in the main text is build from the tables TaxNode and
TaxEdge, after further data processing (see data/alphafold/vis/
in the code repository).

Datasets
The datasets discussed in the results are summarised in Supple-
mentary Table 2. In each of these datasets, we removed structures
with low-confidence AlphaFold2 predictions. AlphaFold2 produces a
per-residue confidence score (pLDDT)2, which assigns a value
between 0 and 100 to each residue in a structure; values below 70 are
considered low. Here, to select proteins with an overall good pre-
diction, we average the pLDDTs over all the residues in a structure
and discard those scoring an average below 70. The remaining ones
are considered high-confidence predictions and are kept in the
dataset.

Comparison with experimental structures (RCSB). To compare
between the topological analysis performed on AlphaFold2 predic-
tions and on experimental structures, we considered all the 2712 Uni-
Prot entries with full structure available on PDB. These UniProt
accessions correspond in total to 28,309 different experimentally
solved protein chains. Out of the 2712 AlphaFold2 predictions, only
2637 have a high-confidence score. For each of these structures, we
considered the 1 and 2-dimensional TIFs and computed the correlation
coefficient between the resulting vector for each predicted structure
and its experimental counterparts.

Complete lists of the structures considered in each dataset, and
the correlation coefficients, are available for download, see Data
Availability. This folder contains:

• a file uniprot2PDB_fullstructures.json, containing a map-
ping between UniProt accessions and PDB entries.

• a file centrality_correlation.csv, containing, for each
UniProt id, the correlation coefficient between its 1 and
2-dimensional topological influence vectors and the experimental
counterparts.

Correlation coefficients were computed using numpy’s corrcoef
function.

M-CSA dataset. To analyse the relation between 2-dimensional topo-
logical clusters and binding sites, we looked at the Mechanism and
Catalytic Site Atlas (M-CSA)38, a database of enzyme reaction mechan-
isms, which provides catalytic residues of hundreds of enzymes. We
downloaded all 1033 PDB entries of experimental structures with anno-
tated sites, andperformed the topological analysis on the corresponding
structures, see Supplementary Fig. 7 for the result of our analysis.

To reproduce the result on AlphaFold2 predicted structures, we
thenmapped each PDB entry to the corresponding UniProt accession,
when found. This left us with a total of 866 different proteins, 862 of
which are predicted by AlphaFold2 with a high confidence score.

A complete list of the structures considered in each dataset, and
code to reproduce the results, are available for download, see Data
Availability.

This folder contains:
• a file CSA_site.tsv, containing PDB entries and residue num-
bers of binding sites.

• a file CSA_AF.csv, containingmapping between PDB andUniProt
accessions, as well as the confidence score of the AlphaFold2
predictions.

• files communities.json and communities-
experimental.json, containing the partition of each struc-
ture into 2-dimensional topological clusters. The organisation of
these JSON files is as described in Section JSON.

• notebooks Results.ipynb and Results_exper-
imental.ipynb to compute boundary points between
2-dimensional topological clusters and to reproduce the results.

CATH. To investigate the relation between topological features and
protein domains, we looked at all the 73,749 AlphaFold2 predictions
containing at least two distinct identified CATH domains32. These
structures, and the corresponding domain mapping, were recently
identified in ref. 25. We then excluded low-confidence predictions
(leaving 62,861 proteins) and reduce the dataset to a list of 38,171 non-
redundant structures. This last step was achieved using the software
CD-HIT57 and a threshold of 70% sequence similarity.

To quantify the agreement between the partition induced by
CATH domains and by 1-dimensional topological clusters, we com-
puted the homogeneity score using the homogeneity_score func-
tion in Python’s sklearn package. The homogeneity score is a value
between 0 and 1; a clustering satisfies homogeneity (and thus has
homogeneity 1) if all of its clusters (in our case, 1-dimensional topo-
logical clusters) contain onlydatapointswhicharemembersof a single
class (in our case, a single CATH domain). For completeness, Supple-
mental Fig. 8 shows the results for the 62,861 high-confidence Alpha-
Fold2 predictions, including redundant ones.

A complete list of the considered structures, the corresponding
homogeneity scores, their partition into 1-dimensional topological
clusters and CATH domains are available for download, see Data
Availability. This folder contains:

• a hom_scores_red.csv, with UniProt entries, homogeneity
score, confidence score of the prediction, and whether they are
non-redundant or not.

• a file domain_vectors.json with the partition into CATH
domains.

• a file communities_all.json with 1-dimensional topological
clusters.

Thermophiles and mesophiles. To investigate structural differences
between enzymes in thermophilic and mesophilic organisms, we
selected 10different EnzymeCommission (EC) numbersbasedon their
biotech relevance, a total of 30 thermophilic and 8 mesophilic
organisms, and we listed all UniProt entries with these characteristics.
In total, we considered 1815 different protein structures, that became
1656 after excluding low-confidence predictions. On this latter dataset,
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we were interested in analysing the distribution of volumes of sig-
nificant 2-dimensional features (i.e., with high persistence). The dis-
tribution of features with persistence < 1 turned out to be almost
identical across EC numbers and thermal characteristics, see Supple-
mental Fig. 9. For this reason, we restricted our attention to topolo-
gical features with persistence ≥ 1, that show more variation, see
Supplemental Fig. 10. The volumeof each feature was computed using
scipy ConvexHull function, as the volume of the convex-hull of
residues in the generator. Our results show that mesophile organisms
have on average larger voids in their enzymes, and that this patter is
robust. In Supplementary Fig. 11, error bands are given by sampling
1000 different voids in thermophiles and mesophiles, respectively,
and then looking at the standard deviation.

A natural question iswhether this pattern ismaintained for single
EC numbers. Volume, number, and persistence of voids are all
strongly influenced by the size and length of the protein. Since the
distribution of lengths in individual EC numbers is different for
thermophiles and mesophiles, to analyse EC numbers, we first selec-
ted thermophilic andmesophilic proteins in the same range of length.
For a given EC number, this is achieved by randomly selecting a
mesophilic enzyme for each thermophilic one, with a difference in
length of at most 5 residues. The result of this analysis are shown in
Supplemental Fig. 12.

A complete list of the structures considered, and code to repro-
duce the results, are available for download, see Data Availability. This
folder contains:

• a file thermozymes-acc-unjag-summ.tsv, containing acces-
sions and taxonomy information of the structures considered

• afilesummary.csv, containing confidence scores of the structure
considered.

• a file thermo_all.csv containing the volumes and persistence
values of the 2-dimensional topological features.

• a file SEQ.csv containing TIFs for different amino acids
• a file Samples.csv, containing the distribution of volumes for
the sampled dataset.

• a notebook Results.ipynb containing code to reproduce the
sampling used for the result in Supplementary Fig. 12.

Mutations. To check if our analysis is effective in the detection of
protein regions that are enriched for damaging mutations, we looked
at the datasets of disease-causing and neutral variants studied in the
paper44, where the authors consider a few hundreds experimental
structures and their disease-associated missense variants, and link
damagingmutations to structurally damaging changes in theirmutant
structures.

As usual, we restrict our analysis to structures with high-
confidence predictions. Results in the manuscript show the distribu-
tion of 2-dimensional TIFs for residues accommodating neutral
mutations thatdo not cause structural damage, anddisease-associated
mutations that modify the structure. Supplemental Fig. 13A shows the
distributions for the full set of labels, and Supplemental Fig. 13B shows
the same result for the control dataset used in ref. 44. As shown in
Supplemental Fig. 14, the pattern is maintained for 1-dimensional TIFs,
although the differences are weaker.

Thedata for theACE2 andHBB examples shown in themanuscript
is taken from theMissense3D database45, which catalogues amino-acid
substitutions that are predicted to be structurally damaging44,45. A
third example we analysed is CFTR, the results are shown in Supple-
mental Fig. 15.

A complete list of the structures considered is available for
download, see Data Availability. This folder contains:

• files mutations.csv, mutations_control.csv, containing
UniProt accessions of the proteins considered and the list of
mutations with labels and TIFs;

• files ace2_cent.csv, cftr_cent.csv,hbb_cent.csv, contain-
ing the list of mutations with labels and TIFs for the
examples shown;

• a file thermo_all.csv containing the volumes and persistence
values of the 2-dimensional topological features;

• a notebook Results.ipynb containing code to visualise the
results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Due to the large size of the
datasets, all raw data have been deposited in MediaFlux and are also
available upon request. The datasets analysed for the current study are
available for direct download from MediaFlux via: https://bit.ly/
protTDA(1.31 GB). Topology outputs can be bulk downloaded from
MediaFlux: JSONfiles via https://bit.ly/protTDAjson(~ 10 TB), andHDF5
files via https://bit.ly/protTDAhdf5(~ 9 TB). The Postgres database
containing protein and taxonomy data is available via https://bit.ly/
protTDApostgres(13.4 GB). Install Postgres 15.2, then run pg_restore
-U opc -d protTDA Postgres. Source data are provided in this paper.

Code availability
The code used to develop the model, perform the analyses and gen-
erate results in this study is publicly available and has been deposited
in the protTDA repository at https://github.com/degnbol/protTDA,
under GPL-3.0 license license. The specific version of the code asso-
ciated with this publication is archived in Zenodo and is accessible via
https://zenodo.org/records/1512915958.
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