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Accelerating cell culturemedia development
using Bayesian optimization-based iterative
experimental design

Harini Narayanan 1, Joshua A. Hinckley1,2, Rachel Barry1,2, Brendan Dang2,
Lenna A. Wolffe 2, Adel Atari2, Yuen-Yi Tseng2 & J. Christopher Love 1,3

Optimizing operational conditions for complex biological systems used in life
sciences research and biotechnology is an arduous task. Here, we apply a
Bayesian Optimization-based iterative framework for experimental design to
accelerate cell culturemedia development for two applications. First, we show
that this approach yields new compositions of media with cytokine supple-
mentation tomaintain the viability anddistributionof humanperipheral blood
mononuclear cells in the culture. Second, we apply this framework to optimize
the production of three recombinant proteins in cultivations of K.phaffii. We
identified conditions with improved outcomes for both applications com-
pared to the initial standard media using 3–30 times fewer experiments than
that estimated for othermethods such as the standard Design of Experiments.
Subsequently, we also demonstrated the extensibility of our approach to
efficiently account for additional design factors through transfer learning.
These examples demonstrate how coupling data collection, modeling, and
optimization in this iterative paradigm, while using an exploration-
exploitation trade-off in each iteration, can reduce the time and resources for
complex optimization tasks such as the one demonstrated here.

Cell culture is an essential technique used throughout life sciences to
study cellular, molecular, and disease biology. It is also a critical unit
operation in biotechnology used to manufacture a wide range of
products such as therapeutics, food proteins, peptides, biofuels,
metabolites, industrial enzymes, biomass, and cells themselves for cell
therapy, and the artificial meat industry1,2. The medium provides the
essential nutrients and elements required for the ex-vivo growth and
proliferation of the cells, the production of intended compounds, and
the quality of the product3,4.

Optimizing the compositions of these media is a common chal-
lenge across applications. The components required are manifold,
including nutrients such as amino acids, nitrogen sources, carbon
sources, minerals, salts, and growth hormones, among many others.
This diversity leads to a large number of design factors ranging from

about 10’s-100’smedia components, presenting ahighly combinatorial
design space with complex interactions2. Additionally, selecting the
most suitable media significantly depends on the type and lineage of
the cells, the specific objective of the cell culture (such as homeostasis,
growth, or differentiation), and the required operating conditions.
These factors together render this optimization task a resource-
intensive and laborious one. To address this challenge, standard
practices across fields rely on either the use of well-documented, his-
torical formulations of ‘universal’ standard media3 or formulations
resulting from a limited optimization using one factor at a time
(OFAT), or a statistical Design of Experiments (DoEs)5–9.

Algorithms for metaheuristic optimization have been used as an
alternative to these conventional approaches3,10, particularly for cases
of bacterial cultivation and fermentation applications2,3. These
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algorithms are often combined with surrogate models, such as quad-
ratic response surface methodology (RSM), Artificial Neural Networks
(ANNs), or tree-based approaches11, to represent the underlying rela-
tionship between design factors and the target objective. These stu-
dies, however, decouple data collection, modeling, and optimization.
Data are first collected using one of the statistical DoE approaches and
subsequently used for model development followed by optimization
focused onmaximizing orminimizing a desired target2,3,11. This staging
requires significant coverage of the design space with the collected
data to build robust surrogate models and avoid local regions of
suboptimal solutions. Furthermore, these approaches have a limited
ability to representatively account for the intrinsic noise in biological
datasets when developing the surrogate model and performing the
optimization3. Finally, all themethodologies, including OFAT and DoE,
use only two types of design factors (continuous and discrete)3,12.
Certain media components present multiple formats from which to
choose, such as the type or source of carbon (e.g., glucose, glycerol,
lactate, fructose, etc.) or nitrogen (e.g., ammonium salts, urea, gluta-
mine). This representation of identity introduces categorical design
factors that OFAT and DoE are not designed to accommodate3,12, and
modification to these approaches to account for categorical factors
scales the design space quickly with an increasing number of cate-
gories andmultiple categorical variables. Even considering continuous
variables, these approaches suffer from a larger number of factors
(>15–20)13 resulting in approximations based on preliminary screening
designs14. The inherent linear/quadratic response surface assumptions
of the DoEs coupled with these additional biases introduced to make
the design space feasible results in DoEs being in-efficient and sub-
optimal. Furthermore, these approaches are not designed to plan
experiments for constrained design spaces12,15 and have limited cap-
abilities to accumulate and propagate knowledge, emphasizing the
need for alternative resource-efficient experimental design approa-
ches for optimization.

To address these challenges, we demonstrate here an iterative
approach to experimental design that relies on Bayesian Optimization
(BO)16. This strategy provides two key benefits. First, the use of a
probabilistic surrogate model (Gaussian Process (GPs)17) that is parti-
cularly well-suited for biological applications. GPs are suitable for
unbiased learning of smooth response functions compared to alter-
native ML algorithms, such as tree-based models that are bound by
splitting rules and learn discontinuous or piecewise continuous deci-
sion boundaries. Furthermore, GPs can include prior beliefs about the
system, incorporate process noise in its implementation, and obtain
confidence in its predictions by associating higher uncertainty with
unexplored parts of the design space18.Most other classicalMLmodels
don’t allow the explicit incorporation of prior assumptions or process
noise and inherently provide point estimates19. While uncertainty can
be estimated using ensembling techniques, these estimates do not
directly correspond to the positions of the data points within the
design space. These abilities are important for intrinsically noisy bio-
logical systems that require expensive experimentation. In this con-
text, approaches that can encode prior beliefs could reduce the overall
experimental burden of optimization. Furthermore, GPs are efficient
for handling small volumes of data (common with biological systems)
compared to alternative tree-based approaches, which often perform
well with larger volumes of data (e.g. a pre-existing database is
available)17. Additionally, custom kernels can be designed for GP
models to suit the specific needs of an application.

Second, while planning new experiments, BO can encode a trade-
off between probing unexplored regions of the design space
(“exploration”) and refining previously identified regions favored for
the target objective(s) (“exploitation”). This balance between
exploration and exploitation ensures scouting of the unexplored
design space, inherently minimizing the impact of local optima. This
feature also dictates the planning of experiments to meet a certain

objective, avoiding extensive characterization of unfavorable regions.
As a result, the overall experimental burden can be reduced, accel-
erating the optimization. For these reasons, BO has been applied to
various applications beyond computer science and robotics such as
protein engineering20–22, reaction optimization23, synthetic gene
design24–26, material science27,28, drug formulation29, and process
optimization30–32. Some studies have also demonstrated these
approaches for designing and optimizing cell culture media33–35 con-
sidering multiple objectives33 and information sources34. These, how-
ever, use only continuous design factors in their optimizations.

Here, wedemonstrate the application of a BO-based framework to
efficiently optimize the composition of cell culture media considering
complex design spaces that include both constraints and categorical
variables. We illustrate this approach through two distinct use cases
relevant to life sciences and biomanufacturing. In one case study, we
show the optimization of a media composition that maximizes the
viability andmaintains the phenotypic distribution of peripheral blood
mononuclear cells (PBMCs) ex vivo for up to 72 h. In a second example,
we applied this approach to determine a medium to maximize
recombinant protein production by the yeast Komagataella phaffii (K.
phaffii), formerly known as Pichia pastoris (P. pastoris). For both
applications, improved performance was achieved compared to cur-
rent standard media conditions with up to 3-fold reduced experi-
mental burden compared to the state-of-the-art DoE approaches. The
reduction of experimental burden was further magnified with the
increasing number of factors resulting in a 10- to 30-fold reduction
when considering 9 design factors with categorical variables (multiple
categories and/or a larger number of levels). We further demonstrate
the ability of such a framework to facilitate the transfer of learning and
the ability to allow for modifications to the design space a-posteriori
such as adding newmedia supplements. These results show how a BO-
based active learning approach to media optimization could improve
performance in cell culture for specific objectives efficiently and sup-
port additional mechanistic studies on key factors and interactions
within these systems.

Results
The workflow for the BO-based active learning involves both experi-
mental feedback and model training that reinforces the prediction of
the target objective (Fig. 1A). The algorithm starts by planning and
performing an initial set of experiments to build the first imple-
mentation of the surrogate GP model. The GP subsequently interacts
with theBayesianoptimizer, which informs the next set of experiments
that are designed to balance both exploration and exploitation of the
design space.With each newdataset, the GPmodel is updated, and the
process continues until the model converges (or the experimental
budget is spent). The studies here focus on optimizing a biological
objective (e.g., cell viability, titers) as a function of the composition
of media.

Optimizationofmedia for homeostatic culture of PBMCs ex vivo
PBMCs are a valuable resource and yield data used for drug develop-
ment, disease monitoring, and therapeutics. Examples include study-
ing drug cytotoxicity36, co-culturing with solid tumors to understand
the role of the tumormicroenvironment37,38, and applications focusing
on differentiated subpopulations of the immune cells such as T cells39

or natural killer (NK) cells40 for immunotherapies41. It is, however,
difficult tomaintain these primary cells in vitro for extended durations
with standard commercial media, as it often leads to reduced viability
and shifts in the distribution of cell types. We sought to apply our BO-
based approach to perform two sequential optimizations. First, we
aimed to determine a media blend of four commercially available
medium namely, DMEM, AR5, XVIVO, and RPMI, that would maximize
PBMC cell viability. Second, we undertook an optimization using
cytokines and chemokines to achieve a balance of key lymphocytic

Article https://doi.org/10.1038/s41467-025-61113-5

Nature Communications |         (2025) 16:6055 2

www.nature.com/naturecommunications


populations representative of the ex vivo distributions (Fig. 2A).
(Alternatively, both the basal media and mixture of cytokines used
could be jointly optimized, potentially leading to an improved for-
mulation. This approach, however, introduces a trade-off in iterative
optimizations.) By splitting the task into two sequential optimizations,
the determined basal nutrient media can serve as a basis for related
specific applications involving lymphocytic cell populations (e.g., cul-
turing hematopoietic cancer cells, CAR T cells etc). In this way, only
additional optimization of the cytokine/chemokine composition is
necessary to modulate the subsequent required properties. This

approach could also allow emulation of the nutrient and signaling
environment in vivo in studies to assess the underlying biological
mechanisms involved.

The different commercial formulations of media comprise dif-
ferent sets and (or) quantities of nutrients, hormones, and growth
factors. We hypothesized that combining these in different ratios
could yield a new composition capable of maintaining high cell viabi-
lity (>70%). This framing yields a constrained optimization problem of
continuous design factors with a linear equality constraint, such that
the relative contributions of the different media in the blend sums to

Fig. 1 | Workflow. Schematic representation of the Bayesian Optimization (BO)-based iterative experimental design workflow.

Fig. 2 | Media blend and cytokine composition optimization PBMC cultures.
AWorkflow and study parameters to optimize composition of media to maximize
viability and maintain homeostasis of PBMCs in cultures. B PBMC cell viability as a
function of the optimized media blend compared to individual standard media
(DMEM,RPMI, XVIVO, andAR5) representedusingdata fromsix biological replicate
experiments in each case. Individual double-sided t-test was performed between
the standardmedia and optimal media formulation. *** signify a p-value < 0.01 with
the exact values reported in the Source Data.xlsx file. C Comparison of the number
of experiments to execute the different strategies for designing experiments
considering 8 different cytokines. D Change in total cell density before and after

3 days of PBMC culturing using different compositions of cytokines with the red
arrow indicating the condition meeting the desired objective. E Change in cell
density of subpopulations of lymphocytes before and after 3 days in culture under
different cytokine compositions. F Composition of the cytokines tested in the 12
different experiments (Expts). Red box corresponds to the condition meeting the
desired objective (Expt. 11). Source data are provided in Source Data.xlsx file.
PBMCs peripheral blood mononuclear cells, BO Bayesian Optimization, OFAT One
Factor At Time, BBD Box Behnken Design, CCD Central Composite Design, FF Full
factorial, FracFact Fractional Factorial, FracCCDFractionalCCD, IL Interlukin, BAFF
B-cell activating factor.
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100%.We applied our BO-based iterative design approach tomaximize
the cell viability of healthy PBMCs after 72 h in culture. With 24 total
experiments (split into batches of 6 experiments over four iterations,0
to 3), an optimized blend of themedia showed a statistically improved
viability of 75−80% compared to individual media which resulted in
viability of 60% (Fig. 2B).

Unsurprisingly, we found that the blend of commercial media
yielding improved viability of PBMCs did not uniformly maintain the
diverse subpopulations of lymphocytes, favoring T cells over popula-
tions of B cells and NK cells. To address this imbalance, we selected
eight design factors to test based on their known roles in homeostasis,
including interleukins (IL-2, IL-3, IL-4, IL-7, IL-12, IL-15, IL-21) and B-cell
activating factor (BAFF)42,43. The scope of this design space is sub-
stantial and would require large numbers of experiments to evaluate
using DoE or OFAT (Fig. 2C, see supplementary information for cal-
culation). This trait, therefore, makes performing such optimizations
on sparse clinical samples challenging for many applications like drug
evaluations in precision medicine or the production of non-T-cell-
based cell therapies. Using our approach, we sought to identify com-
binations of the additional media supplements that would maintain
the distributions of cell types after 72 h of cultivation compared to the
ex vivo distribution. With as few as 12 experiments (batches of 6 for-
mulations tested in 2 iteration, 0 and 1), we found a combination that
retained both the cell density (numbers) and the distributions of cell
types (Fig. 2D–F). Interestingly, similar mixtures of the supplements
(Expts. 11 and 12, Fig. 2D–F), differing predominantly in the con-
centration of IL-3, showed a large difference in total cell densities
despite similar distributions of cell types as observed ex vivo. The best
cytokine combination (Expt. 11, Fig. 2F) also showed reduced con-
centrations of two cytokines commonly used in media for CAR-T cell
cultures (IL-7 and IL-15)44. These differences observed in the total
composition highlight the nuances of formulating media for primary
PBMC cells.

Enhancing recombinant protein production by K. phaffii with
carbon source supplements
Optimization of media is also important for applications in industrial
biotechnology. As a second example, we applied our BO-based active
learning approach to improve recombinant protein production by a
yeast host45, K.phaffii, commonly used to produce food proteins,
materials, and biologics. Standard compositions ofmedia used for this
cultivation rely on either a complex46 or basal salt media47 supple-
mented with glycerol48 or glucose49 for biomass accumulation, fol-
lowed by methanol with or without sorbitol co-feeding to induce
recombinant protein production. These formulations (and their use in
fermentation) follow canonical standard protocols50. We hypothesized
that optimizing the concentrations of carbon sources in small-scale
cultures could improve the production of secreted proteins. We
devised a design space including four design factors: the concentra-
tion of glycerol during biomass accumulation, the concentration of
methanol during production, the type of carbon co-feed supplement
in production (categorical factor), and the concentration of the co-
feed. To evaluate the generalizability of our approach and compare
convergent solutions, we optimized the required carbon sources for
three different proteins with varied complexities: an engineered var-
iant of the SARS-CoV-2 RBD subunit (RBDJ)51, Human Serum Albumin
(HSA), and an IgG1 monoclonal antibody trastuzumab (Fig. 3A). We
selected two commonly used carbon conditions as references to
compare the resulting compositions (Benchmark1 and Benchmark2 in
Table 1).

To account for the categorical variables in our surrogate GP
model, we adopted a modified kernel design instead of using OHE.
OHE is generally regarded as an inefficient formulation as it increases
thedimensionof thedata and adds sparsity,making themodel training
inefficient and increasing the data required. To validate the choice, we
retrospectively compared the predictive accuracy of the GP models
trained with our designed kernel and OHE (Fig. S1A). We confirmed

Fig. 3 | Carbon source optimization for recombinant protein production in
K.phaffii. AWorkflow and study parameters for optimizing media supplements to
maximize recombinantprotein production in cultures ofK.phaffii.BComparisonof
specific productivity using optimized media compositions and 2 benchmark con-
ditions for RBDJ, HSA, and trastuzumab. Individual double-sided t-test was per-
formed between the biological replicate experiments performed with benchmark
media and optimal media formulation. *, **, *** signify a p-value < 0.1, 0.05, 0.01,

respectivelywith the exact values reported in the SourceData.xlsx file.COptimized
compositions of carbon sources and specific productivities for the respective
proteins. D Comparison of the number of experiments to execute the different
strategies for designing experiments. Source data are provided in Source Data.xlsx
file. BO Bayesian Optimization, OFAT One Factor At Time, BBD Box Behnken
Design, CCD Central Composite Design, FF Full factorial, FracFact Fractional
Factorial.
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that the average errors made by GP with the designed kernel were
33−50% smaller compared to OHE. We assessed convergence here as
the agreement between the model prediction and the experimental
observation (Supplementary information).

We then demonstrated that the BO could identify optimized
combinations of carbon sources to improve the specific productivity
(measured by mg/L/OD600) relative to the benchmarks, albeit there
were different degrees of improvement for each protein (Fig. 3B).
These identified media compositions correspond to the best achiev-
able targets for the considered optimization task. In this case, for each
molecule, we identifiedmultiple and distinct compositions ofmedia (3
compositions for RBDJ, 2 for HSA, and 2 for trastuzumab) that could
optimize protein production to a similar degree (Fig. 3C). We note,
however, that given the complex non-linear response surface, using
more experiments and time, further iterative learning cycles could
yield additional combinations (of the continuous design factors) of
media giving similar target values.

These media yielded a 2.5-fold improvement in specific pro-
ductivity compared to both the Benchmark media for RBDJ (12mg/L/
OD600 vs 5mg/L/OD600). For HSA, we observed a 2-fold improve-
ment compared to Benchmark2 (6mg/L/OD600 vs 3mg/L/OD600)
but only a 1.5-fold improvement compared to Benchmark1 (6mg/L/
OD600 vs 4mg/L/OD600). Finally, for trastuzumab, we observed a
3-fold improvement compared to Benchmark2 (6mg/L/OD600 vs
2mg/L/OD600) and no statistically significant improvement com-
pared to Benchmark1 (p =0.09). These differences in observed
improvements suggest that there are unique protein-dependent bot-
tlenecks faced by the host that cannot be alleviated by only optimizing
carbon sources.

Furthermore, the optimal media compositions differed con-
siderably from the current Benchmark media and among the tested
molecules with no twomolecules converging to the same composition
(Fig. 3C), highlighting the unique requirements facedwhen optimizing
media for the efficient production of different recombinant proteins.
The alternative carbon sources considered in this work have not been
widely studied for their impact on recombinant protein production in
K.phaffii. Sorbitol has been used as a co-fed carbon source for gen-
erating biomass with K.phaffii52. L-rhamnose, another carbon source
metabolized by K.phaffii53, has shown improved production for HSA
here, suggesting a potential alternative to sorbitol. Other carbon
sources, such as glycerol, glucose, fructose, and mannose, are known
to support growth/biomass accumulation while having a repressive
impact on the pAOX1 promoter52,53, making them unsuitable candi-
dates topromote protein production.Many carbon sources not known
to be metabolized by K.phaffii, including D-arabinose, D-ribose, D-
xylose, galactose, lactose, xylitol and sucrose53 interestingly showed
benefits as a co-feed to enhance recombinant proteinproduction here.
Which carbon sources were beneficial, however, depended on the
protein produced. How these different carbon sources influence pro-
tein production would merit further investigations to assess their
influence on the cellular states.

Given this trait, it is ideal to develop new protein-specific media
without requiring excessive resources or time. Using our BO-based
active learning approach, we found we could optimize the carbon
sources required using only 90 experiments over 7 experimental
iterations (23 experiments in the initial design followed by 11 experi-
ments each in the future iterations), requiring a total of ~1–1.5months.
This total experimental loadwas ~2.5–3 times lower than the predicted
number of experiments required for standard designs of DoE (Fig. 3D,
see supplementary information for calculation) and several orders of
magnitude lower than an exhaustive search to fully screen the design
space, assuming a grid of 10 levels (Fig. 3D). We acknowledge the full-
screen design is infeasible in most practical settings. Since the BO
algorithm considers the design space as a continuum (instead of dis-
cretized space used in most statistical DoEs), the full screen providesTa
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an estimate of the spread for the complete design space (approxi-
mated with a grid of 10 levels here) (see Supplementary Information).

Elucidation of the algorithm characteristics: Exploration-
Exploitation tradeoff
Having demonstrated the capabilities of the BO algorithm for
accelerated, resource-efficient media optimization, we next sought
to elucidate the characteristics of the algorithm by investigating how
the algorithm navigates the selected design space and its corre-
sponding impact on the target. First, the use of a space-filling design
to generate the initial iteration of experiments maximized the
variability in the input-output combinations seen by the GP model,
thus, allowing for an efficient initial representation of the system by
the model. The use of such space-filling designs to generate initial
data has shown success in several applications29,30, including media
optimization33,34. The wide coverage of the design space tested in the
initial iteration for the PBMCs (Fig. 4B) resulted in a wide range of cell
viabilities measured (from 5 % to 62%) (Fig. 4A). The diversity of the
initial assessment is also explicitly evident from the varied ratios of
the different media types (DMEM, AR5, XVIVO, and RPMI) in the
designed initial blends (Fig. 4C). We note that the feasible region to
plan experiments in this example is a non-cuboidal design space
defined by the constraint imposed on media blending. That is, the
sum of the ratios of different media type should equal one (Black

dashed line, Fig. 4B). Similarly, the initial space-filling design to
optimize the carbon sources for the yeast cultivations was also
broadly distributed (Fig. 5B) subsequently resulting in a wide dis-
tribution of specific productivities measured (ranging from 0.1 to
9mg/L/OD600) (Fig. 5A).

In each future iteration, the optimizer attempted to find a trade-
off between planning experiments in unexplored regions of the design
space and refining its confidence in regions identified as favorable for
the target objective (exploitation). Practically, given that the unex-
plored regions represent a larger portion of the design space at the
start of the sequential campaign, we confirmed that the recommended
experiments planned in early iterations of the optimization favored
exploration, and then progressively moved towards exploitation-
dominated designs, narrowing down the probed parts of the
design space.

For the example ofmedia blending for PBMCs,we observed in the
pairwise plot of design space (Fig. 4B) as well as the univariate plot of
individual design factors over iterations (Fig. S4), that exploration
dominated the first two iterations (Iterations 0 and 1), resulting in cell
viability varying from 5% to 75% over (Fig. 4A). Subsequently, Iteration
2 included amix of exploration and exploitation: For instance, Blend 15
exploited a previously observed region covered by Blend 12 (Fig. 4B, C;
Fig. S4). Subsequently, the final iteration (Iteration 3) exploitatively
reduced the search space to a specific ratio of DMEM with a focus on

Fig. 4 | Characterization of exploration-exploitation trade-off for PBMCmedia
blending case. A Evolution of cell viability of the experiments planned in the
different iterations indicatedas boxplots of thebiological triplicate data (with some
experiments having up to five replicates). The box spans between first and third
quartile encompassing a line for the median. The whiskers extend to the farthest
data point that falls within 1.5 times the interquartile range. Points outside this

range is indicated as fliers. The progressively increasing shades of red correspond
to the increasing iteration number. B Evolution of the location of the experiments
in the feasible design space during the different iterations represented in a pairwise
plot of the design factors. C Composition of the different media blends tested in
experiments planned in the different iterations. Source data are provided in Source
Data.xlsx file.
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perturbations involving different combinations of the other media
types (Fig. 4B, C; Fig. S4).

For the optimization of media for protein production with yeast,
using the example of RBDJ, we similarly observed a large distribution
of values of specific productivity (Fig. 5A) with widespread spacing of
experiments covering the design space in Iteration 1 and 2 (Fig. 5B).
Unsurprisingly, the algorithm planned experiments in Iteration 1 for
types of carbon sources not probed in the initial experiments, as
observed in the pairwise plot of the design space (Fig. 5B) and the
univariate plot of the individual design factors (Fig. S5) over the dif-
ferent iterations. This outcome can be attributed to the objective
function being dominated by the higher uncertainty manifested in
these regions of the design space. Iterations 3 through 6, however,
emphasized exploitation as observed by the higher fraction of
experiments planned in a limited region of the design space, resulting

in increased specific productivity (Fig. 5A) with limited testing of other
regions of the design space (Fig. 5B). Particularly, the favorable part of
the design space corresponding to the continuous variables, glycerol
andmethanol, were identified in Iterations 3 and 4 (Fig. S5A, B). For the
categorical variable (co-feed type) and the categorical-coupled con-
tinuous variable (co-feed concentration), however, Iterations 3 and 4
focused on navigating different carbon sources at a limited range of
concentrations, while iterations 5 and 6 limited the co-feed type to the
most favorable ones, exploring a range of concentrations for these
experiments (Fig. S5C, D).

These analyses show the algorithm progressively learned the
favorable/unfavorable regions of the design space as it reduced the
experimental testing in the unfavorable regions. For the PBMC cul-
turing, this progression resulted in a few experiments being planned
for media blends with XVIVO>60%. Reviewing the tested media

Fig. 5 | Exploration-exploitation trade-off and confirmation of poor specific
productivity in the region lacking experiments. A Evolution of specific pro-
ductivity distribution of the experiments planned in the different iterations. The
progressively increasing shades of green correspond to increasing iteration num-
bers. B Evolution of the location of the experiments in the design space in the
different iterations represented in a pairwise plot between the design factors.
C Scatterplot of the carbon source type and concentration of the experiments

tested (Grey circles) alongwith the validation experiments planned (GreenCircles).
The numbers represent the specific productivity with the colors indicating the
corresponding glycerol–methanol conditions in D (D) Scatterplot of the percen-
tages of methanol and glycerol tested (Grey circles). Pink and purple circles—two
combinations of glycerol andmethanol testedwith the selected carbon source type
and concentrations marked in Fig. 5C. Source data are provided in Source
Data.xlsx file.

Article https://doi.org/10.1038/s41467-025-61113-5

Nature Communications |         (2025) 16:6055 7

www.nature.com/naturecommunications


blends, it is clear that blends dominated by higher XVIVO amounts
(Blends 2, 4, 11, and 13—Fig. 4C) resulted in lower cell viabilitieswith the
best viability of only 40% (Fig. 4A).

Similarly, for the production of RBDJ by K.phaffii, specific carbon
source types (e.g., mannose, pyruvate, ribose, glycerol, etc.; especially
in the concentration range of 20−40 g/L) were restrictively probed
(Fig. 5C) and were not selected in the optimal media formulation. To
validate that these ignored parts of the design space would result in
poor specific productivity, wemanually picked 16 different conditions
with the eight different carbon sources from these regions of the
design space and tested the specific productivity of RBDJ under those
conditions (Fig. 5C). The eight carbon sources were tested with two
different glycerol and methanol concentrations (Fig. 5D). The specific
productivities for all these selected conditions ranged from 0.1 to
6mg/L/OD600 and were lower compared to the algorithm-identified
optimal conditions for RBDJ (specific productivity of 12mg/L/
OD600) (Fig. 3B).

Taken together, these analyses on the iterative progression of the
models for both cases tested support the ability of BO to accelerate
optimization and minimize resources used. The synergy between
experimentation, model building, and optimization in this iterative
framework, coupled with the gradual trade-off between exploration
and exploitation in each iteration reduces the number of experiments
allocated to less optimal regions of the design space.

Extending the approach with Transfer Learning to incorporate
additional media supplements
Both cases tested here yielded improved performance for the
respective objectives subject to the selected media components. It is
apparent inboth cases and,moregenerally, thatperformance could be
further enhanced by considering additional influential factors in the
optimization. It is, therefore, desirable to allow continued improve-
ment and extensions of the model to incorporate new design factors
and (or) objectives. In these cases, the ability to strategically use the
learnings generated from the existing data would be crucial to mini-
mize the resources and experiments required for future optimizations.
This goal requires capabilities to transfer learnings to modified design
spaces (e.g., expanding the range of the design factors or adding
additional factors) or to alternative biological systems (e.g., produc-
tion of other molecule types or culturing blood cancer cell lines). In
this work, we explored the feasibility of extending our current fra-
mework to the first case, that is, to transfer learning for modified
design spaces. GP models are well-suited to this extension since they
can learn from data through the context of similar experiments in the
design space. We sought to demonstrate this feature by considering
five additional media additives to optimize the recombinant protein
production in K.phaffii (Table 2), using HSA as a test protein because it
showed only moderate improvement when only the selection of car-
bon sources was considered.

To seed this new iteration of the model that included the addi-
tional supplement, we used the current GP as the prior (instead of
using a space-filling design) and used the optimizer to determine
subsequent experiments. We included all nine factors (the new sup-
plements and the four prior ones) in designing new experiments,
allowing the model to re-learn dependencies in the modified design
space as needed. Iterating in this way yielded a modified composition
of media that improved the specific productivity for secreted HSA

from 6mg/L/OD600 (starting point) to 13mg/L/OD600 (Fig. 6A). This
realized improvement corroborates our hypothesis that hosts produ-
cing recombinant heterologous proteins may require specific tailored
media composition to maximize their specific productivity due to
unique metabolic requirements or protein-dependent features (fold-
ing, assembly).

One impact of starting themodelwith theGP from theprior task is
that the algorithm minimized the experiments planned for certain
carbon sources that had yielded poor specific productivities pre-
viously (e.g., sorbitol, mannitol, xylitol, glucose, mannose, succinate,
and glycerol), and focused on a subset of alternative carbon sources
within the first two rounds (Fig. S6). Similarly, starting from the initial
iteration, the algorithm planned most of the experiments with con-
centrations of glycerol <5% and those ofmethanol between 1.5 and 8%.
As a result, new optimized media conditions required only 72 addi-
tional experiments (including 12 to confirm model convergence) to
consider the new design space of 9 factors. This ability to use prior
learning in the formof a surrogatemodel thus resulted in at least a 20%
reduction in the experiments that started from scratch using the BO
approach for the new design space which would have required at least
90 experiments (based on the carbon source optimization case). The
total number of experiments from the two tasks together was about
~160 experiments—several orders of magnitude lower than a practi-
cally infeasible full screen and ~10–30 times fewer experiments than
traditional DoE approaches (Fig. 6B).

The experimental burden of DoEs increases substantially as the
design space expands, and consequently, often only a subset of factors
are considered in any given optimization to reduce the overall number
of experiments performed10. For instance, in our nine-factor study
here, a studymight hold the prior optimized conditions for the carbon
source constant and simply perform a separate DoE for the five addi-
tional design factors. Interestingly, in the case we considered, how-
ever, this common approach would not have yielded the best
productivity: The new media supplements resulted in an alternative
preference of carbon sources for maximizing the productivity (from
rhamnose and lactose to ribose, D-arabinose, and galactose) (Figs. 3C,
6C).Whereas the use of rhamnose as a co-feed resulted in high specific
productivity (~10.5mg/L/OD600), the concentration was altered from
that found with the four-factor design space. These data support the
flexibility of this BO-based active learning approach for media opti-
mization to accommodate the posterior addition of design factors
(such as new additives) or expand the concentration range of existing
design factors29. This ‘bootstrapping-type’ approach to optimization
would become increasingly valuable as the design space expands, as is
often the case in media optimization when considering several types
and concentrations of additives.

Discussion
In this study, we have presented an accelerated and resource-efficient
approach formedia development using Bayesian optimization-guided
iterative experimental design. Using twounique experimental systems,
we have shown its capabilities for cell cultures used in common
applications in both life sciences and biomanufacturing. First, we
optimized the media composition to maximize viability and maintain
homeostasis of PBMCs in culture. In the second case, we optimized the
concentrations of additional supplements used in cultivation media
for K.phaffii to maximize the production of three different

Table 2 | Additional factors considered in the experimental design of the transfer learning study and the corresponding ranges

Factors Phase Factor Type Lower bound Upper bound Benchmark

Glutathione [mM] Outgrowth, Production Continuous 0 50 0

pH [-] Outgrowth/ Production Discrete 5.75, 6.0, 6.5 6.5

Tween20 [%] Outgrowth, Production Continuous 0 10 0
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recombinant proteins. In both cases, improved performance was
achieved compared to current standardmedia conditions with at least
a 3- (e.g., 4 design factors) to upto 30-fold (e.g., 9 design factors with
consideration of multiple categorical variables and/or a large number
of categories) reduced experimental burden compared to the state-of-
the-art DoE approaches. Inferring from the selection of experiments
within the design space during iterative rounds, it is evident that this
efficiency results from the capability of the algorithm to focus the
experimental effort on identifying favorable regions for the targeted
objective via a tradeoff between exploration and exploitation, and
therefore, minimizing the experimental efforts in undesirable regions,
reducing the overall time and resources required.

The examples of optimizations performed here, including the
incorporationof transfer learning to extend thedesign space, show the
potential for this BO-based active learning strategy to minimize
experimental costs and time for complex biological tasks like media
optimization. The extensibility of the models makes it possible to add
new design factors or objectives without introducing artificial con-
straints or biases needed to manage the budget for experimental
exploration of the large design space. GPs used for the models
intrinsically provide an efficient way to accommodate additional
media supplements or objectives a-posteriori since they associate
unexplored regions of the design space (the influence of new added
factors/goals) with a larger uncertainty. This approach should provide
benefits for adapting models to new systems or tasks where the input
materials available for experiments impose a natural limitation on how
many experiments are feasible during optimizations (e.g., develop-
ment of primary cancer cell culture from tissue biopsies, pediatric cell
therapies).

This approach derives its advantage from coupling data col-
lection (design), modeling, and optimization into a comprehensive,
iterative process, thus strategically navigating the design space

based on experimental feedback. In contrast, DoE approaches offer
static designs irrespective of design factors or target types, with no
active accumulation of learnings based on data collected from the
experimentation. Additionally, our approach offers more general-
ized capabilities that can account for different types of design fac-
tors and optimization tasks compared to DoEs, which can only work
with discrete or continuous and cannot generate designs for con-
strained spaces or for categorical variables with linked continuous
variables. Finally, the approach here offers broader coverage of a
design space compared to DoE studies that discretize the design
space and only test the corner and center points of the design space
in a defined campaign. The case studies presented here together
invoked a range of scenarios that account for different types of
design factors (continuous, discrete, categorical), frameworks for
optimization (constrained, unconstrained), degrees of biological
noise (moderate to high), and intrinsic limitations on the material
(cost, time).

One disadvantage of our current implementation is the procedure
for in silico sampling needed to accommodate categorical variables
relies on randomly sampling many potential experimental sugges-
tions, increasing computational time (~2–4min/experiment). Using
recent advancements in optimization approaches54, the efficiency of
this sampling process could be improved. Furthermore, the space-
filling designs used can bemodified to account for constrained design
spaces and categorical variables55–59, thus, improving the efficiency of
initial design and iterative-sampling. Additionally, the current imple-
mentation does not account for parallelization or utilize GPU accel-
eration, both of which could significantly enhance computational
efficiency. Further advances to enhance the computational efficiency
using sparse Gaussian Process regression could also reduce the
memory required, and enable efficient processing of larger numbersof
factors and sizes of datasets60.

Fig. 6 | Transfer learning to a new design space with additional factors.
A Evolution of specific productivity distribution of the experiments planned in the
different iterations. The progressively increasing shades of blue correspond to the
increasing iteration number. B Comparison of the number of experiments to exe-
cute the different strategies for designing experiments. C Composition of media

supplements for top 5 candidates with highest specific productivities in decreasing
order. Source data are provided in Source Data.xlsx file. BOBayesian Optimization,
OFAT One Factor At Time, BBD Box Behnken Design, CCD Central Composite
Design, FF Full factorial, FracFact Fractional Factorial.
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In conclusion, wehave focused hereon aBO-based active learning
approach to media optimization and demonstrated improved perfor-
mance in cell culture for specific objectives. The scalability of the
methods here, however, also depends on practical considerations in
media optimization, such as the cost, solubility, stability/cross-com-
patibility, and environmental impact of the components. These con-
siderations could be included in the optimization as additional
objectives and (or) constraints and addressed through further
advancements of the current framework.

The examples presented here also highlight the potential for this
approach to extend to other complex biological applications, such as
process development. The extensibility of the strategy suggests that
incorporating such BO-based experimental design as a standard
practice in life sciences research could facilitate both the generation of
foundational data to support new predictive models in biological
systems and further accelerate development pipelines for new sys-
tems. For example, the models developed here to optimize media to
sustain ex vivo PBMC cultures could be extended to support the
establishment of patient-derived cell lines in cases where the material
is limited, such as for needle biopsies or rare/pediatric cancers. Simi-
larly, media and process development for new protein molecules or
engineered strains could be accelerated by starting from the models
and data generated here. Related applications like scaling up process
conditions across systems could also benefit from this strategy for
optimization which uses synergy between iterative experimental data
andmodeling to inform optimization.We postulate that this approach
and similar ones like reinforcement learning could establish modular
frameworks for improving predictive capabilities across multiple
complex biological systems.

Methods
Culturing PBMCs
Peripheral blood mononuclear cells (PBMCs) were thawed in a 37 °C
water bath, followed by adding the thawed cells to 4mL of DMEM
(GibcoTM, Cat#11965092) supplemented with 10% fetal bovine serum
(FBS; Sigma-Aldrich, Cat#F4135). The cells were centrifuged at 500 x g
for 5min, the supernatant was discarded, and the pellet was resus-
pended in 2mL of fresh DMEM. Cells were counted, and the appro-
priate volume of cell suspension was calculated to achieve a final
concentration of 1 × 106 cells/mL in 2.3mL of the chosen reactor
medium (determined based on BO suggested experimental design).
After centrifugation at 500 x g for an additional 5min to remove any
residual DMEM, the cells were resuspended in 2.3mL of the reactor
medium. A volume of 200 µL of the cell suspension was then pipetted
into each well of the specialized C.BIRDTM reactor plates (CYTENA,
Cat#3000012), ensuring that empty wells were filled with 200 µL of
PBS or water and 10mL of PBS (GibcoTM, Cat#10010023) or water was
added to the plate reservoir. The C.BIRDTM reactor plate lid was
attached to the 96-well plate, and the assembly was placed in a 37 °C
incubatorwith standard settings used for cancer cell culture, including
5% CO2 and high humidity (~95%) to maintain pH and prevent eva-
poration. Basal media included either DMEM (GibcoTM, Cat#11965092)
or RPMI 1640 (GibcoTM, Cat#11875093), each supplemented with 10%
FBS (Sigma-Aldrich, Cat#F4135) and 1% Penicillin-Streptomycin (Gibco,
Cat#15140122). AR5 and XVIVO media were prepared according to
manufacturer instructions (AR5: CellGenix, Cat#20807; XVIVO 15:
Lonza, Cat#04-418Q). Detailed preparation protocols are available at
cellfactory.broadinstitute.org/#/sops. 6-8 biological replicates were
performed for different designed experimental conditions. For viabi-
lity measurements (PBMC – Media blending case study), the contents
of two replicate cultures were pooled, thus resulting in three – four
replicate readings of the viable cell count. An average of the replicate
readings was used as the modeling target. During the cytokine opti-
mization, the content of the replicate cultures was pooled into a single
pool that was used for flow cytometrymeasurements to quantify both

the cell viability (using viability dye) and the lymphocytic subpopula-
tion of interest.

Viability Assays
Cell viability and countingwereperformedbefore and after incubation
in the C.BIRDTM microplate bioreactors (CYTENA). After the culture
duration (72 h), cells from replicate conditions were pooled into a
single tube, and 40 µL of EDTA (Thermo Fisher Scientific, Cat#-
AM9260G, 0.5M stock) was added to each sample, to help prevent
aggregation and detach PBMCs from the reactor surfaces to ensure
accurate cell counting. A 1:1 mixture of the cell suspension and AOPI
(ViaStain AOPI; Nexcelom, Cat#CS2-0106) was prepared, and cell
counts were performed in replicates (three or four) using the Nexce-
lom Cellaca plate reader.

Flow cytometry
Peripheral blood mononuclear cells (PBMCs) were isolated from
healthy donor blood samples (STEMCELL Technologies, Cat#70025)
using density gradient centrifugation and pooled into a 1.5mL
Eppendorf tube. A 100 µL aliquot of cells was extracted for viability
assessment, while the remaining volumewas centrifuged at 500 x g for
8min. During centrifugation, 5 µLofHumanTruStain FcX™ Fc receptor
blocking solution (BioLegend, Cat#422302) was added to 95 µL of
FACS buffer (phosphate-buffered saline (PBS) supplemented with 1%
bovine serum albumin [Sigma-Aldrich, Cat#A4503] and 0.1% sodium
azide [Sigma-Aldrich, Cat#S2002]) per sample.

After centrifugation, the supernatant was discarded, and the cells
were resuspended in 100 µL of Fc block solution and incubated on ice
for 20min. Staining was performed using the following antibodies,
each diluted 1:20 in FACS buffer unless otherwise noted: (i)Anti-CD20-
FITC (BioLegend, Cat#302304) – 5 µL/test, (ii)Anti-CD45-APC (BioLe-
gend, Cat#304012) – 5 µL/test, (iii) Anti-CD56-APC-Alexa Fluor 750
(BioLegend, Cat#318342) – 5 µL/test, (iv) Zombie Violet Fixable Viabi-
lity Dye (BioLegend, Cat#423113) – 1:500 dilution in PBS, 1 µL/test.

Cells were incubated on ice in the dark for 30min. Following
incubation, the cells werewashed twice by centrifugation at 500xg for
5min and resuspended in 200 µL of FACS buffer. Flow cytometric data
acquisition was performed on a Beckman Coulter CytoFlex LX, utiliz-
ing appropriate laser configurations and voltages for each fluor-
ophore. The flow gating strategy is summarized in the supplementary
information.

K.phaffii cultivation
Cultivations with different media formulations were tested on a plate
scale. Experiments were performed in Axygen twenty-four well deep
well square plates (total volume 10mL, working volume of 3mL) at
room temperature on Benchmark Orbi-ShakerTM plate shakers
(600 rpm). Complex media commonly known as BMxY − 1.34% nitro-
gen basew/o amino acids (DifcoYeastNitrogen Basew/o AminoAcids,
Cat# 291920), 1% yeast extract (DifcoTM Yeast Extract, Cat# 210929), 2%
peptone (BactoTM Peptone, Cat# 211677), potassiumphosphate buffer -
at the set pH was used as the basal media for the cultivation. Appro-
priate types and concentrations of additives were added to this basal
media according to the experimental plan generated by the algorithm
for both the outgrowth and production phases of the cultivation. All
additives were obtained from Sigma-Aldrich. Cultivations were
inoculated at 0.1 OD600 from working cell banks, grown for 24 h,
pelleted, and resuspended in fresh production media to induce
recombinant gene expression. Supernatant samples were collected
after 24 h of production, filtered, and analyzed using Agilent Infinity
1260 High Performance Liquid Chromatography to quantify titer.
Reverse phase column (Agilent Technologies, Cat# PL1612-1801) was
used to quantify titers for RBDJ and HSAmolecules while Biomonolith
protein A column (Agilent Technologies, Cat#5190-6903)were used to
quantify trastuzumab titers.SDS-PAGE (Invitrogen NovexTM 12% Tris-
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Glycine Plus Midi Gel, Cat# WXP01226BOX) was carried out as
described previously61 to confirm protein bands of the right size and
no product-related variants. Specific productivity was defined as rela-
tive titer normalized by cell density, measured by OD600 on Tecan
Infinite M Nano+ plate reader. Biological duplicates were run for all
designed experiments, and the average value of the biological dupli-
cate was considered for the modeling. Cultivation using media indi-
cated in Benchmark 1 was run as a control experiment on each
iteration. The process noise was calculated as the variance across the
control experiment for all instances including the contemporaneous
iteration. For building the initial model, the variance was calculated
from a preliminary experimental campaign to select molecules
expressed with Benchmark 1 media. This estimated process noise was
incorporated into the modeling (see Gaussian Processes).

Initial design
A Latin hypercube sampling (LHS) was used to generate the initial
design for the continuous variables while a uniform random design
was used for the categorical variables. In LHS, the designs are gener-
ated such that each hyperplane of the design space has only one point
in contrast to purely random sampling from a uniform distribution
that results in uneven spacing of the experiments in the design
space3,29,30. However, since LHS considers continuous unconstrained
design spaces, random sampling was used for constrained design
spaces (PBMCmedia blending study) and categorical variables (for the
K.phaffi recombination protein production optimization case study).
For constrained design spaces random design within the feasible
design space was used as the initial design implemented using the
GpyOpt python package. We note here that the choice of the initial
design is expected to impact the number of iterations required for the
convergence of the algorithm.

Gaussian processes
Gaussian processes (GPs) are probabilistic models that learn an
underlying unknown black-box function (i.e., the relationship between
media additive and specific productivity) by representing them as a
distribution of functions. This distribution of function is characterized
by a mean m xð Þ, and a covariance function k x, x0ð Þ that is dictated
based on prior beliefs about the system (Eq. 1).

f xð Þ � GP m xð Þ, k x, x0ð Þð Þ ð1Þ

The covariance function is defined through the kernel which
encodes the similarity between points in the design space and the
selection of this function depends on the beliefs about the smooth-
ness, periodicity, and trends in the design space. Since smooth trends
are expected over the continuous space in this application, we used a
smooth flexible Matern kernel.

kcontðx, x0Þ= 21�ν

ΓðνÞ

ffiffiffiffiffiffi
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ffiffiffiffiffiffi

2ν
p

jx � x0j
θ

 !

ð2Þ

x indicates the continuous inputs, Γ is the gamma function and Kν is
the modified Bessel function. The |x – x’| indicates the distance
between the two points. The kernel value decreases as the distance
increases beyond the length scale, θ. θ is a vector with the same
dimension as the number of design factors. ν is the smoothness con-
trolling parameter with a higher value of ν implying a smoother
function. Common values of ν for this kernel are 1.5 and 2.5. The first
value yields once differentiable functions and the second results in
twice differentiable functions. The categorical overlap kernel (Eq. 3) is
compatible with at least twice differentiable kernels such as Radial
Basis Function (RBF) or Matern (ν = 2.5)62, motivating the selection of
the kernel. For the PBMC case study (considering only continuous
design factors) with higher noise, aMatern kernel with ν = 1.5 was used

(We note that both ν = 1.5 and 2.5 performed similarly for these data
(Supplementary Information, Fig. S2)).

For the definition of the categorical variable, we use the for-
mulation of the categorical overlap kernel suggested by Ru et al.62,
which defines the kernel as the total number of categories that overlap
between the two points hi and h0

i.

kcatðh, h0Þ= σ
c

X

c

i = 1

Iðhi � h0
iÞ ð3Þ

h indicates the categorical inputs, and c represents the total number of
categorical variables considered (in this case, 1 - that is the type of
carbon source).

The final kernel over the categorical-continuous variables toge-
ther (z) is also adapted from Ru et al.62, as follows:

k z, z0ð Þ=α*ðkcat h, h0� �

*kcontðx, x0ÞÞ+ ð1� αÞ * ðkcat h, h0� �

+ kcontðx, x0ÞÞ
ð4Þ

To this kernel, process noise was added through a white noise
kernel with a fixed variance computed based on the variation in the
replicates of the control experiment for each iteration/across different
iteration.

The length scale in the continuous kernel and the trade-off para-
meter (α) in themixture kernel is a hyperparameter that is updated by
maximizing the marginal likelihood based on data, refining the priors
and resulting in the posterior distribution.

The length scaleswere initialized to thedefault settings inGPy and
the trade-off parameter (where relevant) was initialized to 0.5 giving
equal weight to both additive and multiplicative terms at the begin-
ning. With each iteration, the training errors were monitored through
RMSE in training to ensure the success of parameter optimization.
Using K.phaffii as an example, we verified the stability of this approach
to initialization a-posteriori (Supplementary information, Fig. S3).

The noise addition to function estimation (ϵi) is provided through
the likelihood function, in this case, Gaussian likelihood (Eq. 6).

yi = f xi
� �

+ ϵi ð5Þ

ϵi =N 0, σ2
i

� � ð6Þ

Gpy package was used to set the kernel and the Gaussian process
implementation in Python.

Bayesian optimization
The GP is then used by an optimizer that suggests the next set of
experiments (media conditions) using an acquisition function that
encodes a tradeoff between characterizing previously unexplored
parts of the design space and exploiting the regions with promising
targets (higher specific productivity). To determine the PBMC basal
media blend determination, cell viability was used as the target
property whereas for the cytokine optimization an aggregated objec-
tive function was used to consider both cell viability and cell differ-
entiation (Eq. 7). Finally for the case study with K.phaffii, specific
productivity was used as the target.

Target =Viability f actor *
P

j = NK , T , Bf gFracj
if Viability≤ 1 : Viability f actor =Viability

if V iability> 1 : Viability f actor = 1
Viability

ð7Þ

In this work, for optimization problems with only continuous
variables, we use an upper confidence bound acquisition function
compared to other alternatives that define the tradeoff simply using
the predicted mean and uncertainty. For continuous unconstrained
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optimization problems (e.g., the cytokine optimization for PBMC cul-
ture) a local optimizer suchasLBFGS is used tomaximize/minimize the
acquisition function, and a trust-region-based algorithm is used for
constrained optimization (PBMCbasalmedia blend). These optimizers
are implemented through the scipy package in Python. In the presence
of categorical, continuous optimization (K. phaffi cultivation media
optimization), for thefirst few iterations (Iterations 0 to 3), we used the
multi-armed bandit-based sampling of the categorical variable adap-
ted from Ru et al.62, and Thompson sampling for the continuous
variable. For the subsequent iterations (Iteration 4 to 6) a brute force
approach and simulated 10000 points via LHS, and the points with the
maximum/minimum acquisition function were picked.

Finally, the original implementation of BO is a truly sequential
design approach, planning one experiment in each iteration16. For
most applications, as inour case, it ismore practical to perform several
experiments in parallel. Thus, we use a variant of BO called batch BO
using the “constant liar” approach using the mean value63 amongst
others64,65, which has previously shown success in other applications
such as29,30. However, when Thompson sampling is used as the acqui-
sition function, parallel experiments are simultaneously generated as
per the batch size. The batch sizewas determinedby the throughput of
the experimental system, material availability, and replicate require-
ments. We note here that the choice of batch size will impact con-
vergence, either by increasing the number of iterations required for
convergence (selecting small batch size) or the total number of
experiments required to converge (selecting large batch sizes). We
also note that the batch sizes could be modified as the iterative
learning progresses instead of having a fixed batch size.

Computational environment and packages
These codes were run on a MacBook Pro with a 2.4GHz 8-core Intel
Core i9 processor, Intel UHD Graphics 630 (1536 MB), and 64 GB
2667MHz DDR4 memory. As mentioned, GPy, GPyOpt and scipy
packages were used for modeling and optimizer implementation,
respectively. In addition, NumPy, pandas, and matplotlib, seaborn
were used for the data reading, processing, analysis and visualization.
No parallelization or Graphical Processing Unit (GPU) capabilities were
used in the current implementation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The media formulations and the corresponding target data that sup-
port the findings of this study and were generated in this study are
available in figshare with the identifier(s) https://doi.org/10.6084/m9.
figshare.27715134. Source data to create the figures in the paper are
provided in Source Data.xlsx file. Source data are provided with
this paper.

Code availability
The codes used to generate the experiments, perform the analyses and
generate results in this study is publicly available and has been
deposited in GitHub at https://github.com/NHarini-1995/
CellCultureBayesianOptimization.git, under MIT license66. The spe-
cific version of the code associated with this publication is archived in
Zenodo and is accessible via https://doi.org/10.5281/zenodo.15466161.
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