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A simplified minimodel of visual cortical
neurons

Fengtong Du 1 , Miguel Angel Núñez-Ochoa 1, Marius Pachitariu 1,2 &
Carsen Stringer 1,2

Artificial neural networks (ANNs) have been shown to predict neural responses
in primary visual cortex (V1) better than classical models. However, this per-
formance often comes at the expense of simplicity and interpretability. Here
we introduce a new class of simplified ANN models that can predict over 70%
of the response variance of V1 neurons. To achieve this high performance, we
first recorded a new dataset of over 29,000 neurons responding to up to
65,000 natural image presentations in mouse V1. We found that ANN models
required only two convolutional layers for good performance, with a relatively
small first layer. We further found that we could make the second layer small
without loss of performance, by fitting individual “minimodels” to each neu-
ron. Similar simplifications applied formodels ofmonkeyV1 neurons.Weshow
that the minimodels can be used to gain insight into how stimulus invariance
arises in biological neurons.

Predictive models of neural activity have a long tradition in neu-
roscience. Such models have many uses, from making predictions of
responses to new stimuli, to developing normative and prescriptive
theories of neural coding, to making testable hypotheses about
underlying mechanisms, etc1,2. Predictive models range from simple
qualitative descriptions (i.e., V1 neurons are edge detectors), to com-
plex mathematical functions with very many parameters and non-
linearities (i.e., deep convolutional neural networks). The performance
of amodel can be directlymeasured by its prediction accuracy on new
stimuli; complex models typically excel at this. However, predictive
power is not everything; simple models can often be more useful for
understanding neural coding properties.

Simple models of V1 responses include simple/complex cell
models3, linear-nonlinear (LN) models4,5, Gabor functions6, and orien-
tation tuning curves7,8. These models are simple and interpretable, yet
they struggle to capture the complex feature selectivity observed in
natural visual environments9. Complex models in contrast are pre-
dominantly artificial neural networks (ANNs) in various configurations,
mostly deep convolutional neural networks10 but more recently trans-
former models as well11,12. Initially developed and demonstrated as
models of higher-order areas in the primate brain13,14, ANNmodels have
also been found to perform well in primate V115 and in mouse V116,17,

where they can predict almost twice as much variance on test images
compared to linear and LN models. These results have challenged the
traditional viewof V1 neurons as simple edge detectors and filter banks.
Simultaneously, other results in mice have shown that V1 neurons
represent many other behavioral and cognitive variables in addition to
representing stimuli18,19, although these variables do not appear to be
represented in primate V120. Thus, a view of a complicated V1 is
emerging, that is potentially different between mouse and monkey.

Here we aimed to directly test whether complex, many-stage
neural networks are an appropriate model of V1 in both mouse and
monkey. Our approach is to start with multi-layer neural networks,
which are known to predict V1 responses well, and progressively
remove parts from the model for as long as the performance stays the
same. To enable these analyses, we also recorded a new large dataset
of high-quality neural responses from tens of thousands of V1 neurons
to tens of thousands of images21, well beyond the dataset sizes pre-
viously employed in similar studies.

Results
Data and model setup
Using a two-photon microscope, we recorded neural activity from a
total of 29,608 V1 neurons in six mice expressing jGCaMP8s22 in
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excitatory neurons (Supplementary Fig. 1). During the recordings, we
presented 32,440–52,868 naturalistic images at a stimulus presenta-
tion rate of 7.5 Hz22,23 (Fig. 1a, SupplementaryMovie 1). A subset of 500
images were presented 10 times and were used as test images. Similar
to previous studies, we restricted all analyses to neurons with reliable
stimulus responses to the test images15,24, which resulted in 14,504
neurons (Supplementary Fig. 2a, b). These neurons had Gabor-like
linear receptive fields, similar to reported monkey receptive fields
(Supplementary Fig. 3,25).

We fit various models to predict the responses of these neurons
using the training images as input. We started from a neural network
model with four convolutional layers, fit to a neural population, that is
similar to previous work24,26 (see “Methods”). The four convolutional
layers were shared across neurons (the “core” of the model) and were
followed by a neuron-specific readout step which pooled over the
output of the last convolutional layer (Fig. 1b). The readout was para-
meterized as a rank-1 decomposition of weights across horizontal
pixels (wx), vertical pixels (wy), and convolutional channels (wc), fur-
ther simplifying the readout models used in previous work27, and we
constrained the wx and wy to be non-negative. We did not put any
spatial constraints on wx and wy.

To quantify the performance of themodel, we used the responses
to a separate set of 500 test images, repeated 10 times each. As a
performance metric, we used the fraction of explainable variance
explained (FEVE), which is the ratio of variance explained to total
explainable variance (similar to previous studies15,24, seeMethods). The
standard model reached 0.73 FEVE on the mouse data (Fig. 1c, d;

Supplementary Fig. 2), significantly outperforming a LN model
(FEVE =0.31). The performance was also higher than previously
reported values of 0.44 FEVE from another dataset24. The increase in
performance can likely be explained by the larger number of training
images we were able to show ( ~30,000 vs ~5000) as well as the SNR
increase obtained by jGCaMP8s recordings under good recording
conditionswith closed-loop eye correction (Fig. 1e and “Methods”).We
also found that the model performance was not related to the single
neuron response statistics: we fit a Gabor model to each neuron and
did not find any relationship between FEVE and the Gabor parameters,
including whether or not the cell was “complex” and its spatial fre-
quency preference (Supplementary Fig. 4 and “Methods”).

Simplifying V1 models to two layers
To determine the simplest model that performs well, we first
varied the number of convolutional layers. We found that the
FEVE metric saturates at two convolutional layers (Fig. 1f, 0.61,
0.71, 0.73, 0.73 FEVE for one-, two-, three- and four-layer models
averaged across mice). Previous high-performing models in con-
trast saturated more slowly (Fig. 1f, 0.37, 0.61, 0.67, 0.68 FEVE for
one-, two-, three- and four-layer models). We found that the
performance gains in our shallower models compared to the
Sensorium model were primarily due to the larger pooling area in
the readout weights (wx, wy) of our models (Supplementary
Fig. 5). The wx and wy readout weights were spatially localized,
i.e., the model pooled across the same local region multiple dif-
ferent inputs (Fig. 1g, Supplementary Fig. 6). The pooling

Fig. 1 | Two-layer models of visual responses in mouse and monkey V1.
a 32,440–52,868 natural images were shown to mice during two-photon calcium
imaging recordings in V1. b Architecture of the prediction model including four
convolutional layers and a neuron-specific readout layer, parameterized as a rank-1
decomposition of weights across x-pixels (wx), y-pixels (wy), and convolutional
channels (wc). c Example neural activity and predictions on held-out test images.
d Distribution of the fraction of explainable variance explained across all neurons
(FEVE, see “Methods”, N = 14,504). e Performance as a function of training images
(N = 6 mice). Error bars represent standard error of the mean (s.e.m.).

f Performance as a function of model depth compared to the Sensorium model
(green)24, and compared to a linear-nonlinear (LN)model (dashed line) (N = 6mice).
Error bars represent s.e.m. g Example readout weights wx and wy as well as their
combined spatial mapWxy. h Pooling diameter distribution, estimated fromwx and
wy. i Natural and generated stimuli presented during neural recordings in monkey
V1, figure from ref. 15. j–n Same as (c–h) for the our models fit to the monkey V1
dataset. l includes the baseline model from ref. 15 which has 5 layers. Error bars
represent s.e.m.
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diameter varied in the range of 10–25 degrees, consistent with the
large receptive fields of mouse V1 (Fig. 1h28,29).

Nextwe repeated the sameanalysis for a publicly available dataset
of monkey V1 neurons15, consisting of 166 neurons recorded from two
monkeys using silicon probes during the presentation of 7250 natural
images (Fig. 1i). Similar to the mouse data, the FEVE saturated at two
convolutional layers (Fig. 1l, 0.56 vs 0.56 FEVE for two vs four-layer
models averaged across all neurons). This performance was higher
than the best model from ref. 15 (0.50 FEVE), which required sig-
nificantly more layers. The pooling weights, like inmice, were spatially
restricted (Fig. 1m) and spanned a range of 0.15–0.8 degrees in dia-
meter (Fig. 1n).

Thus, V1models in bothmouse andmonkey required atmost two
hidden layers for near-maximal predictive power, resulting in a sub-
stantial simplification compared to previous high-performing models.

Further simplifying the first layer to 16 convolutions
To further simplify the two-layer model, we next varied the number of
convolutional feature maps per layer (Fig. 2a). The performance did
not decrease much when we made the first layer small, but did
decrease substantially when we tried tomake the second layer smaller
(Fig. 2b, c). These results were qualitatively similar betweenmouse and
monkey. Thus, we simplified both models to a first layer of 16 con-
volutions followed by a second layer of 320 convolutions, which we
will refer to as the 16-320 model. Since the first layer convolutions are
simply image filters, they can be visualized and interpreted easily
(Fig. 2d, Supplementary Fig. 7a). In both mouse and monkey, the first

layer consisted of Gabor-like and center-surround filters with varying
spatial frequencies and spatial extents. Removing the max pooling
layer after the first layer resulted in smoother kernels but caused a
slight decrease in performance (Supplementary Fig. 8).

The second layer consisted of a large number of channels, sug-
gesting that a large expansion of dimensionality is needed to explain
neural responses in the entire recorded populations. Indeed, when we
applied a sparsity constraint to the readout layer wc weights30, we
found a drop in performance, demonstrating that the population
model required a large number of conv2 channels (Supplementary
Fig. 9a, b). We hypothesized that this architecture with expansion in
the second layer may have computational advantages in visual tasks.
To test this, we trained two-layer neural networks with different sizes
to perform texture and object classification (Fig. 2e). For the texture
classification task, we used random crops from 1001 large images of
textures and trained the network to predict which image the crops
were taken from, using a logistic regression readout (201 images were
used for testing, see “Methods” for details). On this task, networkswith
wide second layers were necessary to achieve high accuracy (>200
convolutions, Fig. 2f). In contrast, the first layer provided good per-
formance at 16 convolutional maps (Fig. 2f). We found a similar result
when testing two-layer networks on an object recognition task based
on a downsampled version of the ImageNet dataset (Fig. 2g)31. In this
case, we had to use an intermediate fully-connected layer for good
performance, as is typical for deep convolutional networks trained on
ImageNet32. Two-layer networks trained on this task achieved up to
39% top-1 accuracy, comparable to the 43% accuracy of the deep

Fig. 2 | Number of convolutional feature maps required to fit visual responses
and perform visual tasks. a Schematic of the simplified two-layer model.
b Performance of themodel as a function of the number of convolutional channels
in the first layer (conv1) and the second layer (conv2) across 6 mice (top) and 2
monkeys (bottom). c Same data as (b) displayed as curves. d Conv1 weights for

mouse (top) andmonkey (bottom). e Two-layer convolutionalmodels were trained
to perform image classification on the ImageNet dataset or to perform texture
classification on a dataset with 201 natural texture images. f, gModel performance
asa functionof the numberof channels in conv1 and conv2 for texture classification
and ImageNet classification.
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Alexnetmodel with 5 hidden layers. Againwe found that awide second
layer was necessary for good performance, while the first layer could
be kept relatively small (Fig. 2g).

Further simplifying the second layer to ~32 convolutions
To further simplify the model, we wanted to reduce the size of the
second layer. This was not possible when fitting all the neurons toge-
ther as shown above (Fig. 2b, c), but it may become possible if the
models arefit to individual neurons. Thismay be the case, for example,
if the large conv2 dimensionality of the 16-320model is only necessary
because different neurons encode different small sets of features and
thus a single 16-320 model would have to encode all those sets toge-
ther. To test this hypothesis, we started by fitting the 16-320 model to
groups of neurons of increasing number. We found little to no relation
between themodel performance and the number of neurons thatwere
fit together (Fig. 3a). While population models showed a slight per-
formance advantage compared to single-neuron models (Supple-
mentary Fig. 10), this difference was minimal and disappeared when
using the conv1 weights from a model trained on all neurons. Thus,
there is no benefit in this analysis to recording and modeling thou-
sands of neurons simultaneously. Indeed, themodels fit to themonkey
dataset performed very similarly. This was surprising to us, because
the convolutional layer parameters are shared between neurons and
thus could have benefited from the extra information provided by
other neurons to reduce overfitting. In contrast, varying the number of
training images had a large impact on performance, as expected from
the extra information provided by additional training trials and as
previously reported26 (Fig. 3b).

Having found similar performance when fitting the 16-320
model separately to each neuron, we next tried reducing the sec-
ond layer dimension for these single neuron models, which we will
refer to as “minimodels” (Fig. 3c, Supplementary Fig. 11). Since we
mainly wanted to investigate the effect of the second layer, we held
the first layer fixed in all minimodels to the one identified by the 16-
320 model (Fig. 2d). We did not directly vary the number of conv2
channels as done above (Fig. 2b, c), because that would have resulted
in toomany models to fit. Instead, we fit a single 16-64model to each
neuron with an added sparsity constraint on the readout layer30. The
sparsity constraint pushed many readout weights to 0, thus effec-
tively controlling the number of active convolutional maps. Every
neuron ended with a different 16-X minimodel, where X was at most
64. Theminimodels performed similarly to the 16-320model, in both
mouse and monkey neurons (Fig. 3d). On average, the minimodels
achieved the same test set FEVE of 0.71 and 0.56 as the 16-320
models, respectively for themouse andmonkeymodels (Fig. 3e). The
minimodels fit to the mouse data required an average of 32 con-
volutional maps in the second layer, while those fit to the monkey
data required only 7 (Fig. 3f). Therewas no advantage in performance
when using more maps in either model (Supplementary Fig. 9c, d).
We also found no change in performance when using the conv1 filters
from different mice to fit the minimodels (Supplementary Fig. 7b).
Furthermore, there was no apparent clustering of conv2 weights or
activities across mice when using the same conv1 filters (Supple-
mentary Fig. 12). This suggests that each neuron’s minimodel learns
distinct features, collectively spanning a high-dimensional fea-
ture space.

Fig. 3 | Single neuron minimodels achieve similar performance to the 16-
320 model. a, b Performance of the 16-320 model does not improve with more
neurons but improves with more training images. Error bars represent s.e.m.
c Minimodel architecture consisting of a fixed conv1 layer from the 16-320 model,

and separate conv2 and readout weights for each neuron. d Prediction perfor-
mance of theminimodel compared to the 16-320model for each neuron. e Same as
(d) summarized per mouse/monkey. Error bars represent s.e.m. f Distribution of
the number of conv2 feature maps in the mini-models.

Article https://doi.org/10.1038/s41467-025-61171-9

Nature Communications |         (2025) 16:5724 4

www.nature.com/naturecommunications


Using minimodels to understand visual invariance
In this final section, we demonstrate the usefulness of the mini-
models for understanding neural computations. We chose to look at
neural invariances, which are thought to develop gradually in hier-
archically organized neural systems, both artificial and biological.
Using the minimodels, we can investigate whether the neural invar-
iance indeed develops gradually, increasing at every stage in the
model. Alternatively, some stages could result in a large jump in
invariance while others may not contribute much. The invariance we
investigated here was visual texture invariance, which may be rele-
vant to both mouse and primate behavior33–35. We presented 16
classes of visual textures with 350 distinct exemplars in each class,
created using random crops from 16 large photographs (Fig. 4a). The
neural population represented well the visual texture category,
which could be decoded with a single trial accuracy of 53.3% using
logistic regression (Fig. 4b).

To understand the category encoding at the single-neuron level,
we defined the fraction of explainable category variance (FECV)
similarly to the FEV, but treating different exemplars from the same
category as different “trials” in the FEV metric. We computed the
FECV separately for all pairs of texture classes and then averaged the
result across pairs (see “Methods”). Individual neurons with high
pairwise category variance could indeed distinguish their respective
categories well (Fig. 4c). The single-neuron category variance mat-
ched well the category variance computed from the respective

minimodels (Fig. 4d), suggesting that this property was capturedwell
by the minimodels. Thus, we used the minimodels to try to under-
stand how invariance arises in the V1 neurons. For both mouse
and monkey neuron minimodels, we computed the FECV at different
stages in the computation and found that the category variance
primarily increased at the readout stage (Fig. 4e). This result
stands in contrast with traditional views of hierarchical processing
which predict a gradual increase in invariance at each layer of the
hierarchy.

To further investigate how minimodel parameters influence tex-
ture invariance, we compared the FECV of the minimodels to the
pooling diameter of the model readout and found a positive rela-
tionship (Fig. 4f). Thus,more pooling leads tomore texture invariance.
Finally, we hypothesized that the FECV could also depend on the
diversity of features computed by the conv2 layer of each minimodel.
We tested this using the mean correlation across positive conv2
channels as a measure of input diversity, and found that this measure
was negatively correlated with the category variance (Fig. 4g). Thus,
the less correlated the input channels are, the more likely it is for the
model to have a high category variance.

Next, we visualized how category variance may arise in these
neurons. As shown in (Fig. 5a), after spatial pooling with Wxy, each
conv2 channel outputs a single feature activation for each stimulus.
The neuron response can be interpreted as a weighted sum of these
feature values, where the sign of the corresponding weight (wc)

Fig. 4 | Using minimodels to understand visual invariances. a Visual textures
from 16 categories were shown to the mice in addition to the natural images.
b Decoding accuracy of texture class on test images (n = 4 mice). c Trial-averaged
responses of two example neurons (i and j) to the test images from two different
texture classes (10 trials per test image). d Comparing the category variance of
model neurons and recorded neurons. Pearson correlation (r) and p value of two-

sided test reported. e Mean category variance of model features after each suc-
cessive operation. fCategory variance of themodel prediction vs pooling diameter
in the readout layer. Pearson correlation (r) and p value of two-sided test reported.
g Same as (f) for the input diversity, which is defined as the mean correlation
between conv2 channels with positive wc weights. Pearson correlation (r) and
p value of two-sided test reported.
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determineswhether the channel contributes as excitatory or inhibitory
input. For a subset of example neuron minimodels, we visualized the
top 16 natural images which elicited the most activity (Fig. 5b–e,
Supplementary Fig. 13). These image stimuli were more diverse for
neurons with high category variance, as expected given these neurons
are more texture invariant. We then visualized the top image stimuli
for the conv2 channels for these neurons, and observed that in both
high and low category variance neurons the top stimuli were less
diverse than those from the minimodel output. This is also expected
because we found a large increase in category variance from conv2 to
the readout output across all neurons (Fig. 4e).

Discussion
Here we have developed a class of simplified neural network mini-
models that capture the response properties of mouse andmonkey V1
neurons just as well as much larger and deeper neural networks
(Supplementary Fig. 14). Using a new high-quality dataset of neural
recordings, we showed that these models can explain a large fraction

of variance in neural responses (71%). The minimodels constitute a
bridge between the complex and high-performing deep neural net-
works and simpler, more traditional models with limited predictive
power but more potential for interpretation. We have also shown that
minimodels can be used to understand properties of sensory com-
putations such as invariance, and to formulate hypotheses about the
neural stages at which invariance emerges. When viewed as a popu-
lation ofmanyminimodels, V1 appears to encode a large set of “layer 2”
functions, built as linear combinations of “layer 1” filter responses.
Theseproperties imply that the classicalfilterbank viewof V1mayneed
to be updated: V1 appears to represent a high-dimensional expansion
of a low-dimensional filterbank. This updated model of V1 is sub-
stantially simpler than previous deep neural network models, and
therefore we expect it to be more useful in generating testable pre-
dictions and useful descriptions of biological mechanisms. For exam-
ple,wepredict that the responses produced from “layer 1” in themodel
may resemble responses in LGN—pastwork supports thishypothesis as
simple models can explain LGN responses36–38.

Fig. 5 | Visualization of neurons using minimodels. a Left: Schematic of the
minimodel structure, including conv1 and conv2 layers, activities from each conv2
channel after pooling (Wxy), and their contributions to the predicted neural activity
(wc). Right: Activity of each channel and the full model output, sorted. Maximum
stimuli denoted by the black bar, are the top 16 stimuli. b Maximum stimuli for an
examplemouse neuron with high category variance (FECV). Left: Top 16maximum

stimuli for the full model output, masked by Wxy (see “Methods”). Right: Top 8
maximumstimuli for the top 6 channelswith the largestwc values and the bottom2
channels with the smallest wc channels. The color and intensity indicates the wc

value corresponding to each channel with red signifying positive weights and blue
negative weights. c–e Same as (b) for other example neurons from mouse and
monkey.
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Our results relate to previous descriptive models of V1, particu-
larly models of complex cells. These models require combinations of
“layer 1” filterbank responses to produce phase-invariant responses to
edges andgratings39. However, the combinations required are typically
simpler andmore similar to the pooling stage of a convolutional layer,
or to the pooling stage of the single-neuron readouts in our models.
The dimensionality expansion we observed also relates to previous
results showing that V1 neural responses are high-dimensional in both
mice and monkeys40,41. The demonstration of texture invariance we
have shown formouse V1 neurons contrasts with results in primate V1,
where the texture invariance in V1 appeared to be similar to the
invariance properties of simple filterbanks42. The mechanism of gen-
erating invariance in the model (almost exclusively at the readout
stage) also contrasts with the common view of a gradual build-up of
invariance through multiple pooling and rectification operations14,43.
From these findings, we predict that texture invariance is very low in
the inputs to V1 neurons, and rather that this property emerges
through the combination of diverse inputs to a single neuron. This
view is consistent with previous studies that demonstrate the high
computational capacity of a single neuron due to various forms of
dendritic integration44. Testing this prediction may be possible with
new glutamergic sensors which enable monitoring of many of the
inputs to a single neuron simultaneously45.

It remains to be seen whether higher-order visual areas require
complexmodels to explain their responses—recent work suggests that
smaller than expectedmodelsmayworkwell in areas like primate V446.
Our results also suggest that the view of V1 as “complicated” may not
necessarily apply to its sensory response properties. Previous results
still imply that V1 neurons in mice are modulated by much more than
just sensory inputs47,48, and that V1 neurons can even modify their
sensory tuning properties over the course of learning49. However, it
remains to be seen whether these modulatory influences are in fact
complicated, or perhaps similarly amenable to the kinds of simplifi-
cations we have shown here for sensory responses.

Methods
All experimental procedures were conducted according to IACUC at
HHMI Janelia. Data analysis and model fitting were performed in
python using pytorch, scikit-learn and numpy, and figures were made
using matplotlib and jupyter-notebooks50–55.

Data acquisition
Animals. All experimental procedures were conducted according to
IACUC.Weperformed six recordings withmany natural images and six
retinotopic recordings in six mice bred to express GCaMP8s in exci-
tatory neurons: TetO-jGCaMP8s x Camk2a-tTA mice (available as JAX
037717 and JAX 007004)56. These mice were male and female, and
ranged from 2 to 12 months of age. Mice were housed in reverse light
cycle, and were housed with siblings before and after surgery. Holding
rooms are set to a temperature of 70 °F ± 2 °F, and humidity of
50%rH± 20%.

Surgical procedures. Surgeries were performed in adult mice (P56-
P200) following procedures outlined in ref. 8. In brief, mice were
anesthetized with Isoflurane while a craniotomy was performed. Mar-
caine (no more than 8mg/kg) was injected subcutaneously beneath
the incision area, and warmed fluids +5% dextrose and Buprenorphine
0.1mg/kg (systemic analgesic) were administered subcutaneously
along with Dexamethasone 2mg/kg via intramuscular route. For the
visual cortical windows, measurements were taken to determine
bregma-lambda distance and location of a 4mm circular window over
visual cortex, as far lateral and caudal as possible without compro-
mising the stability of the implant. A 4 + 5mm double window was
placed into the craniotomy so that the 4mm window replaced the
previously removed bone piece and the 5mm window lay over the

edge of the bone. After surgery, Ketoprofen 5mg/kg was administered
subcutaneously and the animal allowed to recover on heat. The mice
were monitored for pain or distress and Ketoprofen 5mg/kg was
administered for 2 additional days following surgery.

Imaging acquisition. We used a custom-built 2-photon mesoscope23

to record neural activity, and ScanImage57 for data acquisition. We
used a custom online Z-correction module (now in ScanImage), to
correct for Z and XY drift online during the recording using the
“MariusMotionEstimator” and the “MariusMotionCorrector”. As
described in ref. 8, we used an upgrade of themesoscope that allowed
us to approximately double the number of recorded neurons using
temporal multiplexing58, resulting in recordings at two depths
simultaneously.

We first performed large field-of-view recordings (~3 Hz imaging
rate) in each mouse in order to perform retinotopic mapping (Sup-
plementary Fig. 1a, b). For the recordings with >30,000 natural ima-
ges, the field-of-view was selected based on the retinotopic maps to
ensure that neurons were in V1. The recordings used for analysis were
performed at 30Hz. Inmice 1, 2, and 6, we imaged a larger area at two
depths simultaneously (220 and 260μm)using temporalmultiplexing.
In mice 3, 4, and 5, we imaged a smaller area at four total depths (100,
140, 220 and 260μm). Each imaging session lasted two to 3 h.

During the recording, the mice were free to run on an air-floating
ball. Mice were acclimatized to running on the ball for several sessions
before imaging.

Videography. We used the same camera setup as in ref. 59. In brief, a
Thorlabs M850L3 (850nm) infrared LED was pointed at the face of the
mouse, and the videos were acquired at 50Hz using FLIR cameras with
a zoom lens and an infrared filter (850nm and 50nm cutoff). The
wavelength of 850 nm was chosen to avoid the 970 nm wavelength of
the two-photon laser while remaining outside the visual detection
range of the mice60,61. The camera acquisition software was a custo-
mized online version of Facemap59.

Visual stimuli. We showed natural images on three tablet screens
surrounding themice (covering 270degrees of the visualfield of view).
To prevent direct contamination of the PMT from the screen, we
placed gel filters in front of the screen which exclude green light, and
used only the blue and red channels. The original size of the natural
images was 66 × 264 pixels, we cropped them to 66 × 130 pixels based
on the horizontal retinotopy of the recording areas before training the
model. Each pixel of the stimulus subtended ~1 degree of visual angle.
To present the stimuli, we used PsychToolbox-3 in MATLAB62. The
flashed visual stimuli were presented for 66.7 ms, alternating with a
gray-screen image lasting 66.7ms. Occasionally, the screen was left
blank (gray screen) for a few seconds.

In all six mice, we presented a dataset comprised of a total of
32,440–52,868 natural texture images. Some of the images were hor-
izontally flipped versions of each other. We selected 500 images from
the dataset as the test set, and each of these images were presented up
to ten times. The remaining images were used for training the model.
The number of images in the training set was as follows for mice 1–6:
27,533, 33,753, 36,291, 33,955, 36,539, and 47,868. For each recording,
90% of the images in the training set were used for model training,
while the remaining 10% were used for validation.

In four out of six mice, we presented a texture dataset consisting
of 16 texture categories with 350 texture images per category. The
texture images were randomly cropped from a high-resolution texture
image from different locations, orientations and scales. These texture
images were randomly presented together with the 30,000+ natural
images. In each category, 300 texture images were used for training
the classifier for decoding, 50 images are used for testing and each of
the 50 test images are repeated 10 times. In order to look at higher-
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level properties of texture coding, we removed low-level differences
across image categories by matching their Fourier spectra on average.
To do this, we calculated the average amplitude spectrum across all
images in all categories, and then normalized the mean amplitude
spectrum of each image category to this average. After that, we also
adjusted the mean and standard deviation of the images from the 16
categories to match the mean and standard deviation of the other
natural texture image dataset.

During image presentation, we performed online tracking of the
left pupil of the mouse using a customized version of Facemap. When
the eye position changed horizontally, we shifted the center-point of
stimuli so that the stimuli were always presented as centered on the
horizontal axis of rotation of the eye. To ensure that the stimulus
appeared similarly to the mouse regardless of the eye rotation, we
used a cylindrical projection of the monitor.

Processing of calcium imaging data. Calcium imaging data was
processed using the Suite2p toolbox63, available at www.github.com/
MouseLand/suite2p. Suite2p performs motion correction, ROI detec-
tion, cell classification, neuropil correction, and spike deconvolution
as described elsewhere19. For non-negative deconvolution (OASIS), we
used a timescaleof decayof 0.25 s64,65.Weused the deconvolved traces
for all analyses.

The temporal window used to calculate the stimulus response for
each neuron consisted of two interpolated microscope frames, with
the interpolation based on the time of the stimulus. The time delay for
interpolation was selected to optimize the average fraction of
explainable variance (FEV) for each recording, with 3.5 frames formice
1 and 2, 4 frames formice 3, 4 and 5, and 4.5 frames formouse6 (117ms
for mice 1 and 2, 133ms for mice 3, 4, and 5, 150ms for mouse 6). The
stimulus responses were normalized for each neuron by division with
the standard deviation, as done in previous studies24,26.

Monkey dataset. We used a publicly available dataset15, consisting of
recordings from 166 V1 neurons in two monkeys using a linear 32-
channel array spanning all cortical layers. The dataset contains 7250
images, eachpresented 1–4 times.We adopted the same train-test split
as described in ref. 15, partitioning the data into training and testing
sets, with 80% allocated for training and 20% for testing purposes. The
dataset only contained neurons with an FEV >0.15, so we did not filter
the neurons in the recording.

Each image was displayed for 60ms without gray screen intervals
between images. Each image was masked by a circular aperture with a
diameter of 2 degrees (140 pixels), featuring a soft fade-out effect
starting at a diameter of 1 degree. Before fitting the model, the central
80 pixels (1.1 degrees) were cropped from the 140 pixels (2 degrees)
square images.

Retinotopy
Retinotopic maps for each imaging mouse were computed based
on receptive field estimation using neural responses to natural
images (at least 500 different natural images repeated three times
each), as in ref. 33 (Supplementary Fig. 1a, b). In brief, this pro-
ceeded by (1) obtaining a well-fit convolutional model of neural
responses with an optimized set of 200 spatial kernels, using a
reference mouse; (2) fitting all neurons from our imaging mice to
these kernels to identify the preferred kernel and the preferred
spatial position; (3) aligning spatial position maps to a single map
from the reference mouse; and (4) outlining brain regions in the
reference mouse using spatial maps and approximately following
the retinotopic maps from66.

Metrics
We used the same metrics to evaluate model performance in pre-
dicting neural responses as defined in refs. 15,24.

Fraction of Explainable Variance (FEV). Fraction of Explainable Var-
iance (FEV) quantifies the proportion of the total variance in neuronal
responses that can be attributed to the stimulus, excluding the noise
variance. It is computed as the ratio between the explainable variance
and the total variance. Specifically, the explainable variance is the total
variance minus the variance of the observation noise. The FEV is used
to select neurons for reporting model performance, and we include
only those neurons with FEV greater than 0.15, following the metho-
dology used in refs. 15,24.

The FEV is calculated using the following equation:

FEV=
Var ½r� � σ2

noise
Var ½r�

ð1Þ

where Var[r] represents the total variance of the neural response r
across all stimuli and repetitions, and σ2

noise is the variance of the
observation noise, estimated as the average variance across repeti-
tions of the same stimulus:

σ2
noise =Ei½Varj ½ri, j ��: ð2Þ

Here, ri,j is the response to the j-th repetition of the i-th image.

Fraction of Explainable Variance Explained (FEVE). Fraction of
Explainable Variance Explained (FEVE) measures the proportion of the
explainable variance that is captured by the model. It is defined as the
ratio of the variance explained by the model to the explainable var-
iance. This metric is critical for assessing how well the model accounts
for stimulus-driven variations in neuronal responses.

The FEVE is calculated as follows:

FEVE = 1�
1
N

P
i, jðri, j � ôiÞ2 � σ2

noise

Var ½r� � σ2
noise

ð3Þ

where N is the total number of trials from I images and J repeats per
image, ri,j is the observed response, ôi is themodel’s prediction for the
i-th image, Var[r] is the total response variance, and σ2

noise is the
observation noise variance.

Population model of visual responses
Our full populationmodel consists of a core, which is shared across all
neurons, and a readout layer, which is distinct for each neuron, as in
ref. 26 (Fig. 1b). The core has one to four layers, with each layer con-
sisting of a convolutional layer (without a bias term), a batch normal-
ization layer and anELUnonlinear function. A 2 × 2maxpooling layer is
applied after the first convolutional layer. The kernel size in the first
layer is 25, the second layer is 9, and in each subsequent layer the
kernel size is 5. Each convolution layer is depth separable other than
the first layer, and all convolutional layers were initialized with Xavier
initialization67, as in ref. 26.

The readout layer is factorized using three rank-1 weight vectors:
wc, wx, and wy. This readout is a simplified version of a previously
proposed factorized model, in which the readout is divided into
“where” and “what” components using a rank-2 weight matrixWxy and
a rank-1 vector wc

27. We further simplified the readout by enforcing
non-negativity constraints on thewx andwy vectors, by clamping them
above zero after each optimization step. The initial readout weights
were drawn from a random normal distribution with 0.01 standard
deviation.

In Fig. 1, we used 192 kernels per convolutional layer. In Fig. 2, we
varied the number of kernels in each layer of the two convolutional
layer model. In Fig. 3a, b, we used 16 and 320 kernels in the two con-
volutional layer model.
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Fitting procedure. We used the Poisson loss between the neural
responses and the model output as the cost function for training,
which is amorebiologically-plausible cost function for neural signals26.
We used the AdamW68 optimizer with a weight decay of 0.1 for the
weights in the convolutional layers, 1.0 for wx and wy, and 0.1 for wc.
For the monkey data, overfitting occurs with the larger models, so we
set the convolutional layer weight decay to 0.2 in the 3-layer model,
and 0.3 in the 4-layer model. The training process consisted of four
periods: the first period has 100 epochs (one epoch is a complete pass
through all the training images) with a learning rate of 0.001, while the
subsequent three periods each have 30 epochs and a learning rate
reduced by a factor of 3 compared to the previous period. Finally,
we selected themodel across training epochs which demonstrated the
best performance on the validation dataset.

For eachdata point in the analysis of performancechangewith the
number of training images (Fig. 3a), we randomly sampled subsets of
images from the training set while using the full validation image set
for validation. For each data point in the analysis in Fig. 3b, we ran-
domly sampled subsets of neurons using different random seeds. The
number of seeds decreased logarithmically with the number of neu-
rons. This approach aims to reduce the variability associated with
smaller neuron subsets.

For the mouse datasets, we fit one model to each mouse and
report both the average performance across all neurons (Fig. 1d) and
the average performance across mice (Fig. 1e, f). For the monkey
dataset, we trained a single model across all 166 neurons from two
monkeys, and reported the average performance across all neurons
(Fig. 1k, l).

Model comparisons
Sensorium model. We compared our full population model with the
model used as a baseline in the Sensorium competition24, which was
first proposed in ref. 26 (Fig. 1f). This model consists of a core and a
readout layer. The core has4 convolutional layerswith 64 channels per
layer. The readout parameterizes the readout location of each neuron
as a learnable gaussian function, and during test, each neuron reads
out from a single location based on the learned gaussian function. We
trained the model with the code from https://github.com/sinzlab/
sensorium/blob/main/notebooks/model_tutorial/1a_model_training_
sensorium.ipynb, using default training settings with the eye position
input disabled (because in our dataset we corrected the eye position
online).

VGG model. We compared our monkey model with the previously
reported best model on the dataset15, which extracts visual features of
the input image from the convolutional layers in theVGG-19model and
predicts the activity of each neuron with a generalized linear model
(Fig. 1l). The VGG-19model was pretrained on the ImageNet dataset31.15

showed that the fifth convolutional layer (named “conv3_1”) best pre-
dicts the neuron responses. The 5 convolutional layers have 64, 64,
128, 128 and 256channels, with twopooling layers after the second and
the fourth layer.

Linear-nonlinearmodel. We fit a LNmodel to eachmouse dataset and
to all monkey neurons (Fig. 1f, l). To create the LN baseline model, we
removed the nonlinear activation functions from the core of a 16-320
model and replaced the max pooling layer with an average pooling
layer. The LN baseline model was trained using the same procedure as
the population models.

Gabor model. We use the same model as in ref. 40. We constructed
6720Gabor filters, with parameters spatial frequency f (0.1, 0.25, 0.5, 1,
2), orientation θ (0, pi/8, pi/4, 3*pi/8), phase ψ (0, pi/4, pi/2, 3*pi/4, pi,
5*pi/4, 3*pi/2, 7*pi/4), size α (0.75, 1.25, 1.5, 2.5, 3.5, 4.5, 5.5), and
eccentricity β (1, 1.5, 2).

Simple cell responses were simulated by passing the dot
product of the image with the filter through a rectifier function
rðxÞ= maxð0, xÞ. Complex cell responses were simulated as the
root-mean-square response of each unrectified simple cell filter
and the same filter with phase ψ shifted by 90°. The activity of a
neuron was predicted as a linear combination of a simple cell and
its complex cell counterpart, weighted by C1 and C2, which were
estimated by linear regression. Each neuron was assigned to the
filter which best predicted its responses to the training images
and validation images (downsampled to 33 × 65 pixels). Neurons
were classified as complex cells if the ratio between C2 and
(C1 + C2) is larger than 0.5, and as simple cells if this ratio was less
than or equal to 0.5.

This simple/complex Gabor model achieved 0.21 FEVE on the
mouse dataset (with 14,504 neurons FEV >0.15). We only keep the
neurons with non-negative FEVE for the analysis in Supplementary
Fig. 4b–e (12637/14504 neurons).

Minimodels (per neuron models of visual responses)
We fit the minimodels separately to each single neuron, resulting
in a distinct minimodel for each neuron (Fig. 3c). Each minimodel
has two convolutional layers and a readout layer. The first layer
consists of the 16 kernels from the first layer of the population
model trained on all the neurons. A 2x2 max pooling layer is
applied after the first convolutional layer. The second convolu-
tional layer uses a simplified version of a depth separable con-
volution, which has one spatial convolutional layer and one 1 × 1
conv layer, initialized with 64 kernels (Supplementary Fig. 11b).
We further simplified the minimodel by replacing the ELU in the
core with a ReLU, so that the channel contribution to the final
responses is entirely determined by the sign of Wc. The readout
layer in the minimodel has the same structure as the readout layer
in the population model.

Fitting procedure. Similar to our population model, the minimodel
used a Poisson loss for training, with the AdamW68 optimizer with a
weight decay of 0.1 for the weights in the core, 1.0 for wx and wy, and
0.2 for wc. The first convolutional layer was initialized with the first
convolutional layer from the full model and fixed during training; we
also used the first convolutional layer from the 16-320 models from
othermice and achieved similar performance (Supplementary Fig. 7a).
The initial readout weights were drawn from a random normal dis-
tribution with 0.01 standard deviation for wx and wy, and 0.2 for wc.
The training process consisted of four periods: the first period has 100
epochs with a learning rate of 0.001, while the subsequent three per-
iods each have 30 epochs with the learning rate reduced by a factor of
3 compared to the previous period. Finally, we selected the model
across training epochs which had the best performance on the vali-
dation dataset.

We initialized the second layer of the model with 64 conv2 ker-
nels. To find the smallest number of channels required in conv2
without a performancedecrease, we added aHoyer-Square regularizer
to the weights Wc. The Hoyer-Square regularizer is the square of the
ratio between the L1 and L2 norms. The Hoyer-Square regularizer
controls sparsity without reducing absolute weight values and is
defined as follows30:

HSðwÞ=
P

ijwij
� �2
P

iw
2
i

ð4Þ

where w represents the weights of a layer, wi denotes the individual
weights, ∑i∣wi∣ is the L1 norm, and

P
iw

2
i is the L2 norm of the weights.

This regularization encourages sparsity in the wc weights, enabling us
to identify the minimal set of channels necessary for maintaining
performance.
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After training, we defined the number of the conv2 channels in
eachminimodel as the number of non-zero values inwc. To determine
the strength of the sparsity loss, we randomly selected 10 neurons
from the mouse 1 dataset and the monkey dataset, and selected the
sparsity parameter that gives the smallest number of conv2 channels
with a performance drop less than 1% on the validation set from the
performance without sparsity penalty (Supplementary Fig. 9c). We
showed that these sparsity penalties generalizedwell to other neurons,
by computing the test performance and the number of conv2 channels
obtained by fitting a different randomly selected set of 1000 neurons
in the mouse dataset and by fitting all 166 neurons in the monkey
dataset(Supplementary Fig. 9d).

Model properties
Pooling diameter. The pooling diameter in Fig. 1 is computed using
thewx andwy after smoothing with a gaussian of standard deviation of
3. Then the width at half-max ofwx andwy is computed, and converted
from pixels into degrees of visual angle. The pooling diameter is
defined as the geometric mean of the two widths at half-max.

Correlation of positive channels. In theminimodels, the contribution
of each channel in conv2 to the prediction is determined by the cor-
responding wc value of each channel. The sign of the wc indicates
whether a certain channel contributes positively or negatively to the
prediction. To measure how similar the features of each channel are,
we only consider the excitatory channels, and calculate the correlation
between eachpair of channelsbasedon the channel feature activations
on the test images weighted by the wx and wy from the readout.

Masked top stimuli. To visualize the image features to which a neuron
is most responsive, we plotted the stimuli which drove the most
activity in the minimodel for the neuron, or which drove the most
activity in the conv2 channels, and masked these stimuli based on the
size and shape of the readout weights wx and wy. The stimulus mask
ellipse was centered at the maximum readout position in x and y, with
the initial width defined in x and y using the width at half-max for wx

andwy respectively. Themaskwas then dilated by the size of the conv1
kernel in x and y, which was 25 pixels, and each pixel in the mask was
weighted by wx and wy.

Texture analysis
Decoding accuracy. We trained a 16-way logistic regression decoder
with an L2 regularization strength of 10 on the neural responses to the
texture training images in order to predict the texture categories. Prior
to testing, we averaged the responses of the test images across ten
repeats and Z-scored each neuron’s activity using the mean and stan-
dard deviation calculated from the training images. We fit the decoder
on random subsets of neurons and evaluated the classification accu-
racy on the test set (Fig. 4b).

Fraction of category variance (FECV). We define a new metric, the
fraction of category variance, to measure the variability in a neuron’s
responses attributable to differences among categories after
accounting for noise and accounting for signal variance within
category.

Let rijk represent the response of a neuron to the j-th repetition of
the i-th stimulus in category k, and assume each category has I images
and J repeats. The total variance σ2

total across all responses is empiri-
cally estimated as

σ2
total =

1
N � 1

XK

k = 1

XI

i= 1

XJ

j = 1

ðrijk � rÞ2 ð5Þ

where r is the overall mean response, and N is the total number of
responses.

The residual variance σ2
residual , is the variance left after removing

the category means, which removes the category variance:

σ2
residual =

1
K

XK

k = 1

1
ðIJ � 1Þ

XI

i= 1

XJ

j = 1

ðrijk � rkÞ2 ð6Þ

where rk is the mean response to the category k.
The category variance σ2

category is calculated by subtracting the
residual variance from the total variance:

σ2
category = σ

2
total � σ2

residual : ð7Þ
Finally, the FECV is calculated by dividing the σ2

category with σ2
total :

FECV =
σ2
category

σ2
total

: ð8Þ

For the analysis of category variance, we included only themouse
minimodels with performance exceeding 0.7 FEVE, resulting in 3920
neurons being used for analysis. Similarly, we included only the
monkey minimodels with performance exceeding 0.25 FEVE, resulting
in 156 neurons being used for analysis.

To compare the FECV of the real neurons to those of the model
neurons, we computed the activity of the model neurons in response
to the texture stimuli, with Poisson noise added tomatch the neuronal
noise (Fig. 4d). For each category, wehave 300 images shownonce and
50 images showing 10 times, resulting in 800 trials per category, and
we use all trials to calculate FECV. We optimized the magnitude of the
noise added in order to match the mean FEV of the model activity to
themean FEV of the real neurons within 0.1%. In Fig. 4e–g, we used the
activations of each layer in the model neurons in response to the
texture stimuli, without adding noise.

Convolutional neural networks trained on tasks
The images for the texture classification task used 1001 high resolution
images converted into grayscale and downsampled the images so that
the minimum dimension was 256, then took a center crop to create
images of size 256 by 256. We normalized the pixel intensities by the
dataset mean of 128 and standard deviation of 61. The training aug-
mentations were random rotation, random flipping, and random
cropping into an image of size 112 by 112. The network was trained to
predict which image the crops were taken from, using a cross-entropy
loss. The images were randomly split into training and test images
(800 and 201 respectively), and the networkwas first trained only with
the training images. After training with the training images, the two
convolutional layer weights were fixed and only the decoder part of
the network was retrained on the test images to test the performance
of the network core without overfitting. For retraining the decoder,
three-quarters of each test imagewas used, with the bottom-right crop
(128 by 128) of the image reserved for quantifying the accuracy of the
network. On these held-out cropswe predicted the class label from the
network, and the accuracy was defined as the fraction of correct pre-
dictions (top-1 accuracy), with chance level at 1

201.
The images for the ImageNet classification task were all the

training and validation images from all 1000 classes in ImageNet, in
RGB. We downsampled each image by a factor of 4 from their original
size, and normalized by the overall channel means and standard
deviations as is standard (mean= [0.485, 0.456, 0.406], std = [0.229,
0.224, 0.225])31. The training augmentationswere random resized crop
to size 64 by64with a scale range of 0.25–1.5 and random flipping. The
network was trained to determine the image class for each crop out of
1000, using a cross-entropy loss. The validation images were never
used for training, they were only used for determining the accuracy of
the network. Each validation image was resized so that the minimum
dimension was 74 and then a center crop from the resized image was
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used of size 64 by 64. On these validation crops we predicted the class
label from the trained network, and the accuracy was defined as the
fraction of correct predictions (top-1 accuracy), with chance level
at 1

1000.
For both the texture discrimination and the image recognition

(ImageNet) tasks, we trained networks with two convolutional layers,
each followed by a batch norm layer and a ReLU nonlinearity. The
convolutional filter sizes were 13 and 9 in the texture task and 11 and 5
in the ImageNet task, with a stride of 2 in the first layer. In the texture
task, average pooling with a filter size of 3 was performed after the
second convolutional layer. In the ImageNet task, max pooling with a
filter size of 3was performedafter eachof the convolutional layers, like
in AlexNet32. In each task, the output of the last pooling layer was
followed by a dropout layer, which was set to a dropout probability of
0.25 and 0.5 during training, for the texture and ImageNet classifica-
tion tasks respectively.

A five convolutional layer network was also trained on the Ima-
geNet task for comparison. This network had the same structure for
the first two convolutional layers as above, then had three more con-
volutional layers each with a filter size of 3. The number of convolu-
tional maps per layer were 64, 192, 384, 256, and 256.

The decoder for the texture task was a convolutional layer
with a filter size of 1, which predicted the probability of each
texture class. As in AlexNet, the decoder for the ImageNet task
was a fully connected layer with a ReLU with size 4096, and a
dropout probability of 0.5 during training, another fully con-
nected layer with size 4096 and a ReLU, and finally another fully
connected layer, which predicted the probability of each image
class32. Default initialization was used for all weights, except for
the first convolutional layer in the texture class network, which
used the convolutional filters fit from one of the retinotopic
mapping experiments as initialization.

The texture classificationnetworkswere trainedwithAdamWwith
a learning rate of 1e-3 and weight decay of 1e-5 and batch size of 1668.
The full network was trained for 500 epochs if the second convolu-
tional layer was smaller than 128 channels, and otherwise for 800
epochs. The decoder was then trained on the test images (excluding
the bottom-right crops) for 300 epochs with the same learning rate
and weight decay. We trained five networks with different random
initializations at each conv1/conv2 map size and averaged the
accuracies across these networks.

The ImageNet classification networks were trained with Adam for
180 epochs with an initial learning rate of 5e-4 and a batch size of 51269.
The learning rate was annealed by a factor of 10 at epoch 100 and
epoch 140.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used a previously published monkey dataset of 166 neurons
recorded inV1, available at https://doi.gin.g-node.org/10.12751/g-node.
2e31e3/15. The neural activity data generated in this study have been
deposited in the Figshare repository at https://janelia.figshare.com/
articles/dataset/Towards_a_simplified_model_of_primary_visual_
cortex/2879763821.

Code availability
The code package for neuralmodel fitting is available at https://github.
com/MouseLand/minimodel/. The code to reproduce the figures is
available at https://github.com/MouseLand/minimodel/tree/main/
figures.
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