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Regional specialization of movement
encoding across the primate
sensorimotor cortex
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Maude Delacombaz1,2,3,4, Christopher Hitz1,2,3, Florian Fallegger10,
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The process by which the cerebral cortex generates movements to achieve
different tasks remains poorly understood. Here, we leveraged the rich
repertoire of well-controlled primate locomotor behaviors to study how task-
specific movements are encoded across the dorsal premotor cortex (PMd),
primary motor cortex (M1), and primary somatosensory cortex (S1) under
naturalistic conditions. Neural population activity was confined within low-
dimensional manifolds and partitioned into task-dependent and task-
independent subspaces. However, the prevalence of these subspaces differed
between cortical regions. PMd primarily operated within its task-dependent
subspace, while S1, and to a lesser extent M1, largely evolved within their task-
independent subspaces. The temporal structure of movement was encoded in
the task-independent subspaces, which also dominated the PMd-to-M1 com-
munication as the movement plans were translated into motor commands.
Our results suggest that the brain utilizes different cortical regions to serialize
the motor control by first performing task-specific computations in PMd to
then generate task-independent commands in M1.

Moving through the environment to seek food, escape predators, and
find partners determines survival and fitness of animals. This impera-
tive pressured the primate nervous system to evolve an advanced
cerebral cortex to support locomotion through diverse and rich
environments1,2. Indeed, the acquisition of manual dexterity likely
originated from the mechanisms that subserve skilled locomotion3.
Therefore, understanding the cortical control of locomotion may lead
to the discovery of fundamental principles through which the sen-
sorimotor cortex produces movement. The diversity of locomotor
tasks enables exploring the neural space during naturalistic behaviors,
as opposed to the more standardized and, in part, artificial tasks
typically involved in the study of manual dexterity. Moreover,

locomotion offers the advantage of combining automatedmovements
with volitional adjustments to meet the requirements of each task4.
Here, we aimed to exploit the naturalistic and rich repertoire of pri-
mate locomotor behaviors to uncover fundamental principles under-
lying the cortical control of movement.

The diversity of primate behavior involves complex interactions
between many interconnected regions that transform the context
of the task and sensory information into a pattern of muscle
activations5–9. In particular, the premotor cortex is believed to extract
high-level contextual information to initiate the planning of motor
output, moderated by primary motor and primary somatosensory
cortices10–12. Previous studies showed that awide variety of tasks canbe

Received: 15 January 2025

Accepted: 12 June 2025

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: tomislav.milekovic@epfl.ch; ismaelseanez@wustl.edu; gregoire.courtine@epfl.ch

Nature Communications |         (2025) 16:5729 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0000-7145-0779
http://orcid.org/0009-0000-7145-0779
http://orcid.org/0009-0000-7145-0779
http://orcid.org/0009-0000-7145-0779
http://orcid.org/0009-0000-7145-0779
http://orcid.org/0000-0001-9800-2386
http://orcid.org/0000-0001-9800-2386
http://orcid.org/0000-0001-9800-2386
http://orcid.org/0000-0001-9800-2386
http://orcid.org/0000-0001-9800-2386
http://orcid.org/0000-0001-9075-4022
http://orcid.org/0000-0001-9075-4022
http://orcid.org/0000-0001-9075-4022
http://orcid.org/0000-0001-9075-4022
http://orcid.org/0000-0001-9075-4022
http://orcid.org/0000-0002-0410-4638
http://orcid.org/0000-0002-0410-4638
http://orcid.org/0000-0002-0410-4638
http://orcid.org/0000-0002-0410-4638
http://orcid.org/0000-0002-0410-4638
http://orcid.org/0000-0003-1355-6019
http://orcid.org/0000-0003-1355-6019
http://orcid.org/0000-0003-1355-6019
http://orcid.org/0000-0003-1355-6019
http://orcid.org/0000-0003-1355-6019
http://orcid.org/0000-0002-6405-1590
http://orcid.org/0000-0002-6405-1590
http://orcid.org/0000-0002-6405-1590
http://orcid.org/0000-0002-6405-1590
http://orcid.org/0000-0002-6405-1590
http://orcid.org/0000-0001-6769-6506
http://orcid.org/0000-0001-6769-6506
http://orcid.org/0000-0001-6769-6506
http://orcid.org/0000-0001-6769-6506
http://orcid.org/0000-0001-6769-6506
http://orcid.org/0000-0003-0068-7124
http://orcid.org/0000-0003-0068-7124
http://orcid.org/0000-0003-0068-7124
http://orcid.org/0000-0003-0068-7124
http://orcid.org/0000-0003-0068-7124
http://orcid.org/0000-0002-5744-4142
http://orcid.org/0000-0002-5744-4142
http://orcid.org/0000-0002-5744-4142
http://orcid.org/0000-0002-5744-4142
http://orcid.org/0000-0002-5744-4142
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61172-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61172-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61172-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61172-8&domain=pdf
mailto:tomislav.milekovic@epfl.ch
mailto:ismaelseanez@wustl.edu
mailto:gregoire.courtine@epfl.ch
www.nature.com/naturecommunications


completed by flexibly altering the activity of the same neurons and
muscles13–15. This transformation from task-specific context to task-
agnostic muscle activation implies that a gradual transformation from
task-specific representations to task-independent commands takes
place in the cortex16. We sought to understand these fundamental
transformations that are the basis of motor control by comparing
neuronal activity across multiple regions of the brain during the
execution of various motor tasks. However, traditional experimental
paradigms that studied individual neurons or isolated cortical
regions17–21 are unable to parse the interactions in this complex, multi-
regional process.

Modern computational analyses applied to recordings of neural
population activity have illuminated this possibility22,23. This approach
leverages the correlated activity of interconnected neurons to provide
a more comprehensive view into the mechanisms that lead to the
outputs of the population5,14,15,24. The vast majority of neural popula-
tion activity has been found to residewithin a low-dimensional portion
of the full neural space, called the neural manifold15,24. This neural
manifold is an aggregate of orthogonal vectors, called the neural
modes, that each capture correlated neuronal activity across the entire
population of recorded neurons. Neural modes are thought to reflect
intrinsic constraints defined by network connectivity15,25. Accordingly,
the organization of neural modes can be remarkably preserved across
tasks, even if the activity of individual neurons and muscles exhibits
substantial changes to produce each task14 or when neuronal activity
varies across days or even years26,27. Maintaining most of the activity
within a small number of modes can be advantageous for the cortex
since this stability promotes the generation of behaviors that are
resistant to noise, neuronal death, and synapse liability28.

Modes that remainunchanged across tasks havebeen identified in
several brain regions29–33. Recent studies suggest that the flexible
combination of these task-independentmodes within a cortical region
or between multiple cortical regions may be a common mechanism
supporting neural computation anddriving populationdynamics14,34,35.
However, brain regions such as the dorsal premotor cortex (PMd, F2),
primary motor cortex (M1, F1) and somatosensory cortex (S1, area 1)
are known to contribute in unique ways to the planning11,36,
execution37,38, and perception of movement39. Consequently, we pre-
dicted that the neural activity of each of these regions will organize to
reflect the differing functional specializations.

We translated this prediction into three specific hypotheses.
First, we hypothesized that each region has unique and distinct

modes during performance of each task. Second, we hypothesized
that the predominance of task-independent neural modes varies in a
principled manner between higher order (PMd, fewer task-
independent modes) and lower order (S1 and M1, more task-
independent modes) regions. Lastly, we hypothesized that lower
regions inherit their organization fromhigher order regions that plan
the task at hand.

Results
Wireless multi-regional neural recordings during naturalistic
behaviors
To test our hypotheses, we aimed to record neural population activity
from multiple sensorimotor cortical regions of nonhuman primates
(NHPs) as they performed a variety of naturalistic locomotorbehaviors
(Fig. 1). To record neural activity, we fabricated custom-made con-
nectors combining three microelectrode “Utah” arrays that we
implanted in hindlimb regions of left PMd, M1, and S1 in two adult
female Macaca fascicularis monkeys (Mk-Ek and Mk-Nt). In Mk-Ek’s
connector, we integrated wire electrodes that were implanted into
major hindlimbmuscles tomonitor electromyographic (EMG) activity.
These custom-made connectors were mounted on the skull using a
personalized anchoring system (Supplementary Fig. 1). Two wireless
data transmission modules were attached on the skull-mounted con-
nectors to broadcast the signals to external computers synchronized
with video-based full-body kinematic recordings (Fig. 1a). We subse-
quently confirmed that theUtah arrayswere implanted in the hindlimb
region of PMd, M1, and S1 using cortical anatomical landmarks and
analysis of recorded neural activity during isolated movements (Sup-
plementary Fig. 2).

To capture naturalistic locomotor behavior, we designed and
fabricated adaptable Plexiglas enclosures that allowed rapid transi-
tions between five distinct locomotor tasks: a straight corridor, an
unevenly-spaced horizontal ladder, a corridor with a three-step stair-
case, a corridor with two obstacles, and a treadmill (Fig. 1b). This
platform enabled synchronized recordings of muscle activity and
kinematics of the right hindlimb, and activity of neural populations
from the left PMd, M1, and S1 across all five tasks within a single day
while themonkeys behaved naturally without any tethered electronics
(Fig. 2a–b). Analysis of muscle activity and hindlimb kinematics con-
firmed that each task involved specific changes to accommodate
hindlimb movements to the constraints inherent to each task
(Fig. 2c–f).
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Fig. 1 | Neurotechnological platform to capture hindlimb kinematics com-
bined with untethered recordings of neural and muscle activity across a
variety of locomotor tasks. aWe recorded kinematics of the right hindlimb using
markersplacedon thehindlimbanatomical landmarks. Additionally, only inMk-Ek,
we chronically implanted pairs of wire electrodes into major hindlimb muscles to
record electromyographic (EMG) signals. We implanted Utah arrays into the hin-
dlimb regions of the left dorsal premotor cortex (PMd), primarymotor cortex (M1),

and primary somatosensory cortex (S1) to record spiking activity of neural popu-
lations. Neural and EMG signals were broadcasted wirelessly via two wireless data
transmission modules that were connected to the skull-mounted connectors
during recordings. bWe trained two monkeys (Mk-Ek and Mk-Nt) to walk across a
corridor, a horizontal ladder, a staircase and over obstacles; and to walk on a
treadmill moving at 3 km/h.
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Larger task-specific changes of neuronal responses in PMd
compared to M1 and S1
Wefirst askedwhether activity of single neurons acrossPMd,M1andS1
underwent comparable changes across the different tasks. To enable
this comparison, eachmonkey performed seven sessions duringwhich
they performed all five locomotor tasks within approximately two
hours. Offline spike sorting enabled the identification of putative
neurons with stable action potential waveforms within each session
from PMd (Mk-Ek: 114 neurons; 16.3 ± 3.5 per session; Mk-Nt: 131 neu-
rons; 18.7 ± 3.2 per session), M1 (Mk-Ek: 147 neurons; 21.0 ± 1.7
per session; Mk-Nt: 88 neurons; 12.6 ± 3.9 per session), and S1 (Mk-Ek:
79 neurons; 11.3 ± 1.1 per session; Mk-Nt: 123 neurons; 17.6 ± 2.0
per session).

We calculated single neuron firing rates during each gait cycle,
whichwedefined as the epoch between twoconsecutive foot strikes of
the right hindlimb contralateral to neural recordings.We identified the
stance and swing phases for each gait cycle and then time-warped
these periods to 60% and 40% of the average step duration,
respectively40. We averaged these warped trials to obtain “peri-gait”
firing rates for each task separately (Fig. 3a).

Neural population activity recorded from PMd, M1, and S1
exhibited highly reproducible patterns of modulation that remained
phase-locked to gait events. The overall distribution of neuronal
activity across a gait cycle remained similar across tasks (Fig. 3b).
Interestingly, the distribution of preferred gait phases in PMd was
largely homogeneous,whileM1activitywasmildlybi-modalwithpeaks

Fig. 2 | Time-varying kinematics, electromyography (EMG), and neural popu-
lation activity during walking. a Illustrative chronophotography of 7 successive
corridor steps.bRight hindlimbkinematics, EMG, andneural signals recorded from
Mk-Ek during 5.26 seconds of walking across the corridor. Top panel: changes in
hip, knee and ankle joint angles from the right hindlimb contralateral to neural
recordings. Middle panel: EMG activity from six hindlimb muscles. Bottom panel:
raster plots reconstructed from the multiunit activity of 160 microelectrodes dis-
tributed over three Utah arrays implanted in the hindlimb region of left PMd, M1,
and S1. The gray andwhite spaces at the bottom indicate the duration of the stance
and swing gait phases of the right hindlimb, respectively. c Muscle activity varies
substantially across tasks. The graphs show themean peri-gait EMG of six hindlimb
muscles recorded in Mk-Ek for all five tasks. d Hindlimb kinematics of both mon-
keys differs substantially across tasks. Top: We computed 58 variables from right
hindlimb kinematic recordings of each gait cycle. These variables quantified dif-
ferent kinematic features ofmonkeys’ locomotorpatterns (Supplementary Table 1).
This datasetwas arranged in amatrix with variables as thematrix columns and each

row representing one gait cycle. Data from all five locomotor tasks were pooled
together in a singlematrix and z-scored across columns. We then applied principal
component analysis on this dataset and visualized the outcome by plotting the
dataset in a space spannedby the two leadingprincipal components (PCs). Thedata
for each task is represented by an ellipsoid with the center and principal semi-axis
as themean and standarddeviationcalculatedacross all thegait cycles for that task.
Middle: The bar plots show the mean of two variables used for the principal
component analysis: the step height (number of steps: Mk-Ek: corridor: 11, ladder:
10, stairs: 12, obstacles: 11, and treadmill: 23) andminimum knee angle across steps
(number of steps: Mk-Nt: corridor: 31, ladder: 37, stairs: 14, obstacles: 10, and
treadmill: 25). Bottom: The graphs show the mean peri-gait hip, knee and ankle
angles for all five tasks. e Confusion matrix reporting decoding accuracy of clas-
sifying a task fromEMGenvelopes inMk-Ek. fConfusionmatrix reporting decoding
accuracy of classifying a task from kinematic trajectories in Mk-Nt. Source data are
provided as a Source Data file.
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Fig. 3 | Neural correlates of behavior vary across tasks in PMd, but stabilize in
M1and evenmore in S1. aWecalculated single neuron firing rates during each gait
cycle, defined as the epoch between two consecutive foot strikes of the right hin-
dlimb contralateral to neural recordings. We then identified the right hindlimb
stance and swing phases for each gait cycle, and then time-warped these periods to
60%and40%of the gait cycle.We averaged thesewarped trials across all gait cycles
to obtain peri-gait neuronal firing rates for each task. b The colorplots show peri-
gait firing rates of isolated neurons aligned at stance and swing onsets and sorted
by their preferred gait phase on each task separately. The neurons recoded in
different sessions are grouped together for visualization purposes. All statistics
shown later are calculated by treating different sessions as separate data sets with
no assumptions about whether the neurons recorded in different sessions are the
same or different. c Same data as (b) with the neurons sorted by their preferred
gait-phase in the corridor task. Note the substantial changes in neural activity,
reflected by changes in gait phase tuning for each neuron. d Left panels show peri-
gait firing rates of one representative neuron from PMd, M1, and S1. Similarity
across tasks indicates that the recorded signals came from the same neuron. For
every neuron,we computed the Pearson’s linear correlation coefficient (R) between
the activity on any two gait cycles belonging to different tasks. We then averaged
these values across all gait cycle pairs in a particular task combination (10 combi-
nations), all neurons from a cortical region, and all task combinations. The bars
show the population cross-task correlation as the mean of these cross-task region-
specific correlation values across all sessions and both monkeys (n = 14; PMd:
0.42 ± 0.03; M1: 0.67 ± 0.02; S1: 0.71 ± 0.01). Each dot shows the region-specific
mean correlation value for one sessionofonemonkey (dots on the left column,Mk-
Ek; dots on the right column,Mk-Nt). Black line shows the chance levelwith the grey
tube showing the values not significantly different from chance at p ≥0.05 (chance

level: PMd: 0.0002±0.009; M1: 0.0000 ±0.0013; S1: 0.0000±0.001; measured
value vs. chance: PMd: p =0.0005; M1: p =0.0005; S1: p =0.0005). Blue line shows
the estimated noise contribution with light blue tube showing the values not sig-
nificantly different from noise contribution at p ≥0.05 (PMd: 0.768 ± 0.009; M1:
0.885 ± 0.005; S1: 0.896 ± 0.005; measured value vs. noise contribution: PMd:
p =0.0005; M1: p =0.0005; S1: p =0.0005). Population cross-task correlation was
lower in PMd than in M1 and S1 (PMd vs. M1: p =0.0005; PMd vs. S1: p =0.0005;M1
vs. S1: p =0.13). e Left panel shows the peri-gait firing rates for one representative
neuron with its preferred gait phase (PGP) identified as the phase of maximum
activity. We identified each neuron’s PGP for each task and computed the circular
standarddeviationof PGP across tasks. Thebars show the population PGP standard
deviation as the mean PGP circular standard deviation across all neurons of a
cortical region, all sessions and bothmonkeys (n = 14; PMd: 42.7 ± 1.7; M1: 37.1 ± 1.2;
S1: 23.9 ± 1.2). Each dot shows the mean value for each session and each monkey
(dots on the left column,Mk-Ek; dots on the right column,Mk-Nt). Black line shows
the chance level with the grey tube showing the values not significantly different
from chance at p ≥0.05 (chance level: 60.33 ± 10.85; measured value vs. chance:
PMd: p =0.0005; M1: p =0.0005; S1: p =0.0005). Blue line shows the estimated
noise contribution with the light blue tube showing the values not significantly
different from noise contribution at p ≥0.05 (noise contribution: PMd: 18.4 ± 0.9;
M1: 14.5 ± 0.9; S1: 10.0 ±0.4; measured value vs. noise contribution: PMd:
p =0.0005; M1: p =0.0005; S1: p =0.0005). Population PGP circular standard
deviation trended smaller inM1 compared to PMd, andwas smaller in S1 compared
to M1 (PMd vs. M1: p =0.058; PMd vs. S1: p =0.0005; M1 vs. S1: p =0.0005). Error
bars: s.e.m.; n.s. p ≥0.05; *** p <0.001; one-sided Monte Carlo Permutation test.
Source data are provided as a Source Data file.
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coincidingwith the foot off and foot strike gait events. S1 activity had a
strong tuning to the foot strike event, which likely reflected the salient
sensory stimulus emerging from the contact between the foot and the
ground (Supplementary Fig. 3).

We next determined the changes in amplitude and timing of sin-
gle neuron activity between tasks. To quantify these changes, we
computed the mean firing rate and modulation depth of all the neu-
rons from each region and each task. Both the firing rate and mod-
ulation depth were consistently higher in M1 and S1 compared to PMd
(Mk-Ek: firing rate: M1: 27.7 ± 2.0Hz; S1: 22.9 ± 1.4 Hz; PMd:
20.5 ± 1.3 Hz M1 vs. PMd: p = 0.016; S1 vs. PMd: p = 0.031; modulation
depth: M1: 44.8 ± 2.1 Hz; S1: 45.7 ± 2.0Hz; PMd: 33.3 ± 2.0Hz; M1 vs.
PMd: p = 0.016; S1 vs. PMd: p =0.016; Mk-Nt: firing rate: M1:
21.0 ± 2.1 Hz; S1: 23.2 ± 1.8 Hz PMd: 14.2 ± 1.1Hz; M1 vs. PMd: p = 0.078;
S1 vs. PMd: p =0.031; modulation depth: M1: 39.6 ± 2.7Hz; S1:
42.2 ± 2.7Hz; PMd: 26.2 ± 1.0Hz; M1 vs. PMd: p = 0.016; S1 vs. PMd:
p =0.016; Wilcoxon signed rank test; Supplementary Fig. 4a).

In agreement with previous studies conducted in cats during
locomotion41,42, we foundacross all three cortical regions that neuronal
firing rate and modulation depth modestly increased during ladder,
stairs, and obstacles tasks compared to treadmill and corridor—as
expected based on the requirement for better-planned and more
accurate hindlimb movements compared to rhythmic walking along
the corridor or treadmill (Supplementary Fig. 4b).

To capture task-specific changes in the timing of neural respon-
ses, we ordered the activity of each neuron based on their preferred
gait phase, defined as the time of peak firing. We first aligned the
responses during walking along the corridor, and thenmaintained this
order when visualizing neuronal responses in the other tasks. We
noticed substantial task-specific changes in the timing of neuronal
responses in PMd,while the activity of neurons located inM1, and even
more in S1, was comparatively more stable (Fig. 3c, Supplementary
Fig. 5a). To quantify these changes, we computed the correlation
coefficient (R) between the activity of any two gait cycles for each
neuron, either from the same or a different task. We then averaged
these values across all gait cycle pairs in a particular task combination
(10 combinations) and across all neurons from a cortical region
(Supplementary Fig. 5b). To calculate the region-specific mean corre-
lation values, we averaged these R values across all pairs of different
tasks. This quantification revealed that single neuron activity was less
correlated across tasks in PMd than inM1and S1 (population cross-task
correlation: PMd: 0.42 ± 0.03; M1: 0.67 ± 0.02; S1: 0.71 ± 0.01; PMd vs.
M1: p = 0.0005; PMd vs. S1: p = 0.0005 one-side Monte Carlo permu-
tation test; Fig. 3d). We also calculated cross-task circular standard
deviation of the preferred gait phases (PGP) of each neuron, and
compared these values across the cortical regions. This analysis con-
firmed that task-specific changes in the timing of neuronal responses
were larger in PMd than in M1, and were the smallest in S1 (population
PGP circular standard deviation: PMd: 42.7 ± 1.7; M1: 37.1 ± 1.2; S1:
23.9 ± 1.2; PMd vs. M1: p = 0.058; PMd vs. S1: p = 0.0005; M1 vs. S1:
p = 0.0005; one-sided Monte Carlo permutation test; Fig. 3e). Given
the known role of PMd inmovement planning11,36,43, these results imply
that PMd is a critical center for incorporating task context to flexibly
redeploy motor output.

PMd neural manifolds change substantially between tasks, but
not in M1/S1
The detailed understanding of the mechanisms through which the
activity of individual neurons generatesmuscle activationpatterns to
sustain movement remains incomplete44. Indeed, muscle activation
patterns are likely orchestrated through combinations of single
neuron activities that are embedded within low-dimensional neural
manifolds15. Yet, it remains unclear whether these manifolds remain
unchanged as the behavior shifts from one task to another. To
address this knowledge gap, we determined the dimensionality of

neural manifolds during the production of each task, and how it
relates to the dimensionality of the neuralmanifoldwhen all the tasks
are grouped. This analysis is bounded by two extremes. On one side,
if neural population activity takes place within the same neural
manifold for each task, the dimensionality of the single-task and all-
task neural manifolds will be identical. On the other side, if the
activity within a cortical region takes place along orthogonal neural
manifolds for each task, the dimensionality of the all-task manifold
will be equal to the sum of the dimensionality of the single-task
manifolds. While real-life datasets likely fall between these two
extremes, the proximity to either of the two signifies which type of
task segregation dominates the activity of the studied neural
population.

We measured the dimensionality of single- and all-task manifolds
for each recording session by applying the principal component ana-
lysis (PCA) on the activity of a neural population from one cortical
region and counting the number of neural modes needed to explain
more than 90% of the cumulative variance, as described previously45,46

(Fig. 4a). All the single-task neural manifolds had a low (2-4) dimen-
sionality, regardless of the cortical region (mean single-task neural
manifold dimensionality: Mk-Ek: PMd: 3.46 ±0.92; M1: 3.34 ±0.48; S1:
2.20 ±0.46; Mk-Nt: PMd: 3.77 ± 0.81; M1: 2.77 ± 0.55; S1: 3.29 ±0.52;
Fig. 4b; Supplementary Fig. 6a-b). In contrast, thedimensionality of the
all-task neural manifolds differed between PMd and the other two
cortical regions (mean all-task neural manifold dimensionality: PMd:
8.05 ± 0.44; M1: 5.33 ± 0.29; S1: 4.78 ± 0.44; PMd vs. M1: p = 0.0005;
PMd vs. S1: p = 0.0006; M1 vs. S1: p = 0.30; Wilcoxon signed rank test;
Fig. 4c). In PMd, the dimensionality of all-taskmanifolds surpassed the
dimensionality of single-task manifolds by 5.81 on average, while this
differencewas far smaller inM1 (2.66), and even smaller in S1 (2.11; PMd
vs.M1: p = 0.0002; PMdvs. S1: p = 0.0002;M1 vs. S1: p = 0.15,Wilcoxon
signed rank test; Fig. 4d). These differences imply that neural activity
for different tasks may be compartmentalized within distinct neural
manifolds in PMd, while neural activity in S1 and, to a lesser extent M1,
appears to take place along similarly orientedmanifolds. These results
remained qualitatively unchanged for different cumulative variance
thresholds used to define neural manifolds (Supplementary Fig. 6c).

Note that the design of the behavioral tasks and the processing
used to derivemultiunit spike rates from the neural population activity
influences the dimensionality of the manifolds47. To estimate instan-
taneous spike rate from a timeseries of discreate neuronal spikes, the
timeseries is convolved with a “smoothing” function (e.g., a Gaussian
function). Longer tasks and narrower smoothing will inherently con-
tain more task-unrelated variance, thus resulting in higher dimen-
sionality estimates. Conversely, wide smoothing applied on neural
recordings from short tasks may erase relevant neural activity. The
maximummeasurable dimensionality can be estimated by dividing the
task duration by the width of the smoothing filter. With the mean gait
cycle duration of 942ms and the width of our smoothing filter of
128ms, the single-task dimensionality ceiling is estimated to be 7.4.
The measured single-task manifold dimensionalities (2-4) are sub-
stantially lower than the limit, thus indicating that the task design and
the processing did not influence the obtained results. As expected,
increasing the dimensionality ceiling by making our Gaussian
smoothing filter half as wide did not substantially change the results,
while reducing the dimensionality ceiling by making the filter twice as
wide compressed the dimensionalities (Supplementary Fig. 6d).

Nevertheless, we could not exclude the possibility that the dif-
ferences between single- and all-task neural manifolds arose from a
single task associated with neural activity inhabiting amanifold largely
orthogonal to the remaining single-task neural manifolds. To rule out
this possibility, we computed the relative contribution of each task
toward the dimensionality of the all-task manifold. We estimated the
dimensionality of all-but-one task neural manifolds for all combina-
tions of tasks. Excluding one task from the datasets modestly reduced
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the dimensionality of the all-but-one-task manifolds relative to the
dimensionality of the all-task manifolds (dimensionality difference:
Mk-Ek: PMd: 0.89 ± 0.18, M1: 0.43 ± 0.23, S1: 0.09 ±0.10; Mk-Nt: PMd:
1.26 ±0.11, M1: 0.37 ± 0.07; S1: 0.43 ± 0.09; Supplementary Fig. 6e).
These relatively small changes indicate that different tasks contributed
fairly equally to the dimensionality of the all-task neural manifold.

This result compelled us to quantify the relative similarity
between different single-task manifolds in each cortical region, but
without the contingence to the dimensionality analysis. For this pur-
pose, we projected the neural activity from one task onto the single-
task manifold of another task (Fig. 4e). We then computed the align-
ment index14,48, which measures the portion of variance retained after
the projection. The alignment index was the largest in S1, significantly
smaller in M1, and further significantly smaller in PMd (PMd:
0.38 ±0.02; M1: 0.47 ± 0.02; S1: 0.56 ± 0.02; PMd vs. M1: p = 0.0005;
PMd vs. S1: p = 0.0005; M1 vs. S1: p = 0.0005; one-side Monte Carlo
permutation test; Fig. 4f). Taken together, these results show that
neuronal activity occurs along neural manifolds that are largely task-
specific in PMd, and largely task-agnostic in M1, and even more task-
agnostic in S1.

Task-independent subspace dominates S1 and M1, but not PMd
neural activity
Despite the dimensionality of all-task manifolds being larger than
single-task manifolds, the sum of all single-task manifold dimension-
alities was still larger than the all-task manifold dimensionality. This
observation opened up a possibility that, even in PMd, all tasks share
activity across one or more neural modes. These modes then span a
“task-independent” subspace of the all-taskmanifold. By construction,
the same task-independent subspace is also a subspace within each
single-task manifold. Since in PMd the dimensionality of all-task
manifolds is substantially larger than the dimensionality of single-task
manifolds, we hypothesized that the PMd task-independent subspace
holds a smaller portion of neural population activity compared to the

remaining “task-dependent” subspace of the all-task manifold. In
contrast, we hypothesized that S1 neural population activity pre-
dominantly inhabits the task-independent subspace.

While the dimensionality of the all-taskmanifold was smaller than
the sum of dimensionalities of the single-task manifolds, this quanti-
fication does not necessarily demonstrate the presence of the task-
independent subspace. For example, two tasks can share some of the
neural modes that are not shared across the remaining tasks. In this
scenario, the same differences in dimensionalities of single-task and
all-task manifolds would emerge even in the absence of a task-
independent subspace.

To determine the presence of task-independent subspaces, we
applied demixed PCA (dPCA)30 to the datasets organized based on the
peri-gait activity of allmultiunits. dPCA separates the neural data into a
set of demixed neural modes. In each demixed neural mode, the peri-
gait activity of the neural population traces one trajectory for each
task. These demixed trajectories can then be decomposed into a task-
independent part obtained by averaging the demixed trajectories over
the tasks, and a task-dependent part obtained by subtracting the task-
independent part from the demixed trajectories (Fig. 5a, Methods).
The demixed neural modes are, by the design of the dPCA, dominated
by either the task-dependent or the task-independent parts. We
hereafter refer to demixed neural modes with majority variance
accounted for by the task-independent or task-dependent parts as
task-independent or task-dependent modes, respectively. We then
defined the task-dependent and task-independent subspaces as spaces
spanned by all task-dependent or task-independent modes. As theo-
rized, we identified multi-dimensional task-independent subspaces in
all three cortical regions for both monkeys (Fig. 5b, c, and Supple-
mentary Fig. 7).

We next quantified the amount of neural variance captured by
task-dependent and task-independent parts of demixed neural modes
in each cortical region. A large portion of PMd demixed neural modes
were dominated by task-dependent parts, while the majority of S1
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generate a 3D all-task manifold. b.\ The difference between the dimensionality of
all-task and single-task manifolds (Δ in dim) in PMd, M1 and S1 is large, moderate,
and small, respectively. The bars show the histogram of single- (grayscale-coded)
and all-task (yellow) manifold dimensionality across all sessions for Mk-Ek. The
dots show themeandimensionality of single- (gray) and all-task (yellow)manifolds
(single-task: PMd: 3.46 ± 0.92; M1: 3.34 ±0.48; S1: 2.20 ± 0.46; all-task: PMd:
8.71 ± 2.14; M1: 6.14 ± 0.69; S1: 3.42 ± 0.53). c The bars show the mean dimension-
ality of all-task manifolds across all sessions and both monkeys (PMd: 8.05 ± 0.44;
M1: 5.33 ± 0.29 and S1: 4.78 ±0.44; PMd vs. M1: p =0.0005; PMd vs. S1: p =0.0006;
M1 vs. S1: p =0.30; two-sidedWilcoxon signed rank test). Dots show values for each
session and monkey (Mk-Ek: left column; Mk-Nt: right column). d. Difference (Δ)
between dimensionality of all-task and single-task manifolds shown same as in
c (PMd: 5.81 ± 0.38, M1: 2.66 ± 0.25 and S1: 2.11 ± 0.28; PMd vs. M1: p =0.00024414;
PMd vs. S1: p =0.0001; M1 vs. S1: p = 0.15; two-sided Wilcoxon signed rank test).

Values shown in (c, d) are means over 1000 repetitions of randomly selecting 32
channels from each cortical region to avoid bias due to different number of
recording channels between regions and monkeys. e The panel illustrates the
process of computing the alignment index. First, the neural activity of Tasks a and
b are used to construct Task a and b single-task manifolds, respectively. Task a
neural activity is then projected into the Task b manifold and, separately, into the
Task a manifold. To obtain the alignment index, we divided the variance of the
projection into Task b manifold by the variance of the projection into Task a
manifold. f Bar plot shows the alignment index for both monkeys (dots on the left
column, Mk-Ek; dots on the right column, Mk-Nt). Smaller alignment index of PMd
compared to S1 shows that PMd single-taskmanifolds differ substantially, while S1
single-task manifolds are similar (n = 14; PMd: 0.38 ± 0.02; M1: 0.47 ± 0.02; S1:
0.56 ± 0.02; PMd vs. M1: p =0.0005; PMd vs. S1: p =0.0005; M1 vs. S1: p =0.0005).
Blue line shows the estimated noise contribution with the light blue tube showing
the values not significantly different from noise contribution at p ≥0.05 (noise
contribution: PMd: 0.891 ± 0.009; M1: 0.946 ± 0.005; S1:0.970 ±0.005; measured
value vs. noise contribution: PMd: p =0.0005; M1: p =0.0005; S1: p =0.0005).
Error bars: s.e.m.; *** p <0.001; one-sided Monte Carlo permutation test. Source
data are provided as a Source Data file.
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modes were captured by task-independent parts (Fig. 5d). Variance of
different leading M1 demixed neural modes were dominated by dif-
ferent parts, with more modes being dominated by task-independent
parts. In line with these results, M1 and S1 task-independent subspaces
captured a substantially larger portion of variance when compared to
PMd (S1: 68% ± 3%, M1: 56% ± 3%, PMd: 20% ± 3%; PMd vs. M1:
p =0.0005; PMd vs. S1: p =0.0005; M1 vs. S1: p =0.0005; one-sided
Monte Carlo permutation test; Fig. 5e). We verified that these differ-
ences cannot be explained by sparse task-unrelated behavioral events
(Supplementary Fig. 8a). Furthermore, removing leading demixed
neural modes from the dataset reduced the variance of all single-task
manifolds, thus demonstrating that neural modes did not capture
separate task clusters but rather the task-dependent and task-
independent activity across all the tasks (Supplementary Fig. 8b).
These results add to the evidence that the structure of neural activity is
remarkably preserved across locomotor tasks in S1 and to a lesser
extent in M1, while PMd primarily exhibits specific neural activity
during the performance of each locomotor task.

Despite PMd having four times fewer direct projections to the
spinal cord compared to M149, the task-specificity of PMd population
activity suggests that PMd could drive task-dependent components of
muscle contractionor kinematics. To test this interpretation,weused a
Wiener filter algorithm to reconstruct the envelopes of EMG activity
from the six hindlimb muscles or the right hindlimb kinematics based

on the neuronal activity of PMd, M1, and S1. As expected from earlier
studies50,51, compared toM1 and S1, the PMdneural population activity
was less predictive of muscle activity and kinematics (Supplementary
Fig. 9a–b). This analysis also showed that, unlike M1 and S1, the PMd
neural activity precedes changes in muscle activity and kinematics,
which is consistent with the preferential role of PMd in movement
planning11,36 (Supplementary Fig. 9a–b). We then used dPCA to sepa-
rate the task-dependent and task-independent subspaces of the EMG
envelopes (Supplementary Fig. 9c) or the right hindlimb kinematics
(Supplementary Fig. 9d). We used the Wiener filter algorithm to
reconstruct EMG envelopes and kinematics of these task-dependent
and task-independent subspaces from the neural population activity of
each of the three cortical regions. As for the decoding of the entire
muscle activity and kinematic space, we found that PMd neural
population activity provided the worst reconstruction of both task-
dependent and task-independent EMG and kinematic subspaces. As
for the entire space of EMG and kinematic activity, only the PMd
activity preceded the EMG and kinematic subspaces (Supplementary
Fig. 9e–h). These results indicate that task-specific neural computa-
tions in PMd do not predominantly exert direct control of behavior.
Instead, PMd may preferentially pass information to other cortical
regions to producemovements. Nonetheless, the possibility that PMd
directly controls motor primitives that have not beenmeasured in our
experiments cannot be excluded.
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Fig. 5 | PMd is dominated by task-dependent activity and S1 by task-
independent activity. a We used dPCA to decompose neural population activity
of one session into demixed neural modes (dNM), which were then decomposed
into task-dependent and task-independent parts. We refer to demixed neural
modes as task-dependent or task-independent according to whether the variance
is mostly accounted for (>50%) by task-dependent or task-independent parts.
b Plots show M1 neural population peri-gait activity of three leading task-
independent and task-dependentmodes for each task inMk-Ek session S7. All task-
independent or task-dependent modes spanned the task-independent or task-
dependent subspace respectively. c Neural population activity projected into a
space spanned by the leading task-independent neural modes. d Bars show the
portion of the variance explained by each neural mode, and the portion of
explained variance belonging to its task-dependent (light green) or task-
independent (dark green) parts for the same session as in (b). In this representative
example in Mk-Ek, variance in the leading PMd demixed neural modes is largely
explained by their task-dependent parts. In contrast, variance is largely explained

by the task-independent parts in M1 and S1. e Bar plots show the mean portion of
variance explained by the task-independent subspace across all sessions and both
monkeys (n = 14; S1: 68%± 3%; M1: 56% ± 3%; PMd: 20%± 3%; PMd vs. M1:
p =0.0005; PMd vs. S1: p =0.0005; M1 vs. S1: p =0.0005). Dots show the value for
individual sessions in both monkeys (left column: Mk-EK; right column: Mk-Nt.).
Black line shows the chance level with grey tube showing the values not sig-
nificantly different from chance at p ≥0.05 (chance level: PMd: 4.122 ± 0.22; M1:
5.31 ± 0.40; S1: 7.00±0.58; measured value vs. chance: PMd: p =0.0005; M1:
p =0.0005; S1: p =0.0005). Blue line shows the estimated noise contribution with
light blue tube shows the values not significantly different from noise contribution
at p ≥0.05 (noise contribution: PMd: 91.73 ± 0.45; M1: 92.55 ± 0.45; S1:91.92 ± 0.45;
measured value vs. noise contribution: PMd: p =0.0005; M1: p =0.0005; S1:
p =0.0005). Pie charts show the portions of variance explained by task-
independent and task-dependent parts of all the demixed neural modes, respec-
tively. Bars: mean ± s.e.m. *** p <0.001, one-sided Monte Carlo permutation test.
Source data are provided as a Source Data file.
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Communication of task-independent and task-dependent
information across cortical regions
We next sought to understand whether each cortical region com-
municates preferentially task-dependent or task-independent
neural activity. Due to the predominance of the task-dependent
subspace, PMd may preferentially communicate task-dependent
neural activity to the other cortical regions. In contrast, M1 and S1
may preferentially communicate task-independent neural activity,
given the predominance of those subspaces in M1 and S1 neural
activity.

To test these hypotheses, we applied a reduced rank regression
algorithm52 that aimed to identify the communication subspace of a
source cortical region that best explains the activity of a target cortical
region52 for all source-target combinations of the three cortical regions
(Fig. 6a, step 1). We then quantified the relative alignment between the
source communication subspace and the source task-independent
versus task-dependent subspaces by calculating the difference
between the mean of the task-dependent principal angles and the
mean of the task-independent principal angles14,53 (Fig. 6a, step 2; for
all principal angles, see Supplementary Fig. 10). Thus, a positive or
negative value indicated that the source communication subspace is

preferentially aligned to the source task-independent or task-
dependent subspace, respectively.

We found that the PMd communication subspaces were pre-
ferentially aligned with its less-represented task-independent sub-
space (mean Δangles: Mk-Ek: PMd to M1: 6.80 ± 1.49; PMd to S1:
5.52 ± 1.04; Mk-Nt: PMd to M1: 7.28 ± 1.20; PMd to S1: 8.17 ± 1.14). In
contrast, when considering the communication towards PMd, we
found that the communication subspaces from M1 and S1 were pre-
ferentially aligned with their less-represented task-dependent sub-
spaces (mean Δangles: Mk-Ek: S1 to PMd: -3.55 ± 1.54; M1 to PMd:
−4.82 ± 1.53; Mk-Nt: S1 to PMd: -1.62 ± 0.72; M1 to PMd: -2.75 ± 1.10).
Only when communicating between them did the M1 and S1 commu-
nication subspaces align with their predominant task-independent
subspace (mean Δangles: Mk-Ek: S1 to M1: 3.28 ± 0.74; M1 to S1:
2.36 ±0.69; Mk-Nt: S1 to M1: 6.43 ± 2.35; M1 to S1: 5.97 ± 0.60;
Fig. 6b, c). The preference of PMd-to-M1 communication towards task-
independent neural activity suggests that smaller task-specific move-
ment adjustments are planned in PMd. This interpretation is corro-
borated by the preference of PMd towards receiving task-dependent
activity, which would be necessary to perform computation related to
task-dependent planning.

Fig. 6 | Task-independent subspaces are preferentially aligned to commu-
nication subspaces across cortical regions, except those targeting PMd. a Step
1: We used a reduced rank regression algorithm to identify the source commu-
nication subspaces. Step 2: We computed the principal angles between the source
communication subspaces and source task-independent subspaces (CS-TI angles),
as well as the source communication subspaces and source task-dependent sub-
spaces (CS-TD angles). We then computed the angle difference (Δ angles), defined
as the difference between themean CS-TD angles and themeanCS-TI angles. b The
plots show the distribution of all the Δ angles (n = 35: 5 tasks x 7 sessions) for every
combination of source and target cortical regions and for each monkey. Positive Δ

angles values show preferential alignment with the task-independent subspaces.
c Barplots show the mean of Δ angles across all tasks and sessions for every com-
bination of source and target cortical regions and for each monkey (n = 7; Mk-Ek:
PMd to M1: 6.80 ± 1.49; PMd to S1: 5.52 ± 1.04; M1 to PMd: -4.82 ± 1.53; M1 to S1:
2.36 ± 0.69; S1 to PMd: −3.55 ± 1.54; S1 to M1: 3.28 ± 0.74; n = 7; Mk-Nt: PMd to M1:
7.28 ± 1.20; PMd to S1: 8.17 ± 1.14;M1 to PMd:−2.75 ± 1.10;M1 to S1: 5.97 ± 0.60; S1 to
PMd: −1.62 ±0.72; S1 to M1: 6.43 ± 2.35). Dots show the mean of Δ angles across all
tasks for every session. Black line shows the chance levelwith the grey tube showing
the values not significantly different from chance at p ≥0. 05 (chance level: Mk-Ek:
PMd to M1: 0.05 ± 0.67; PMd to S1: 0.06 ± 0.69; M1 to PMd: 0.03 ± 0.65; M1 to S1:

0.00 ±0.65; S1 to PMd: 0.04± 0.56; S1 to M1: 0.06± 0.56; Mk-Nt: PMd to M1:
0.06 ± 0.57; PMd to S1: 0.08± 0.57;M1 to PMd: 0.02 ±0.58;M1 to S1: 0.06 ±0.56; S1
to PMd: −0.02 ± 0.74; S1 to M1: −0.05 ± 0.75; measured value vs. chance level: Mk-
Ek: PMd toM1: p =0.0005; PMd to S1: p =0.0005; M1 to PMd: p =0.0005;M1 to S1:
p =0.0009995; S1 to PMd: p =0.0005; S1 to M1: p =0.0005; Mk-Nt: PMd to M1:
p =0.0005; PMd to S1: p =0.0005; M1 to PMd: p =0.0005; M1 to S1: p =0.0005; S1
to PMd: p =0.02; S1 to M1: p =0.0005). Blue line shows the estimated noise con-
tributionwith the light blue tube showing the values not significantly different from
noise contribution at p ≥0.05 (noise contribution: Mk-Ek: PMd to M1: −1.56 ± 0.60;
PMd to S1: −1.59 ± 0.57; M1 to PMd: −11.07 ± 0.50; M1 to S1: −11.33 ±0.51; S1 to PMd:
−8.63 ± 0.40; S1 to M1: −8.90 ±0.40; Mk-Nt: PMd to M1: −0.56 ± 0.47; PMd to S1:
−0.47 ± 0.44; M1 to PMd: −8.39 ± 0.50; M1 to S1: −6.70 ± 0.48; S1 to PMd:
−9.14 ± 0.69; S1 to M1: −9.18 ± 0.68; measured value vs. noise contribution: Mk-Ek:
PMd to M1: p =0.0005; PMd to S1: p =0.0005; M1 to PMd: p =0.0005; M1 to S1:
p =0.0005; S1 to PMd: p =0.0005; S1 to M1: p =0.0005; Mk-Nt: PMd to M1:
p =0.0005; PMd to S1: p =0.0005; M1 to PMd: p =0.0005; M1 to S1: p =0.0005; S1
to PMd:p =0.0005; S1 toM1: p =0.0005). Error bars: s.e.m.; * p <0.05; *** p <0.001;
one-sided Monte Carlo permutation test. Source data are provided as a Source
Data file.
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Task-independent subspaces enable decoding of temporal
features
Task-specific decoding algorithms can accurately infer behavioral
features from neural population activity54,55. Yet, accuracy drops when
decoding behavioral features during tasks that were not used to cali-
brate the algorithm54. The robustness of population activity within the
task-independent subspaces suggests that some of the behavioral
features are encoded in a portion of the population activity that
remains preserved across tasks. Therefore, we hypothesized that
decoding accuracy of general behavioral features declines pro-
portionally to the number of available task-independent modes, while
removing task-dependent modes has little or no impact on decoding
accuracy for these features.

To test this hypothesis, we calibrated a linear discriminant ana-
lysis (LDA)56 decoder to infer the occurrence of right foot-strike and
foot-off gait events from neural population activity recorded during
walking along the straight corridor. We focused on temporal features,
sinceprevious studies suggested that task-independentmodes encode
the temporal structure of movement14,34. Foot-strike and foot-off gait
events are key determinants for the production of locomotor move-
ments. Indeed, the prediction of these temporal features from cortical
activity drove the electrical stimulation of the spinal cord to restore
walking in monkeys56 and people57 with paralysis due to spinal cord
injury.

We calibrated the decoder under three conditions: full neural
space, the full neural space from which we sequentially removed
leading task-dependent modes, and the full neural space from which
we sequentially removed leading task-independentmodes (Fig. 7a). As
anticipated, removing task-independent modes drastically reduced
the ability of the decoder to predict foot-strike and foot-off gait events
during tasks that were not used for calibration. This decline in
decoding accuracywas observed for all three cortical regions (Fig. 7b),
independently from the amount of removed neural population activity
variance (Supplementary Fig. 11d). In striking contrast, removing task-
dependent modes did not affect decoding accuracy from S1 and M1,
and even slightly increased decoding performance from PMd. These
results show that the leading task-dependent PMd modes correlate

with the key temporal features ofmovement, but that this relationship
changes between tasks.

To expand on these findings, we reconstructed EMG envelopes
or hindlimb kinematics of non-corridor tasks from neural popula-
tion activity using a Wiener filter calibrated on the corridor task.
Unlike discrete gait events, EMG and kinematics capture the entire
range of temporal and spatial features involved in the performance
of the tasks. Similar to the detection of gait events, the EMG and
kinematic regression accuracy remained unchanged or slightly
decreased when removing leading task-dependent components.
Yet, removal of leading task-independent components did not
consistently reduce regression accuracy (Supplementary
Fig. 11b, c). More detailed analysis revealed that the amount of
removed variance is more relevant for the regression accuracy
reduction than whether the components were task-dependent or
task-independent (Supplementary Fig. 11e). These results indicate
that the encoding of detailed muscle and kinematic features that
generalize across tasks is shared across task-dependent and task-
independent subspaces (Fig. 5d).

It is worth mentioning that the robustness of our results is
limited by the inability to record all aspects of the monkeys’ beha-
vior and environment. While our platform recorded the activity of
major hindlimbmuscles and movements of primary hindlimb joints
synchronously with the activity of the three studied cortical
regions, our datasets lacked the activity of the remaining muscles
and movements of other joints, some of which are active and rele-
vant during walking. Such more detailed recordings may help
explain larger portion of the neural activity variance and, in turn,
may lead to higher regression accuracy when reconstructing the
motor primitives (Supplementary Fig. 9 and 11). Nonetheless, our
key findings do not rely on completeness of behavioral recordings,
but simply on the fact that the monkeys performed different tasks,
thus allowing us to separate the activity into task-dependent and
task-independent components. Despite efforts to standardize con-
ditions, unrecorded sensory inputs (e.g., visual or auditory differ-
ences across tasks) may have influenced neural activity, potentially
impacting our results.
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Fig. 7 | Encoding of gait features in the task-independent subspace remains
stableacross tasks. aWeusedneural decoders todetect right foot-strike and foot-
off gait events fromneural population activity in the left hemisphere. The decoders
were calibrated on the dataset from recordings during walking along the corridor,
and were then tested on datasets from the four remaining tasks to evaluate
decoding accuracy, asmeasured by the F-score. We applied this decoding analysis
to datasets containing all neural activity from a cortical region (black dot), and to

this dataset with one or more leading task-dependent (light green dots) or task-
independent (dark green dots) modes removed. b Plots show the decoding
accuracy for datasets containing all neural activity (black) or the same datasets
with leading task-dependent (light green) or task-independentmodes (dark green)
removed. Dots show data from individual sessions (n = 7). Lines show the mean
across sessions. Error bars: s.e.m. Source data are provided as a Source Data file.
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Discussion
Here, we took advantage of the naturalistic and rich repertoire of
unrestricted primate locomotor behaviors to determine the involve-
ment of multiple cortical regions in the control of movement, and
suggest that these principles may be leveraged to increase the relia-
bility of neural prostheses to restore mobility in people with neuro-
logical disorders.

We developed a wireless platform that allowed us to monitor
neuronal population activity from the hindlimb regions of the PMd,
M1, and S1 while the monkeys performed a variety of locomotor tasks
under naturalistic conditions. These recordings revealed that the
activity of individual neurons from these three cortical regions was
highly reproducible within a given task. Accordingly, we found that the
activity of neural populations from each region was confined within
sets of neural modes that composed low-dimensional manifolds.
However, we identified a regional specialization in the changes of the
neural population activity that underlies task-specific differences in
hindlimb movements. This specialization was captured in the separa-
tion of neural population activity into task-dependent and task-
independent subspaces. The encoding of motor primitives in S1
changed little between tasks and its activity was dominated by task-
independent activity. In contrast, the PMd activity changed sub-
stantially between tasks, as reflected by the dominance of task
dependent activity. The M1 activity was similar but less pronounced
compared to S1: encoding of motor primitives was largely preserved
and task-independent activity slightly surpassed the task-dependent
activity. Importantly, we found that, despite being dominated by task-
independent activity, S1 primarily communicated task-dependent
information to PMd. In turn, PMd preferentially communicated its
less-prevalent task-independent information to M1. This chain of
communication suggests that PMd primarily receives task-dependent
information from S1, and then processes this task-dependent infor-
mation before sending it toM1 in a refined form. Below, we discuss the
implications of these fundamental principles for our understanding of
the cortical control of movement.

Neurons embedded in the sensorimotor cortices display highly
regular patterns of activity that are phase-locked to gait events54,55,58,59.
Prior studies reported that volitional modifications of locomotor
movements to increase speed54,55,60, walk along uneven terrain59,61,62, or
avoid obstacles4,63,64 involves task-specific changes of the amplitude
and timing of neuronal activity. Here, we expand our understanding of
these principles to the multiple regions of the cerebral cortex in pri-
mates, showing that the activity of PMd, M1, and S1 neuronal popula-
tions is also phase-locked to gait events and displays task-specific
changes in the timing and amplitude of activity. However, we found
that task-specific changes were not uniformly distributed across the
three cortical regions. Overall, S1 showed minimal task dependency,
suggesting that neurons located in the hindlimb region of S1 primarily
reflectmovement primitives65. Instead, we detected extensive changes
across tasks in the temporal structure underlying the activity of PMd
neurons.

PMd is known to be involved in planning, selection, and pre-
parationof goal-directedmovements11,36,66. Recent studies showed that
PMd takes part in executing both internally-generated and externally-
guided movements67,68. Yet, PMd inactivation predominantly disrupts
internally-generated movements, thus indicating that PMd plays a
crucial role in the process of converting internal goals into motor
commands68. Our results shine further light on this process, showing
that PMd is focused on neuronal calculations that process contextual
task-related information into lower-dimensional motor plans.

There is a widespread agreement that neural populations perform
computations through their collective activity5,15,20,21,24,25,28,69–71. Indeed,
we found that the vast majority of neural population activity from the
three studied cortical regions resideswithin a low-dimensional portion
of the full neural space. However, the dimensionality of these neural

manifolds increased from S1 (4.78) to M1 (5.33) and again to PMd
(8.05). This increase in the complexity of the neural manifolds mir-
rored the regional specialization of task-specific changes observed in
single neuronal responses, which increased from S1 to M1, and further
to PMd. Comparable results have been reported during reaching tasks,
where the dimensionality of neural manifolds computed from M1 and
PMd during reaching attained 8.5 and 14 dimensions, respectively46.
The increasing dimensionality of neural manifolds with the execution
of increasingly more complex behaviors, such as locomotion versus
reaching, is in line with the theory that limiting behavior complexity
constrains the dimensionality of neural manifolds47. In turn, the com-
parable dimensionalities of forelimb and hindlimb neural manifolds
that scale up with behavioral complexity suggest that common prin-
ciples govern the involvement of cortical neurons in the production of
forelimb and hindlimbmovements. This interpretation resonates with
the viewpoint that, while locomotion and manual dexterity are regar-
ded as separate motor activities, they are intimately connected from
an evolutionary and a neurophysiological perspective3,72. Indeed, we
posit that visuomotor coordination of hand and foot movements,
including dexterous prehension, involves comparable neural
processes72.

We found that neural population activity from the three studied
cortical regions was compartmentalized into task-dependent and task-
independent subspaces. However, we detected a regional specializa-
tion in the prevalence of these subspaces. The activity of neural
populations from PMd primarily resided in the task-dependent sub-
space, while the activity of S1 was largely confined within the task-
independent subspace. Previous studies suggested that the task-
independent subspace conveys the temporal structure of the
movement14,34. Indeed, we found that decoders based on the task-
independent subspaces were able to predict the timing of gait events
with remarkable accuracy. Instead, decoders based on task-dependent
subspaces failed to establish reliable predictions. We independently
validated this concept for the three studied cortical regions.Therefore,
our results are not only consistent with previous interpretations on the
encoding of the temporal structure of movement in task-independent
subspaces, but also expand this principle to multiple regions of the
cerebral cortex. The presence of task-independent subspaces across
all three cortical regions may coincide with the common cortex-wide
dynamics identified in the recent brain-wide calcium imaging record-
ings in behaving mice73.

We found that PMd preferentially receives task-dependent infor-
mation fromM1 and S1. In contrast, PMd output toM1 is dominated by
task-independent information. This result suggests that PMd trans-
forms task-dependent information from M1 and S1 into task-
independent movement plan containing the temporal structure of
the ongoing movement. In turn, PMd passes the complete motor plan
to M1, now dominated by the more extensive task-independent com-
ponent. We propose that this principle ensures the coordination
betweenparallel and sequential neural processes that are embedded in
distributed regions of the brain, and are mutually involved in the
planning and production of movement. These interpretations are
aligned with the idea that the brain employs distinct task-specific
encoding to convey what should be done and when it should be
done34.

These results have important implications for the design of
decoders to operate neural prostheses that remain stable across the
varying activities of daily living74,75. Decoding algorithms56,76–78 are
generally calibrated from neural activity collected in a given task54,79.
While these decoders reach excellent levels of performance in the
tasks used for decoder calibration, decoding performance degrades
when using the decoders in other tasks, which require substantially
different patterns of single-neuron activity74. Building a decoder that
can be applied to a wide variety of tasks requires accounting for, and
potentially removing, neural activity that is specific to each context.
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Here, we found that decoders based on task-independent subspaces
were able to predict the temporal features of hindlimb movements
underlying a variety of tasks that encompass the rich repertoire of
primate locomotor behaviors. These results indicate that if a suffi-
ciently rich task-independent subspacecanbe identified, this subspace
may be used to build decoders that maintain efficacy during
previously-unseen tasks. This concept may be particularly relevant to
operate brain-controlled prostheses to regain walking after paralysis,
since the control of these prostheses is primarily based on the
extraction of the temporal structure of leg movements56,57,78,80–82.

Methods
Statistical procedures
All statistics are reported as mean± standard error of the mean
(s.e.m.). All comparisons between conditions use a null hypothesis of
no difference unless stated otherwise.

Experimental procedures
Animals. Two adult female Macaca fascicularis monkeys ranging
from 7 to 9 years old and weighing between 3.5 and 4.6 kg were
involved in this study. Their identifiers are Mk-Ek and Mk-Nt. They
were housed in a group in the animal facility of the University of
Fribourg (Switzerland) in an enriched indoor room of 45m3 for a
group of 2 to 5 animals, as required by Swiss law on animal pro-
tection. Additionally, they had access to a 15m3 outdoor space.
Animals could interact with other members of the group of 5. They
had free access to water and were not food-deprived. All the
experimental procedures were approved by the Federal and local
veterinary authorities (Service de la sécurité alimentaire et des
affaires vétérinaires du canton de Fribourg, authorization numbers:
2016_09_FR and 2019_06_FR).

Personalized surgery protocol. We developed a personalized surgical
protocol for surgical implantation and fixation of intracortical micro-
electrode arrays that accounts for NHP-specific anatomical features.
We then applied this protocol to obtain long-term simultaneous
extracellular recordings of neural populations in PMd, M1, and S1
(Supplementary Fig. 1). We used computer tomography and magnetic
resonance imaging to reconstruct and 3D print skull and brain struc-
tures. We then co-referenced the reconstructed brain structures to the
Paxinos brain atlas83 to determine the location of the hindlimb areas of
PMd, M1 and S1. We 3D-printed the skull and brain from the recon-
structions, and then marked the implantation target areas on these
prints. Before the surgery, we shaped a titanium mesh to conform to
the 3D printed skull and covered it in hydroxyapatite to promote
osseointegration. During the surgery, we used the marked 3D print of
the skull and the brain to localize the craniotomy and orient the
implantation of the microelectrode Utah arrays. After the arrays were
implanted and craniotomy was closed, we attached the pedestals
holdingmicroelectrode array connectors to footplates on themesh to
secure their position on the head. A more detailed description of the
process follows.

Imaging. Each animal was lightly sedated with a mixture of ketamine
(ketasol-100, 10mg/kg, intramuscular) and midazolam (Dormicum,
0.1mg/kg, intramuscular) and brought in a transport cage to the MRI
or CT facility of the nearby hospital of Fribourg (HFR). The modalities
of animal transport were covered by the veterinary authorization (see
above)while the imagingprocedureswere approvedby the authorities
of the HFR. At the HFR site, the animal was anaesthetised with a mix-
ture of ketamine (ketasol-100, 4mg/kg, intramuscular) and medeto-
midine (Dorbene, 0.04mg/kg, intramuscular). The animal was then
placed in a pronation position in anMRI compatible stereotactic frame
(ear bars were covered with Lidohex, a local anaesthetic) and placed in
a knee antenna (C-GE-HDxTRKnee PA; G-CoilType=8). Anoxygen tube

(3 L/min) was placed in front of the monkey. Latex gloves filled with
hot water and a bubble wrap sheet were placed around the animal to
prevent temperature drop. Electrocardiogram (ECG) as well as oxygen
saturation (SO2) were monitored and recorded every 5minutes. After
the acquisition, the animal received an intramuscular dose of atipa-
mezole (Alzane, 0.2mg/kg) andwas brought back to the animal facility
where we closely monitored its condition until complete awakening.
Finally, the animal was fed, hydrated, and brought back to the group.
The MRI parameters of the acquisition were: (1) acquisition matrix:
256×256; (2) 0.7mmvoxel size; (3) echo time (TE) = 3.3 s; (4) repetition
time (TR) = 7.7 s; (5) 3D-T1 and (6) 3D sagittal. The acquisitions were
performed on a 3 Tesla GE Medical system (Discovery MR750)
machine. The CT parameters of the acquisition were a 0.6mm heli-
coidal low dose CT on a Philips Ingenuity TF machine.

The brain structure was extracted using the BET automated brain
extraction algorithm84 in FSL (v.5.0.9) with manual mask removal in
FSLView (v.3.2.0). The 3D surface rendering was created in OsiriX
(v.3.0.2), cleaned in blender (v.2.78), and down-sampled inMeshmixer
(Autodesk, Inc) to be 3D printed (Supplementary Fig. 1a).

Surgical procedures
Titanium mesh implantation. All the surgical procedures described
below were performed by a trained functional neurosurgeon in stan-
dard sterile conditions. After performing amidline skin incision on the
monkey’s head, the cranial muscles were separated from the skull. A
titanium mesh (TiMesh, Medtronic) previously modeled on the 3D
printed skull for each monkey, and covered with hydroxyapatite
(Medicoat AG, Zürich, Switzerland) to promote osseointegration, was
fixed to the skull with cruciate self-drilling screws (Medtronic,
1.6 × 3.5mm). On the mesh, two foot-plates covered by a healing plate
(Buri SA, La Chaux-de-Fonds, Switzerland) were attached (Supple-
mentary Fig. 1). Finally, the muscles and skin were sutured and closed.
After a period to allow for osseointegration (between 8 and 18 weeks),
the animal underwent the next surgery. Note that in Mk-Nt, the mesh
and chronic intracortical microelectrode array implantations were
performed on the same day.

Chronic intracortical microelectrode array implantation. After a
skin incision, a craniotomy on the left side (~4–5 cm2) wasmade above
the hindlimb areas of dorsal premotor (PMd), primarymotor (M1), and
primary somatosensory (S1) cortices. The healing plateswere removed
and a pedestal screwed onto each footplate using eight M1.6 titanium
screws (Buri SA, La Chaux-de-Fonds, Switzerland). The dura mater was
openedwith a surgical blade to expose the brain. Based on anatomical
landmarks of the sulci and with the help of the 3D printed brain,
chronic microelectrode arrays (UTAH arrays, Blackrock microsystem,
USA, 400 µm pitch) were implanted using a pneumatic impactor
(Blackrock microsystem, USA). The number of channels varied per
animal and cortex: PMd (48 channels in both monkeys; electrode
shank length Mk-Ek: 1mm, Mk-Nt: 1.5mm), M1 (48 channels in Mk-Ek
and 64 channels in Mk-Nt; 1.5mm electrode shank length), and S1 (64
channelswith 1.5mmelectrode shank length inMk-Ek; and 32 channels
with 1mm electrode shank length inMk-Nt).Mk-Nt was also implanted
with a 48-channel array (1.5mm electrode tip length) in the posterior
parietal cortex, data from this array is not included in this paper. After
securing the array, the dura mater was sutured and the craniotome
fixed to the skull. Finally, the muscles and skin were sutured for
closing.

Chronic electrode implantation for electromyographic recordings.
Twenty-two silicone-coated, stainless steel electrodes (38AWGCooner
wires, Omnetics Corporation, USA) were tunneled from the pedestal
on the head to the abdomen. A longitudinal skin incision was per-
formed above the targeted muscles and the fascia of each muscle was
exposed. Ten electrode pairs were implanted into the muscles after
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removing approximately 0.5mm of the electrodes’ insulation. We
secured the electrodes and closed the skin. In Mk-Ek, the implanted
muscleswere: (1) right gluteusmedius (GLU); (2) right iliopsoas (IL); (3)
right rectus femoris (RF); (4) right semitendinosus (ST); (5) right
medial gastrocnemius (MG); (6) right tibialis anterior (TA); (7) right
extensor digitorum longus (EDL); (8) right flexor hallucis longus (FHL);
(9) left tibialis anterior and (10) left medial gastrocnemius. Two addi-
tional electrodes were placed around the back muscles for grounding
and reference. Mk-Nt did not undergo EMG implantation.

Behavioral training. Animal training was performed based on positive
food reinforcement. Initially, themonkeys were trained to come into a
custom-made primate chairwhereweplaced reflectivemarkers (either
painting or stickers for both hindlimbs) on body landmarks: iliac crest,
greater trochanter (hip), lateral condyle (knee), lateral malleolus
(ankle) and the 5th metatarsophalangeal (foot). After habituation to
the chair, we placed the monkeys in the experimental room for loco-
motion. We trained the animals to walk on a treadmill (N-mill,
Motekforce Link, Netherlands) at different speeds (1–5 km/h). The
treadmill was surrounded by a custom-made Plexiglass enclosure
(l:146 cm, w:63 cm, h:80 cm)with small openings to give food rewards.
After habituation to the treadmill task (more than 30 successive steps),
we began overground walking training. The monkeys were placed in a
resting box (two custom-made Plexiglass enclosures of l:60 cm,
w:40 cmh:72 cm) on either side of the corridor (custom-made 200 cm
long, 40 cmwide and 93 cm high). To encourage the monkeys to walk
across the corridor (~5–6 steps), we presented a fruit reward on the
side of the corridor together with a verbal “go” signal. After the mon-
keys were accustomed to the task (about 20 crossings), an uneven
ladder (10 rungs 2.5 cm in diameter and spaced by 16 cm, 8 cm, 46 cm,
24 cm, 24 cm, 24 cm, 16 cm, 8 cm, 14 cm), one staircase (3 steps up and
3 steps down; w: 35 cm, h:15 cm) and two obstacles (l:40 cm, w: 35 cm,
h:20 cm and 30 cm) were introduced. We gradually increased the
number of crossings and the number of tasks being performed on the
same day. Typically, after 2–4 months, the monkeys were able to
achieve all tasks in about 2 hours in the same session. After the training
session, we brought the animal back to the animal facility where we
gave additional food (primate cereal croquettes) to comply with daily
intake requirements.

Data collection. During each recording, we acquired hindlimb kine-
matics with 8 high-resolution cameras (Simi Reality Motion Systems,
GmbH, Germany) at 100Hz, and neural signals at 30 kHz (96-channel
CerePlex W and 96-channel CerePlex Exilis, Blackrock Microsystems,
USA). Additionally, in Mk-Ek, we acquired hindlimb EMGs at 30 kHz
(96-channel CerePlex Exilis, Blackrock Microsystems, USA). Record-
ings were performed in sessions that each included all five behavioral
tasks: corridor, ladder, stairs, obstacles, and treadmill moving at 3 km/
h. Each session spanned about 2 hours. Each monkey performed
7 sessions over the period of up to 3 months. Each stairs, obstacles,
corridor and ladder recording comprised two back-and-fourth circuit
transitions lasting for about 30 seconds. Each treadmill recording
involved a minute of steady walking at a constant speed. The acquisi-
tion systems were restated and synchronized at the beginning of each
recording by sending a sync trigger from the Simi reality motion sys-
tem to both CerePlex and CerePlex Exilis systems. We randomized the
order of tasks in each session.

To make the tasks visually and motivationally similar, the
monkeys performed all the tasks in a room without windows and
under the same lighting conditions. The monkeys always received
the same reward at the end of each crossing of the circuit. The
reward provided in the treadmill, where the monkeys stayed in
place instead of crossing a circuit, was the same as the reward
provided on the same day in each of the other tasks. To minimize
the impact of task complexity, we have ensured that all the tasks are

easy for the monkeys to perform and that monkeys are highly-
trained in performing each of the tasks.

Data pre-processing
We marked the right hindlimb foot off and foot strike gait event by
visually inspecting the video recordings of the sessions using a custom-
made MATLAB program (Mathworks, USA). Gait cycles, defined as the
epoch between two consecutive foot strikes, were rejected if the
duration of the step was longer than 1.5 seconds. Additionally, we
rejected gait cycles with an “outlier” stance phase duration, lasting
from the right hindlimb foot strike to the right hindlimb foot off, that
exceeded 1.5 times the 75th and 25th interquartile range. In total, there
were 295, 312, 124, 208, and 256 gait cycles in Mk-Nt; and 140, 197, 176,
66, and 320 gait cycles in Mk-Ek retained for analysis for corridor,
ladder, stairs, obstacles, and treadmill at 3 km/h, respectively. The
mean durations of the retained gait cycles were 1056ms, 988ms,
1185ms, 961ms, and 783ms for Mk-Nt, and 831ms, 812ms, 906ms,
1127ms, and 771ms for Mk-Nt for corridor, ladder, stairs, obstacles,
and treadmill at 3 km/h, respectively.

To extract the spike events of isolated neurons, we first con-
catenated the data streamsof all trials of the 5 conditions recorded in a
single session. We then performed spike sorting using Offline Sorter
(Plexon, Dallas, USA) to identify putative single neurons. Throughout
this paper, we refer to these as single neurons.

For neural population activity and multi-dimensional analyses
(see below), we identified neural units through threshold crossings
(−3.5xRMS) on each electrode. To compute the RMS and threshold
crossing events, neural raw data was first cleaned by removing inter-
vals in which one of the channels exceed a threshold value. Cleaned
neural data were then filtered between 250Hz and 5000Hz and
reference to an average value across all channels recording from that
cortical region (PMd, M1 or S1). The resulting data stream was used to
compute RMS and threshold crossing events. These may include
action potentials of well-isolated individual neurons, as well as action
potentials of multiple neurons. Throughout this article, we refer to
these as multiunits.

For both spikes of single neurons and multiunit spikes, we esti-
mated the instantaneous spike rates by first counting the number of
spikes occurring in 10ms bins in steps of 0.5ms. We used the binning
to calculate the spike rate estimate sampled at 2000Hz. We then
convolved these values with a Gaussian kernel (50ms standard
deviation). These firing rates were then Z-scored and down-sampled
to 1KHz.

We computed the peri-gait activity of single neurons and mul-
tiunits for each task by warping the spike rates to a standard 100-
samples-long gait cycle. We first determined that the average
duration of the stance phase across tasks to be centered at 60% of
the gait cycle duration. We then warped the neural activity during
the stance phase into the first 60 samples (i.e., 60% of the gait cycle).
The neural activity during the swing phase, covering the remainder
of the gait cycle, was warped into the last 40 samples.We performed
the warping using the MATLAB function interp1. This procedure
creates firing rate vectors that can be averaged across steps of dif-
ferent durations. Note that the warping does not change peak firing
rate or modulation depth.

All statistics in our study are calculated by treating different ses-
sions as separate data sets with no assumptions about whether the
single neurons recorded in different sessions are the sameor different.

Task classification based on EMGs and Kinematic
Todemonstrate the substantial difference in behavior between thefive
tasks performed by the monkeys, we trained a regularized linear dis-
criminant analysis decoder (rLDA) to classify tasks from EMGs (Mk-Ek)
or joint kinematics (Mk-Nt). For each session, we used five-fold cross-
validation to obtain five estimates of the decoding accuracy, and then
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calculated their mean value. For Mk-Ek, we used EMGs from five right
hindlimb muscles and one left hindlimb muscle that showed the most
stable recordings in eachof the seven analyzed sessions: right iliopsoas
(R Il), right rectus femoris (R RF), right medial gastrocnemius (R MG),
right extensor digitorum longus (R EDL), right flexor hallucis longus (R
FHL) and left tibialis anterior (L TA)). For Mk-Nt, we used x, y, and z
coordinates of the hip, knee, ankle, and toe landmarks referenced to
the mean position across these four landmarks. We performed the
same analysis for each session separately and reported the mean
across sessions in Fig. 2e.

Changes in activity of single neurons across tasks
We identified the preferred gait phase of each single neuron of each
session as the sample out of the 100 samples containing the peak
average peri-gait activity calculated across the entire session. When
generating Fig. 3b, we pooled the single neurons of all sessions and
both monkeys together as different neurons and ordered them by
their preferred gait phase on each task (top: lowest preferred gait
phase). In Fig. 3c, we show the samedata with neurons nowordered by
their preferred gait phase on the corridor task. Supplementary Fig. 5a
shows the same data now separated between the two monkeys. We
pooled the data across sessions and monkeys to simplify the pre-
sentation, without assumptions whether the single neurons recorded
in different sessions are the same or different.

For each neuron and each session, we computed the correlation
coefficient (R) between peri-gait activity of all possible pairs of gait
cycles, including the pairs of gait cycles performed in the same task.
Then, we computed the mean of all correlation values for each com-
bination of tasks (5 tasks, 15 combinations). Finally, we derived the
cross-task region-specific correlation for each session and task com-
bination by calculating themean of these values across all neurons of a
cortical region. Supplementary Fig. 5a shows the mean cross-task
region-specific correlation across sessions. To quantify the mean cor-
relation of the neural population activity across tasks, we calculated
the mean of cross-task region-specific correlation across all task
combinations excluding the task paired with itself. Bars on Fig. 3d
show the mean of these values across all sessions and both monkeys,
termed population cross-task correlation, with the dots showing the
values for each individual session of each monkey.

We used bootstrapping to evaluate the noise contribution to the
population cross-task correlation shownonbars of Fig. 3d. Specifically,
for each monkey, session and task, we generated two datasets of
neural activity of the same size as the recorded dataset, each by ran-
domly taking the gait cycles with repetitions. Then, for each task, we
calculated the correlation across all gait cycle pairs belonging to the
two different datasets. These values were then first averaged across all
the gait cycle pairs, then across tasks, then across sessions and finally
across monkeys. This procedure was then repeated 2000 times to
obtain a bootstrap distribution for each cortical region. We calculated
the significance of the obtained population cross-task correlation
being higher than its bootstrap distribution using a one-sided Monte
Carlo permutation test. When comparing the population cross-task
correlation between regions, we used a null hypothesis that the dif-
ference is equal to the difference of the noise contributions. Specifi-
cally, we calculated the significance of the obtained population cross-
task correlation differences being higher than the pair-wise difference
between their bootstrap distributions using a one-sided Monte Carlo
permutation test.

To compare the change in preferred gait phase across tasks for
each cortical region, for each neuron and each session, we computed
the circular standard deviation of the mean peri-gait single neuron
activity across tasks using the Circular Statistics Toolbox for Matlab
(see illustration on Fig. 3e). We then computed the mean of these
values across all neurons of a cortical region. Bars on Fig. 3e show the
mean of these values across all sessions and both monkeys, termed

population PGP circular standard deviation, with the dots showing the
values for each individual session of each monkey.

We used bootstrapping to evaluate the noise contribution to
the population PGP circular standard deviation shown on bars of
Fig. 3e. Specifically, for each monkey, session and task, we gener-
ated five datasets of neural activity of the same size as the recorded
dataset, each by randomly taking the gait cycles with repetitions.
We then calculated the preferred gait phase of each neuron for each
monkey, session, task and dataset. We then calculated the circular
standard deviation of each neuron across the datasets. These values
were then first averaged across all the neurons, then across tasks,
then across sessions and finally acrossmonkeys. This procedure was
then repeated 2000 times to obtain a bootstrap distribution for
each cortical region. We calculated the significance of the obtained
population PGP circular standard deviation being higher than its
bootstrap distribution using a one-sided Monte Carlo permutation
test. When comparing the population PGP circular standard devia-
tion between regions, we used a null hypothesis that the difference
is equal to the difference of the noise contributions. Specifically, we
calculated the significance of the obtained population PGP circular
standard deviation differences being higher than the pair-wise dif-
ference between their bootstrap distributions using a one-sided
Monte Carlo permutation test.

Comparison of single-task neural manifolds
To assess whether neural population activity during different tasks
were similar, we compared the dimensionality of neural manifolds of
single-session datasets containing only one task (single-task mani-
folds) to the dimensionality of neuralmanifolds of datasets containing
all five tasks (all-task manifolds. We measured the dimensionality by
applying PCA on these datasets and then counting the number of
leading neural modes needed to explain more than 90% of the
cumulative variance45,46 (data shown in Fig. 4b and Supplementary
Fig. 6b). When comparing the dimensionality across cortical regions,
to ensure that the results are not biased by the differences in dimen-
sionality of the neural population activity of different regions (i.e., the
number of channels recorded from a region), for each session we
randomly picked 32 multiunits from regions with a higher channel
count and then calculated the single-task and all-task manifold
dimensionality. We repeated this process 2000 times. For each ses-
sion, the reported dimensionality of all-taskmanifolds (Fig. 4c) and the
differencebetweendimensionality of all-task and single-taskmanifolds
(Fig. 4d) are means over these 2000 repetitions.

To rule out the possibility that the increase in dimensionality was
driven by a single task of high dimensionality compared to the others,
we performed a control analysis where we computed the dimension-
ality of the combined-task dataset when a single task was excluded.
This method allowed us to understand the contribution of each task
towards the increase in dimensionality of the combined dataset
(Supplementary Fig. 6e).

We used the alignment index48 to measure the similarity of
orientation of two single-task manifolds. Broadly, the alignment index
measures how much of the neural variance of one task can be
accounted for when we project its dataset into the single-task neural
manifold of a different task (see illustrations on Fig. 4e, f). We calcu-
lated the alignment index (AI) in terms of the corresponding recon-
struction error as described previously14,48:

AI =
Xj jj j2 � X � DmEmX

�� ���� ��2
Xj jj j2

ð1Þ

where X is the n by t data matrix containing mean peri-gait neural
activity, and matrices Em and Dm are the encoding and decoding
matrices, respectively, derived from the PCA applied on X . The matrix
Em projects the original neural data onto the m-dimensional neural
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manifold, and thematrixDm optimally reconstructs the original neural
data from the latent activity.

For each session and eachpermutation of two tasks, we calculated
the alignment index between the two single-taskmanifolds (5 tasks, 20
permutations). We then calculated the mean of these alignment indi-
ces across all permutations. Bars on Fig. 4f show the mean of these
values across all sessions and both monkeys, termed population
alignment index, with the dots showing the values for each individual
session of each monkey.

We used bootstrapping to evaluate the noise contribution to the
population alignment index shown on bars of Fig. 4f. Specifically, for
each monkey, session and task, we have generated two datasets of
neural activity of the same size as the recorded dataset, each by ran-
domly taking the gait cycles with repetitions. Then, for each monkey,
session and task, we calculated the alignment index across the two
datasets, i.e., as if the two datasets were two different tasks. These
values were then first averaged across tasks, then across sessions and
finally across monkeys. This procedure was then repeated 2000 times
to obtain a bootstrap distribution for each cortical region. We calcu-
lated the significance of the obtained population alignment index of
each cortical region being higher than its bootstrap distribution using
a one-sided Monte Carlo permutation test. When comparing the
population alignment index between regions, we used a null hypoth-
esis that the difference is equal to the difference of the noise con-
tributions. Specifically, we calculated the significance of the obtained
population alignment index differences being higher than the pair-
wise difference between their bootstrap distributions using a one-
sided Monte Carlo permutation test.

Separation of neural activity into task-dependent and task-
independent components
We used demixed principal component analysis (dPCA)30 to distil
neural population activity within each cortical region into demixed
neural modes that either remained similar across tasks or encoded
task-related changes.We referred to thesemodes as task-independent
and task-dependent modes. Each of these modes can be further
separated into a task-independent part, obtained by calculating a
mean of task-specific neuralmodes across tasks, averaging population
responses for different tasks over the gait cycle, and a task-
independent part, obtained by subtracting the task-independent part
from the task-specific neural modes.

We begin by concatenating mean-subtracted, trial-averaged,
neural data into a 3-dimensionalmatrixX of size nby pby 100,where n
is the number of channels recorded from the considered cortical
region, p is the number of tasks, and 100 is the length of themean peri-
gait neural activity for each condition. The matrix X is decomposed
into a sum of matrix Xθ, describing behavioral parameters, andmatrix
Xnoise, describing the measurement noise:

X =ΣθXθ + Xnoise ð2Þ

Given the decomposition in (2), the loss function of dPCA is given
by:

Lθ = Xθ � FθDθX
�� ���� ��2 ð3Þ

where decodermatrixDθ and encodermatrix Fθ are two distinct linear
maps, and the activity to be reconstructed is the one demeaned with
respect to one of the parameters. In our case, we have only two
behavioral parameters Fθ: the gait phase, and the task. After this
marginalization, where neural activity is decomposed into parameter-
specific averages, it becomes possible to extrapolate the activity
related to one parameter by subtracting the average activity of the
other parameter. The remaining activity represents the activity related
to only one parameter.

Variance captured by task-dependent and task-independent
components of population activity
Using the decomposition in (3), we can split the fraction of explained
variance of each dPCA component into the additive contributions of
eachmarginalization30. To compute the fraction of variance explained
by each dPCA component, we used:

R2 =
X
θ

Xθ

�� ���� ��2 � Xθ � FDXθ

�� ���� ��2
Xj jj j2

ð4Þ

The bars on Fig. 5d show how the variance explained by each
dPCA component is divided between each marginalization. The pie
charts in Fig. 5e show the amount of total variance explained by each
marginalization. The bars on Fig. 5e show themean portion of variance
explained by the task-independent subspace across all sessions and
both monkeys, termed population task-independent subspace var-
iance, with the dots showing the values for each individual session of
each monkey.

We used bootstrapping to evaluate the noise contribution to the
population task-independent subspace variance shown on bars of
Fig. 5e. Specifically, for eachmonkey, session, cortical region and task,
we generated five datasets of neural activity of the same size as the
recorded dataset, each by randomly taking the gait cycles with repe-
titions. We then identified the task-independent subspaces across the
five datasets (i.e., as if the five datasets were five different tasks) for
eachmonkey, session, cortical region and task. We then calculated the
portion of variance explained by the task-independent subspaces.
These values were then first averaged across tasks, then across ses-
sions and finally across monkeys. This procedure was then repeated
2000 times to obtain a bootstrap distribution for each cortical region.
We calculated the significance of the obtained population task-
independent subspace variance of each cortical region being higher
than its bootstrap distribution using a one-sided Monte Carlo per-
mutation test. When comparing the population task-independent
subspace variance between regions, we used a null hypothesis that the
difference is equal to the difference of the noise contributions. Spe-
cifically, we calculated the significance of the obtained population
task-independent subspace variance differences being higher than the
pair-wise difference between their bootstrap distributions using a one-
sided Monte Carlo permutation test.

Communication subspace
To define the communication subspace of a source cortical region in
relation to a target cortical region during a single session, we used the
reduced-rank regression model52. We first used a linear model of the
form of:

Y =XB ð5Þ

where X is a n by pmatrix containing the neural population activity of
the source cortical region, Y is a n by q matrix containing the neural
population activity of the target cortical region,n is the number of gait
phase samples of the peri-gaitmultiunit activity for a single task from a
single session (concatenation of time-warped signals), p and q are the
number of multiunit channels in the source and target populations,
respectively, andB is the coefficientmatrix of size p by q. Each column
of B linearly combines the activity of p channels in X to predict the
activity of one column in Y . B is calculated using ridge regression:

BRIDGE = XTX + λI
� ��1

XTY ð6Þ

where λ is the regularization coefficient. We determined the value of λ
using 10-fold cross-validation. For each session separately, we selected
λ* as the largest λ for which mean performance (across folds), as
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measured by R2 , the amount of variance explained by the ridge
regression, was within one standard error of the mean of the best
performance:

Ŷ RIDGE λð Þ= XBRIDGE λð Þ ð7Þ

R2 λð Þ= 1�
VAR Y � Ŷ RIDGE λð Þ

� �

VAR Yð Þ
ð8Þ

Next, we restricted the rank of our model B to mRRR. We deter-
mined mRRR by first performing principal component analysis of

Ŷ RIDGE λ*
� �

. We then generated coefficient matrices BRRR as follows:

BRRR mð Þ=BRIDGE λ*
� �

VVT ð9Þ

whereV is a q bymmatrix contain the topm principal components of
the selected ridge regression predictor Ŷ RIDGE λ*

� �
:

Ŷ RIDGE λ*
� �

= XBRIDGE ð10Þ

We then identified mRRR as the smallest m for which the recon-
structed source space activity Ŷ RRR mð Þ=XBRRR mð Þ explained at least
95% of the cumulative variance reconstructed using ridge regression
predictor Ŷ RIDGE λ*

� �
. Across bothmonkeys and all five tasks, themRRR

ranged from 4 to 32 (mean mRRR for Mk-Ek: 16.7 ± 0.4; Mk-
Nt: 15.9 ± 0.6).

To determine the communication subspace of the source cortical
region, we computed:

Ŷ RRR = XBRRR = XBRIDGEVVT =X �BVT ð11Þ

where �B= BRIDGEV is a p by q matrix whose columns define which
dimensions of the sourcepopulation activity areusedwhengenerating
reduced-rank regression predictions. Therefore, the first mRRR

columns of �B span the communication subspace of the source region.
We quantified the performance of the reduced-rank regression

models across different rankm using the coefficientmatricesBRRR mð Þ.
We then calculated the performance as R2 the portion of target cortex
variance explained by the BRRR mð Þ.

Ŷ RRR mð Þ= XBRRR mð Þ ð12Þ

R2 mð Þ= 1�
VAR Y � Ŷ RRR mð Þ

� �

VAR Yð Þ
ð13Þ

Across bothmonkeys and all five tasks, theR2 mRRR

� �
ranged from

0.087 to 0.951 (Mk-Ek: 0.535 ± 0.017; Mk-Nt: 0.379 ±0.011).

Principal angles
Principal angles are a measure of similarity between two linear
subspaces53 by providing an estimate of the linear independence of the
two. We computed principal angles between the communication
subspace and either the task-dependent or the task-independent
subspaces14. Since the computation of the principal angles is sensitive
to the dimensionality of the subspaces being compared, for this
computation we formed the task-dependent and task-independent
subspaces from the five leading task-dependent and task-independent
neural modes, respectively. This computation provided five task-
dependent and task-independent principal angles.

For each monkey, source and target cortical regions, session and
task, we calculated the principal angles as the cos�1 of the diagonal

elements of matrix C taken from:

Wa
TWb = PaCPb

T ð14Þ

whereWa andWb are the n byma and n bymb matrices that span the
communication subspace a and the task-dependent or task-
independent subspace b; the corresponding neural modes are their
column vectors, and Pa of size ma by mb and Pb of size mb by mb

are the new bases of the low-dimensional subspaces minimizing
the principal angles. We then calculated the Δangles as the difference
between the mean of the task-dependent principal angles and the
mean of the task-independent principal angles. This gave us one value
for eachmonkey, source-target pairing of cortical regions, session and
task. Figure 6b shows the distribution of all the 35 obtained values
(7 sessions x 5 tasks) for each source-target pairing of cortical regions
for eachmonkey. Bars on Fig. 6c show themean of these values across
all tasks and all sessions, with the dots showing the values for each
individual session.

We evaluated the noise contribution to the mean Δangles shown
on bars of Fig. 6c as follows. For each source-target pairing of cortical
regions, we broke down the temporal correlations between the source
and the target cortex, and within the target cortex itself. We did so by
advancing the neural activity of each gait cycle and each channel of the
target cortex dataset by a different gait phase randomly drawn from a
uniform distribution. We then computed the communication sub-
space using the “intact” source cortical region and the “shuffled” target
cortical region. We then calculated the principal angles between this
communication subspace and the task-dependent and task-
independent subspaces of the intact source cortical region, and
computed the Δangles. This process was done for each session and
task separately. We then used these 35 values to obtain the mean
Δangles. We repeated this process 2000 times to obtain the shuffling
distribution. We reported the p value of the measured mean Δangles
being higher than this bootstrap distribution using a one-sided Monte
Carlo permutation test. The mean and standard deviation of the
bootstrap distribution are now shown on Fig. 6c as the blue line and
blue region, respectively.

Decoding of gait events and generalization across tasks
We evaluated the performance of decoders calibrated on the neural
population activity and gait event data of the corridor task and then
applied on the neural population activity of one the other four tasks
to detect the gait events. These decoders used the complete neural
population activity of one of the cortical regions, or the neural
population activity with one or more leading task-dependent or
task-independent neural modes removed. We then compared the
performance of these decoders to determine which features of
locomotor behavior are encoded in the task-dependent and task-
independent subspaces of the neural activity in each of the cortical
regions.

To detect gait events, we used a multiclass regularized linear
discriminant analysis (rLDA) decoding model as previously
described56,82,85. Briefly, to calibrate the decoder, we used the right
hindlimb foot-strike and foot-off gait events to identify sets of neu-
ronal features used to calibrate the decoders. We derived three motor
state classes of neural features based on these two gait events and “no
event” periods between the two gait events. The amount of neural data
taken before each gait event (feature length), the number of bins
within it (feature dimension), and the regularization coefficient for
each decoder were determined by cross-validation56,82,85. During the
use of the decoder, when one of the gait event (foot-strike or foot-off)
probabilities crossed an 80% threshold, that event was ‘detected’.
There was a refractory period preventing a detection of the same gait
event during 100ms.Oncewedetermined thedecoder parameters,we
calibrated the decoder on neural features derived from the entire
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corridor dataset. We then applied the decoder to neural population
activity in other tasks of the same session to detect the gait events in
that dataset. We quantified the decoding performance using themean
F-score, as defined as the harmonic average of per-class recall and
precision, across the four non-corridor tasks. Plots in Fig. 7b and
Supplementary Fig. 10d show the mean of this F-score across all
sessions.

Wiener filter reconstruction of EMGs and kinematics
We used a Wiener cascade filter86 to reconstruct kinematic and EMG
time series from neural population activity. InMk-Ek, we used the filter
to reconstruct EMG envelopes of right IL, RF, MG, EDL and FHL; and
left TA. InMk-Nt, we used the filter to infer x, y and z velocities of right
hip, knee, ankle, and toe joints referenced to the mean position across
these four landmarks. We used Savitsky-golay filter to estimate the
velocities out of the recorded joint positions. We evaluated the per-
formance of the decoder using the R2 metric between the recon-
structed and true EMG envelopes (Mk-Ek) or joint velocities (Mk-Nt).
The Wiener filter used a 100ms and 300ms window of neural popu-
lation activity to reconstruct EMG envelopes and joint velocities,
respectively. To calibrate the Wiener filter, for each session and cor-
tical region, we first used five-fold cross-validation during the corridor
tasks to determine the lambda parameter of the filter. We then cali-
brated the filter using the determined lambda on the entire corridor
dataset, and applied it to the neural population activity in other tasks
of the same session to reconstruct the EMG envelopes or joint velo-
cities from the neural population activity. Finally, we calculated the
mean R2 across all four non-corridor tasks. We then repeated this
process for neural population activity with one or more leading task-
dependent or task-independent neural modes removed. Plots in Sup-
plementary Fig. 10b,c,e show the mean of the final R2 across all
sessions.

Chance level estimation
Weestimated the chance level within a single condition for the analysis
in Figs. 3d and 5e by advancing the neural activity warped trials for
each channel and each gait cycle by a different gait phase randomly
drawn from a uniform distribution, and then calculating the respective
statistic. We repeated this process 2000 times per analysis. We cal-
culated the chance level in the Fig. 3e by randomly drawing five angles
from a uniformdistribution, and then calculating the circular standard
deviation. We calculated the chance level in the Fig. 6c by calculating
the principal angles between either the task-dependent or task-
independent subspaces spanned by the five leading neural modes
and, a randomly generated n-dimensional subspace (n = the number of
the communication subspace dimensions). We repeated this process
2000 times per analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
Software routines developed for the data analysis will be made avail-
able upon request to the corresponding authors.
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