nature communications

Article

https://doi.org/10.1038/s41467-025-61195-1

Learning dynamical systems with hit-and-run
random feature maps

Received: 13 January 2025

Accepted: 16 June 2025

Published online: 01 July 2025

M Check for updates

Pinak Mandal® |~ & Georg A. Gottwald ®

We show how random feature maps can be used to forecast dynamical systems
with excellent forecasting skill. We consider the tanh activation function and
judiciously choose the internal weights in a data-driven manner such that the
resulting features explore the nonlinear, non-saturated regions of the activa-
tion function. We introduce skip connections and construct a deep variant of

random feature maps by combining several units. To mitigate the curse of
dimensionality, we introduce localization where we learn local maps,
employing conditional independence. Our modified random feature maps
provide excellent forecasting skill for both single trajectory forecasts as well as
long-time estimates of statistical properties, for a range of chaotic dynamical
systems with dimensions up to 512. In contrast to other methods such as
reservoir computers which require extensive hyperparameter tuning, we
effectively need to tune only a single hyperparameter, and are able to achieve
state-of-the-art forecasting skill with much smaller networks.

Data-driven modelling of complex dynamical systems has sparked
much interest in recent years, with remarkable success in, for example,
weather forecasting, producing comparable or even better results than
traditional operational equation-based forecasting systems'”. Pre-
dicting chaotic dynamical systems with their inherent sensitivity to
initial conditions is a formidable challenge. Direct numerical simula-
tion of the underlying dynamical systems often requires small time
steps and high spatial resolution due to the presence of multi-scale
phenomena; moreover, the underlying equations may not even be
known for some complex systems and scientists have to face a certain
degree of model error. Substituting costly direct simulation of the
underlying dynamical system by a surrogate model which is learned
from data is an attractive alternative. Scientists have adopted recurrent
networks as their go-to architecture for mimicking dynamical systems.
Remarkably, more complex architectures such as Long Short-Term
Memory (LSTM) architectures* have been replaced by much simpler
architectures such as reservoir computers (RC) or Echo-State Net-
works (ESN)*”, exhibiting better forecasting capabilities with fore-
casting times exceeding several Lyapunov units®’. Indeed, reservoir
computing has emerged as the prominent architecture for modeling
and predicting the behavior of chaotic dynamical systems*™. Its
appeal lies in the ability to process complex, high-dimensional data
with relatively simple training procedures. Recently, it was shown that

RCs can be further simplified in a variant resembling nonlinear vector
autoregression machines, requiring fewer hyperparameters™'®.

We consider here an even simpler version of RCs, which elim-
inates the internal dynamics of the reservoir and hence requires fewer
parameters. These well-known random feature maps (RFMs)" can be
viewed as a single-layer feedforward network in which the internal
weights and biases are fixed, and the outer weights are determined by
least-square regression. This approach simplifies the training process
and reduces computational costs compared to fully trainable recur-
rent networks. RFMs have recently been shown to perform very well
for learning dynamical systems™®?°, RFMs enjoy the universal
approximation property, and can, in principle, approximate any con-
tinuous function arbitrarily well?**. This, however, does not tell a
practitioner how to construct a random feature map model so that it
well approximates smooth functions, and in particular, how to opti-
mally choose the internal weights. Indeed, the performance of RFMs is
sensitive to the random but fixed internal weights. Recently, there has
been interest in finding approximate methods to choose the internal
parameters to increase the forecasting capabilities of random feature
maps™?*», We follow here our previously developed strategy®
designed for tanh-activation functions, and employ a hit-and-run
algorithm to initialize the non-trainable internal parameters ensuring
that for the given training data the weights do not project the data into

University of Sydney, Sydney, Australia. - e-mail: pinak.mandal@sydney.edu.au; georg.gottwald@sydney.edu.au

Nature Communications | (2025)16:5961

http://orcid.org/0000-0002-5140-7332
http://orcid.org/0000-0002-5140-7332
http://orcid.org/0000-0002-5140-7332
http://orcid.org/0000-0002-5140-7332
http://orcid.org/0000-0002-5140-7332
http://orcid.org/0000-0002-5046-8520
http://orcid.org/0000-0002-5046-8520
http://orcid.org/0000-0002-5046-8520
http://orcid.org/0000-0002-5046-8520
http://orcid.org/0000-0002-5046-8520
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61195-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61195-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61195-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61195-1&domain=pdf
mailto:pinak.mandal@sydney.edu.au
mailto:georg.gottwald@sydney.edu.au
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

either the saturated region of the tanh-function or the approximately
linear region. In the former case, the RFM would not be able to dis-
tinguish different data points, whereas in the latter case, the RFMs
would reduce to a linear model, which would not be able to capture a
nonlinear dynamical system.

In addition, we introduce several modifications to the classical
RFMs. Rather than learning the propagator map, we formulate the
learning problem to estimate tendencies instead. This is similar to skip
connections in residual networks? and has recently been used in RCs”.
We then formulate a deep variant of RFMs by constructing a succes-
sion of different RFMs that are individually trained. Together with the
skip connection, this construction resembles an Euler discretization of
a neural ODE?, A similar construction of multi-step learning has been
applied to ESNs for forecasting® and classification problems®*'. RFMs
suffer, like all kernel methods, from a curse of dimensionality,
requiring an exponentially increasing amount of data for increasing
dimension to achieve a specified degree of accuracy. To mitigate the
curse of dimensionality, we employ a localization scheme, assuming
that in typical dynamical systems, interactions are local and the
learning problem can be restricted to a smaller dimensional local
region rather than globally for the whole state space. Localization has
the additional computational advantage of being parallelizable. Loca-
lization schemes have previously been applied to RCs, LSTMs, and
generative models®'*'**,

We evaluate our RFMs and the various modifications on three
benchmark systems of increasing complexity: the 3-dimensional Lor-
enz-63 model, the 40-dimensional Lorenz-96 model and the
Kuramoto-Sivashinsky equation as an example of a partial differential
equation. These systems highlight the versatility of random feature
models, which achieve state-of-the-art forecasting performance with
one or more orders of magnitude fewer parameters and lower com-
putational cost compared to RCs, making them powerful tools for
prediction and analysis. We shall see that the width of the RFM needs
to be sufficiently large in order to produce reliable features. Once
RFMs are of a sufficiently large width, the forecasting performance of
RFMs is increased more by increasing depth rather than increasing the
width (when the total number of parameters is kept fixed).

Results

We consider a D-dimensional dynamical system which is observed at
discrete times t,=nAt with constant sampling time At¢. Given N + 1
observations ug, Uy, Uy, --- , Uy with u, = u(t,), our goal is to construct a
surrogate model W,, that approximates the map W: u,, — u,.; of the
underlying dynamical system as closely as possible. We assume that
our observations are complete and noise-free. We employ here ran-
dom feature maps to construct the surrogate models. We begin with a
description of classical random feature maps before introducing our
modifications, namely skip connections and deep and localized
variants.

We remark that the framework of RFMs can be extended to deal
with the more realistic scenario of partial and noisy observations.
Observational noise, which, when untreated, has a detrimental effect
on learning with RFMs, can be controlled by combining the RFM
learning task with an ensemble Kalman filter”. To overcome the
implied non-Markovianity of a partially observed dynamical system,
time-delay embedding techniques can be employed®. We do not
consider these extensions here and restrict to noise-free and complete
observations, which allow for better benchmarking,.

Classical random feature maps

Random feature maps are feedforward neural networks consisting of
an internal layer of width D, and an external layer. We use tanh as the
activation function for the internal layer. The weights W;, and biases
b;, of the internal layer are drawn from some user-defined distribution
and are kept fixed. The external layer weights W are learned. An RFM is

compactly written as
u—W tanh(W,,u+b,), @

whereu € R, W;, e R%*? b, € R?, and W € RP*Pr, The surrogate
map

q’At(un) =W tanh(win u, + l:)in) (2)

provides an estimate for the observed u,.;. Training RFMs amounts to
training the external layer by minimizing the following regularized
cost,

arg min | Wo(U) - Uz+B8 1 WIZ, 3)

where U € R”*V contains the observations {u,,}¥=} across its columns

and U e R?*V contains the time-shifted observations {u,,}V=}
across its columns. The feature matrix ®(U) denotes the output of
the internal layer computed as u— tanh(W;,u +b;,). The regulariza-
tion parameter S is a hyperparameter which requires tuning. Here || - ||
denotes the Frobenius norm. The solution to the ridge regression
problem (3) is explicitly given by

W=UO (00 +4I) ", “)

where we have omitted the dependency of the feature matrix ® on the
data U; in particular, no costly backpropagation is required. The
quality of the learned surrogate model sensitively depends on the
random initialization of the internal layer and the hyperparameter £.

We propose several modifications to the classical random feature
maps that we will show significantly improve their forecasting cap-
abilities. These modifications will allow random feature maps to out-
perform current state-of-the-art architectures at a fraction of previous
computational costs. In particular, we will:

(1) employ a judicious choice of the random internal weights and
biases (Wi, bin);

(2) introduce skip connections, where we learn the tendencies
Upi1 — Uy

(3) introduce a deep architecture of sequentially arranged, indivi-
dually trained, random feature map units;

(4) employ localization, where we learn several small local RFMs
rather than a single large RFM, invoking conditional indepen-
dence in the data, which significantly reduces the effective
dimension.

We describe these modifications in detail in the Methods Section.
RFMs with skip connections are labelled SkipRFM, and deep variants
are referred to as DeepRFM or DeepSkip. Localized variants are
labelled, for example, LocalDeepRFM or LocalDeepSkip. We recom-
mend that the reader read the Methods section before continuing.

We evaluate our random feature surrogate models on three
widely-used benchmark dynamical systems: the 3-dimensional Lorenz-
63 system, the 40-dimensional Lorenz-96 system and the Kuramoto-
Sivashinsky equation as an example of a partial differential equation,
which we discretize with 512 gridpoints. For all three systems, we
ensure that the training data and the test data evolve on the attractor
by running simulations of the original dynamical system for a suffi-
ciently long time.

To quantify the forecasting skill of our surrogate models, we
compute the valid prediction time (VPT), described in the Methods
Section. To obtain meaningful statistics of the forecast performance
metric VPT, we generate 500 random realizations differing in the
training data, the testing data and the non-trainable internal weights

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

20

10

—— DeepSkip

~101 L63

A M V\/\J

-20
20 1

—20 41

;‘E / “
;/ \\’j\\/\f}\/

|
0 v

10 A

20 1

301

40

10

12 14 16
t/Th

Fig. 1| Forecasting an individual trajectory. An example of a forecast by a DeepSkip model with width D,=1024 and depth B =16 for the L63 system (5). The surrogate

model is able to forecast accurately up to VPT =19 Lyapunov time units.

and biases of the surrogate model. For each model, the regularization
hyperparameter S is optimized via grid search.

To compare empirical histograms obtained from long-time
simulations, Wasserstein distances W, are estimated from 3 x 10*
random samples for each model using the Sinkhorn algorithm with an
entropy regularization parameter of 10723,

Lorenz-63

In this section we demonstrate the forecasting skill and long-term
behavior of surrogate models for the Lorenz-63 (L63) system with
standard parameters®,

dx
4 ~ 100 - x),

dy

dt
dz

dt

=x(28 —2) -y, ©)]

5
3%

Xy —
The maximal Lyapunov exponent is estimated to be A =0.91". Locali-
zation is not required for this low-dimensional system, and we
consider here the non-localized versions RFM, SkipRFM and DeepSkip.

Figure 1 shows a sample forecast of a DeepSkip model which is
accurate up to approximately VPT =19 Lyapunov time units. However,
there is a significant variability in the VPT due to the sensitivity to initial
conditions of the chaotic L63 system. Figure 2A shows the distributions
of VPT for training data of length N =5 x 10* sampled with A¢=0.01, and
a VPT error threshold value of £¢=0.3. It is seen that increasing the
width D, past D,=512 does not lead to an improvement of the mean
forecast VPT for the shallow versions RFM and SkipRFM, which saturate
around [E[VPT] ~ 9.6 for RFM, and slightly higher with E[VPT] ~ 10.6
for SkipRFM. On the other hand, increasing the depth B consistently
improves the performance of DeepSkip for each fixed width D,. The
best performing deep models are able to forecast approximately 1.4
Lyapunov time units longer compared to the best performing shallow
models. The best mean forecast VPT is achieved for D,=1024 and
depth B=32 with E[VPT]=12. Deep models improve with depth even
when the model size S= (3D +1)D,B is kept fixed, as seen in Fig. 3A for
two different model sizes. Since depth allows us to train larger models
we are able to train deep models that are 3 times larger than the largest
shallow model increasing the expressivity of the model. In the Sup-
plementary Information (Section 5) we show that deep architectures
allow for an order of magnitude faster training. Supplementary

Tables 1 and 2 provide a comparison of our variants of the random
feature map, including DeepRFM, for different model sizes, reporting
on the mean, median, standard deviation of the VPT, as well as the
maximum and minimum values. DeepSkip performs better than
DeepRFM with a 2 Lyapunov units larger average VPT for At=0.01.

Table 1A shows a comparison of our best performing DeepSkip
models with recent benchmark results, highlighting that DeepSkip is
able to achieve state-of-the-art forecast times with an order of mag-
nitude smaller model size.

In general, finer temporal resolution is beneficial for learning the
dynamics. In Fig. 4A we see the effect of increasing the sampling time
to a fairly large value of At= 0.1, which is about a tenth of a Lyapunov
time, on the forecasting skill for various models of nearly similar size.
The deep model outperforms the shallow models by -~4.8 Lyapunov
units on average. The mean VPT drops for RFM from 9.5 to 4.8, for
SkipRFM from 10.4 to 4.8, and for DeepSkip from 11.4 to 9.6 when At is
changed from 0.01 to 0.1. Smaller sampling times At allow for a better
approximation of temporal derivatives and therefore SkipRFM out-
performs RFM for small At. This advantage, however, vanishes at
higher At and both perform equally. For RFM, SkipRFM, and DeepSkip,
the mean VPT drops by 49.5%, 53.8% and 15.8%, respectively, indicating
that deep architectures are least susceptible to the temporal resolution
of the training data.

The effect of the sampling time At on the forecasting capability
of RFMs has been previously studied by Levine and Stuart®. In par-
ticular, a standard RFM with an RFM for which the vector field of the
underlying dynamical system is learned was compared”. The vector
field was determined from u,, which was computed from data u,
using splines. In Fig. 4B we compare these results for D,=200 with
our implementation of a standard RFM using a hit-and-run algorithm
and with SkipRFM, which as we discuss in the Methods Section,
approximates the tendency via an explicit Euler discretization. To
allow for a comparison with the results of Levine and Stuart” we use
the validity time trinstead of the VPT, defined by

7= min{nAt : |@, — u,||, 2yu[l,}, (6)
where the mean [[u][, is estimated from the training data. We use the
same threshold y=0.05 as Levine and Stuart”. We show results for
several values of the sampling time using a fixed integration time
T=1000, which implies that the larger sampling times correspond to
smaller amounts of training data. Figure 4B illustrates two separate
facets of RFMs. First, for small values of the sampling time At, the

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

A: Lorenz-63
22 10, 16
10, 32"
i ' 2,2
20 1 10, 4 ! 12,8 13,4
181 13 9 . 10.2 10, 8 12,4
16 9 0 1 10 12 13 , 13,2
12
'E_ 14+
S 124
104
8<
6<
4<
2 u — ——
RFM SkipRFM DeepSkip
E[VPT]" =9.8 E[VPT]" =10.6 EIVPT]" =12.0
B: Lorenz-96
14+
13,4 .
121 12 . 13,16 2
14 ,
13 10, 32 12.8
10 10 11
_—
o
> 6l o 12, 16"
11 1 137 A
4<
A
0
SkipRFM DeepSkip LocalSkip3, 2 LocalDeepSkipz, 2
E[VPT]" =2.3 EIVPT]* =2.8 EIVPT]" = 6.8 EIVPT]" =7.3
C: Kuramoto-Sivashinsky
81 1377, 2" 13.87,2° 13.87,2°
13,2 13.87, 2
13 1387
64
£
> 4
2 4
13.87,2"
_t—
0
LocalRFMg, 1 LocalDeepRFMg, 1 LocalDeepSkips, 1 LocalDeepRFMNg ; LocalDeepSkipNg, 1
E[VPT]* =4.3 E[VPT]" =4.8 E[VPT]" =0.5 E[VPT]" =5.0 E[VPT]" =5.0

Fig. 2 | Statistics of short-term forecasting skill. Kernel density plots of VPT for
A L63 system (5) for (N, At, €) = (5x10% 0.01, 0.3), B L96 system (7) for

(N, At, €) =(10°, 0.01, 0.5) and C KS system (8) for (N, At, £) =(10°, 0.25, 0.5). For
shallow variants log,(D,) is indicated on the top of each density plot. For deep

variants (log,(D,), B) is indicated on the top of each plot. For localized variants, the
subscript denotes the values of G, / of the localization scheme (G, /). The *-symbol
indicates the model with the best mean VPT within each architecture. The maximal
value of D, achievable by our GPU for the KS system is 15,000 (i.e. log,(D,) ~ 13.87).

RFM which learns the vector field (labelled rhs (L+S)) outperforms
the standard RFM (labelled RFM (L+S)), but this ordering changes for
large values of the sampling time™. The deterioration of their rhs
(L+S) method with a vanishing mean validity time for A¢=0.1 can be
related to the deterioration of the estimate of the time-derivative u
for large sampling times. In contrast, our SkipRFM, which does not
learn the vector field but the tendency u,..; — u,, does not exhibit such
deterioration at At = 0.1, and never performs worse than the standard
RFM. Secondly, a Bayesian optimization algorithm to determine all
hyperparameters can be used”, including the internal weights,

whereas we use the hit-and-run Algorithm 1 described in the
Supplementary Information (Section 1). This leads to a superior
performance at large values of At compared to our standard RFM.
However, the hit-and-run algorithm performs significantly better for
small sampling times.

The kernel density plots in Figs. 2A and 4A show a large degree
of variance of VPT. This is to be expected for an underlying chaotic
dynamics, and the distribution of VPT does not significantly change
upon increasing the width D, beyond a certain value. Ideally, one
would like to shift the tails of the distribution of VPT towards larger

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

A: Lorenz-63 B: Lorenz-96
12.01 —— model size = 327,680 —— model size = 491,520
—— model size = 163,840 7.2 —— model size = 245,760
11.8
7.0 1
11.6
E 11.4- = 681
s 2
T T i
11.2 4 4 6.6
11.0 6.4 1
10.8 A 6.2
i i i i j . 6.0 1 : . . : :
0 1 2 3 4 5
0 1 2 3 4 5
logz (B)

Fig. 3 | Effect of depth on forecasting skill. Mean VPT as a function of depth B for
constant model size S. A L63 system (5) with DeepSkip. Along each curve the model
size S=(3D +1)D,B remains constant and the width D, decreases with depth.

log (B)

B L96 system (7) with LocalDeepSkip with localization scheme (G, /) = (2, 2). Along
each curve the model size S= (D + G +1)D,B with D=2G(/ +1) remains constant and
the width D, decreases with depth.

Table 1| Comparison of mean VPT and corresponding model sizes from recent benchmark results for forecasting

A: Lorenz-63

Source Model log,o (model size) E [VPT] N At €
Akiyama et al. (2022)*° Multi-step ESN 5.05 9.3 2x10* 0.02 0.4
Platt et al. (2022)"* RC 6.60 1.8-12.0° 5x10* 0.01 0.3
Koster et al. (2023)*° DI-RC (SINDy) 6.00 4.0 10* 0.01 J/0.4
Our work DeepSkip RFM 5.52" 12.0° 5x10* 0.01 0.3

Our work DeepSkip RFM 5.52 1.8 2x10* 0.02 J/0.05
B: Lorenz-96

Source Model log,o (model size) E [VPT] N At €
Penny et al. (2022)'*°72 RC 7.56 2.5-2.8 2x10° 0.01 0.5
Vlachas et al. (2022)° Localized LSTM 5.95 3.9 10° 0.01 0.5
Platt et al. (2022)"* Localized RC 7.03 6.5-6.8 4x10* 0.01 0.5
Our work LocalDeepSkip RFM 5.69" 7.3 10° 0.01 0.5
C: Kuramoto-Sivashinsky

Source Model log,o (model size) E [VPT] N At €
Vlachas et al. (2022)° Localized RC 8.77 4.8 10° 0.25 0.5
Our work LocalDeepSkipN RFM 6.09° 5.0 10° 0.25 0.5

The results corresponding to the best mean VPT are reported for each source. The "-symbol indicates the largest E[VPT] and the corresponding smallest model sizes. A: The 3-dimensional L63 system
(5). B: The 40-dimensional L96 system (7). C: The KS system (8) with 512 spatial grid points on a domain of length L =200.
2We remark that the results listed as Penny et al. were reported in Figure 14 and Table 13 of Platt et al." rather than in the original work®’.

forecast times and avoid occasional short forecast times. In fact, the
hit-and-run algorithm achieves this: the presence of features which
correspond to the linear and/or saturated region of the activation
function, contribute to a higher variance of VPT (see Figure 9 in our
previous work®).

Besides being able to track individual trajectories, surrogate
models need to produce reliable long-term predictions of the statis-
tical features of the underlying dynamical system. Figure 5A compares
the marginal densities estimated from the invariant measures of the
original L63 system (5) and the learned surrogate models. The data
shown were generated with long simulations spanning 910 Lyapunov
time units. All three surrogate models are able to reproduce the long-
term statistics of the L63 system equally well with comparable Was-
serstein distances.

Lorenz-96
In this section we demonstrate the forecasting skill for the Lorenz-96
(L96) system

dx; .
dil’lz(xiﬂ_xi—z)xi—l_xi"'l:r i=12,.--,D, @)

with dimension D =40, forcing F=10 and periodic boundary conditions
Xzp=X°. The maximal Lyapunov exponent is estimated to be A=2.275,
We consider here SkipRFM and DeepSkip, and their localized counter-
parts LocalSkip and LocalDeepSkip. We do not show results for RFM and
LocalRFM as their performance is comparable to SkipRFM and LocalS-
kip. We will see that for this 40-dimensional dynamical system,
localization is the dominant factor in ensuring good performance.

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

16

14+

124

RFM SkipRFM DeepSkip

Fig. 4 | Effect of sampling time on forecasting skill. A Kernel density plots of VPT
for the L63 system (5) for (N, At, £) = (5 x 10*, 0.1, 0.3). Sizes of the models are
§=114,688, S$=114,688 and S =114,560, from left to right, with, D,=16,384,
D,=16,384 and D, =716, respectively. The DeepSkip model has depth B=16.

B Mean validity time 7ras a function of the sampling time At for the L63 system (5)
with D,=200. Each model was trained on a time-series spanning 7=1000 time

B
8 =} - ¢ RFM (Ours)
—" e m SkipRFM (Ours)
7 RFM (L+S)
'V v rhs (L+S)
)
g y
£ 51 X
z v
2 41
g
c
3 31
=
21 A {
1 |
0- M -
1073 102 10! 10°
At

units. and hence the length of the training data N decreases with increasing

At =T/N. Averages for our models were computed using 500 realizations differing
in the training data, the testing data and the non-trainable internal weights. The
mean validity times labelled as (L+S) are taken from Fig. 5 in Levine and Stuart”.
Note that we show results for two extra values of At =2.5x107,5x107, which are
not present in Levine and Stuart®,

Figure 2B shows the distribution of VPT for these models for
N=10° At=0.01 and £=0.5. We choose a localization scheme with
(G,)= (2, 2); see the Methods Section for the definition of G and / and
the Supplementary Information (Section 3) for different localization
schemes and general guidelines for selecting an optimal localization
scheme. The positive effect of localization is clearly seen with roughly
3 times longer forecasting times when compared to the respective
non-localized versions. We achieve an optimal mean VPT with
E[VPT]=7.3 for LocalDeepSkip with D,=16,384 and B=2. The largest
localized models that we could accommodate on the GPU were twice
as wide as the largest non-localized models, allowing for a much
greater expressivity. The performance of non-localized models pla-
teaus quickly with increasing model width or depth, whereas we run
out of GPU memory before observing saturation in the forecasting skill
of the localized models. The best deep models are able to forecast
approximately 0.5 Lyapunov time units longer than their shallow
counterparts for both localized and non-localized models.

Unlike for the L63 system, the performance of deep models
decreases with increasing depth when the model size S=(D+ G+1)D,B
with D=2G(I +1) is kept fixed, as seen in Fig. 3B for two different model
sizes. We see that shallow but wide models perform better than deeper
models of the same size by approximately 1 Lyapunov time unit. We
believe that this is due to the more complex nature of the L96 system.
The learning task requires (for given data length N) a sufficiently large
internal layer width D, to ensure reliable forecasting at each of the B
layers of a deep architecture. Since increasing the depth B for fixed
model size S implies a decrease in the width D,, the deeper networks
are not able to resolve the dynamics to sufficient accuracy at each
layer. Hence, deeper architectures with B>1 are only beneficial once
the width D, is sufficiently large such that the forecasting skill has
saturated. The Supplementary Information (Section 4) explores the
interplay between the width D, and the depth B for the L63 system and
the L96 system supporting this claim.

Table 1B shows a comparison of our best performing Local-
DeepSkip model with recent benchmark results, highlighting that
LocalDeepSkip achieves state-of-the-art forecast times with E[VPT]=7.3

at 1.3 orders of magnitude smaller model size. In Supplementary
Tables 3 and 4 a comparison of our variants of random feature maps is
shown for different model sizes, reporting on the mean, median, stan-
dard deviation of the VPT as well as the maximal and minimal values.

Figure 5B compares the empirical marginal densities estimated
from the invariant measures of the original L96 system (7) and the
learned surrogate models. Both the non-localized and the localized
variants are able to reproduce the long-term statistics of the
L96 system equally well with comparable Wasserstein distances.

Kuramoto-Sivashinsky
We further consider the Kuramoto-Sivashinsky (KS) equation

2 4
ou Ou au+%=0 8)

ot Yox T a2

for x € [0, L] with periodic boundary conditions u(0,) = u(L, t), as an
example of a partial differential equation exhibiting spatio-temporal
chaos®%. The data are subsampled in time to produce a time series of
512-dimensional states of length N =10° with sample time At=0.25 for
the learning task. The maximal Lyapunov exponent is estimated to be
A=0.094%, We solve equation (8) on a domain of length L =200 with a
uniform grid of 512 nodes using the ETDRK4 method* with a time step
of h=0.001. We employ a VPT error threshold of £ = 0.5. For this high-
dimensional system, localization is essential to obtain any reliable
forecasting skill. We choose a localization scheme of (G, /)=(8, 1);
see the Supplementary Information (Section 3) for different localiza-
tion schemes and general guidelines for selecting an optimal
localization scheme. To allow for a large expressive model capable
of capturing the complexity of the chaotic dynamics, we focus mainly
on deep architectures.

The trajectory data for KS generated by the ETDRK4 algorithm has
alarge condition number -10%. lll-conditioned data matrices imply ill-
conditioned learned outer weight matrices W which has a catastrophic
effect on long-term forecasts and might also affect short-term fore-
casts, see the discussion on dealing with ill-conditioned data in the

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

A: Lorenz-63
60 60 60
B RFM I SkipRFM B DeepSkip
Il 163 Il 163 Il 163

40 40 40

201 201 201

) ’) ’) é
—-201 —201 —201

B: Lorenz-96 C: Kuramoto-Sivashinsky
20 41
0.13 0.13 0.14 0.13 0.12 0.06 0.05

151

10 { 21

5

04

oA

-5 -2
_101

B Surrogate model —4 I Surrogate model
—-15+1 I 196 . KS
Skip‘RFM Deebskip Localékipz,z LocaIDeépRFMz,z LocaIDeépSkipz,z LocaIDeebRFMN“ LocaIDee‘pSkipNgvl

Fig. 5 | Recovering long-time statistics. Comparison of the marginal densities
obtained by the original systems and the surrogate models. The respective Was-
serstein W, distances are indicated at the top of the kernel density plots.

A L63 system (5) with marginal densities for each component x, y and z. We used the
best models marked with the *-symbol in Fig. 2A and in Supplementary Table 1 to
generate the data. The mean VPT for these models are 9.8,10.6 and 12.0 from left to
right. B L96 system (7). We employ translational symmetry and use all 40

components to estimate the densities. We used the best models marked with the
*-symbol in Fig. 2B and in Supplementary Tables 3 and 4 to generate the data. The
mean VPT for these models are 2.3, 2.8, 6.8, 7.2, and 7.3 from left to right. C KS
system (8). We employ translational symmetry and use all 512 components to
estimate the densities. We used the best models marked with the *-symbol in Fig. 2C
and in Supplementary Table 5 to generate the data. The mean VPT for both of these
models is 5.0.

Methods Section. The LocalDeepRFM and LocalDeepSkip models
tested on this problem have outer weight matrices with condition
numbers ~950 and -~1350, respectively. Due to the larger condition
number, LocalDeepSkip performs much worse than LocalDeepRFM,
with E[VPT]=0.5 for LocalDeepSkip and E[VPT]=4.8 for Local-
DeepRFM (see Fig. 2C). This is contrary to our observations that skip
connections improve performance for the L63 and the L96 system. We
remark that LocalSkip models perform equally badly when trained on
ill-conditioned data. A possible reason for the larger condition num-
bers of the W matrix for skip connections may be the following. For
skip connections, W depends on the matrix of differences u,.;—u,
rather than just on u,.;. Hence, its condition number depends on the
condition number of this difference matrix. For the KS equation, sig-
nificant values of the differences u,.,; — u, € R>? appear only in small
spatially localized regions with small entries in most components,
implying a large condition number.

To mitigate the detrimental effect of large condition numbers, we
add zero-mean Gaussian noise with standard deviation 102 to the
training data, as described in the Methods Section. LocalDeepSkip
models trained on artificially noised data are able to forecast up to 5
Lyapunov units on average, as shown in Fig. 2C. Models with and with-
out skip connections are seen to perform equally well when the training
data are artificially contaminated by small but non-negligible noise.

A comparison of our results with the benchmark results, where
the same experimental setup was used® (including the addition of
noise to the training data), is reported in Table 1C and shows that

LocalDeepSkip trained on artificially noised data achieves marginally
better results with E[VPT]=5.0, but with an approximately 2.7 orders
of magnitude smaller model. In Supplementary Table 5 a comparison
of our variants of the random feature map is shown for different model
sizes, reporting on the mean, median, standard deviation of the VPT as
well as the maximal and minimal values.

For reproducing long-term statistics, models trained on noise-free
ill-conditioned data are not suitable since they accumulate large errors
during long simulations. However, models trained on noisy well-
conditioned data are able to reproduce the invariant measure of the KS
equation well, as seen in Fig. 5C. The LocalDeepRFM and the Local-
DeepSkip architectures with artificially added noise are able to
reproduce the long-term statistics of the KS system equally well with
comparable Wasserstein distances. We remark that LocalDeepRFM
trained on pure data or on noisy data performs approximately equally
well on short time scales. However, without the addition of artificial
noise to the training data, all surrogate models exhibit numerical
instability for long-time forecasting.

Discussion

In this work we extend random feature maps with a tanh-activation
function by introducing skip connections, a deep architecture and
localization with the aim to produce reliable surrogate models for
dynamical systems. We considered a 3-dimensional Lorenz-63 sys-
tem, a 40-dimensional Lorenz-96 system and a 512-dimensional finite
difference discretization of the Kuramoto-Sivashinsky equation, and

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

studied the ability of the learned surrogate models to forecast indi-
vidual trajectories as well as the long-time statistical behavior. In all
three systems, our modifications lead to either better or equal per-
formance when compared to recent benchmark results using RCs or
LSTMs, with orders of magnitude smaller models. For all archi-
tectures we judiciously chose the internal weights using a compu-
tationally efficient hit-and-run algorithm?’. This algorithm ensured
that for the training data, the features were neither linear nor satu-
rated, and took advantage of the nonlinear nature of the tanh-acti-
vation function.

We showed in which situations each of our modifications can be
beneficial and that they can significantly improve the forecast cap-
abilities of random feature models. We showed that introducing skip
connections typically leads to better performance. However, when the
data matrix has too high a condition number, ridge regression leads to
an ill-conditioned trained outer weight matrix. This renders the
learned surrogate model unstable and unreliable as a forecast model.
To combat this, we proposed to add small artificial noise to the data.
This allowed for state-of-the-art forecast times for the Kuramoto-
Sivashinsky equation with more than an order of magnitude smaller
model size when compared against recent benchmark results. It is well
known that adding sufficiently strong noise to the training data can
severely affect the training of RFMs'®. We only apply very small noise
such that by eye the training data appear unchanged. Although adding
noise to the training data is frequently used®*’, it may be beneficial to
add the noise on the features ® instead.

For higher dimensional systems localization was found to be
essential. The optimal choice of the localization scheme requires bal-
ancing the required accuracy for a given data set of length N, the decay
of the spatial correlations of the underlying dynamical system and the
available GPU memory.

Our simulations suggest that the performance of random feature
models can be significantly improved by considering a deep archi-
tecture, chaining RFM units together where each unit is individually
trained to match the data. However, the improvement can only be
observed once the width of each individual layer is large enough to
allow for a sufficiently accurate representation of the dynamics. For
instance, for the Lorenz-96 system, we observed that the localized
models had not yet plateaued with increasing D,, and the available GPU
memory was fully utilized before reaching saturation.

Our random feature map variants can achieve comparable or even
superior performance to RCs while requiring only a fraction of the
model size and hence, computational effort. Moreover, although RFMs
and RCs share similar learning mechanisms, RFMs offer several
advantages over their RC counterparts. One key advantage is that RCs
require tuning multiple hyperparameters, such as the spectral radius
and density of the reservoir adjacency matrix, degrees of freedom, leak
rate, strength of the input signal, strength of the input bias, regular-
ization etc", which is computationally expensive. In contrast, RFMs
only require optimization of the regularization hyperparameter. Fur-
thermore, RCs are comprised of layers similar to RFMs and a reservoir.
These reservoirs are represented by weight matrices of size Df whereas
the weight matrices in RFMs have size DD,. Since typically, D, > D, for
the same width, RFMs are significantly lighter models compared to
RCs. We remark that implementing sparse matrix and dense vector
multiplication on a GPU is not efficient unless the matrix is very sparse.
However, the reservoirs employed in the benchmark results reported
here are not sparse e.g. Platt et al.* report the density of the RC
adjacency matrix as being 0.98. To deal with the high memory
demands for large RC models a batched approach can be used®.

Recently, Bayesian methods were proposed to estimate the RFM
hyperparameters, including the internal weights™®. It appears that
Bayesian hyperparameter tuning has advantages for large sampling
times, whereas the hit-and-run sampling algorithm seems to be bene-
ficial for smaller sampling times (cf. Fig. 4B). Combining these two

approaches could further improve the forecasting capabilities of
RFMs. The Bayesian optimization strategy can also be employed to
more efficiently tune hyperparameters such as the localization scheme
and the regularization hyperparameter which was determined here
using grid-search.

Our skip connection is of the form of a forward-Euler numerical
integrator for an underlying continuous time dynamical system. One
could aim to learn higher-order multistep integrators such as a Runge-
Kutta integrator to improve the accuracy of the prediction"*2, How-
ever, one needs to be wary of potential “inverse crimes" where the
learned map is used for forecasting with a time step different to the
sampling time At used for training, which may result in numerical
instabilities*’. Embedding the model into a computational graph that is
defined by a higher-order numerical integrator, such as a Runge-Kutta
method, may be used in future work to better represent the con-
tinuous time character of the underlying dynamics, allowing for the
application of variable time steps**.

We considered here noise-free and complete observations for a
set of dynamical systems with known equations, allowing for bench-
marking. Data from real-world systems typically are noise-
contaminated and the system is accessible only via partial observa-
tions. It will be interesting to see if the superior forecasting skill in the
case of noise-free and complete observations extends to this relevant
case. There has been recent progress on learning real-world dynamical
systems using Bayesian learning methods with remarkable accuracy
such as eSPA*™* and BayesNF'® which provide benchmarks to test
against. The forecasting capability of RFMs quickly deteriorates when
observations are contaminated by noise. However, when combining
RFMs with data assimilation procedures such as the ensemble Kalman
filter, the noise can be successfully controlled for training RFMs*. The
lack of complete observations renders the dynamical system for the
observed states non-Markovian. A Markovian dynamical system can be
achieved by formulating the learning task in an enlarged space of time-
delay coordinates*. This requires determining an appropriate delay
embedding®. These techniques have been shown to be applicable for
learning RFMs from partial observations'. Further, to improve the
forecasting skill of RFMs in the relevant case of partial noisy observa-
tions, it may be beneficial to combine our modifications of RFMs with
the hybrid approach promoted by Levine and Stuart®. This is planned
for further research.

Methods

Initialization of the internal layer

We briefly describe the effective sampling scheme for the internal layer
introduced in our previous work?’, which is used throughout this work.
Our algorithm is based on the sigmoidal structure of the tanh-activa-
tion function. Consider a row of the internal weight matrix W;, which
we denote by w;, ¢ RP, and the corresponding entry of the bias vector
which we denote by b;,. The domain of the tanh-activation function has
three distinct regions: a saturated region, a linear region, and the
complement of these two, as illustrated in Fig. 6. Internal weights for
which the features ¢(u) = tanh(w;,u + b;,) are saturated i.e. ¢(u) = + 1
or equivalently |w;,u + b;,| > L; (we use L; = 3.5 throughout) are clearly
bad choices as the RFMs would not be able to distinguish between
different input signals. Internal weights for which the features lie in the
linear region with |w;,u + b;,| < Lo (We use Lo = 0.4 throughout), lead to
a linear model, which is undesirable for learning nonlinear systems.
We hence aim to draw internal weights such that the associated
features are neither saturated nor linear for any of the training data,
these features are labelled as good in Fig. 6. The method introduced in
our previous work® achieves this by a hit-and-run algorithm: starting
from a feasible solution w;, =0 and b;, uniformly sampled from the
interval + [Lo, L;] we pick random directions in a convex set deter-
mined by the training data and the inequalities Lo < wj,u + b, <L; or
= Ly <Wjau + by, < —Lo. Determining where the line segment defined by

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

1.0 { === good S ——
linear
== saturated
0.5
4
N
e 4
S oo
©
)
_05 4
—1.0 = = ———— ey
-6.5 —-L; —-Lo Lo Ly 6.5
z

Fig. 6 | Types of features produced by a tanh-activation function. lllustration of the types of features produced by a tanh-activation function, motivating the choice of

the internal weights and biases (W;,, b;,). Here and elsewhere Lo=0.4 and L;=3.5.

this direction intersects the convex set allows us to sample weights
that map the training data to the aforementioned good features. This
process is repeated until D, independent rows w;, and biases by, are
drawn. We stress that the hit-and-run algorithm does not perform any
training by optimization but simply samples the internal weights from
a data-informed convex set.

A pseudo-algorithm is provided in the Supplementary Informa-
tion in Algorithm 1; for a detailed discussion regarding the geometry of
the algorithm we refer the reader to our previous work®. We empha-
size that Ly and L, are treated as constants in our approach. While the
selection of their values to delineate good features from bad features
could, in principle, be considered hyperparameters requiring tuning,
we observe no significant changes in the forecasting capabilities of the
learned surrogate maps for values close to Lo=0.4 and L;=3.5. Con-
sequently, we have consistently used Lo=0.4 and L;=3.5 for all the
experiments presented in this work.

Skip connections
A simple but effective modification of the random feature map is the
introduction of a skip connection from the input to the output**¥. In
particular, we learn the tendency map F,.: u,, = U, — u, with an RFM,
rather than the propagator map Wy, u, — u,.;. We hence solve the
least-square problem (3) where now U’ € RP* contains the observed
tendencies {u,,,; — u,}¥-} across its columns, with solutions given by
(4). We will refer to this variant of RFM as SkipRFM.

Bar the constant factor of At, SkipRFM can be viewed as learning a
single Euler step in a forward-Euler discretization

Upq = U, +Fo () =u, + ALFy(u,), ©)
for a dynamical system with the vector field
- 1
Fp(uy)= A—tWtanh(Winun +b,,). 10)

Note that the map F, is learned from data with a fixed and specified
value of the sampling time At. When applying the learned map to
forecast unseen data, we show results for the same value of At we used
for learning. We stress that we do not aim to learn the vector field but
only the tendency u,.; — u, for fixed sampling time At. Choosing dif-
ferent values, which would be possible for actual numerical inte-
grators, may lead to instabilities**, significantly deteriorating the
forecast capabilities of the learned model. However, we empirically
found our surrogate models to work well when trained on data of finer

temporal resolution compared to the testing data for moderate ratios
of sampling times of training and testing data.

RFMs with skip connections tend to be marginally better at fore-
casting than those without skip connections. In fact, in all our test
cases, models with skip connections achieved the highest forecast
times, as shown in the Results Section.

Deep random feature maps

We now increase the complexity of random feature models by chain-
ing multiple units together to construct deep models and explore
some of their benefits. Figure 7A provides an outline of a deep model.
We initialize the input with two copies of the state u,, at time ¢, which
are concatenated, to form

an

© - | Un
n un

This augmented state is passed through the first single random feature
model unit. The output of the first single unit (and of all following
units) replaces one half of the augmented state to form

(():{
n

and the updated augmented state is again passed through the next
unit and so on. Here W\? ¢ RP*?” and b{’ € R® with ¢=1, ..., B
denote the inner weights and biases of the #" unit. Similarly, W ¢
RP*Pr denotes the outer weight of the £ unit which are learned
sequentially by solving the least-square problem

£)§,(t—1 L
WO tanh(Wiy, ™ +bi))} , 12)

u,

argmin | WO®YY) - U2+ | WO, (13)
w(/i

where YO ¢ R22*N contains {y(}r_s across its columns. We consider
the case when each unit is a standard RFM with U' € R®*" containing
the time-shifted observations {unﬂ}’,;’;}) across its columns, as well as
the case when each unit is a SkipRFM unit with U ¢ R?*V containing
the tendencies {u,,; —u,}-} across its columns. This process is
repeated until we go through the final unit with £ = B and the final
updated upper half of the augmented state is our approximation of the
state u,.; (or u,.; —u, when SkipRFMs are considered) at time ¢,.;.
When the unit is an RFM, the resulting deep model is referred to as
DeepRFM. Similarly, when the unit is a SkipRFM, the corresponding

deep model s referred to as DeepSkip. We found empirically that using

Nature Communications | (2025)16:5961

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

A: Deep architecture

estimate of u,,.,

SkipRFM \

SkipRFM

E,
Q\@_, i

. SkipRFM \ [
:

B: Localized architecture

A4
[o¢
+

estimate of u,, 1

G G G G G G
(e @ o] (@ @ @] (e @ o] (@ @ @] (e @ @] (e @ @] (e @ @]
S . A I . .
' | ' | ' | r | r | r |
! | ! | ! | ! | ! | ! |
| | | | | | ! | ! | ! |
. localunit ' | localunit ! | localunit ! local unit . localunit ' | localunit ! | localunit '-
! Do Do ! ! Do Do !
(0 @ o] (@ @ @]

G G

N,G = D-dimensional state u,

Fig. 7| Schematics of deep and localized architectures. A Deep architecture DeepSkip with depth B =3. The symbols ||, =and +denote concatenation, identity operation
and addition (skip connection), respectively. B Localized architecture with local state dimension G =3 and interaction length /=2.

augmented states (12), such that each unit has the state u,, as part of its
input, rather than using y\ =W tanh(W'y\, ™" + b)) with y =u,,
leads to better performing surrogate models. We also found that
solving a regression problem at each unit rather than a single
regression problem at the last unit i.e. yy = tanh(W\"y\ " +b{)),
((=1,2,---,B—1) with yO=u, and y® =Wy, produces better
models. The non-trainable internal weights W\ and b{}) are deter-
mined for all units with the hit-and-run Algorithm 1 described in the
Supplementary Information using the same input data Y. It suffices
to tune the regularization hyperparameter in deep RFM architectures
for a single unit and reuse it for all the units.

Similar constructions have recently been used in the context of
echo state networks?~*!, and universal approximation theorems for a
different version of a deep RFM were recently proved®. Our deep
random feature architecture updates the outer weights sequentially
based on the errors incurred at the prior units and is hence reminiscent
of stacked boosting®>* in machine learning.

Deep versions of random feature models exhibit improved
forecasting capabilities when compared to their shallow counter-
parts, as shown in the Results Section. Moreover, depth has sig-
nificant computational advantages. A major benefit of introducing
depth is that it allows us to train larger models on a GPU with fixed
memory. The total number of weights and biases in a model, hen-
ceforth referred to as the model size S, significantly influences the
model’s forecasting skill. But the total memory occupied on the GPU
during training of deep RFM models primarily depends on the model
width D, and the size of training data N, and not on the model size.
This is because we train the constituent units sequentially, and hence
the GPU needs to handle only one linear regression problem at a
time. Therefore, a shallow and a deep model with the same width
roughly occupy the same amount of GPU memory during training
despite the deeper model having a larger size. Furthermore, intro-
ducing depth allows for a significant speed-up of training. For a
shallow and a deep model of the same size, the deep model neces-
sarily has a smaller width. Therefore, when trained on the same
amount of data, the deeper model requires solving regression

problems of smaller size. Consequently, among models of the same
size, deeper models can train up to an order of magnitude faster, as
shown in the Supplementary Information (Section 5).

We remark that the frequency of observations, or the temporal
resolution of the data At, plays a crucial role in determining the fore-
casting skill of a trained surrogate model. Generally, smaller values of
At enable better learning of the underlying dynamical system. In the
Results section, we present an example for the Lorenz-63 system
where shallow models struggle with large At, while deep models
demonstrate superior performance.

Localization

To mitigate the curse of dimensionality associated with high-
dimensional systems with large D, we design localized variants of
random feature models. Typically in high-dimensional systems, for
sufficiently small sampling times At, the state of a variable at future
time t,.; does not depend on all other variables at the current time ¢,
An example comes from weather forecasting where the weather at
one location typically does not depend on the weather at locations
which are several thousand kilometres away. Localization techniques
have been successfully employed recently for RCs and LSTMs®'%*,
Here we set out to learn N, localized models by subdividing the state
vector into Ny=D/G local states of dimension G each. For each local
vector of dimension G we train a local random feature unit. Each local
unit takes its own local state along with the states of its neighbours as
input, aiming to predict its own local state at the next time step.
Concretely, we assume that the state of a local region at time ¢,.;
depends on the state of the same local region as well as on its 2/
neighbouring local regions at time ¢,,, where /is called the interaction
length. The pair (G, /) defines a localization scheme. Figure 7B illus-
trates the structure of a localized random feature model. For shallow
localized models the input dimension for each unit is (2/+1)G.
For deep localized models, instead of doubling the input dimension,
we augment the input of a local unit with only its own local
state giving us an input dimension of 2(/+1)G. Localized variants
of RFM, SkipRFM, DeepRFM and DeepSkip are coined LocalRFM,

Nature Communications | (2025)16:5961

10

www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

LocalSkipRFM, LocalDeepRFM and LocalDeepSkip, respectively. We
indicate the localization scheme in the subscript e.g. a LocalDeepS-
kip model utilizing local state dimension G = 4 and interaction length
I=2is referred to as LocalDeepSkip, . A good localization scheme is
crucial for the success of a localized model. Section 3 in the Sup-
plementary Information explores various localization schemes for
our test problems and provides some general guidelines for selecting
an optimal localization scheme.

Besides controlling the curse of dimensionality, localization also
allows for a considerable computational advantage via a tensorized
implementation. For dynamical systems with translational symmetry
such as the Lorenz-96 system and the Kuramoto-Sivashinsky equation
which we consider here, all local units within the complete architecture
can be chosen to be identical, allowing us to train a single unit and
replicate the trained parameters across the entire model. We exploit
this a step further by working with only a single unit that processes
information from the entire state using matrix-tensor operations,
producing the complete state vector for the next time step. This
approach eliminates the need to store multiple local units, reducing
the model size by a factor of Ng. The reduction in input dimension
allows us to accommodate localized models with much larger width D,
compared to their non-localized counterparts. This, in turn, allows
localized models to be significantly more expressive. We will show that
the localized models far outperform the non-localized models in the
high-dimensional test cases.

Dealing with possibly ill-conditioned data

The data U may be ill-conditioned, for example, subsequent snapshots
of a partial-differential equation may only vary significantly in a small
region for a sufficiently small sampling time At. For simplicity, let us
assume that we are employing an RFM to learn a dynamical system.
The outer weight matrix W depends on the training data U, and as a
result, is also ill-conditioned. If the condition number of W is too large,
then the learned surrogate model becomes unstable if run in autono-
mous mode for the test data. Indeed, during multiple recursive
applications of the surrogate model small errors accumulate leading to
the predicted state departing from the attractor. The internal para-
meters (Wi, by,), sampled by Algorithm 1 (see the Supplementary
Information), are then unable to produce good features, and further
recursions typically lead to numerical blow-up.

We mitigate such instabilities by artificially adding small noise to
the training data. Indeed, adding small noise to an ill-conditioned
matrix has been shown rigorously to produce a well-conditioned matrix
with high probability*. The added artificial noise on the data matrix U
reduces the condition number of the training data and, consequently,
that of the outer weight matrix W. The noise should be sufficiently
small as not to contaminate the signal and ensure no degradation of the
accuracy of the one-step surrogate map. We found that noise, for which
the noisy and the original noise-free data are indistinguishable by eye, is
sufficient to control instability while still providing accuracy of the
learned surrogate model. This strategy is relevant to all the archi-
tectures. An example of ill-conditioned training data and its cata-
strophic effect on the forecasting skill of a LocalDeepSkip model is
encountered for the Kuramoto-Sivashinski equation (see Fig. 2C). In the
Results Section, we distinguish the models trained on data with added
artificial noise by appending ‘N’ to their name, e.g., a LocalDeepSkip
model trained on noisy data is referred to as LocalDeepSkipN. Adding
noise to training data has been used routinely and unconditionally for
learning deterministic dynamical systems with LSTMs and RCs**°. We
only apply noise when dealing with ill-conditioned training data U.

Performance metrics
To evaluate the forecasting skill of our surrogate models, we test them
on unseen test data. We initialize the surrogate model with the initial

condition of a noise-free test trajectory, and then let the model run in
autonomous mode according to

l:ln +17 lpAt(ﬁn) (14)
with i1, =u,. Note that here u denotes test data. For simplicity, we label
test data the same way as training data when there is no danger for
confusion. We compare the surrogate forecasts u,, with the test data
u,. To quantify the forecasting skill we compute the valid prediction
time (VPT), measured in Lyapunov time units,

1 1& /i, —u, \2
VPT = —sup{ nAt: ,|= St Rl <, 15
Fali S8 (B8

where T,=1/A is the Lyapunov time with A being the maximal Lyapu-
nov exponent. The data mismatch is normalized componentwise by
the standard deviation o € R, The standard deviation is numerically
estimated from the training data. The parameter £ > O is a chosen error
threshold. VPT is a diagnostic which has been used for RCs and LSTMs
and allows us to compare with several benchmark results from the
literature. To obtain meaningful results with a statistical significance
we run many realizations where we randomly draw the training data,
test data and the internal weights.

We further test the long-term behavior of the surrogate models by
running long simulations and comparing their empirical invariant
measures with those of the original dynamical system. To quantify the
quality of the long-time statistical behavior we estimate the Wasser-
stein distance W, between the 1-dimensional empirical marginal dis-
tributions under comparison. We have further estimated the power
spectral density of the mean state evolution, another popular probe
for long-term statistics. However, we found that the power spectral
density is too well recovered by all our RFM variants and hence is not
suitable to study their relative performance. We therefore only report
on the empirical histograms.

Computational set-up

We ran our experiments on an A100 GPU provided by Google Colab
using Python 3.11.12. We used NumPy 2.2.3, SciPy 1.15.2 and
PyTorch 2.4.1.

Data availability

The training/testing data and the models shown here can be recreated
using the publicly available code referenced in the Code availability
statement. The forecast data is publicly available at https://doi.org/10.
5281/zenodo.15478037 as well as at the GitHub repository https://
github.com/pinakm9/DeepRFM.

Code availability

The code for reproducing the results shown here is openly available on
GitHub at https://github.com/pinakm9/DeepRFM*. The code is writ-
ten in Python and utilizes PyTorch for implementation of the random
feature models as well as a parallelized version of Algorithm 1 (see the
Supplementary Information, Section 1), optimized for GPUs.

References

1. Bi, K. etal. Accurate medium-range global weather forecasting with
3D neural networks. Nature 619, 533-538 (2023).

2. Lam, R. et al. Learning skillful medium-range global weather fore-
casting. Science 382, 1416-1421 (2023).

3. Price, I. et al. Probabilistic weather forecasting with machine lear-
ning.Nature 637, 84-90 (2024).

4. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural
Comput. 9, 1735-1780 (1997).

Nature Communications | (2025)16:5961

https://doi.org/10.5281/zenodo.15478037
https://doi.org/10.5281/zenodo.15478037
https://github.com/pinakm9/DeepRFM
https://github.com/pinakm9/DeepRFM
https://github.com/pinakm9/DeepRFM
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Maass, W., Natschlager, T. & Markram, H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neural Comput. 14, 2531-2560 (2002).
Jaeger, H. A tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the “echo state network" approach. GMD-
Report 159, German National Research Institute for Computer Sci-
ence. (2002).

Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science
304, 78-80 (2004).

Vlachas, P.-R. et al. Backpropagation algorithms and reservoir
computing in recurrent neural networks for the forecasting of
complex spatiotemporal dynamics. Neural Netw. 126,

191-217 (2020).

Bompas, S., Georgeot, B. & Guéry-Odelin, D. Accuracy of neural
networks for the simulation of chaotic dynamics: precision of
training data vs precision of the algorithm. Chaos: Interdiscip. J.
Nonlinear Sci. 30, 113118 (2020).

Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction
of large spatiotemporally chaotic systems from data: a reservoir
computing approach. Phys. Rev. Lett. 120, 024102 (2018).
Rafayelyan, M., Dong, J., Tan, Y., Krzakala, F. & Gigan, S. Large-scale
optical reservoir computing for spatiotemporal chaotic systems
prediction. Phys. Rev. X 10, 041037 (2020).

Nakajima, K. & Fischer, I. Reservoir Computing (Springer, 2021).
Levine, M. E. & Stuart, A. M. A framework for machine learning of
model error in dynamical systems. Comm. Am. Math. Soc. 2,
283-344 (2022).

Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C. & Abarbanel, H. D. A
systematic exploration of reservoir computing for forecasting
complex spatiotemporal dynamics. Neural Netw. 153,

530-552 (2022).

Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. S. Next gen-
eration reservoir computing. Nat. Commun. 12, 5564 (2021).

Bollt, E. On explaining the surprising success of reservoir comput-
ing forecaster of chaos? The universal machine learning dynamical
system with contrast to VAR and DMD. Chaos: Interdiscip. J. Non-
linear Sci. 31, 013108 (2021).

Rahimi, A. & Recht, B. Random features for large-scale kernel
machines. In Platt, J. C., Koller, D., Singer, Y. & Roweis, S. T. (eds.)
Advances in Neural Information Processing Systems 20, 1177-1184
(Curran Associates, Inc., 2008).

Gottwald, G. A. & Reich, S. Combining machine learning and data
assimilation to forecast dynamical systems from noisy partial
observations. Chaos: Interdiscip. J. Nonlinear Sci. 31, 101103
(2021).

Nelsen, N. H. & Stuart, A. M. The random feature model for input-
output maps between Banach spaces. SIAM J. Sci. Comput. 43,
A3212-A3243 (2021).

Mandal, P., Gottwald, G. A. & Cranch, N. On the choice of the non-
trainable internal weights in random feature maps for forecasting
chaotic dynamical systems. Foundations of Data Science https://
www.aimsciences.org/article/id/68343b1f4b81a70bbe48bch3
(2025).

Cybenko, G. Approximation by superposition of a sigmoidal func-
tion. Math. Contr. Sign. Syst. 2, 303-314 (1989).

Park, J. & Sandberg, I. Universal approximation using radial-basis-
function networks. Neural Comput. 3, 246-257 (1991).

Barron, A. Universal approximation bounds for superposition of
a sigmoidal function. IEEE Trans. Inform. Theory 39, 930-945
(1993).

Rahimi, A. & Recht, B. Uniform approximation of functions with
random bases. In 2008 46th Annual Allerton Conference on Com-
munication, Control, and Computing. 555-561 (2008).

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Dunbar, O. R. A., Nelsen, N. H. & Mutic, M. Hyperparameter opti-
mization for randomized algorithms: a case study on random fea-
tures. Stat. Comput. 35, 56 (2025).

He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep resi-
dual networks. In Leibe, B., Matas, J., Sebe, N. & Welling, M. (eds.)
Computer Vision - ECCV 2016. 630-645 (Springer International
Publishing, Cham, 2016).

Ceni, A. & Gallicchio, C. Residual echo state networks: residual
recurrent neural networks with stable dynamics and fast learning.
Neurocomputing 597, 127966 (2024).

E, W. A proposal on machine learning via dynamical systems.
Commun. Math. Stat. 5, 1-11 (2017).

Akiyama, T. & Tanaka, G. Computational efficiency of multi-step
learning echo state networks for nonlinear time series prediction.
IEEE Access 10, 28535-28544 (2022).

Ding, S., Zhang, N., Xu, X., Guo, L. & Zhang, J. Deep extreme
learning machine and its application in EEG classification. Math.
Probl. Eng. 2015, 129021 (2015).

Uzair, M., Shafait, F., Ghanem, B. & Mian, A. Representation learning
with deep extreme learning machines for efficient image set clas-
sification. Neural Comput. Appl. 30, 1211-1223 (2018).

Gottwald, G. & Reich, S. Localized Schrodinger bridge sampler.
preprint at arXiv https://doi.org/10.48550/arXiv.2409.07968
(2024).

Gottwald, G. A. & Reich, S. Supervised learning from noisy obser-
vations: Combining machine-learning techniques with data assim-
ilation. Phys. D: Nonlinear Phenom. 423, 132911 (2021).

Feydy, J. et al. Interpolating between optimal transport and mmd
using Sinkhorn divergences. In The 22nd International Conference
on Artificial Intelligence and Statistics, 2681-2690 (PMLR, 2019).
Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20,
130-141 (1963).

Lorenz, E. N. Predictability: a problem partly solved. In Proc. Semi-
nar on predictability, 1, (Reading, 1996).

Kuramoto, Y. Diffusion-induced chaos in reaction systems. Prog.
Theor. Phys. Suppl. 64, 346-367 (1978).

Sivashinsky, G. Nonlinear analysis of hydrodynamic instability in
laminar flames-i. Derivation of basic equations. In Dynamics of
Curved Fronts, 459-488 (Elsevier, 1988).

Kassam, A.-K. & Trefethen, L. N. Fourth-order time-stepping for stiff
PDEs. SIAM J. Sci. Comput. 26, 1214-1233 (2005).

Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P. & Koumoutsakos,
P. Data-driven forecasting of high-dimensional chaotic systems
with long short-term memory networks. Proc. R. Soc. A: Math. Phys.
Eng. Sci. 474, 20170844 (2018).

Keller, R. T. & Du, Q. Discovery of dynamics using linear multistep
methods. SIAM J. Numer. Anal. 59, 429-455 (2021).

Du, Q., Gu, Y., Yang, H. & Zhou, C. The discovery of dynamics via
linear multistep methods and deep learning: error estimation. SIAM
J. Numer. Anal. 60, 2014-2045 (2022).

Krishnapriyan, A. S., Queiruga, A. F., Erichson, N. B. & Mahoney, M.
W. Learning continuous models for continuous physics. Commun.
Phys. 6, 319 (2023).

Queiruga, A. F., Erichson, N. B., Taylor, D. & Mahoney, M. W.
Continuous-in-depth neural networks. preprint at arXiv https://doi.
org/10.48550/arXiv.2008.02389 (2020).

Horenko, |. Cheap robust learning of data anomalies with analyti-
cally solvable entropic outlier sparsification. Proc. Natl Acad. Sci.
USA 19, €2119659119 (2022).

Horenko, I. et al. On cheap entropy-sparsified regression learning.
Proc. Natl Acad. Sci. USA 120, €2214972120 (2023).

Groom, M., Bassetti, D., Horenko, I. & O’Kane, T. J. On the com-
parative utility of entropic learning versus deep learning for long-
range ENSO prediction. Artif. Intell. Earth Syst. 3, 240009 (2024).

Nature Communications | (2025)16:5961

12

https://www.aimsciences.org/article/id/68343b1f4b81a70bbe48bcb3
https://www.aimsciences.org/article/id/68343b1f4b81a70bbe48bcb3
https://doi.org/10.48550/arXiv.2409.07968
https://doi.org/10.48550/arXiv.2008.02389
https://doi.org/10.48550/arXiv.2008.02389
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61195-1

48. Saad, F. et al. Scalable spatiotemporal prediction with Bayesian
neural fields. Nature Communications https://doi.org/10.1038/
s41467-024-51477-5 (2024).

49. Takens, F. Detecting strange attractors in turbulence. In Dynamical
systems and turbulence, Warwick 1980 (Coventry 1979/1980), vol.
898 of Lecture Notes in Math., 366-381 (Springer, Berlin, 1981).

50. Kantz, H. & Schreiber, T. Nonlinear Time Series Analysis. (Cambridge
University Press, Cambridge, 1997).

51. Bosch, D., Panahi, A. & Hassibi, B. Precise asymptotic analysis of
deep random feature models. In Neu, G. & Rosasco, L. (eds.) Pro-
ceedings of Thirty Sixth Conference on Learning Theory, vol. 195 of
Proceedings of Machine Learning Research, 4132-4179
(PMLR, 2023).

52. Schapire, R. E. & Freund, Y. Boosting: Foundations and Algorithms.
https://doi.org/10.7551/mitpress/8291.001.0001 (The MIT Press, 2012).

53. Kim, I.-C. & Myoung, S.-H. Text categorization using hybrid multiple
model schemes. In R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R.
& Borgelt, C. (eds.) Advances in Intelligent Data Analysis V, 88-99
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2003).

54. Spielman, D. A. & Teng, S.-H. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. J. ACM 51,
385-463 (2004).

55. Mandal, P. Learning dynamical systems with hit-and-run random
feature maps. Dataset on Zenodo https://doi.org/10.5281/zenodo.
15478037 (2025).

56. Koster, F., Patel, D,., Wikner, A. & Jaurigue, L. Jaurigue, L. & Liidge, K.
Data-informed reservoir computing for efficient time-series pre-
diction.Chaos: Interdiscip. J. Nonlinear Sci. 33, 073109 (2023).

57. Penny, S. G. et al. Integrating recurrent neural networks with data
assimilation for scalable data-driven state estimation. J. Adv. Mod-
eling Earth Syst. 14, e2021MS002843 (2022).

Acknowledgements
GAG and PM acknowledge support from the Australian Research
Council under Grant No. DP220100931.

Author contributions

PM implemented the random feature models and ran the simulations.
PM and GAG equally contributed in conceptualizing the methodology
and writing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-61195-1.

Correspondence and requests for materials should be addressed to
Pinak Mandal or Georg A. Gottwald.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Nature Communications | (2025)16:5961

13

https://doi.org/10.1038/s41467-024-51477-5
https://doi.org/10.1038/s41467-024-51477-5
https://doi.org/10.7551/mitpress/8291.001.0001
https://doi.org/10.5281/zenodo.15478037
https://doi.org/10.5281/zenodo.15478037
https://doi.org/10.1038/s41467-025-61195-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Learning dynamical systems with hit-and-run random feature maps
	Results
	Classical random feature maps
	Lorenz-63
	Lorenz-96
	Kuramoto-Sivashinsky

	Discussion
	Methods
	Initialization of the internal layer
	Skip connections
	Deep random feature maps
	Localization
	Dealing with possibly ill-conditioned data
	Performance metrics
	Computational set-up

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

