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Prosit-XL: enhanced cross-linked peptide
identification by fragment intensity
prediction to study protein interactions and
structures

Mostafa Kalhor 1, Cemil Can Saylan 1, Mario Picciani 1, Lutz Fischer 2,
Falk Boudewijn Schimweg 2, Joel Lapin 1, Juri Rappsilber 2,3,4 &
Mathias Wilhelm 1,5

It has been shown that integrating peptide property predictions such as
fragment intensity into the scoring process of peptide spectrum match can
greatly increase the number of confidently identified peptides compared to
using traditional scoring methods. Here, we introduce Prosit-XL, a robust and
accurate fragment intensity predictor covering the cleavable (DSSO/DSBU)
and non-cleavable cross-linkers (DSS/BS3), achieving high accuracy on various
holdout sets with consistent performance on external datasets without fine-
tuning. Due to the complex nature of false positives in XL-MS, an approach to
data-driven rescoringwas developed that benefits fromProsit-XL’s predictions
while limiting the overestimation of the false discovery rate (FDR). After vali-
dating this approach using two ground truth datasets consisting of synthetic
peptides and proteins, we applied Prosit-XL on a proteome-scale dataset,
demonstrating an up to ~3.4-fold improvement in PPI discovery compared to
classic approaches. Finally, Prosit-XL was used to increase the coverage and
depth of a spatially resolved interactome map of intact human cytomegalo-
virus virions, leading to the discovery of previously unobserved interactions
between human and cytomegalovirus proteins.

Crosslinking mass spectrometry (XL-MS) has emerged as a critical
technology for analyzing protein complexes and protein-protein
interactions (PPIs) by providing distance restraints between protein
residues through the identification of cross-linked peptides (XL-
peptides)1. However, severalmain computational challenges arise from
this process. The tandemmass spectrum (MS2) of XL-peptides is more
complex than linear peptides due to the presence of two peptides,
making sequence assignments challenging. Unequal fragmentation of
the two peptides could introduce bias in the total cross-linked peptide

spectrum match (CSM) score2. Another challenge is the large search
space caused by considering all possible peptide pairs (n-square pro-
blem), which can increase the chance of false positives before false
discovery rate (FDR) estimation. Tomaintain a fixed FDR, stricter score
thresholds are required, leading to higher false negatives after FDR
filtering and ultimately reducing the number of true positives. In
addition, the FDR estimation using the target-decoy approach for XL-
peptides is complicated by the presence of two peptides and remains a
challenge in XL-MS research3–5. Numerous crosslinking database
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search engines (XL-DBSEs) have been developed over the past decade
to address these challenges, including xiSEARCH6, pLink27, XlinkX8,
Kojak9, Scout10, etc. However, identifying XL-peptides remains chal-
lenging, especially for inter-protein crosslinks (between-links) where
the search space size is significantly larger than for intra-protein
crosslinks (self-links)11. One approach to improving the scoring process
of DBSE for linear peptide identification is to use post-processing
rescoring tools such as Percolator12 and PeptideProphet13,14. It aims to
integrate multiple DBSE features (e.g., DBSE scores, peptide length)
into a single score for FDR calculation15. The XL-MS field is no excep-
tion, with XL-DBSEs like XlinkX and Kojak applying Percolator, while
pLink 2 uses a built-in SVM classifier as a rescoring tool. However,
evaluating these XL-DBSEs on multiple ground truth datasets has
revealed that applied rescoring tools often suffer from overfitting,
leading to suboptimal accuracy in FDR calculation10,16,17.

In addition to DBSE features, integrating accurate peptide prop-
erty predictors, such as Prosit18,19, a fragment intensity predictor, and
DeepLC20, a retention time (RT) predictor, into the rescoring process
has been shown to substantially increase the number of confidently
identified linear peptides compared to relying only on DBSE features.
This improvement is particularly evident in challenging fields such as
immunopeptidomics19, single-cell proteomics21, and
metaproteomics18. In the XL-MS field, tools like xiRT22, a retention time
predictor for XL-peptides, and pDeepXL23, a predictor of fragment ion
intensity for XL-peptides, have been developed to enhanceXL-peptide
identifications. However, these tools have limitations, including (1)
often requiring fine-tuning for rescoring implementation, (2) yielding
modest improvement in CSM and PPI level identification rates after
rescoring, and (3) needing a more user-friendly design for rescoring
tasks. Additionally, further investigation using ground truth datasets is
necessary to fully validate their effectiveness.

In this study, we introduce Prosit-XL, an expanded version of
Prosit19, developed through transfer learning for fragment intensity
prediction of XL-peptides. We propose an approach by considering
each XL-peptide as two separate peptides, allowing for data augmen-
tation by using each CSM twice during training. Additionally, Prosit-XL
inherited its collision energy (CE) awareness from Prosit, circumvent-
ing the need for transfer learning on unseen data. We have integrated
Prosit-XL into our user-friendly, data-driven rescoring pipeline
Oktoberfest24. It has been shown that the lower score of the two
peptides in a XL-peptide can serve as a strong parameter for distin-
guishing correct from incorrect matches2,9. Here, we adopt a similar
approach but introduce a novel aspect by running Percolator on the
peptide spectrum match (PSM) level, here referring to the individual
peptide of an XL-peptide, rather than CSM level, referring to an entire
XL-peptide.We aggregate the intensity-based scores into a single score
by using the minimum Percolator-optimized PSM-level score of the
two PSMs associated with a CSM as a proxy for its quality, a strategy
that more effectively separates correct from incorrect matches,
resulting in a substantial boost of identified cross-linked peptides.
Prosit-XL and the rescoring pipeline are validated on full and partial
ground truth datasets containing synthetic peptides and proteins,
respectively. Next, we benchmark Prosit-XL’s performance on a com-
bined large-scale dataset containing E. coli and M. pneumoniae, com-
paring its performance to xiSEARCH/xiFDR. Ultimately, we apply
Prosit-XL and the rescoring pipeline on real-world data from intact
human cytomegalovirus to demonstrate its capability in increasing the
depth and coverage of XL-peptides required for comprehensive pro-
tein structure and PPI discovery and analysis.

Results
Accurate fragment intensity prediction by Prosit-XL
Due to the absence of synthetic data on the scale required for our
applications, we had to rely on public data. Multiple public XL-MS
datasets from PRIDE25 were downloaded, focusing on cleavable

(disuccinimidyl sulfoxide, DSSO26–28; disuccinimidyl dibutyric urea,
DSBU29) and non-cleavable (disuccinimidyl suberate, DSS26,28,30–32; bis-
sulfosuccinimidyl suberate, BS330) cross-linkers. Datasets containing
MS2 spectra of cleavable (CMS2) and non-cleavable (NMS2) XL-
peptides were analyzed by pLink 2, while XlinkX was used for
MS3 spectra of cleavable XL-peptides (CMS3). This resulted in 125,727
CMS2, 70,320 NMS2, and 37,938 CMS3 identified high-quality spectra
containing ~31,000, ~17,000, and ~9000 unique XL-peptides (peptide
pairs), respectively (Fig. 1a). The CMS2 and NMS2 spectra were
acquired by higher-energy collisional dissociation (HCD) fragmenta-
tion, while CMS3 spectra were obtained using collision-induced dis-
sociation (CID).

As highlighted earlier33, a main factor that can substantially affect
fragment ion intensities usingHCD fragmentation is thenormalizedCE
(NCE), which can vary even on the same mass spectrometer despite
using the sameostensibleCE, due todrifts of the effectiveNCEapplied.
To enable an NCE-dependent prediction of fragment intensities,
acquired data needs to be calibrated. This is particularly difficult for
XL-MS datasets due to the lack of replicate peptide spectra across
datasets, which could have been used to detect drifts in NCE. There-
fore, we proposed to detect shifts in NCE using contaminant linear
peptides within the datasets. These identified peptides are then uti-
lized to estimate the NCE at which the predictions match best to the
acquired spectra (NCE calibration). This estimation is achieved by
comparing the spectra of the top highest scoring PSMs to predictions
made by the HCD Prosit 2020model at different NCEs (Methods). The
NCE at which the highest normalized spectral angle (SA) was observed
indicates theoptimalNCE forprediction (Fig. 1b). TheoptimalNCEs for
NMS2 and CMS2 spectra fall within the ranges of 28 to 40 and 17 to 37,
respectively (Fig. 1c, d). Note that NCE calibration is not necessary for
CSM3 spectra which were acquired using CID fragmentation.

The collected XL-MS data is substantially smaller than the dataset
used for training Prosit, which was trained using the ProteomeTools
synthetic peptide library34. This is in part due to the complex nature of
analyzing XL-peptides, e.g., challenging fragmentation, identification,
and lower abundance in samples. The collectedCSMs are equivalent to
only ~2 % of the PSMs used for training the HCD Prosit 2020 model19

(Supplementary Fig. 1a). This is not sufficient to train a model from
scratch because that would require a substantial reduction in model
size. We propose using transfer learning, the same approach used in
developing pDeepXL, where a pre-trained model on a similar task is
adapted and further trained for a new, related task. Here, we use
Prosit19 as a starting point to extend it and apply transfer learning for
XL-peptides.

In order to make an informed decision on the required adjust-
ments of the Prosit model, two crucial questions need to be answered:
Are the fragment ion intensities of peptide A influenced by a cross-
linked peptide B, and, if so, are its intensities dependent on the
sequence of peptide B? To delve into this, we first compared Prosit’s
predictions to fragment ion intensities of XL-peptides. The results
(Supplementary Fig. 1b) show that Prosit’s predictions agree somewhat
with intensities extracted from CMS3 spectra (e.g., median SA of ~0.51
for Alkene-CMS3), but performs very poorly on CMS2 (e.g., median SA
of ~0.35 for DSSO-CMS2) and NMS2 (e.g., median SA of ~0.40 for DSS/
BS3-NMS2). This suggests that the presence of a peptide B influences
the fragmentation characteristics more than the presence of a cross-
linker. However, Prosit’s performance is still better than random,
estimated by Prosit’s performance on decoy XL-peptides (median SA
of ~0.01, Supplementary Fig. 1c). Second, we assessed the similarity of
MS2 fragment intensity patterns of XL-peptides, where the XL-
peptides share the same peptide A but differ in peptide B (Fig. 1e),
for many different peptides A. Taken together, XL-peptides do indeed
influence each other’s fragmentation characteristics and thus implies
that peptide B must be considered as a separate input to a model in
order to reach good prediction performance. This is not the case for
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CMS3, since only one of the two peptides is fragmented to
acquire a CMS3.

In order to accurately reflect the requirements of the various XL-
peptides, various adjustments to the architecture of Prosit are
required (Fig. 2a). One additional encoder (Encoder 2) was added to
handle the input of peptide B for both Prosit-XL-CMS2 and Prosit-XL-
NMS2 models. Moreover, an extra decoder (Decoder 2) was added for
Prosit-XL-CMS2 since DSSO and DSBU have two unstable sites,
resulting in two distinct types of XL fragments: b-short and y-short,
with a shorter segment of the crosslinker, and b-long and y-long, with a
longer segment of the crosslinker. In order tomaximize the benefits of
transfer learning, Prosit-XL is trained to predict only the fragment ion
intensities of peptide A, whereas the encoder for peptide B only
“modulates” the intensities of peptide A. This further allowed us to
utilize each spectrum in the training and test set twice, resulting in a
twofold increase in the effective training dataset size. To obtain pre-
dictions for peptide B, peptides A and B are swapped. A schematic
representation of the best-performing Prosit-XL-CMS2 and Prosit-XL-
NMS2 architecture with more details is shown in Supplementary
Fig. 2a. Since CMS3 does not require any modifications to the base
architecture, the architecture of Prosit-XL-CMS3 is the same as that of
CID Prosit 2020 model.

After finalizing the architecture of thesemodels, we initialized the
Prosit-XL-CMS2model with the weights from the HCD Prosit 2020 and
trained it on the collected and calibratedCMS2data. Subsequently, the
Prosit-XL-NMS2 was initialized with the weights from the Prosit-XL-
CMS2 and trained on collected and calibrated NMS2 data (Supple-
mentary Fig. 2b). The Prosit-XL-CMS3 model was initialized using the
CID Prosit 2020 model weights and trained on the corresponding
CMS3 data. After the training process, the median SA on the holdout
set improvedby0.31−0.48, depending on the type of spectra (Fig. 2b).
It should be emphasized that SAs are measured separately for peptide
A and B. Interestingly, the Prosit-XL model’s performance on peptide
B(s) is slightly better than peptide A(s), likely due to differences in
peptide lengths. On average, peptide B is shorter than peptide Awhich
is generally less challenging for the Prosit-XL to predict (Supplemen-
tary Fig. 2c). For benchmarking Prosit-XL’s generalization, Prosit-XL-
CMS2 and Prosit-XL-NMS2 models were applied, without any addi-
tional transfer learning, to two distinct external datasets using syn-
thetic peptides16,17 that were cross-linked by DSSO and DSS. Initially,
xiSEARCH and pLink were used to identify CSMs. To ensure optimal
prediction performance, NCE calibration was performed to find the
optimal NCE for each MS file, which was then used as input for the
model (Methods). The Prosit-XL-CMS2 achieved a median SA of 0.82
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Fig. 1 | Data collection and collision energy calibration for refining Prosit to
Prosit-XL. aPie chart showing the collected training data on cross-linked spectrum
match (CSM) and unique XL-peptide (peptide pair) level, covering the cleavable
cross-linkers Thiol and Alkene acquired using MS3 spectra (CMS3) and DSSO and
DSBU acquired using MS2 spectra (CMS2), as well as data for non-cleavable cross-
linkersDSS/BS3 acquired usingMS2 spectra (NMS2).bNormalized collision energy
(NCE) calibration curve for an example MS-file, showing the mean spectral angle
(SA) when comparing annotated experimentally acquired spectra of the top 1000
highest scoring target peptide-spectrummatches (PSMs) to spectra predictedwith
Prosit at varying NCEs. The NCE with the highest average SA, indicated by the
vertical red line, is used as the NCE for training. c, d Bar plots showing the number

of raw files after NCEs calibration across the training data. e Violin plot comparing
the annotated experimental MS2-MS3 spectra of XL-peptides with the same pep-
tide A but different peptide B for five different cross-linkers: CMS3-Thiol, CMS3-
Alkene, CMS2-DSBU, NMS2-DSS/BS3, and CMS2-DSSO. The analysis is not focused
on a specific peptide A; instead, peptide A refers to the first peptide in each cross-
linked pair. The number of sampled spectra (n = 1700) is indicated at the bottom.
Theblack solid line and correspondingnumbers indicate themedian spectral angle
(SA) and Pearson correlation (PCC) for each distribution. Mean spectral angles ±
standard error of the mean (SEM) for each group are as follows: Thiol(CMS3),
0.857 ± 0.003; Alkene(CMS3), 0.827 ± 0.003; DSBU(CMS2), 0.779 ± 0.005; DSS/
BS3(NMS2), 0.785 ± 0.003; and DSSO(CMS2), 0.724 ± 0.004.

Article https://doi.org/10.1038/s41467-025-61203-4

Nature Communications |         (2025) 16:5429 3

www.nature.com/naturecommunications


and a Pearson correlation (PCC) of 0.95, showing its remarkably con-
sistent performance compared to the holdout set (Fig. 2c). The Prosit-
XL-NMS2 is slightly below that of the holdout set (median SA: 0.77,
median PCC: 0.89), which may indicate additional experimental fac-
tors not considered in the proposed architecture of Prosit-XL. These
results suggest that no additional transfer learning is needed for Prosit-
XL to achieve state-of-the-art performance.

Further, pDeepXL was applied to these two datasets to compare
the performance of Prosit-XL and pDeepXL. On CSMs supported by

bothmodels, Prosit-XLdemonstratedhigher accuracy, achieving anSA
of 0.82 and a PCC of 0.95, compared to pDeepXL, which achieved an
SA of 0.74 and a PCC of 0.85, on the dataset that used DSSO as a
crosslinker. However, both models showed almost identical perfor-
mance on the synthetic dataset that used DSS as a crosslinker, where
Prosit-XL achieved an SA of 0.75 and a PCC of 0.90, while pDeepXL
achieved an SA of 0.76 and a PCC of 0.87 (Supplementary Fig. 2d,
Methods). To visually demonstrate the Prosit-XL’s performance, two
mirror plots of a cleavable and a non-cleavable XL-peptide are
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displayed in Fig. 2d, e showing strong agreement between experi-
mental (top spectra) and predicted fragment ion intensities of the
annotated b- and y-ions (bottom spectra).

Evaluating Prosit-XL with ground truth benchmark datasets
In line with observations on linear peptides18,19,35,36, we hypothesized
that integrating fragment intensity predictions into CSM scoring
would improve the differentiation between true and false positive
CSMs in target-target (TT) identifications, leading to substantial
improvement in the confident identification of CSMs, at a given FDR
threshold, compared to utilizing XL-DBSE scores alone. To test this, we
extended our open-source data-driven rescoring pipeline,
Oktoberfest24, for CSM rescoring, which consumes predictions from
the Prosit-XLmodels that are served by Koina37, an open-source online
prediction service. Briefly, the rescoring process (Fig. 3a) starts with
reading MS files and unfiltered search results of supported XL-DBSEs
(Method). Using unfiltered search results allows Oktoberfest to reas-
sess all provided matches, including previously rejected (non-con-
fidently identified) but potentially true positive identifications. After
NCE calibration, Oktoberfest calculates a plethora of intensity-based
features, separately calculated for peptide A and B (Supplementary
Table 1), assessing the similarity of spectra predicted at the optimal
NCE and the corresponding experimental spectra.

However, for FDR estimation in XL-MS, a single score is required
that reflects the quality of a CSM in order to effectively separate cor-
rect from incorrect matches. While tools such as Percolator are opti-
mized to combinemultiple features, as generatedby, e.g., Oktoberfest,
into a single score, the complex nature of false positives (e.g., target-
decoy matches) and often an insufficient number of matches for
robust machine learning in XL-MS prevent its direct application.

We propose an approach in which we use Percolator solely to
generate an optimized score for each peptide precursor in an XL-
peptide separately by running it on PSM level, rather than on CSM
level, which is possible because Prosit-XL generates predictions for
each peptide separately. When splitting up CSMs into two separate
PSMs (one for peptide A and B each), the clear notion of a target and
decoymatch remains. Further, the overall PSM-level score distribution
ofmatches follows the expected behavior as known for linear peptides
(Supplementary Fig. 3a). The result of this is a score that is optimized
to separate correct from incorrect PSMs. Because a CSM is incorrect
when at least one of the two PSMs is incorrect, we pick the minimum
Percolator-optimized PSM-level scores of the two PSMs associated
with a CSM as a proxy for the quality of that CSM (Supplementary
Note 1 and Supplementary Fig. 4). Finally, the CSMs and their corre-
sponding scores are submitted to xiFDR for FDRestimation (Methods).

We evaluated our rescoring pipeline on two recently published,
distinct full andpartial ground truthXL-MSdatasets to verify if the FDR
estimates are well calibrated. One such dataset contains synthetic

peptides, which are grouped and cross-linked by DSSO. Each link
between synthetic peptides from different groups or unknown pep-
tides is considered as false positive, allowing precise determination of
the experimentally validated proportion of discoveries that are
accepted but deemed to be incorrect (actual FDR)17. We first analyzed
the data using xiSEARCH followed by xiFDR, resulting in the identifi-
cationof 1395CSMsand789peptidepairs at an estimated FDRof 1%on
CSM- and peptide pair-level, while the actual FDR was 1.18% and 1.65%
at the CSM and peptide pair levels, respectively (Fig. 3b). By rescoring
pipeline, the number of identified CSMs and peptide pairs modestly
improved by 14% (to 1,591) and 12% (to 884) on CSM and peptide pair
levels, respectively. However, we also observed an increase in actual
FDR to 2.53% at CSM and 3.67% at the peptide pair level. The slightly
worse accuracy in FDR estimation may be the result of the small
dataset size, which contains only 100 synthetic ground truth peptides.
Overall, the results are in line with (and largely below) the reported
FDR estimates of other software, including MeroX38, MS Annika39,
XlinkX, pLink 2, MaxLynx40, and xiSEARCH/xiFDR, whose 1% FDR esti-
mates result in an actual FDRof 5.7%, 2.7%, 4.4%, 4.0%, 2.2%, and 3.2% at
the unique residue pair (UXL) level (Methods), respectively. Further,
we compared our rescoring pipeline to xiSEARCH by applying an
actual FDR of 1%. The results improved after rescoring, with the
number of identified CSMs increasing from 1,175 to 1,216 and peptide
pairs increasing from 641 to 651, respectively (Supplementary Fig. 3b,
Methods).

To further investigate the FDR estimate, we applied rescoring on
a larger and more recent dataset10. Briefly, this dataset contains
hundreds of recombinant proteins that were separately mixed and
cross-linked by DSSO. Besides comparing CSM and peptide pair FDR
estimates, this dataset also enabled us to verify the PPI-level FDR
estimates of the rescoring pipeline. Since we did not have access to
Scout’s FDR calculator as a standalone tool, we applied xiFDRonboth
Scout’s unfiltered results (Scout+xiFDR) and rescoring results (Scout
+Prosit-XL+xiFDR) in order to ensure a fair comparison. Filtered at 1%
FDR, both pipelines produced less than 1% false positives (FP), esti-
mated by the known incorrect interactions, of 0.53%, 0.57%, and
0.67% for rescoring and 0.63%, 0.66%, and 0.96% for Scout+xiFDR on
CSM-, peptide pair-, and PPI-level (Fig. 3c), respectively, at an applied
FDR of 1% on CSM-, peptide pair-, and PPI-level (Methods).
Encouragingly, rescoring was able to increase the number of CSMs,
PeptideParis, and PPIs (between-links) by 34.9%, 33.4%, and 42.7%,
respectively, compared to Scout+xiFDR. Next, we compared the
rescoring results with Scout using its native FDR estimation (without
xiFDR). Although Scout identified 24.9% more PPIs compared to the
rescoring, the actual FDR for PPIs uniquely identified by Scout was
3.7%, whereas the PPIs identified only by rescoring were 0% (Sup-
plementary Fig. 3c). The FDR for PPIs identified by both methods
was 0.76%.

Fig. 2 | Accurate fragment ion intensity prediction of XL-peptides by Prosit-XL.
a Schematic illustration of the general architecture of Prosit-XL-CMS2 and Prosit-
XL-NMS2 for fragment ion intensity prediction of XL-peptides. The input data (XL-
peptide precursor charge state, normalized collision energy (NCE), peptide
sequence A, and peptide sequence B) are encoded into a latent representation
(latent space). These representations are then element-wise multiplied and sub-
sequently decoded to fragment ion intensities. Prosit-XL-CMS2 contains one extra
decoder compared to Prosit-XL-NMS2 covering y-long and b-long fragments. The
Prosit-XL-CMS3has the same architecture as HCDProsit 2020,missing the Encoder
2 and Decoder 2. b Violin plot comparing the prediction accuracy of Prosit-XL
models (dark blue) for CMS3, CMS2, and NMS2 compared to the prediction
accuracy of the previously published HCD Prosit 2020 and CID Prosit 2020 model
(light blue) on the holdout set across 5 different cross-linker types: CMS3-Alkene,
CMS3-Thiol, CMS2-DSSO, CMS2-DSBU, and NMS2-DSS/BS3. The number of
underlying spectra (n) is indicated at the bottom. The black solid line and corre-
sponding numbers indicate themedian spectral angle (SA) and Pearson correlation

coefficient (PCC).Thepredictionperformancewas assessed separately for peptides
A and B (PSM level). c Violin plot demonstrating the prediction accuracy of Prosit-
XL-CMS2 and Prosit-XL-NMS2 on external unseen datasets using DSSO and DSS/
BS3 as cross-linkers. The number of underlying spectra (n) is indicated at the
bottom. The black solid line and corresponding numbers indicate the median
spectral angle and Pearson correlation. Data are presented as mean± SEM: DSSO
(mean =0.776, SEM=0.002), DSS/BS3 (mean =0.726, SEM=0.008). d, e Mirror
spectrum of two XL-peptides comparing the experimentally acquired spectrum
(top spectrum) to its respective prediction by Prosit-XL for the peptide
DAIATVNKQEDANFSNNAMAEAFK (peptide A) cross-linked by DSSO with VTAV-
DAKGATVELADGVEGYLR (peptide B) predicted by Prosit-XL-CMS2 (d) and the
peptide NGLTPITSLPNYNEDYKLR (peptide A) cross-linked by DSS with EKSIP-
STITVGK (peptide B) predicted by Prosit-XL-NMS2 (e). Matching peaks are visua-
lized in dark red, red, and light red for b, b-s, and b-l and b-xl ions, respectively, and
in dark blue, blue, and light blue for y, y-s, and y-l and y-xl, respectively.
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Evaluating Prosit-XL with large-scale datasets and extensive
search space
Next, we proceeded to benchmark the rescoring pipeline against an
even larger dataset that resembles the quality and complexity of
real data more closely. To be able to retain some level of control
over the FDR estimation, we re-analyzed two distinct XL-

experiments, investigating PPIs in E. coli5 and M. pneumoniae41, in a
combined xiSEARCH run (Fig. 4a). Any identified E. coli-M. pneu-
moniae PPI, E. coli-E. coli PPI supported by spectra from the M.
pneumoniae dataset and M. pneumoniae - M. pneumoniae PPI sup-
ported by spectra from the E. coli dataset must be considered false
positives (mismatch) and thus provide a lower bound estimate of
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Fig. 3 | Overview of the rescoring pipeline and its results on ground truth
datasets. a Schematic illustration of the data-driven rescoring pipeline based on
Prosit-XL as implemented in Oktoberfest. First, unfiltered results from supported
XL-DBSEs (xiSEARCH or Scout) and mass spectrometry (MS) files (e.g., RAW) are
required as input for rescoring. Oktoberfest performs spectrum annotation, nor-
malized collision energy (NCE) calibration, and retrieves fragment ion intensity
predictions from Prosit-XL to generate an extensive set of intensity-based features
for eachCSMprovidedby theXL-DBSEsearch results. Percolator is run at PSM level
(rather than at CSM level). The final CSM score is obtained by taking the minimum
percolator discriminant score of each PSM in a CSM and is submitted to xiFDR for
FDR estimation onCSM-, peptide pair-, and PPI-level.b Vennbars show the number
of identified CSMs and peptide pairs lost (orange), shared (blue), and gained

(green), at an FDR of 1% on CSM- and peptide pair-levels when comparing results
from xiSEARCH+Prosit-XL+xiFDR to xiSEARCH+xiFDR on a synthetic peptide
dataset. Percentages inside the bars represent the actual FDRs, estimated by the
ground truth synthetic peptide dataset. The analysis is based on both self- and
between-link comparisons. Source data are provided in Supplementary Data 2.
c Vennbars show the number of identified CSMs, peptide pairs, and PPIs lost
(orange), shared (blue), and gained (green) at an FDR of 1% on CSM-, peptide pair-,
andPPI-levelwhen comparing results fromScout+Prosit-XL+xiFDR toScout+xiFDR
on a synthetic protein dataset. Percentages inside the bars represent the actual
FDRs. The analysis is based on between-links only. Source data are provided in
Supplementary Data 3.
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the actual FDR. This approach is similar to entrapment searches, but
some number of false positives within-species matches will remain
and cannot be accounted for in the estimate of the actual FDR of the
analysis.

The improvement after rescoring was substantial, with the num-
ber of identified between-links increasing to ~5.6, ~5.7, and ~3.4 fold on
CSM-, peptide pair-, and PPI-level, respectively, compared to applying
only xiSEARCH+xiFDR (Fig. 4b). Despite this substantial increase in
identifications, the number of mismatches remained very low: out of
2431 CSMs, only 13 mismatches (0.53%); out of 1671 peptide pairs, 6
mismatches (0.35%); and out of 517 PPIs, 4 mismatches (0.77%). This is
because the features generated by Prosit-XL in combination with the
Percolator-based CSM score generation approach can effectively

separate true positive target-target matches from false positive target-
target matches due to an improved scoring of target-decoy (in part
representing TP-FP) matches (Fig. 4c). As visible in the marginal his-
tograms, the score distribution of target-decoy matches aligns much
betterwith the falsepositive portionof the target-targetmatcheswhen
rescoring is used in comparison to xiSEARCH. This is because the
Percolator-based CSM score takes the minimum of the individual PSM
scores and thus a single incorrect peptide in an XL-peptide will lead to
an overall poor score irrespective of whether the other peptide is in
fact a true positivematch. This leads to a shift in score cutoff necessary
to achieve 1% FDR, resulting in a larger portion of matches surviving
the FDR threshold. This experiment demonstrates the capability of
rescoring pipeline compared to xiSEARCH in an extremely large search

Fig. 4 | Evaluation of Prosit-XL versus large-scale datasets and extensive
search space. a Schematic illustration of the experiment designed to estimate FDR
in large datasets. Briefly, two distinct large-scale datasets (E. coli and M. pneumo-
niae) were analyzed together by xiSEARCH with a combined protein database. Any
identified XL peptide suggesting a PPI between E. coli and M. pneumoniae is con-
sidered a false positive due to this being an organism mismatch. b Vennbars show
the number of identified CSMs, peptide pairs, and PPIs lost (orange), shared (blue),
and gained (green) at an FDR of 1% on CSM-, peptide pair-, and PPI-level when
comparing results from xiSEARCH+Prosit-XL+xiFDR (second bars) to xiSEARCH

+xiFDR (first bars) on the results obtained from the experiment shown in a. Source
data are provided in Supplementary Data 4. c Comparison of target-decoy
separation on CSM-level using xiSEARCH scores (x-axis) and xiSEARCH+Prosit-XL
+Percolator scores (y-axis). Green, blue, and orange dots represent individual
target-target (TT), target-decoy (TD), and decoy-decoy (DD) CSMs, respectively.
The marginal distributions show the respective score histograms. For illustration
purposes, the y-axis of themarginal histograms is plotted in a log scale. The vertical
and horizontal red lines indicate the 1% FDR cutoff applied at the CSM level, which
yielded the results shown in b.
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space while maintaining control over the FDR. To the best of our
knowledge, this result is the highest increase in identifications
observed after CSM rescoring compared to previous studies. Further,
we compared our rescoring pipeline to xiSEARCH by applying a lower
bound estimate of the actual FDR of 1% (Methods). The results still
show substantial improvement after rescoring, with the number of
identified CSMs increasing from 1711 to 3389, peptide pairs from 1147
to 2378, and PPIs from 390 to 678 (Supplementary Fig. 5a).

Additionally, we examined the number of expected true positive
matches by calculating #TT - (#TD - #DD) after the rescoring process
for all analyzed datasets in this study (Supplementary Fig. 5b). The
results clearly show that the estimated number of true positives is
highest in the high-scoring region and, as expected for Percolator,
drops to near zero around a score of 0. At lower scores, the number of
estimated true positives remains around zero, indicating that the
scoring approach and the use of machine learning did not introduce
any unintended bias (i.e., artificially separating targets from decoys).
This also suggests that the decoys (TD and DD) provide a reliable
estimate for the number of false positive targets.

Prosit-XL-assisted rescoring increases coverage and depth of 3D
structure information and PPI mapping
In our final case study, we assessed our rescoring pipeline’s ability to
demonstrate its benefits in analyzing protein 3D structures and PPIs by
applying it to a dataset that aimed to resolve the interactome map of
intact human cytomegalovirus virions42. Briefly, we used xiSEARCH
followed by the Prosit-XL assisted rescoring as described earlier and
compared the results to original XlinkX analysis. The total number of
unique interactions was 2427 using XlinkX (1% FDR at UXL level) and
increased to 2910 with xiSEARCH+Prosit-XL+xiFDR (Fig. 5a). The big-
gest increases were observed at the human intra-protein level (1399
and 220out of 2910), likely a result of the improved sensitivity atwhich
UXLs can be detected by our pipeline. At the UXL-level, rescoring
showed an almost 1.5-fold increase (from 4789 to 7396 UXLs) over
XlinkX on human intra-protein-protein connection (self-links) (Sup-
plementary Fig. 6a). Similarly, our rescoring pipeline was compared to
xiSEARCH+xiFDR results. The most notable increase was observed for
the inter-protein-protein interactions with around 3-fold increase
(from 424 to 1203 inter-PPIs, Supplementary Fig. 6b). In addition, this
increase was also seen with a ~2.3-fold increase at the UXLs level (from
2396 to 5460 UXLs for inter-PPIs, Supplementary Fig. 6b). Both
xiSEARCH+xiFDR and xiSEARCH+Prosit-XL+xiFDR applied FDR in a
more conservative manner at the CSM-, peptide pair-, and PPI-level.

To further investigate the gains and losses, we assessed the PPIs
(inter- and intra-PPI) gained, lost, and shared between xiSEARCH
+Prosit-XL+xiFDR and XlinkX for each category (Supplementary
Fig. 6c). In general, rescoring added 548 new PPIs that were not
detected by XlinkX. However, we also observed a loss of 351 PPIs
(Fig. 5b, upper left Venn diagram), which are supported by 403 UXLs
that our pipeline did not identify. Further, we investigated the gained,
shared, and lost UXLs of PPIs shared between our pipeline and XlinkX.
While rescoring led to a gain of 2,235 UXLs, we also observed a loss of
1044 UXLs (Fig. 5b, upper right Venn diagram). Despite the improve-
ments in identified PPIs and UXLs, the number of lost UXLs (total of
1447) is rather high compared to the losses observed in the earlier
analysis. To investigate the reason, we checked if the UXLs identified
uniquely by XlinkX appeared in the unfiltered search results of
xiSEARCH, revealing that ~89% of these UXLs were absent in it (Fig. 5b,
bottom Venn diagram), indicating that only 155 were lost because they
did not survive our conservative FDR cutoffs at all levels.

The increase in UXLs leads to recovering more PPIs at various
cutoffs of minimum UXLs required to call a PPI, commonly applied to
remove one-hit-wonders. This increase ranges from 30% for PPIs with
at least 1 UXL to 37.5% for PPIs that are supported by at least 10 UXLs

(Supplementary Fig. 6d). This is confirmed by the observation that on
average a PPI is supported by 1.32more UXLs (linear regressionmodel
y = 1.32x +0.07) using our rescoring workflow (Fig. 5c). As a result, the
number of interaction partners identified for each protein, e.g., UL32,
UL25, and UL83, increases (Supplementary Fig. 6e, scatter plot). UL83
and UL25 are major tegument proteins in HCMV and play essential
roles in viral assembly. UL83 is crucial for tegument formation,where it
helps stabilize the virion structure43. UL25, on the other hand, serves as
a hub for assembling other viral proteins into the maturing virion,
making it an organizing center during the virionmaturation process44.
It is reported that UL83 facilitates the incorporation of UL25 into
mature viral particles45. The interaction between UL25 and UL83 is
supported by the results, which show that 62 UXLs were identified for
this interaction using rescoring, and 44 UXLs using XlinkX (Supple-
mentary Fig. 6e, Table). Additionally, it is suggested that host proteins
such as Grb2 and DDX3 show dependency on UL83, being incorpo-
rated into virions upon viral infection46. However, DDX3X’s direct
interaction with UL83 remains unclear. It is alsoworthmentioning that
HCMV infection enhances the expression of Grb2 and DDX3X, facil-
itating viral replication and spread. As a result, DDX3X has emerged as
a target for antiviral therapies due to its critical role in infection46,47. In
our results, we observed an increase in UXLs for the UL83-DDX3X
interaction; specifically, we found 34 UXLs using rescoring, while
XLinkX shows 15 UXLs (Fig. 5d). Similarly, our results suggest the
interaction between UL25 and DDX3X by enhancing the previously
reported UXLs from 8 for XlinkX to 21 for rescoring, revealing a larger
interaction area (Fig. 5d). These findings suggest that there may be a
more complex relationship between UL83-UL25-DDX3X.

From the result of UXLs, the dataset shows a substantial number
of self-links. We evaluated these UXLs separately for viral and human
self-links. In the original study, the viralUXLswere evaluated by using a
specific example for self-links of the protein UL5542. As it is given in the
dataset paper, the distance between cross-linked residues should be
under 40Å42. We further looked into this protein and whether our
results show an improvement in detecting UXLs based on this rule of
thumb. Specifically, our analysis identified 44 unique UXLs (36 were
reported in the XlinkX analysis), with 9 exhibiting distances greater
than 40Å in the post-fusion structure. Notably, all theseUXLs adhered
to the acceptable threshold in the pre-fusion structure (Fig. 5e). The
term “fusion” here refers to the merging of the viral and host cell
membranes mediated by glycoproteins, a critical step in herpesvirus
infection.When comparing post-fusion to pre-fusion data, ourfindings
align with the original paper (Supplementary Note 2).

To evaluate the human self-link UXLs, we define two metrics,
including link distance and average plDDT (predicted local distance
difference test). Link distance was calculated as the Euclidean distance
between cross-linkedKα-carbonusing the protein structures retrieved
from the EBI-AlphaFold2 (AF2) database45. The average plDDT was
calculated as the average AF2 plDDT local confidence value for the
linked LYS residues as one metric for each UXL. It is known that the
plDDT value above 70 in the AF2 is defined as “high confident” pre-
diction, and it performs good for the prediction of protein backbone
structure45. Thus, we categorized our results into four distinct groups
based on specific thresholds for distance (40Å) and Av. plDDT (70)
(Supplementary Fig. 6f). Our analysis demonstrated that the majority
(~86%) of theUXLswere observed at a distance of <40Å.Moreover, the
highest density distributions were detected for distance <40Å and
average plDDT> 70, indicating thatmostdetectedUXLs residedwithin
the ‘high confidence’ predicted regions, with sufficient distance to
establish a linkage. Noteworthy, the number of <40Å detected inter-
actions with average plDDT <70 indicates that the pIDDT estimate of
AF2may not be as well calibrated as expected and underpins the value
of orthogonal information provided by XL-MS for resolving protein
structures48.
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Fig. 5 | Evaluationof Prosit-XL for analyzing 3D protein structures and protein-
protein interactions. a Unique number of identified interactions; inter-protein-
protein interaction (green), intra-protein-protein interaction (orange), and intra-
protein-protein connection (dark blue). The bars represent the number of PPIs and
self-links for human-human, human-viral, and viral-viral interactions identified by
data-driven rescoring of xiSEARCH results (left) and as reported in the original
study by XlinkX (right). Source data are provided in Supplementary Data 5. b Venn
diagrams comparing shared PPIs and UXLs between the rescoring results and the
XlinkX results. The top left Venn diagram shows the PPI-level comparison for all
types of PPIs. In parentheses, the total number of UXLs detected for the corre-
sponding PPIs is shown. Top right Venn shows the UXL-level comparison for UXLs
extracted from shared PPIs only (intersection in top left Venn). The bottom Venn
diagram compares the UXLs in the unfiltered search results from xiSEARCH with
the UXLs that were uniquely identified by XlinkX (combination of unique PPIs and
missed UXLs from shared PPIs). c Correlation between UXL counts per PPI by
rescoring versus XlinkX, separated by interaction type for human-human (blue),

human-viral (orange), and viral-viral (green). The diagonal and regression lines are
shown in dashed black and solid blue, respectively. The shaded blue area around
the regression line indicates the 95% confidence interval of the regression. Data are
presented as mean± SEM for the shared set of PPIs identified by both methods:
rescoring shows a mean of 4.54 ±0.33 UXLs per PPI, and XlinkX shows a mean of
3.52 ± 0.25 UXLs per PPI. d Network representations of the interactions among the
viral proteins UL25, and UL83, as well as the human protein DDX3X, comparing
results from rescoring and XlinkX. Solid green, blue, and orange lines present
confidently identified UXLs by rescoring or XlinkX that were gained, shared, or lost
when comparing rescoring to XlinkX, respectively. The network was visualized
using xiView54 and modified. e Structural representations of the post-fusion (PDB:
7KDD) and the pre-fusion (PDB 7KDP) conformations of the viral proteins UL55.
Lines indicate confidently identifiedUXLs by rescoring, highlighting the distance of
the interacting sites. Colors represent individual interactions mapped onto the
structure. The residue alpha carbons were depicted as gray spheres. The UXL dis-
tances shown were calculated using PyMOL.
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Discussion
In this study, we introduce Prosit-XL, a deep learning model that can
predict the fragment ion intensities of XL-peptides with high accuracy.
We evaluated it on various experimental holdout sets, demonstrating
its strong generalizability to new, unseen data. Further, Prosit-XL was
integrated into a data-driven rescoring pipeline, to our best knowl-
edge, the only rescoring pipeline that includes CSM rescoring. For this,
an approach was developed that is splitting CSMs into PSM-level to
allow the effective combination of our intensity-based features into a
single score by percolator. The rescoring pipeline was analyzed using
synthetic ground truth datasets, providing insight into its FDR esti-
mation performance. Finally, the pipeline was applied to real-world
datasets, resulting in substantial gains on CSM, UXL, and PPI levels,
showing its utility and benefits in assisting protein 3D structure eluci-
dation and interactome mapping at organism scale.

There has been notable progress in generating ground truth
datasets in the XL-MS field, which is a positive step forward for
benchmarking methods. However, small and less complex datasets,
such as the analyzed synthetic peptide dataset, can pose challenges for
benchmarkingmachine learning–based tools. These datasets may lack
the necessary complexity to effectively benchmark tools for FDR
calibration. Future work would benefit from incorporating larger and
more complex datasets to enable more reliable benchmarking and
further advance the field.

An important consideration when using post-processing tools
such as Percolator is the potential for overfittingwhen the samedata is
used for both model training and scoring. While earlier versions of
Percolator addressed this with cross-validation, this strategy did not
fully prevent information leakage. The more recent RESET49 approach
improved upon this. While this strategy focuses on avoiding data
leakage fromdecoys, all targets are still present during the training and
scoring steps, and although our empirical results did not indicate any
noticeable bias, the possibility of (subtle) residual biases cannot be
entirely excluded. This remains an area where further methodological
improvements could enhance the robustness of post-processing
workflows, specifically for cross-linking.

Despite Prosit-XL’s high accuracy, several potential improve-
ments, beyond the scope of this current work, could enhance its per-
formance even further. One potential improvement is incorporating
separate charge information for each peptide, instead of the current
use of one charge for the entire XL-peptide precursor. Current XL-
DBSEs (e.g., pLink 2) do not provide accurate individual peptide
charges due to the complexity of separating charges in XL-peptides.
This is a burden for the model since it has to learn how to correctly
estimate the charge state of each peptide, in addition to predicting
fragment ion intensities. Additionally, MS2 spectra in crosslinking
experiments are often acquired using stepped CE, where multiple CEs
are applied in a stepwise manner during fragmentation. This can
negatively impact the NCE calibration process, as finding a single
optimal CE per MS file for Prosit-XL may not be ideal for capturing the
effects of the multiple CEs used in practice. More research is required
to estimate the importance of steppedCE inXL-peptide fragmentation
and to develop corresponding calibrationmethods. However, a lack of
ground truth systematic data does not allow a comprehensive inves-
tigation at this moment.

Although not demonstrated in this work, there is no technical
reason why Prosit-XL could not be adapted to other spectra or other
peptide properties, such as retention time. Potential improvement to
further extend Prosit-XL’s ability to predict spectra may be to
accommodate other fragmentation techniques such as MS2-CID and
MS2-electron-transfer dissociation50 (ETD or EThcD), different frag-
ment ion types (e.g., neutral losses), additional cross-linkers (e.g.,
DHSO51, DMTMM51), and different cross-linked residues1 (e.g., S, T, Y).
Extending the model’s capabilities in these areas could lead to even
more comprehensive and accurate predictions.

As highlighted by our analysis, another future improvement in
analyzing XL-MS datasets is the application of rescoring on search
results from multiple XL-DBSEs, as losses observed when using dif-
ferent search engines may be attributed to differences in processing,
rather than differences in confidence estimation. Although XL-DBSEs
often identify overlapping sets of XL-peptides and PPIs, there are still
cases that are uniquely identified by each XL-DBSE. Because our
rescoring approach projects any CSM from any XL-DBSE to the same
feature space, alternative explanations from different search engines
can be compared, and the best can be picked. Taking advantage of this
could lead to further substantial gains, increasing depth and coverage
of XL experiments. Likewise, previous work in localizing PTMs has
shown that true positive modified peptides may not be present as the
highest scoring match produced by a DBSE. Because Prosit-XL takes
both peptides into account for prediction, in combination with data-
driven rescoring, a better ranking of XL-peptides may yield further
gains in the future.

Overall, Prosit-XL represents a valuable advancement in XL-MS,
specifically also due to its direct integration into Koina and Okto-
berfest, enabling any scientist to benefit from deep-learning-assisted
data analysis. Its ability to provide intensity predictions for complex
datasets and enhance the identification of XL-peptides and PPIs
through rescoring makes it a powerful tool for studying protein
structures and protein-protein interactions, particularly for in vivo
studies, as exemplified by the exceptional performance on the two-
species mix dataset. As the field continues to evolve, and MS focusing
on linear peptides already strongly relies on high-quality predictions,
we are convinced that Prosit-XL’s capabilities and integration into
rescoring will be key for advancing XL-MS and thus our understanding
of protein interactions in vivo at proteome-scale.

Methods
Training data
In the process of data collection, we used 11 publicly available data-
sets: (1) DSBU: PXD012546; (2) DSSO: PXD019926, PXD017711,
PXD011861; (3) DSS/BS3: PXD017620, PXD016554, PXD019926,
PXD017695, PXD014675, PXD008550. MS2 spectra were acquired by
HCD fragmentation, followed by analysis using the Orbitrap with
high resolution and mass accuracy, except PXD019926, which also
contains CID MS3 spectra. MS2 spectra were searched by pLink 27, a
high-speed search engine for proteome-scale identification of XL-
peptides, and hence is very suitable for generating large-scale XL
benchmark datasets, which are valuable for deep learning models.
pLink 2 was used with the following parameters: Carbamidomethy-
lation on cysteine and oxidation on methionine as fixed and variable
modifications, respectively; peptide masses ranging from 600 to
6000Da; precursor and fragment mass search tolerance set to 10
and 20 ppm; maximum allowed missed cleavages set to 3; crosslink
specificities at lysine residues and protein N-terminals, FDR set at
0.5% at the CSM level. The extracted spectra were further filtered out
under the following conditions: peptide lengths (peptides A and B)
less than 6 or greater than 30, precursor charge greater than 6, and
the number of matched peaks less than the length of each peptide.
Ultimately, the top 10 CSMs for each unique XL-peptide were kept to
avoid too much redundancy. All extracted spectra were annotated,
where all expected b, y, b-xl, and y-xl for NMS2 spectra and b, y, b-
short, y-short, b-long, and y-long, with for CMS2 spectra, charges up
to 2 for CMS2 and 3 for NMS2 spectra, are calculated and matched
against experimentally acquired fragment peaks. Matching toler-
ances were 20 ppm for FTMS. Ultimately, the annotated spectra were
split into three distinct sets: training (80%), validation (10%), and
holdout set (10%). Tominimize data leakage, if an XL-peptide pair A-B
is included in the training set, neither peptide A nor peptide B can be
in the validation or holdout set. Regarding NCE, all MS files were
analyzed by MS Amanda52 with default parameters to identify linear

Article https://doi.org/10.1038/s41467-025-61203-4

Nature Communications |         (2025) 16:5429 10

www.nature.com/naturecommunications


peptides, which are then used for optimal NCE estimation. To clarify,
the top 1000 PSMs were chosen based on MS Amanda’s score and
were compared to predicted spectra by HCD Prosit 2020 at different
NCEs ranging from 18 to 49. The optimal NCE was determined by
identifying the NCE at which the highest SA is observed.

Input and output of Prosit-XL
Inputs to themodel are peptide sequence A, peptide sequence B, NCE,
and precursor charge. Peptide sequences are encoded as integer
vectors of length 30, with each integer representing a specific amino
acid, and fed to an embedding layer. For cross-linked lysine residues, a
unique integer is assigned to indicate the crosslinker, depending on
the crosslinker type. Sequences shorter than 30 amino acids are pad-
ded with zeros. The precursor charge is represented using one-hot
encoding. The Prosit-XL’s output is annotated spectra, which are
transformed to a tensor. Ion intensities are normalized continuous
values. A CMS2 and NMS2 spectrum are represented by a 348-
dimensional vector (y/b/ys/bs/yl/bl ions, 3 charges, 29 fragment ions)
and 174-dimensional vector (y/b/yxl/bxl ions, 3 charges, 29 fragment
ions), respectively, andorders as follows: y1 (1+), y1 (2+), y1 (3+), b1 (1+),
b1 (2 +), b1 (3+), y2 (1+) and so on. The type of fragment ion can change
based on the position of the crosslinker. For example, if the crosslinker
is attached to the first amino acid in a non-cleavable XL-peptide, b1
actually represents b-xl 1, indicating a modified b-ion.

Prosit-XL architecture
Encoder 1 and 2: The encoder 1 and 2 contain an embedding layer,
followed by two bi-directional recurrent neural networks (BDN) with
gated recurrent memory (GRU) units, connected to an attention layer.
The recurrent layers use 512 memory cells each. Latent space: The
latent space of each encoder is 512 units for each amino acid token.
Encoder 3: Precursor charge and NCE encoder is a single dense layer
followed by dropout. The latent vectors from Encoders 1 and 2 are first
multiplied elementwise. The resulting product is then multiplied with
the output of Encoder 3. Decoders 1 and 2: Both decoders consist of a
one-layer length 29 BDN with GRUs. It is important to note that
Decoder 2 is specifically developed for CMS2 spectra covering y-long
and b-long fragments.

Prosit-XL training process
We applied transfer learning using the HCD Prosit 2020 and CID Prosit
2020weights as starting points and then trained these using the CMS2
and CMS3 training sets to develop Prosit-XL-CMS2 and Prosit-XL-
CMS3, respectively. The model weights of Prosit-XL-CMS2 were used
as the starting point for the development of Prosit-XL-NMS2 using the
NMS2 training set. To control for overfitting, early stopping was
employed on the validation set scores, employing a patience of 20
epochs. The holdout set was used after the model was fully trained to
evaluate its generalization and potential biases. The loss function was
the normalized spectral contrast loss. We used the Adam optimizer
with a cyclic learning rate algorithm. During training, the learning rate
cycled between a constant lower limit of 0.00001 and anupper limit of
0.0002, which is continuously scaled by a factor of 0.95 with the
“triangular”mode. The model was trained with a batch size of 200036.

Prosit-XL’s performance on synthetic peptide datasets
Synthetic dataset cross-linked by DSSO. All 3 MS files (1, 2, and 3
replicate) were downloaded from the PRIDE repository with the identi-
fier PXD029252. MS files were searched using xiSEARCH with the fol-
lowing parameters: report_top_ranking_only: false, delta_score_filter:
false, enzymes: trypsin, missed_cleavages: 2, min_peptide_length: 6,
max_peptide_length: 30, isotope_error_ximpa: 2, noncovalent_peptides:
true, threads: 20, ms1_tol: 10 ppm, ms2_tol: 10 ppm, top_n_alpha_scores:
10, top_n_alpha_beta_scores: 10, crosslinker: {name: “DSSO”, mass:
158.0038, specificity: K}, conservative_n_multi_loss: 3, denoise_alpha:

{top_n: 10, bin_size: 100}, denoise_alpha_beta: {top_n: 20, bin_size: 100},
fragmentation: {nterm_ions: b, cterm_ions: y, add_precursor: true,
max_nloss: 4, match_missing_monoisotopic: true}, max_var_pro-
tein_mods: 2, max_modified_peps: 20, modification1: {name: cm, speci-
ficity: C, type: fixed, composition”: “C2H3N1O1”}, modification2: {name:
ox, specificity: M, type: variable, composition: O1. Next, xiFDR was
applied with the following parameters: the FDR level for CSM, peptide
pair, residua pairs, andproteinpairswas set to 1%,without boosting. The
identified CSMs were verified against provided groups to remove
potential identified false-positive TTs. Finally, the final list of identified
CSMs was submitted to Prosit-XL-CMS2. The NCE calibration was per-
formed by Prosit-XL-CMS2. The SAs were calculated separately for
peptide A and B (Fig. 2c).

Synthetic dataset cross-linked byDSS. MS file was downloaded from
the PRIDE repository with the identifier PXD014337 and analyzed by
pLink53 according to the following parameters: Crosslink mass:
138.068, monolink mass: 156.079, crosslinker reactivity: K-K, fixed
modification: Carbamidomethyl, variable modification: Oxidation,
enzyme: trypsin,max.Missed cleavages: 3,Minpeptidemass: 500,Max
peptide mass: 6000, Min peptide length: 5, Max peptide length: 60,
MS1 tolerance (ppm): 5,MS2 tolerance (ppm): 20, FDR: 1% at PSM level.
The identified CSMs were verified against provided groups to remove
potential identified false-positive TTs. Subsequently, we applied extra
filtering and removed CSMs with scores less than 0.03 and applied
Prosit-XL-NMS2. The NCE calibration was performed by Prosit-XL-
NMS2. The SAswere calculated separately for peptide A andB (Fig. 2c).

Comparison of Prosit-XL and pDeepXL’s performance on syn-
thetic peptide datasets
All identified CSMs described in the previous section (Fig. 2c) were
submitted to pDeepXL for prediction. Some CSMs were removed due
to DeepXL’s limitations, such as restrictions on peptide length. For
predicting MS/MS spectra of the synthetic peptide dataset linked by
DSSO, the following pDeepXL parameters were used: instrument:
QEHF, NCE_low: 21, NCE_medium: 27, NCE_high: 33, and crosslinker:
DSSO. For the dataset linked by DSS, the parameters were: instrument:
QEHFX, NCE_low: 0, NCE_medium: 28, NCE_high: 0, and crosslinker:
DSS. It should be emphasized that SAs and PCCs are measured sepa-
rately for peptide A and peptide B, and only for CSMs that both
pDeepXL and Prosit-XL could predict (Fig. S2d).

General rescoring pipeline
The rescoring pipeline (Fig. 3a) requires MS2 spectra files, either in
RAW or mzML format, and unfiltered XL-DBSE’s output (xiSEARCH or
Scout) as inputs, which contains both target (TTs) and decoy (TDs/
DDs) CSMs. Annotation of MS2 spectra is then performed by calcu-
lating all potential b- and y-ions for CSM2 spectra (b, y, b-short, y-short,
b-long, y-long) and NMS2 (b, y, b-xl, y-xl) with charge up to 2 and 3 for
CMS2 and NMS2, respectively. These potential fragments arematched
against the experimentally acquired fragment peaks with a 20 ppm
mass tolerance for FTMS. Next, optimal NCEs are determined by cali-
brating Prosit-XL to each providedMS file. Specifically, the 20 highest-
scoring CSMs are selected, and then NCE as Prosit-XL’s input is
adjusted in a reasonable range (18 to 49). The NCE that leads to the
highest SA between predicted and acquired spectra is used as Prosit-
XL’s input for that MS file. With the prediction from Prosit-XL at an
optimal NCE, Oktoberfest then generates ~150 features per CSM
(separately calculated for peptide A and B). The list of features with
their corresponding descriptions is provided in Supplementary
Table 1. Rescoring is performed on the PSM-level, where each peptide
with its corresponding ~75 features is submitted to Percolator (v 3.6.1).
Percolator is only used to aggregate the features into a single score,
and no q-value or other FDR estimate is taken from it. The final CSM-
score is constructed by taking the minimum PSM-level percolator
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discriminant for eachCSM.Additionally, rescoringwas also performed
using the latest version of Percolator (v3.7.1), with the results pre-
sented in Supplementary Fig. 7. It is crucial to highlight that the order
of peptides A and B in the xiSEARCH or Scout output does not affect
the Prosit-XL’s performance, the features generated by Oktoberfest,
and the final Percolator scores. Ultimately, CSM, peptide pair, and PPI
level FDR were estimated using xiFDR3, where all FDR levels (PSM,
peptide pair, residual pairs, and protein pairs) are set to 1% without
boosting. FDR calculations for self and between links are done sepa-
rately using FDR = (TD-DD) / TT. It is important to note that CSMs
provided by xiFDR are unique CSMs, meaning for any given peptide
pair, modifications, link sites, and charge state combination only the
top scoring one is reported. More information about xiFDR can be
found at https://github.com/Rappsilber-Laboratory/xiFDR.

Application of Prosit-XL and rescoring
Rescoring of synthetic peptide dataset cross-linked by DSSO. After
running xiSEARCH on 3 MS files, rescoring was applied to each repli-
cate separately, with all features in Oktoberfest config file set to false.
The number of identified CSMs and peptide pairs (both self- and
between-links), by xiSEARCH+xiFDR and xiSEARCH+Prosit-XL+xiFDR,
shown in Fig. 3b, represents the average of CSMs and peptide pairs per
replicate. The experimentally validated FDR is calculated using the
following formula: FDR = (TTs not within the same XL group) / (TTs
total) for each replicate. The experimentally validated FDR in Fig. 3b
shows the average actual FDR per replicate.

Applying an actual FDR of 1% to the synthetic peptide dataset
cross-linked by DSSO. All CSMs provided by Oktoberfest were sub-
mitted to xiFDR with an initial FDR of 100%. Next, for the files gener-
ated by xiFDR at the CSM and peptide pair levels, all TDs andDDswere
removed. The remainingTTsCSMs, andpeptidepairswere then sorted
once based on the Percolator score and once based on the xiSEARCH
score. Finally, an actual FDR of 1% was applied using the formula:
FDR = (TTs not within the same XL group)/(total TTs).

Rescoring of synthetic protein dataset cross-linked by DSSO. MS
files were kindly shared with us by the Liu lab and were analyzed using
Scout (v.1.4.14) by the following parameters: add contaminants = false;
add decoys = true; fragment bin tolerance =0.02; fragment bin off-
set = 0; max fragment bin m/z = 1800; min fragment bin m/z = 200,
deconvolution for MS searching = false; deconvolution for ion pair =
true, crosslinker =DSSO; target n-term= true; reaction residuals = k;
enzyme= trypsin; enzyme specificity = FullySpecific; Isotopic possibi-
lities precursor = 1; min peptide length = 6; max peptide length = 60,
max variable modification per peptide = 2; min peptide mass = 500,
max peptide mass = 6000, max miscleavages = 3, ppm error on MS1
level = 10, ppm error on MS2 level = 20, static modification =
Carbamidomethyl, variable modification =Oxidation on Methionine;
FDR 100% on all level. The final Scout score (Classification score) was
used as input for xiFDR (all levels set to 1% without boosting). After
rescoring the unfiltered result of Scout, the Percolator score is used as
xiFDR input. The actual FDR is calculated by FDR = (FPs)/(FPs + TPs).
For TP identification, proteins need to be in the samegroup and batch.
Notably, only identified between-links are presented in Fig. 3c. For
more details, see ref.10.

Rescoringof large-scale dataset cross-linkedbyDSSO. Twodistinct
subsets of large-scale datasets containing E. coli (JPST000845) and M.
pneumoniae (PXD017711) were analyzed together using xiSEARCH. The
analysis used the same parameters as those used for the synthetic XL-
peptide dataset. To control for FDR estimation, a combined database
search includingboth E. coli andM.pneumoniaeprotein sequenceswas
performed. In this combined search, any proposed interaction
between E. coli and M. pneumoniae protein sequences identified by a

CMS/UXL was considered a FP identification, labeled as mismatch.
Similar to the synthetic XL-peptide dataset, xiFDR is used twice,
separately for inputs of the xiSEARCH’ score and the percolator score,
after the rescoring process. It is important to note that only identified
between-links are shown in Fig. 4b.

Applying a lower bound estimate of the actual FDR of 1% to the
large-scale dataset cross-linked by DSSO. All CSMs provided by
Oktoberfest were submitted to xiFDRwith an initial FDR of 100%.Next,
for thefiles generatedby xiFDRat theCSM,peptidepair, andPPI levels,
all TDs and DDs were removed. The remaining TTs, CSMs, peptide
pairs, and PPIs were then sorted once based on the Percolator score
and once based on the xiSEARCH score. Finally, a lower bound esti-
mate of the actual FDR of 1% was applied.

Rescoring of human cytomegalovirus dataset cross-linked
by DSSO. The dataset with the identifier PXD031911 was analyzed by
xiSEARCH with the same parameters as those used for the synthetic
dataset (linked by DSSO). Our evaluation of Prosit-XL’s performance
involved comparing UXLs identified at 1% CSM-, peptide pair-, and PPI-
level FDR by xiSEARCH+Prosit-XL+xiFDR and those identified at 1% UXL-
level FDR by XlinkX. Comparison is done via two levels: PPIs and UXLs.
PPIs were defined as a combination of inter-protein-protein interactions
where both proteins are different and intra-protein-protein interactions
where there is a sequence overlap on the peptide pair. Same definitions
and approaches were applied for xiSEARCH+xiFDR search results. For
PPI level comparison, the gene name of the UXL is taken and sorted to
unify naming coming from both xiSEARCH+Prosit-XL+xiFDR and XlinkX
(examplePPI; (“UL25”, “UL83”)). For theUXL level, protein linkposition is
included for respective proteins (example UXL; (“UL25”, “84”), (“UL83”,
“557”)). To tackle the complexities of ambiguous UXLs, we implemented
a standardized selection process. Thedataset paper previously provided
results from XlinkX along with a selection of UXL for ambiguities42.
Initially, we utilized the XlinkX results to determine which proteins were
involved in ambiguous UXLs. We then aligned the UXLs from xiSEARCH
+Prosit-XL+xiFDR with those obtained from XlinkX. Following this
alignment, we selected the UXL based on those provided by XlinkX for
the corresponding matched UXL. In cases where multiple UXLs were
possible but did not align between the two methods, we chose the first
candidate based on an alphabetically sorted list for xiSEARCH+Prosit-XL
+xiFDR results. An initial comparative analysis was performed at the PPI
level. In this context, PPIswere categorizedas ‘gain’ if they appearedonly
in the results from xiSEARCH+Prosit-XL+xiFDR, “shared” if they were
found in both xiSEARCH+Prosit-XL+xiFDR and XlinkX results, and “loss”
if they were present only in XlinkX results. A subsequent comparative
analysis focused exclusively on the “shared” PPIs. We extracted all UXLs
from these shared PPIs for comparison. In the final analysis, we com-
bined the UXLs identified for the “loss” PPIs from the first analysis with
the UXLs defined for “loss” UXLs (those appearing only in XlinkX) from
the second analysis. These combined UXLs were then compared against
the unfiltered results from xiSEARCH. Additionally, we explored all
combinations of “Human” and “Viral” interaction types (Human-Human,
Human-Viral, and Viral-Viral) while utilizing all PPIs and UXLs from
xiSEARCH+Prosit-XL+xiFDR and XlinkX. The resulting findings were
visualized using a Venn diagram (see Fig. 5b and Supplementary
Fig. 6a, b). Regarding AF2-basedUXL distancemeasurement, the human
protein structures were extracted from the EBI-AF2 database with
reference proteome UP000005640. This database contains 23,391
predicted structures. With these settings, we were able to calculate 97%
of the defined self-link for Human proteins. For the Human-Human self-
link UXL distance measurement, we utilized the Euclidean distance and
atomic coordinates. The UXLs’ atomic coordinates were obtained using
BioPython PDB or CIF file parsers. As all AF2 predictions only provide
chain A, we measured the distance from only one chain. The distance
measurements for UL55 were conducted using post-fusion (PDB: 7KDD)
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and pre-fusion (PDB 7KDP) conformations. Since the UL55 structure is a
trimer, UXL interactions can potentially take place between any of the
chains. Consequently, distance measurements were conducted for UXL
interactions located in all possible chain combinations. If the measure-
ments for all the combinations showadistanceofmore than40Å,we re-
calculated the same pairs using opposite structural conformations to
validate the suitability of the UXL. Subsequently, these UXL interactions
were manually evaluated using PyMOL.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MS files containing CMS2 spectra of training, validation, and
holdout set are available via the PRIDE repositories with the identifier
PXD012546, PXD017711, PXD019926, and PXD011861. For the
NMS2 spectra, the relevant identifiers are PXD017620, PXD016554,
PXD019926, PXD017695, PXD014675, and PXD008550. The MS files
for CMS3 spectra can be found under the identifier PXD019926. The
training, validation, and holdout sets are available on Zenodo. The
triton-compatible format of Prosit-XL-CMS2, Prosit-XL-CMS3, and
Prosit-XL-NMS2 has been deposited on Zenodo and can be down-
loaded via the following links: https://zenodo.org/records/10277646,
https://zenodo.org/records/10281001, and https://zenodo.org/
records/11259344, respectively. The MS files for synthetic peptide
datasets using DSSO and DSS cross-linkers can be found under the
identifiers PXD029252 and PXD014337, respectively, while the syn-
thetic protein dataset is available with identifier PXD042173. Addi-
tionally, the E. coli andM. pneumoniaedatasetwas sourced from JPOST
identifier JPST000845 and PRIDE identifier PXD017711, respectively.
The MS files of the human cytomegalovirus dataset were downloaded
fromPRIDEwith the identifier PXD031911. Theunfiltered searchengine
results.fasta files, rescoring results, and RAW files of human cytome-
galovirus dataset have been deposited in the PRIDE repositorywith the
identity of PXD057705. Regarding supplementary data files, the name
of MS files used for data collection (training, validation, and holdout
set) as well as those used in the rescoring process for each dataset are
listed in Supplementary Data 1. The output of xiFDR (identified CSMs,
peptide pairs, and PPIs) for the synthetic peptide dataset, synthetic
protein dataset, E. coli and M. pneumoniae dataset, and human cyto-
megalovirus dataset is available in Supplementary Data 2–5, respec-
tively. Source data are provided with this paper.

Code availability
Source code and scripts are available on GitHub at https://github.com/
wilhelm-lab/koina, and https://github.com/wilhelm-lab/oktoberfest.
Oktoberfest repository is released under the MIT License, with all
original license and copyright information retained. Attribution to
reused components and dependencies is provided within the reposi-
tory. Custom scripts for data analysis (e.g., cross-link distance calcu-
lation) were implemented in python and are available upon request.
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