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Scaling laws of bacterial and archaeal
plasmids

Rohan Maddamsetti 1,2,3 , Irida Shyti1,2, Maggie L. Wilson1,2, Hye-In Son1,2,
Yasa Baig4, Zhengqing Zhou1,2, Jia Lu 1,2 & Lingchong You 1,2,5

The capacity of a plasmid to express genes is constrained by its length and
copy number. However, the interplay between these parameters and their
constraints on plasmid evolution have remained elusive due to the absence of
comprehensive quantitative analyses. Here, we present ‘Pseudoalignment and
Probabilistic Iterative Read Assignment’ (pseuPIRA), a computational method
that overcomes previous computational bottlenecks, enabling rapid and
accurate determination of plasmid copy numbers at large scale. We apply
pseuPIRA to all microbial genomes in the NCBI RefSeq database with linked
short-read sequencing data (4644 bacterial and archaeal genomes including
12,006 plasmids). The analysis reveals three scaling laws of plasmids: first, an
inverse power-law correlation between plasmid copy number and plasmid
length; second, a positive linear correlation between protein-coding genes and
plasmid length; and third, a positive correlation between metabolic genes per
plasmid and plasmid length, particularly for large plasmids. These scaling laws
imply fundamental constraints on plasmid evolution and functional organi-
zation, indicating that as plasmids increase in length, they converge toward
chromosomal characteristics in copy number and functional content.

Plasmids are extrachromosomal DNA elements, found ubiquitously
across bacteria and archaea, that mediate the flow of genes within and
across microbial communities. Plasmids play a role in how microbial
populations rapidly adapt to novel selection pressures by amplifying
the copy number of beneficial genes and promoting their spread by
horizontal gene transfer1–3. In the context of human health, plasmids
shape human microbiome dynamics4–6, in particular by serving as
critical vectors for the dissemination of antibiotic resistance7. Plasmids
are also foundational to biotechnology, as they can be engineered to
control recombinant gene expression and the behavior of cells,
populations, and microbial consortia8,9. Plasmid length and copy
number have a substantial impact on plasmid gene expression. Here,
we define the plasmid copy number (PCN) as the number of plasmid
copies per the longest chromosome per cell. Understanding the
interplay between plasmid length and PCN is essential, as these

parameters10 affect the molecular biology, ecology, and evolution of
microbes. Such understanding also has applications for engineering
microbial populations and communities11.

Intuitively, we would expect that plasmid lengths and copy
numbers constrain each other. For instance, a cell may have a limited
capacity to accommodate additional genetic material beyond the
chromosome, which would impose a tradeoff between PCN and
length. If so, then increasing PCN would necessarily constrain the
functional capacity of a plasmid, in termsof the number and functional
diversity of the genes it carries. Small-scale data supports this
hypothesis: high-copy-number plasmids are often small6, while larger
conjugative plasmids often have 1–2 copies per cell1. A qualitative
inverse correlation between plasmid size and copy number was
described for 11 plasmids found in a Bacillus thuringiensis strain12.
Importantly, an analysis of 2292 enterobacterial plasmids by Shaw
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et al.13 also revealed a quantitative inverse correlationbetween plasmid
size and copy number, even though the quantitative nature of this
correlation and its potential significance were not examined in depth
in that work.

Despite these earlier contributions, comprehensive data on the
distribution of PCN across Bacteria and Archaea still do not exist14.
Therefore, it is not known whether a quantitative relationship
between plasmid size and copy number holds across Bacteria and
Archaea. The rapidly increasing amount of sequence data on
plasmid-bearing microbes creates an opportunity to address these
questions. A major technical challenge is that direct PCN calculations
at scale require pairwise sequence alignment between thousands of
sequencing datasets and reference genomes, a process that is com-
putationally prohibitive15–21. The computational costs associated with
sequence alignment thus represent a key bottleneck that restricts
PCN computations from approaching the scope or scale of all
microbial genomes.

Toovercome thisbottleneck,wedevelopedPseudoalignment and
Probabilistic Iterative Read Assignment (pseuPIRA), which uses pseu-
doalignment to rapidly and accurately estimate PCNs across large
datasets. By applying pseuPIRA to all complete genomes containing
plasmids in the NCBI RefSeq database22 with linked short-read
sequencing data in the sequencing read archive (SRA)23, we report
the largest dataset on plasmid lengths and copy numbers to date. Our
analysis encompasses 4644 bacterial and archaeal genomes and
12,006 plasmids, spanning Bacteria and Archaea. We discovered uni-
versal scaling laws governing plasmid biology: first, an inverse power-
law correlation between PCN and plasmid length; second, a positive
linear correlation between protein-coding genes and plasmid length;
and third, a positive correlation between metabolic genes per plasmid
and plasmid length, particularly for large plasmids. These scaling laws
imply fundamental constraints on the evolution of plasmids, as well as
their ability to accommodate functional traits. Our findings reveal that
as plasmids increase in length, they converge toward chromosomal
characteristics in copy number and functional content, challenging
traditional distinctions between plasmids and chromosomes. This
discovery not only advances our understanding of plasmid dynamics
and microbial evolution but also has implications for biotechnology,
such as the rational design of synthetic plasmids and the engineering
of microbial communities.

Results
PCNs are rarely reported in the microbial genomics literature
One goal of this project was to generate a comprehensive dataset of
PCNs, because we found that few plasmids had reported copy
numbers in the literature. To quantitatively assess this research gap,
we randomly sampled 50 genomes, each containing at least one mul-
ticopy plasmid with PCN> 10 (Methods). We manually examined
the publications associated with each genome, based on the
genome annotation files found in the NCBI RefSeq database. PCNs
were reported for 3 out of 50 genomes (Supplementary Table 1).
Therefore, we estimate that ~6% of genomes with sequenced plasmids
have PCNs that are reported in the literature.

Pseudoalignment and Probabilistic Iterative Read Assignment
(pseuPIRA) is a scalable and accurate method for PCN
estimation
To address this critical gap and enable a comprehensive under-
standing of plasmid dynamics across Bacteria and Archaea, we devel-
oped Pseudoalignment and Probabilistic Iterative Read Assignment
(pseuPIRA), which is described in Fig. 1A andBox 1. Using pseuPIRA, we
estimated PCNs at an unprecedented scale, facilitating the discovery of
universal scaling laws in plasmid biology. Our final dataset comprises
4644 bacterial and archaeal genomes with a total of 12,006 PCN
estimates.

A direct PCN calculation only requires two assumptions. First, we
assume that the lengths of all chromosomes and plasmids in the
genome are known. Second, we assume that the relative amounts of
sequencing data that map to chromosomes versus plasmids in each
sequencing sample are proportional to the physical amount of
DNA corresponding to chromosomes and plasmids in the genome.
Figure 1A shows an example calculation. Suppose a genome has one
chromosome and one plasmid with three copies relative to the chro-
mosome. By dividing the total amount of sequencing data (in units of
nucleotide base pairs) mapped to a chromosome or plasmid by the
corresponding lengths of the chromosome or plasmid, the ratio of
plasmid DNA to chromosomal DNA in the sequencing data can be
calculated. This estimates the PCN per chromosome in the sequenced
sample.

The direct PCN estimation method, however, does not account
for sequencing reads that map to multiple replicons. Here, we define
“replicon” as a generic term for either chromosomes or plasmids. We
define a “uniread” as a sequencing read that unambiguously maps to a
single replicon, and a “multiread” as a sequencing read that maps to
multiple replicons. Multireads can arise due to repetitive or duplicated
sequences that are shared across replicons. Such a situation can arise
whenplasmids and chromosomes sharemobile genetic elements, such
as a transposon that has jumped from the chromosome to a plasmid2,3.
Multireadsmay affect PCN estimates when a plasmid shares significant
homologywith either the chromosome or other plasmids in the cell. In
this case, an unknown fraction of multireads may come from the
plasmidof interest, while the remainder comes fromother replicons in
the genome. However, that unknown fraction depends on the PCN,
introducing a circular dependency.

pseuPIRA solves the multiread problem. Pseudoalignment is first
used to map reads to replicons. Unireads are used to make an initial
estimate of PCNs. The multireads are then re-aligned to the reference
genome using traditional pairwise sequence alignment24,25. The multi-
reads that map to a single genomic location with traditional alignment
are combined with the unireads to improve the PCN estimates (Box 1).
The remaining multireads are then probabilistically allocated to each
replicon in the genome, based on the initial PCN estimates. The esti-
mates are iteratively updated until convergence, based on the reallo-
cation of multireads. That is, our pipeline uses pseudoalignment to
quickly make good initial PCN estimates and then uses probabilistic
iterative read assignment (PIRA) to refine those estimates based on
multiread information.

Pseudoalignment overcomes the computational bottleneck that
would be caused by using traditional alignment to map terabytes
worth of short-read sequencing data to thousands of reference
microbial genomes15–21,26,27. We compared the computational perfor-
mance of our standalone Python implementation of pseuPIRA (https://
github.com/rohanmaddamsetti/pseuPIRA) against CoverM, a state-of-
the-art program for PCN estimation28 implemented in Rust29. On a
small genomic dataset (1.58 Gb data), pseuPIRA is 1.29× slower than
CoverM (16.6 s versus 12.9 s), while on a large genomic dataset
(90.6Gb data), pseuPIRA is 1.67× faster (705.0 s versus 1175.7 s),
demonstrating the superior computational scaling properties of
pseudoalignment over alignment for PCN estimation (Supplementary
Table 2).

We used pseuPIRA to estimate the copy number of 12,006 plas-
mids (Supplementary Data 1). Summary statistics for plasmids binned
into percentiles by length are provided in Supplementary Data 2. This
dataset represents the largest andmost comprehensive set of PCNs to
date, by comparison to the 6327 plasmids reported by Ramiro-
Martinez et al.28 and the 2292 plasmids reported by Shaw et al13. In
addition our data span bacterial and archaeal taxa, while these pre-
vious datasets only cover plasmids from enterobacteria13,28. By com-
paring PCN estimates made with pseuPIRA to PCN estimates by the
direct method (pseudoalignment only), we find that pseuPIRA
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recovers PCN for 103 more plasmids, by enabling estimation for
plasmids with many multireads but few unireads (Pearson correlation
ρ = 0.959, Supplementary Fig. 1A). When unireads are abundant, then
pseuPIRA generates PCN estimates that are consistent with the direct
approach, which neglects multireads (Pearson correlation ρ = 0.997,
Supplementary Fig. 1B). Several plasmids had estimated PCN< 1,
meaning that the number of plasmid copies were lower than the
number of chromosome copies in the sample sent for genome
sequencing. To assess pseuPIRA’s accuracy, we first compared PCN
estimates generated by pseuPIRA to PCN estimates generated by tra-
ditional alignment algorithms24,25,30. Due to the computational over-
headof using alignment to estimate PCNs,we selected a random set of
100 genomes to benchmark pseuPIRA against traditional alignment
methods. Each of these randomly selected 100 genomes contained at
least one plasmid with an estimated PCN<0.8, to test whether these
low PCN estimates were also recovered by traditional alignment
algorithms. If so, this outcome would indicate that these low PCN

estimates were a property of the underlying sequencing data, and not
an artifact caused by pseuPIRA.

We used two methods to estimate PCN using traditional align-
ment. First, we used minimap2, as a state-of-the-art method for pair-
wise alignment of sequencing reads to reference chromosomes and
plasmids24,25. Second, we used breseq30, an established genome rese-
quencing pipeline that uses Bowtie 231 to align sequencing reads to
reference chromosomes and plasmids. Importantly, both minimap2
and breseq have been used to estimate PCNs2,3,32,33. The comparison
between pseuPIRA and minimap2 (Pearson correlation ρ =0.998,
Supplementary Fig. 1C) and between pseuPIRA and breseq (Pearson
correlation ρ =0. 991, Supplementary Fig. 1D) shows that PCN esti-
mates generated by pseuPIRA are consistent with PCN estimates
generated by traditional read alignment algorithms. As an additional
technical control, we examined whether PCN estimates generated by
pseudoalignment were sensitive to the specific choice of software
used. We compared PCN estimates generated by Themisto27 (the

Fig. 1 | Computation of plasmid copy numbers over bacteria and Archaea
reveals that copy number inversely correlates with plasmid length. A The
computational pipeline. Suppose a genome has one chromosome and one plasmid
with three copies relative to the chromosome. By dividing the total amount of
sequencing data mapped to a chromosome or plasmid by the length of the chro-
mosome and plasmid, the ratio of plasmid DNA to chromosomal DNA can be
calculated. This estimates the plasmid copy number per chromosome in the sam-
ple. Pseudoalignment is used to rapidly estimate plasmid copy numbers, and
Probabilistic Iterative Read Assignment (PIRA) is used to incorporate reads that
map to multiple replicons (e.g., the chromosome and plasmid) to further improve

plasmid copy number estimates.B Plasmid length inversely correlateswith plasmid
copy number. Rescaling plasmid length by the length of the largest chromosome in
the cell reveals a scaling law. A segmented regression (in maroon) was fit to these
normalized data on a log-log plot. The segmented regression has a first slope of
–0.880, a breakpoint at –1.735 (or 1.84% of a chromosome), a second slope of
–0.125, and an Adjusted R2 of 0.690. The marginal density distributions of plasmid
copy number and normalized length are displayed on the axes. C The inverse
correlation holds across diverse environments. The ecological provenance of each
repliconwas annotatedper themethoddescribed inMaddamsetti et al.3 (Methods).
Source data are provided as a Source Data file.
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software used for pseuPIRA) against PCN estimates generated by
kallisto16. As expected, we found that these PCN estimates were highly
consistent (Pearson correlation ρ = 0.991, Supplementary Fig. 1E).
Finally, we compared PCN estimates generated by pseuPIRA to the
previously published PCN estimates in the Supplementary Table 2 of
Shaw et al.13 (Pearson correlation ρ = 0.997, Supplementary Fig. 1F).
Together, these results indicate that pseuPIRA provides reliable and
consistent PCN estimates, and show that the low PCN estimates are a
property of the underlying sequencing data, given the consistency of
these PCN estimates across methods and with previously published
PCN data.

A universal inverse power-law correlation between plasmid
length and PCN
Using pseuPIRA, we generated the largest dataset on PCNs to date,
covering genomes across Bacteria and Archaea. This dataset reveals an
inverse power-law correlation between PCN and plasmid length
(Fig. 1B, Supplementary Figs. 2 and 3, Supplementary Data 2). The
distribution of plasmid sizes is bimodal, so K-means clustering with
K = 2wasused to assign plasmids into two clusters. The cluster of small
plasmids has a mean copy number of 28.1 plasmids per chromosome
with a standarddeviation of 68.4, and a range from0.08 to 2433 copies

per chromosome. The cluster of small plasmids has a mean length of
6579 bp with a standard deviation of 4811.9 and a range from 1025 to
22,729 bp. The cluster of large plasmids has a mean copy number of
1.89 plasmids per chromosome with a standard deviation of 5.3 and a
range from 0.10 to 305.2 copies per chromosome. The cluster of large
plasmids has a mean length of 141,607 bp with a standard deviation of
179,864.6 bp, and a range from 22,780 to 2,586,495 bp (Supplemen-
tary Data 3).

MOB-typer34 was used to classify plasmids as conjugative,
mobilizable, or non-mobilizable. 3181 out of 3203 conjugative plas-
mids fall into the cluster of large plasmids (99.3%). By contrast,
mobilizable plasmids (i.e., those that can be transferred by conjuga-
tion, but do not themselves encode conjugationmachinery) and non-
mobilizable plasmids have a wide distribution of lengths and may fall
into either the large or small clusters (Fig. 1B). 229 plasmids are
longer than 500,000 bp in length. Among these 229 megaplasmids35,
31 are conjugative, 28 are mobilizable, 103 are non-mobilizable,
and 67 are unannotated, consistent with previous observations that
most megaplasmids are non-mobilizable36. Many of these mega-
plasmids are chromids, which resemble secondary chromosomes
even though they replicate using plasmid replication and partitioning
systems35,37.

BOX 1

Probabilistic iterative read assignment

Definitions: a replicon is a general term for a chromosome or plasmid. A uniread is a sequencing read thatmaps to a unique replicon. Amultiread
is a sequencing read that maps to multiple replicons (e.g., the chromosome and one or more plasmids).

PIRA initialization step:
• Use pseudoalignment (themisto computer program) to assign sequencing reads to replicons.

• Make the initial PCNestimate vectorπ1with the unireads:π1 =
1

ðR1=L1Þ

R1=L1
:::

Rj=Lj
:::

Rn=Ln

2
66664

3
77775
whereRj is the number of unireadsmapping to replicon j, and L is

the length of replicon j. We assume that the 1st replicon is the longest chromosome in the genome, with copy number 1.
• Map the multireads to the reference genome using alignment (minimap2 computer program).
• Multireads that align to a unique genomic location are added to the set of unireads. π1 is updated to include this information.
• For each of the remaining (true) multireads:

Get the number of matches to each replicon in the reference genome.
Update the match matrix M, whereMij = the number of matches of multiread i to replicon j.

For example, suppose M=

1 2 0 1
0 1 1 0
1 1 0 0
� � � � � � � � � � � �
0 2 1 0

2
66664

3
77775
. Each row of M represents a multiread.

Each column of M represents a replicon (there are 4 replicons in this genome). The first row represents a multiread that maps to replicon 1
once, replicon 2 twice, replicon 3 zero times, and replicon 4 once.

PIRA iterations:
• Turn the PCN estimate vector π1 into a diagonal matrix D = diag(π1).
• Weight eachcolumnofMby the corresponding entry of the PCNestimate vectorπ1.Wedo sobymultiplyingMbyD tomake thematrix-matrix
product MD.

• Normalize each row of the matrix MD to sum to one to make matrix M* (This is the probabilistic read assignment step).
• Sum over rows of M* to generate the multiread vector RD = [RD1 RD2 … RDn].

• Use the multiread vector RD to update π1 as follows: π2 =
1

ðR1 +RD1Þ=L1

ðR1 +RD1Þ=L1
:::

ðRj +RDjÞ=Lj
:::

ðRn +RDnÞ=Ln

2
66664

3
77775

• Iterate until the PCN estimate vector π converges–if this process takes k iterations, then πk + 1 ffi πk at convergence.
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This inverse correlation between PCN and plasmid length is uni-
versal, holding across diverse environments (Fig. 1C and Supplemen-
tary Fig. 3) and bacterial and archaeal taxa (Supplementary Fig. 4).
Furthermore, this inverse correlation between PCN and length largely
holds within individual genomes as well. Out of 2810 genomes con-
taining two or more plasmids, 2301 have an inverse correlation
between plasmid length and copy number (mean Pearson correlation
coefficient = –0.92), while 509 show a positive correlation (mean
Pearson correlation coefficient = 0.86). Out of 1724 genomes contain-
ing three or more plasmids, 1539 have an inverse correlation between
plasmid length and copy number (mean Pearson correlation
coefficient = –0.87), while 185 show a positive correlation (mean
Pearson correlation coefficient = 0.61). The intragenomic inverse cor-
relation between PCN and length is even stronger when we consider
the 2142 genomes that contain at least one small plasmid. 1764 of these
genomes contain two or more plasmids, and 1689 of those have an
inverse correlation between plasmid length and copy number (mean
Pearson correlation coefficient = –0.93), while 75 show a positive cor-
relation (mean Pearson correlation coefficient = 0.75). 1323 of these
genomes contain three or more plasmids, and 1287 of those have an
inverse correlation between plasmid length and copy number (mean
Pearson correlation coefficient = –0.90), while 36 show a positive
correlation (mean Pearson correlation coefficient = 0.47). This analysis
suggests that the genomes with positive intragenomic correlations
between plasmid length and copy number are largely genomes that
only contain large plasmids. It is possible that many such positive
correlations could occur by chance, assuming that these plasmids
largely have PCN ~ 1.

We normalized the length of each plasmid by the length of the
longest chromosome in its genome (Fig. 1B, C). These data are well fit
by a segmented regressionmodel38,39 in which PCN linearly scales with
plasmid length on a log-log scale, up to a length threshold at which
PCNs start to converge to chromosomal copy numbers (Fig. 1B, Sup-
plementary Figs. 2 and 3). The breakpoint for this scaling law occurs
when the plasmid reaches 1.8% of the length of the chromosome. A
model comparison using Akaike’s InformationCriterion shows that the
segmented regression model (AIC = 8152.2, R2 = 0.690) is significantly
better than both a linear regression model (AIC = 9614.6, R2 = 0.649)
and a second-order polynomial regression model (AIC = 8400.6,
R2 = 0.683). The same pattern holds when a segmented regression
model is fit to the unnormalized data: the segmented regression
(AIC = 8048.8, R2 = 0.692) is significantly better than both a linear
regression model (AIC= 9824.2, R2 = 0.643) and a second-order poly-
nomial regressionmodel (AIC= 8212.6, R2 = 0.688). The breakpoint for
the segmented regressionfit to the unnormalized lengthdata occurs at
56,624 bp. Further details about the segmented regression are pro-
vided in Supplementary Table 3.

The segmented regression model suggests the following inter-
pretation. PCNs can be modeled as a mixture of plasmids with cell-
cycle-dependent and cell-cycle-independent replication mechanisms.
The low-copynumber conjugative F plasmid (length 99,159 bp) has 1–2
copies per cells, and replicates in sync with the cell cycle in Escherichia
coli40–42. By contrast, themulticopy R6K plasmid (39,872 bp) replicates
in a cell-cycle independent manner41,43,44. The scaling law may repre-
sent how PCN scales with plasmid length for plasmids that replicate
using cell-cycle independent mechanisms. Once plasmids reach a cri-
tical length threshold, which seems to be ~2% of the length of the
chromosome, mechanisms that coordinate plasmid replication with
cell division become critical for stable plasmid maintenance.

Small multi-copy plasmids mostly coexist with large, low-copy
plasmids
Plasmids often co-occur with other plasmids in the environment45, and
positive interactions between plasmids can stabilize such co-existence
within cells46. We asked howoftenmulti-copy plasmids co-existedwith

larger plasmids in these data. Out of 4644 genomes containing plas-
mids with PCN estimates, 1834 contain a single plasmid. By contrast,
out of 1440 genomes containing plasmids with PCN> 10 in our data,
only 184 contained those multi-copy plasmids as their sole plasmid.
Therefore, plasmids with PCN> 10 mostly coexist with large low-copy
plasmids (Binomial test: p < 10–15). Interactions among plasmids, in
particular, interactions among small multi-copy plasmids and larger
conjugative plasmids,may thereforeplay a role in the empirical scaling
law between plasmid length and copy number.

Genetic features associated with plasmid length and
copy number
The inverse power-law between plasmid length and PCN holds
across plasmid taxonomic units (PTUs). We assigned plasmids to
PTUs using multiple, previously published plasmid classifications, to
see how plasmid lengths and copy number vary with genetic distance.
First, we used the PTUs reported by Acman et al.47 and Redondo-Salvo
et al.48, who clustered plasmids into PTUs by k-mer similarity and
Average Nucleotide Identity, respectively. In both cases, plasmids
within a given PTU cluster by length, and have similar copy numbers
(Supplementary Fig. 5). Second, we clustered plasmids into PTUs
basedon similarity byMashdistance (using thedefault 0.06 threshold)
using MOB-cluster34. Third, we typed plasmids based on their Rep
proteins with MOB-typer34. Again, plasmids within PTUs based on
these definitions have similar lengths and copy numbers. Finally, we
used the Rep typing reported by Ares-Arroyo et al.49. Since plasmid
incompatibility groups are largely defined by the Rep proteins that
initiate plasmid replication, these results indicate that PCN strongly
associates with plasmid length and the molecular systems that initiate
plasmid replication. Across these plasmid classification systems, plas-
mid length is more conserved than PCN within PTUs. This finding
indicates that the copy numbers for small plasmids can vary over an
order ofmagnitude, while highly related plasmids (as defined byK-mer
similarity, and ANI) have similar lengths (Supplementary Fig. 5). It is
likely that the conservation of plasmid length within PTUs, to some
degree, is related to the fact that PTUs are often defined using metrics
that are highly sensitive to plasmid length (such as k-mer similarity,
Mash distance, and ANI). Regardless, our analysis shows that the uni-
versal inverse power-law correlation between plasmid length and PCN
holds across PTUs as defined by several different methods.

Plasmid relaxase typing does not determine plasmid length
and PCN. Plasmid lengths and copy numbers are not determined by
plasmid mobility types as annotated by MOB-typer34, although some
mobility groups are specific to large conjugative plasmids. Plasmid
mobility groups are defined by the relaxaseproteins that nickplasmids
at oriT transfer origins to initiate horizontal gene transfer by con-
jugation. Specifically, many mobility groups show two modes, one
corresponding to smallmobilizablemulti-copy plasmids, and a second
corresponding to large low-copy conjugative plasmids (Supplemen-
tary Fig. 6).

No correlations between PCN and plasmid host range. We also
examined plasmid lengths and copy numbers in the context of host
range annotation made by MOB-typer34 and the host range plasmid
annotations reportedbyRedondo-Salvo et al.48 (Supplementary Fig. 7).
Large and small plasmids are found together across annotated host
ranges, indicating that plasmid size and copy number does not cor-
relate well with plasmid host range.

Many plasmids have PCN< 1
Ourdata shows thatmanyplasmids have a lower copynumber than the
chromosome (Fig. 1, Supplementary Fig. 8). Our methodological vali-
dations of pseuPIRA (Supplementary Fig. 1) show that this result is a
genuine property of the sequencingdata used for these PCNestimates.

Article https://doi.org/10.1038/s41467-025-61205-2

Nature Communications |         (2025) 16:6023 5

www.nature.com/naturecommunications


Out of the 12,006 plasmids in these data, 2487 plasmids have PCN< 1,
representing 21%of all plasmids. Across ecological categories, between
10% and 25% of plasmids have PCN< 1 (Supplementary Fig. 8B).

High copy number plasmids are rare and are enriched in human-
impacted environments
High copy number plasmids (PCN> 50), by contrast, are relatively rare
in this dataset (Supplementary Fig. 7A, C). Out of the 12,006 plasmids
in these data, 537 plasmids have PCN> 50, representing 4.5% of all
plasmids. High copy number plasmids are significantly enriched in
human-impacted environments (Supplementary Fig. 8B). Together,
these observations suggest that smallmulticopy plasmids tend to have
stable copy numbers of ~10–40 copies per chromosome per cell
(Fig. 1), such that plasmids with very high copy numbers (PCN> 50)
may be signatures of recent positive selection for higher plasmid gene
expression50.

Functional properties and organization of plasmids approach
the functional organization of chromosomes as they increase
in size
Our findings showhowPCNs converge to chromosome copy numbers,
as plasmids increase in length (Fig. 1). We hypothesized that many
functional properties of plasmids should converge to the functional
properties of chromosomes as they increase in size. Indeed, we find
that scaling laws emerge for the fraction of protein-coding sequences
per plasmid and for the number of metabolic proteins per plasmid, as
plasmids increase in length. These scaling laws converge to scaling
laws that hold for chromosomes. This analysis was conducted on all
complete microbial genomes containing plasmids in the NCBI RefSeq
database, comprising 18,253 genomes containing 48,569 plasmids at
the time of analysis.

Protein-coding sequence scaling law. Smillie et al.36 reported that
larger plasmids have protein-coding densities approaching that of
chromosomes, while small plasmids are less coding dense. Our data
shows that this pattern is universal across environments andmicrobial
taxa. As plasmids increase in size, the fraction of sequence dedicated
to protein-coding sequences converges to the fraction of sequence
dedicated to protein-coding sequences on chromosomes (Fig. 2A, B).
This pattern holds across plasmids and chromosomes sampled across
diverse environments and bacterial and archaeal taxa (Fig. 2C and
Supplementary Fig. 9). This finding implies that as plasmids decrease
in length, protein coding density also decreases, as previously indi-
cated by Smillie et al.36. A simple explanation is that the overhead for
regulatory sequences that determine plasmid replication, stability, and
maintenance is relatively larger for small plasmids compared to large
plasmids. For instance, a plasmid replication origin may take up some
fixed length of DNA, and the relative length of this noncoding
sequence decreases as a plasmid increases in length. In other words, as
a plasmid increases in length, the relative length of the minimal
sequence requirements for an autonomously replicating plasmid
decreases, while this fraction may be relatively large for very small
plasmids (Fig. 2B).

Emergence of a metabolic scaling law as plasmids approach
chromosome length scales. We annotated metabolic genes on plas-
mids by mapping genes to the metabolic pathways annotated in the
KEGG database51, using the GhostKOALA functional annotation
webserver52. Plasmid size scales with the number of metabolic genes
on the plasmid. Given the computational cost of annotating chromo-
some metabolic genes with the GhostKOALA webserver, we only
annotated metabolic genes for 100 chromosomes, arbitrarily chosen
to span the full rank distribution of chromosomes by length. The
metabolic scaling relationship found for these 100 chromosomes
emerges among megaplasmids that are longer than 500,000 bp

(Fig. 3). Again, this emergent scaling law holds across plasmids and
chromosomes sampled across diverse environments and bacterial and
archaeal taxa (Fig. 3B and Supplementary Fig. 10). This scaling lawmay
emerge due to fundamental constraints on cellular energetics. Mega-
plasmidsmayneedmoremetabolic capacity (measuredby the number
of metabolic genes) to compensate for the metabolic burden required
to maintain such large plasmids. Strikingly, the metabolic scaling law
only fails forMycoplasmatota (Supplementary Fig. 10B); these bacteria
are obligate pathogens that lack cell walls and include bacterial species
with the smallest known cells, genomes, and metabolisms, even lack-
ing key pathways like the TCA cycle53. This finding additionally sup-
ports our interpretation that the metabolic scaling law is caused by
fundamental constraints on cellular energetics.

Discussion
We have uncovered universal scaling laws that govern fundamental
aspects of plasmid biology, revealing deep-rooted principles under-
lying microbial evolution and genome organization. This work reports
the largest dataset on PCN and length to date, encompassing 4644
bacterial and archaeal genomes and 12,006 plasmids. Our discovery of
an inverse power-law correlation between PCN and plasmid length
indicates a fundamental constraint that dictates how much plasmid
DNA can be stably transmitted over time: once plasmid DNA content
reaches ~2% per chromosome, plasmid replication needs to be syn-
chronizedwith the cell cycle for stable inheritance. This scaling law not
only advances our understanding of plasmid biology but also chal-
lenges traditional distinctions between plasmids and chromosomes,
suggesting a continuum of genetic elements shaped by fundamental
biophysical constraints.

One surprising finding in our analysis is the prevalence of plas-
mids with PCN < 1. Why may this be the case? First, the PCN estimates
reported in this work are relative to chromosome copy numbers, and
do not represent estimates of the absolute number of plasmids per
cell. It is known that bacteria can containmultiple chromosome copies
per cell54–56, such that a clonal bacterial population can contain sub-
populations with different numbers of chromosome copies per cell.
The frequencies of these subpopulations can change over long-term
evolution57. Furthermore, some large bacteria show extreme poly-
ploidy comprising tens of thousands of chromosome copies per cell58.
This means that PCN estimates <1 can arise in cases where, say, a
bacterium has four chromosome copies and two plasmid copies. In
this scenario, we would estimate PCN =0.5. Second, PCN estimates <1
could arise when genomic DNA is prepared from exponential-phase
cultures. During exponential growth, PCNs can be lower than chro-
mosomal copy numbers59,60. Third, this result could be caused by
plasmid heterogeneity in sequenced bacterial clones, where some, but
not all, daughter cells contain the plasmid. In other words, themixture
of cells in an otherwise clonal sample may vary in the number of
plasmids per cell, where the plasmid is present in some cells and
absent from others. Such a scenario could arise during dynamic divi-
sion of labor on plasmids, where a costly plasmid is maintained in a
bacterial population by horizontal gene transfer from slow-growing
producer cells to fast-growing cells without the plasmid61. PCN< 1
could also bemaintainedby the presenceof parasitic satellite plasmids
that effectively reduce the copy number of the plasmid of interest62.

While we were finalizing our manuscript, we became aware of
independent work reporting both a large dataset of PCNs as well as a
scaling law relating PCN to plasmid length28. The convergence of
findings from independent studies validates the universality of the
inverse scaling law between plasmid length and copy number. That
said, the variance in PCN for small plasmids spans two orders of
magnitude for the same normalized length, and this variance in PCN
decreases as plasmid length increases (Fig. 1 and Supplementary
Data 2). Understanding why PCNs show such variability around the
inverse scaling law remains an open question in need of further
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investigation. Significant variability in PCN estimatesmay be caused by
differences in bacterial growth conditions, DNA extraction
methods14,63, and experimental protocol (e.g., qPCR or whole genome
sequencing64), so for this reason, we note that any particular PCN
estimate in our dataset should be interpretedwith care. Regardless, we
expect our finding of an inverse scaling law between PCN and plasmid
length to be robust, given that it holds across 12,006 PCN estimates
sampled across diverse bacteria and environments, and collected by
diverse research groups using a range of experimental protocols for
bacterial growth and DNA sequencing. We also expect the inverse
scaling law to be robust to phylogenetic non-independence between
genomes and plasmids, because the inverse scaling law holds across
PTUs (Supplementary Fig. 4). That said, an ongoing technical challenge
in the field is the development of methods that can explicitly take
phylogenetic non-independence between plasmids into account,
given the plastic and dynamic nature of plasmid evolution which is
dominatedby structural variation, recombination, andhorizontal gene
transfer over point mutations and vertical inheritance65,66.

Our analyses also reveal scaling laws constraining fundamental
aspects of plasmid biology, such as protein-coding regions and meta-
bolism. We found that as plasmids increase in size, their functional
properties and organization converge toward those of chromosomes,
highlighting a unifying principle in genome evolution. These findings
are consistentwithprevious reports that the functional gene content of
microbial genomes follow empirical scaling laws67–72, and show that
such relations extend toplasmids. The emergentmetabolic scaling law,
in particular, indicates that larger plasmids incorporate more meta-
bolic genes, suggesting thatmetabolic capacity is a critical factor in the
stablemaintenance of very large plasmids and chromids. Together, our
results demonstrate the existence of biophysical or evolutionary con-
straints that dictate stable plasmid coding structures. Such constraints
may include bioenergetic or metabolic factors, or fundamental trade-
offs between plasmid replication and transcription73,74, that (1) con-
strain the copy number of large plasmids, (2) select for lower coding
density for small plasmids, and (3) select for increased numbers of
metabolic genes, once plasmids pass some critical length threshold.
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Fig. 2 | Protein-coding sequences on plasmids follow an empirical scaling law.
Comparison of scaling between chromosomes and plasmids on a log-log scale.
Plasmids are shown in blue, megaplasmids (plasmids > 500,000bp in length) are
shown in red, and chromosomes are shown in green. Source data are provided as
Source Data files.AAsplasmids increase in size, the fraction of sequencededicated
to protein-coding sequences converges to the fraction of sequence dedicated to
protein-coding sequences on chromosomes. B As plasmids increase in size, the

fraction of sequence dedicated to protein-coding sequences increases. The non-
coding fraction is defined as (length – coding sequence length) / (length). The gray
line indicates the average noncoding fractions and lengths of 100 buckets of
plasmids, binned by length.C The same pattern holds formicrobes sampled across
diverse environments. The ecological provenance of each replicon was annotated
per the method described in Maddamsetti et al.3 (Methods).
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These constraints have broad implications for the evolution of micro-
bial genomes, the dynamics of horizontal gene transfer, and the
adaptability of microbial communities in various environments.

The PCN-length scaling law could suggest an approximate con-
servation of the fraction of cellular resources allocated for the replica-
tion and maintenance of multicopy extrachromosomal DNAs. This
scaling law could also emerge from multileveled selection on plasmid
replication75, by at least two mechanisms. First, Takeuchi et al. report a
scaling law of multilevel evolution, in which the size of a collective (i.e.,
intracellular PCN) N and the mutation rate of its componentsm satisfy
the relationNmα =K, where the scaling exponentαdepends onmultiple
factors and K is constant76. If the mutation rate scales linearly with
plasmid length, then thismodel predicts an inverse scaling law between
PCN and length. Second, Xue et al.77 combinemultilevel selectionwith a
coarse-grained model of microbial metabolism to predict that optimal
plasmid size inversely scales with PCN. For the simplest cases, these
mechanisms all predict an inverse scaling between plasmid length and
copy number with a slope of −1 on a log-log scale. However, our data
point to a more nuanced picture (Supplementary Table 3 and Supple-
mentary Fig. 11). Suppose the inverse scaling relation between plasmid
length and copy number has slope = −1 on a log-log scale. Then plasmid
DNA content (PCN × plasmid length) should be constant (i.e., a flat line
with slope =0ona log-log scale).However, Supplementary Fig. 11 shows
that the segmented regression on normalized plasmidDNA content has
a first slope of 0.118 and a second slope of 0.747 (Adjusted R2 = 0.316).
Therefore, further theory and quantitative experiments are needed to
understand the biophysical and evolutionary origins of these empirical
scaling laws.

Our findings have practical implications for biotechnology and
synthetic biology. Understanding the scaling laws governing plasmid
biology can inform the rational design of synthetic plasmids, opti-
mizing them for desired functions while ensuring stable inheritance
and minimal metabolic burden on host cells11,33. One intriguing
implication of the scaling laws we uncovered is that larger plasmids
may serve as a more efficient chassis for engineered functions. As
plasmid size increases, the fraction of DNA dedicated to protein-
coding sequences and metabolic genes scales predictably, conver-
ging toward chromosomal characteristics. This suggests that larger
plasmids have greater potential to accommodate diverse functional
modules, particularly those related to metabolic processes. By con-
trast, smaller plasmids appear to require a higher fraction of their
noncoding DNA for essential functions such as replication, stability,
and maintenance (Fig. 2B). This observation could indicate that small
plasmids aremore constrained in their ability to host engineered gene
circuits, as the available space for protein-coding sequences is more
limited. This scaling behavior raises the possibility that larger plas-
mids are inherently more efficient for applications where high
encoding capacity is required. Not only can they support more
protein-coding sequences, but they may also be more suited to carry
complex metabolic pathways. By using larger plasmids as chassis,
synthetic biologists might achieve more stable and scalable designs
with reduced competition between essential functions and engi-
neered traits. This finding could help guide the selection of plasmid
sizes in the design of synthetic constructs, favoring larger plasmids
for applications requiring extensive metabolic or functional gene
integration78,79.

0

1

2

3

3 4 5 6 7
log10(length)

lo
g1

0(
m

et
ab

ol
ic

 g
en

es
)

A

Plants Unannotated Water

Human−impacted Humans Livestock

Animals Earth Food

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

0
1
2
3

0
1
2
3

0
1
2
3

log10(length)
lo

g1
0(

m
et

ab
ol

ic
 g

en
es

)

B

replicon type plasmid megaplasmid chromosome

Fig. 3 | A metabolic scaling law emerges as plasmids approach chromosome
length scales. Comparison of scaling between chromosomes and plasmids on a
log-log plot. Plasmids are shown in blue, megaplasmids (plasmids > 500,000bp in
length) are shown in red, and chromosomes are shown in green. The linear
regression between log10(metabolic genes) and log10(length) for chromosomes is
shown in black. The gray line indicates the average length of plasmids containing n
metabolic genes, wheren is an arbitrary integer. Asn increases, the scaling between
plasmid length and the number of metabolic genes n (shown in gray) approaches

the scaling for chromosome length and number of metabolic genes n (shown in
black). Source data are provided as a SourceDatafile.A Plasmids can vary in size by
orders of magnitude but still carry similar numbers of metabolic genes—but as
plasmids reach megaplasmid scales (>500,000bp in length), their metabolic gene
content begins to scale like chromosomes. B The emergent metabolic scaling law
holds for microbes sampled across diverse environments. The ecological prove-
nance of each repliconwas annotated per themethod described inMaddamsetti et
al.3 (Methods).
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Moreover, our work also demonstrates the power of applying
efficient algorithms (e.g., pseudoalignment) developed for one pro-
blem (transcriptomics), to another (PCN estimation) to reveal new
biology. For example, pseudoalignment could accelerate the infer-
enceofmicrobial growth rates frompeak-to-trough coverage ratios in
microbiome data80, as well as the discovery of structural variation in
microbiomes81, as the state-of-the-art currently depends on
alignment-based methods80,81. Based on our current results, we
hypothesize that such an analysis would show that plasmid replica-
tion rates converge to chromosome replication rates in microbiome
data, as plasmid lengths approach the size of chromosomes. Second,
pseudoalignment should accelerate the discovery of high-copy-
number plasmids and gene amplifications in large databases of
metagenome-assembled genomes (MAGs)82–84. By rapidly remapping
raw sequencing data to MAGs using PIRA or other pseudoalignment-
based methods, the relative copy numbers of different replicons in a
metagenomic sample may be estimated. This approach could facil-
itate the identification of genetic elements associated with antibiotic
resistance, virulence factors, or metabolic capabilities, with sig-
nificant implications for public health and environmental micro-
biology. The discovery of replicons with elevated copy number in
microbiome data may represent high-copy-number plasmids, mobile
genetic elements, viruses, or genetic amplifications mediated by
selection and horizontal gene transfer2,3. Finally, pseudoalignment
and PIRA have potential applications to biological questions beyond
PCN estimation, as gene copy number changes are important in both
eukaryotic genome evolution (including plant domestication) and
cancer evolution.

Methods
PCN analysis
Input genomes for the PCN analysis pipeline. A table of microbial
genomes in the NCBI genomes database was downloaded from: https://
ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt (last
accessedMarch 17, 2025). This tablewasfiltered for genomes containing
plasmids by running the followingUNIX command: grep “plasmid” data/
prokaryotes.txt | grep “Complete Genome” | sed ‘s/GCA/GCF/g’ > results/
complete-prokaryotes-with-plasmids.txt. This command restricts the
analysis to high quality complete genome assemblies that contain at
least one annotated plasmid. This resulted in a filtered table of 19,211
bacterial and archaeal genomes containing plasmids. These genomes
from the NCBI RefSeq database were then filtered by the availability of
corresponding Illumina short-read sequence data in the NCBI SRA.

Downloading of reference genome annotation and corresponding
Illumina short-read sequencing data. Data downloading was auto-
matedwith the Python 3.12 script PCN_pipeline.py. First,metadata for
each genome in prokaryotes-with-chromosomes-and-plasmids.txt
was examined to find the subset of genomes with paired-end Illumina
sequencing data in the NCBI SRA. This resulted in a table, RunID_ta-
ble.csv, containing records for 4853 genomes containing plasmids.
The NCBI RefSeq database was cross-checked against these genomes,
and reference genome annotation data were downloaded for the
subset of microbial genomes found in the NCBI RefSeq database.
Illumina paired-end short-read sequencing data in fastq format was
downloaded for each of these microbial genomes in RefSeq; this step
was the most time-consuming step of this pipeline, taking two weeks
to download ~15 TB of sequencing data, using the prefetch and
fasterq-dump programs in NCBI SRA Toolkit v3.2.023. At this stage, a
Python 3.12 script called check-genome-quality-and-consistency.py
was used to ensure that all downloaded fastq data corresponded to a
downloaded reference genome, and to ensure that all reference
genomes contained complete chromosome assemblies. In all,
sequencing data for 4849 microbial genomes in NCBI RefSeq were
downloaded.

Pseudoalignment of sequencing reads against reference genomes
and direct PCN estimation. Sequencing data processing was auto-
mated in the Python 3.12 script PCN_pipeline.py. kallisto 0.51.0 and
themisto 3.2.2 were used to pseudoalign Illumina sequencing reads
against reference chromosomes and plasmids. The sequencing reads
were successfully pseudoaligned to chromosomal and plasmid refer-
ence sequences in 4834 genomes. Plasmids with fewer than 10,000
mapped reads were removed from the analysis, resulting in a final set
of 4644 genomes containing 12,006 plasmids. We do not take
sequencing read quality into account; one benefit of pseudoalignment
is that with very high probability, reads with errors and sequencing
artifacts such as adapters or barcodes will fail to pseudoalign to any
replicon, and are therefore omitted from the analysis16,27. Sequencing
coverage per replicon (i.e., chromosome or plasmid) was estimated by
dividing the number of readsmapping to the replicon by the length of
the replicon. Then, direct estimates of PCNs (relative to the chromo-
some) were generated by dividing the mean sequencing coverage for
each plasmid by the mean sequencing coverage for the largest chro-
mosome in each genome. Sequencing read length is omitted from this
calculation, as this is a constant factor that cancels out when dividing
plasmid coverage by chromosome coverage.

Probabilistic iterative read assignment. PIRA was developed to fur-
ther increase the accuracy of PCN estimates by incorporating infor-
mation from sequencing reads that map ambiguously to multiple
replicons within a genome, such as a read that maps to both a plasmid
and chromosome. This situation can arise when reads come from
repeated or duplicated sequences, as in the case of a read that corre-
sponds to a transposon found in multiple locations in a genome. A
specification of the PIRA algorithm is provided in 1, and PIRA is
implemented in the Python 3.12 code pseuPIRA.py (https://github.
com/rohanmaddamsetti/pseuPIRA). For a given genome, an initial
copy number estimate vector is generated using the direct method
described in the previous section. This initial copy number estimate
vector ignores multireads that pseudoaligned to multiple replicons.
The original fastq files are then filtered for multireads, and these
multireads are re-aligned to the reference genome using minimap2
version 2.29-r128325. Reads that align to a single location by traditional
sequencing alignment withminimap2 are tabulated. These are used to
further improve the initial copy number estimate vector. The
remainingmmultireads are then tabulated into anm × nmatrix, where
n is the number of replicons in the genome, sorted by length, such that
the longest replicon (that is, the main chromosome) is in the first
position. Each row of the matrix (each row corresponding to a single
multiread) has entries corresponding to the number of times that this
multiread maps to each replicon in the genome.

The columns of this matrix are scaled by the entries of the initial
copy number vector, so that each row (corresponding to a single
multiread) accounts for both the number of locations on the replicon
that align with this multiread, as well as the current copy number
estimate of each replicon. Each row is then normalized to sum to one,
such that each row now represents the probability distribution of
which replicon that multiread came from. Then, all rows are summed
tomake a 1 × n vector that sums tom; this vector represents howall the
multireads probabilistically map to the replicons. This vector of mul-
tiread counts is used to update the copy number estimate vector (by
adding these multiread counts to the number of unireads mapping to
the replicon, anddividing the total by replicon length), and theprocess
is iterated until the copy number estimate vector converges (i.e., the
norm of the change between iterations falls below a small value
like 10–6).

Mathematical underpinnings of PIRA. PIRA is a special case of the
Expectation-Maximization (EM) algorithm85,86. The EM algorithm has
previously been coupled with pseudoalignment to estimate transcript
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counts from RNA-seq data16,19 and species abundance in metagenomic
data17,26. Suppose we have m sequencing reads and n replicons. Each
sequencing read stems from a unique, but possibly unknown, replicon
DNA sequence. In a complete dataset, each sequencing read rj would
be associated with a unique label ηj indicating what replicon it came
from. Given multinomial sampling, the likelihood of the PCN vector π
(where π1 = 1 = chromosome copy number, and π2, …, πn are PCNs)
given complete data (a vector of m sequencing reads r and an asso-
ciated vector of true replicon labels η) has the form:
Lðπjr,ηÞ= m!

r1 !:::rk !:::rm !

Qm
j = 1 Pðrj,ηjjπÞ. Here, Pðrj,ηjjπÞ is the probability

of sampling read j from replicon k given our current PCN estimate π.

Pðrj ,ηj jπÞ= πk �lengthkPn

k = 1
πk �lengthk

, which is the fractionof DNAoriginating from

replicon k given its length lengthk and its copy number πk. The pro-
blem is that multireads map to multiple replicons, so the specific
replicon that amultiread came from is ambiguous.Our goal, therefore,
is maximum likelihood estimation of PCNs from incomplete data85,87.
We can solve this problem using the EM algorithm for multinomial
count data, as described in the classic Dempster-Laird-Rubin paper85.
We can think of the complete data as a m × n matrix L whose (j, k)
element = 1 if sequencing read j comes from replicon k, and zero
otherwise. The jth row contains n−1 zeros and one entry = 1. However,
if sequencing read j is a multiread, then we can estimate the complete
data for the row for sequencing read j by letting the value of cell Lj,k be
the probability that sequencing read j came from replicon k. This is the
E-step of this EM algorithm, in which we estimate the complete data
matrix L given our current estimate of the PCN vectorπ. Note that the
assigned probabilities in Lj,k are also expected values, since the
expectation of an indicator function is simply its probability. We then
make theM-step of the EM algorithm, in which wemake themaximum
likelihood estimate for the PCN vector π, given our current estimate
for the complete data matrix L. We then iterate the E-step and M-step
untilπ converges, as guaranteedby the theory inWu86. It is possible for
multireads to map to multiple locations within a replicon due to
sequence repeats or duplications. To take this into account, we define
thematchmatrixM, whereMj,k is the number of distinct locations that

sequencing read j aligns to replicon k. So, we define Lj,k =
Mj,k �πkPn

k = 1
Mj,k�πk

to

take the multiplicity of sequence matches to each replicon into
account. Note that this onlymatters for multireads, since for a uniread
j, Lj,k = 1, no matter the value of Mj,k. Therefore, we only need to use
sequence alignment to calculate Mj,k for multireads. These con-
siderations lead to the following equation to update the vector of PCN

estimates π from PIRA iteration i to i + 1: π ði+ 1Þ
k =

Pj =m

j = 1
Lj,k

lengthk
� 1Pj =m

j = 1
Lj, 1

length1

where the second term normalizes the PCN vector π so that
π1 = 1 = chromosome copy number. We can speed up this calculation
by treating unireads and multireads separately, so that

π ði + 1Þ
k =

Rk +
Pj =m*

j = 1
Lj,k

lengthk
� 1Pj =m

j = 1
Lj, 1

length1

, where Rk is the number of unireads that

pseudoaligned to replicon k,m* =m −Rk is the number ofmultireads in

the data, and RDk=
Pj =m*

j = 1 Lj,k is the number of multireads that were

probabilistically assigned to replicon k in the ith PIRA iteration.

Comparison with the ICRA algorithm. At a high level, PIRA is in the
same class ofmethods as the iterative coverage-based readassignment
(ICRA) algorithm described by Zeevi et al.81, but differing in four
aspects. First, PIRA was designed to infer copy numbers within gen-
omes, and not within metagenomes. Second, PIRA lets a multiread
contribute tomultiple replicons based on the probability that the read
originated from that replicon, rather than assigning a multiread to the
single best match (soft read assignment, rather than hard read
assignment, in machine learning parlance). Third, PIRA weights the

probability distribution of how a multireadmaps to replicons within a
genome by (1) the number of matches of that read to a given replicon
and (2) the current estimate of that replicon’s copy number; unlike
ICRA, alignment read quality is not considered. Fourth, ICRA divides
replicons into genomic bins, and iteratively estimates the copy num-
bers of each genomic bin to find copy number variation; by contrast,
PIRA treats each replicon as a single bin. In principle, PIRA could be
generalized to estimate copy number within genomic bins like ICRA:
this is a direction for future research. While PIRA was conceived
independently from ICRA, its similarities to ICRA gave us confidence
that PIRA was the correct approach for incorporating multiread
information. In addition, the two-dimensional matrix data structure
used to storemultireads for PIRAwas conceived as a simpler version of
the 3-dimensional array described by Zeevi et al.81 in their formal
description of ICRA.

Benchmarking of PCNestimates. We benchmarked our PCN estimate
pipeline using a random subset of 100 genomes, each containing at
least one plasmidwith an estimated PCN<0.8. This benchmarkingwas
automated in the Python 3.12 script PCN_pipeline.py. First, PCNs were
re-estimated on these 100 genomes using minimap2 version 2.29-
r1283 to align all reads, rather than using pseudoalignment. PIRA was
used to account for multireads found with minimap2. Second, PCNs
were re-estimated on these 100 genomes using breseq 0.37 to align all
reads. In this case, multireads were ignored, and PCNs were estimated
by dividing plasmidmean sequencing coverage by chromosomemean
sequencing coverage.We also compared PCNestimateswith the direct
method (ignoring multireads) using themisto 3.2.2 to pseudoalign
reads, and PCN estimates using PIRA on top of the directmethod using
themisto. We also compared direct PCN estimates using Themisto
3.2.2 with direct PCN estimates using kallisto 0.51.0 to see how the
choice of pseudoalignment software affected PCN estimates, if at all.
Finally, we benchmarked our PIRA PCN estimates against the PCN
estimates published in Supplementary Table 2 of Shaw et al.13. The
python 3.12 script parse_REHAB_plasmids.py was used to preprocess
metadata for this comparison.

Ecological annotation
The ecological provenance of each microbial genome was annotated
per the method described in Maddamsetti et al.3. Briefly, we used the
host and isolation_source fields in the RefSeq annotation for each
genome to place each into the following categories: Marine, Fresh-
water, Human-impacted (environments), Livestock (domesticated
animals), Agriculture (domesticated plants), Food, Humans, Plants,
Animals (non-domesticated animals, also including invertebrates,
fungi and single-cell eukaryotes), Soil, Sediment (including mud),
Terrestrial (non-soil, non-sediment, including environments with
extreme salinity, aridity, acidity, or alkalinity), and Unannotated (no
annotation). For reproducibility, our annotations aregeneratedusing a
Python 3.12 script called annotate-ecological-category.py and checked
for internal consistency using a Python 3.12 script called check-
ecological-annotation.py. To simplify the data presentation, we
merged categories as follows. Marine and Freshwater categories were
grouped as Water. Sediment, Soil, and Terrestrial categories were
grouped as Earth. Plant and Agriculture categories were grouped as
Plants.

Estimation of PCN reporting in the scientific literature
A random seed was drawn between 1 and 100 using the random
number generator at www.random.org88. For replicability, this random
seed (the number 60) was used to draw 50 genomes without repla-
cement, from a set of 1216 genomes containing at least one plasmid
with an estimated PCN greater than 10. The RefSeq annotation files for
each of these genomes were examined manually for publications
associated with the given genome assembly. Each publication was
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examined manually to see if PCNs were reported. The results of this
analysis are reported in Supplementary Table 1.

Plasmid scaling law analysis
Input genomes for the plasmid scaling law analysis. A table of
microbial genomes in the NCBI genomes database was down-
loaded from: https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_
REPORTS/prokaryotes.txt. This table was filtered for complete
microbial genomes containing plasmids by running the Python
3.12 script filter-genome-reports.py. Reference genome annota-
tion files for these genomes were downloaded using the Python
3.12 script fetch-gbk-annotation.py. Then, the following Python
3.12 scripts were run to tabulate ecological metadata, protein
counts and lengths for each genome: make-chromosome-plasmid-
table.py, make-gbk-annotation-table.py, and count-proteins-and-
replicon-lengths.py.

Protein-coding sequence calculations. The fraction of protein-
coding sequences per replicon was calculated in two ways. First, by
summing up the length of each protein-coding sequence in each
replicon (i.e., plasmid or chromosome) in each genome, and dividing
by the length of that replicon. Second, by counting the number of
unique sites in protein-coding sequences in each replicon (to avoid
double-counting sites in overlapping genes) and dividing by the length
of the replicon. These calculations were run using the Python
3.12 script calculate-CDS-rRNA-fractions.py. 180 plasmids with no
protein-coding sequences were removed from the analysis, as manual
checks against the NCBI RefSeq database showed that some of these
cases were clear annotation artifacts.

Analysis of metabolic genes on plasmids. We annotated metabolic
genes on plasmids following the computational protocol in Hamrick
et al.61. Briefly, the GhostKOALA functional genomics web server52

(https://www.kegg.jp/ghostkoala/) associated with the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database51 was used to
annotate plasmid proteins with KEGGOrthology (KO) IDs. The Python
3.12 scripts make-plasmid-protein-FASTA-db.py and make-plasmid-
GhostKOALA-input-files.py were used to generate input files for
GhostKOALA. Each of these input files was manually submitted to the
GhostKOALA web server at https://www.kegg.jp/ghostkoala and saved
to disk. Then, the shell script concatenate-and-filter-plasmid-Ghost-
KOALA-results.sh was used to concatenate the corresponding Ghost-
KOALA output files and filter for plasmid proteins that were
successfully mapped to a KEGG KO ID. The Python 3.12 script remove-
chromosomes-from-plasmid-Ghost-KOALA-results.py was used to
remove any proteins found on plasmids larger than chromosomes, as
thesewere assumed to be annotation errors. The union of all KEGGKO
IDs found among the plasmid genes was generated using the Python
3.12 script get_unique_KEGG_IDs.py. The output of this script was
uploaded to the KEGG Mapper Reconstruct web server at: https://
www.kegg.jp/kegg/mapper/reconstruct.html. The set ofplasmidKEGG
KO IDs that mapped to metabolic pathways (KEGG PATHWAY Data-
base ID: 01100) was saved to file. Then, the Python 3.12 script get-
plasmid-metabolic-KOs.py was run to generate a table of all metabolic
genes on plasmids.

Analysis of metabolic genes on chromosomes. For comparison to
the analysis of metabolic genes on plasmids, we examined metabolic
genes on the chromosomes of 100 representative and arbitrarily
chosen genomes. Genomes were ranked based on the length of their
chromosome, and 100 genomes were chosen, by virtue of being
roughly equally distributed across the rank distribution of chromo-
some lengths, over the set of genomes with ecological annotation (i.e.,
genomes marked as “Unannotated” were never chosen), and the pro-
teins found in these 100 genomes were put into a small database file

using the Python 3.12 script make-chromosome-protein-FASTA-db.py.
This input file was submitted to the GhostKOALA web server, and the
GhostKOALA output file was saved to disk. Then, the shell script filter-
chromosome-GhostKOALA-results.sh was used to filter the Ghost-
KOALA output for chromosomal proteins that were successfully
mapped to a KEGG KO ID. The Python 3.12 script get_unique_chro-
mosome_KEGG_IDs.py was used to get the union of all KEGG IDs found
among these chromosomal proteins. These data were uploaded to the
KEGG Mapper Reconstruct webserver (https://www.kegg.jp/kegg/
mapper/reconstruct.html), and the set of chromosomal KEGG KO IDs
that mapped to metabolic pathways (KEGG PATHWAY Database ID:
01100)was saved to file. Then, the Python 3.12 script get-chromosome-
metabolic-KOs.py was used to generate a final table of all KEGG
metabolic proteins in the sampled chromosomes.

Plasmid typing metadata
All plasmids were annotated using MOB-typer 3.1.734 using the proto-
col reported by Hamrick et al.61. Specifically, a Python 3.12 script called
write-plasmid-seqs-for-MOB-typer.py was used to generate input files
for MOB-typer. MOB-typer was automated with a Python 3.12 script
called run-MOB-typer.py, and this Python script was run on the Duke
ComputeCluster using a sbatch shell script called run-MOB-typer.sh as
follows: sbatch run-MOB-typer.sh. MOB-typer results for each plasmid
were combined into a single text file called combined_mob_typer_re-
sults.txt, using a Python 3.12 script called comb_mob_genome_data.py.
Duplicate MOB-typer results were identified by running the following
one-line shell script: sort combined_mob_typer_results.txt | sort | uniq
-d > duplicated.txt. Then, the number of duplicate entries was counted
with this one-line shell script: cat duplicated.txt | wc -l. Then, a final text
file without duplicate entries was generated with the following one-
line-shell script: sort -u combined_mob_typer_results.txt -o unique_-
mob_results.txt. Finally, plasmid mobility predictions fromMOB-typer
were parsed with a Python 3.12 script called parse-MOBtyper-
results.py. The plasmid mobility annotations used in this work were
previously reported in Supplementary Data File 5 of Maddamsetti
et al.3. Plasmids were also typed using the supplementary data repor-
ted by Acman et al.47, Redondo-Salvo et al.48, Coluzzi et al.89, and Ares-
Arroyo et al.49.

Statistical analysis
All statistical analysis anddata visualizationswere generatedusing anR
4.2 script called PCN-analysis.R. At this stage, plasmid sequences
<1000bp in length were removed from the analysis to remove
unmapped or unplaced plasmid contigs. Genomes with plasmids
longer than their chromosomewere also removed to remove potential
genome misannotation errors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analyzed in this project were retrieved from the NCBI RefSeq
and SRA databases and are therefore publicly available. All processed
data in this study are provided in the Source Data provided with this
paper. Source data are provided with this paper.

Code availability
A Github repository containing a standalone implementation of
pseuPIRA, including a test example, is available at: https://github.
com/rohanmaddamsetti/pseuPIRA (https://doi.org/10.5281/zenodo.
15668298). A Github repository containing all data and code suffi-
cient to reproduce the PCN estimation pipeline, including down-
loading of genomic data, is available at: https://github.com/
rohanmaddamsetti/PCN-db-pipeline (https://doi.org/10.5281/zeno
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do.15668288). A GitHub repository containing all computer codes
for the remaining analyses, including statistics and figures, is avail-
able at: https://github.com/rohanmaddamsetti/plasmid-scaling-laws
(https://doi.org/10.5281/zenodo.15668292).
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