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Transcripts with high distal heritability
mediate genetic effects on complex
metabolic traits

Anna L. Tyler 1,5, J. Matthew Mahoney 1,5, Mark P. Keller 2,
Candice N. Baker 1, Margaret Gaca1, Anuj Srivastava3, Isabela Gerdes Gyuricza1,
Madeleine J. Braun1, Nadia A. Rosenthal 1,4, Alan D. Attie 2,
Gary A. Churchill 1 & Gregory W. Carter 1

Althoughmany genes are subject to local regulation, recent evidence suggests
that complex distal regulation may be more important in mediating pheno-
typic variability. To assess the role of distal gene regulation in complex traits,
we combine multi-tissue transcriptomes with physiological outcomes to
model diet-induced obesity andmetabolic disease in a population of Diversity
Outbred mice. Using a novel high-dimensional mediation analysis, we identify
a composite transcriptome signature that summarizes genetic effects on gene
expression and explains 30% of the variation across all metabolic traits. The
signature is heritable, interpretable in biological terms, and predicts obesity
status from gene expression in an independently derived mouse cohort and
multiple human studies. Transcripts contributing most strongly to this com-
posite mediator frequently have complex, distal regulation distributed
throughout the genome. These results suggest that trait-relevant variation in
transcription is largely distally regulated, but is nonetheless identifiable,
interpretable, and translatable across species.

Evidence from genome-wide association studies (GWAS) suggests that
most heritable variation in complex traits is mediated through regula-
tion of gene expression. The majority of trait-associated variants lie in
gene regulatory regions1–7, suggesting a relatively simple causalmodel in
whichavariant alters thehomeostatic expression level of anearby (local)
gene which, in turn, alters a trait. Statistical methods such as
transcriptome-wide association studies (TWAS)8–11 and summary data-
based Mendelian randomization (SMR)10 have used this idea to identify
genes associated with multiple disease traits12–15. However, despite the
great promise of these methods, explaining trait effects with local gene
regulation has been more difficult than initially assumed16,17. Although
trait-associated variants typically lie in non-coding, regulatory regions,
these variants often have no detectable effects on gene expression16 and
tend not to co-localize with expression quantitative trait loci (eQTLs)17,18.

These observations suggest that the relationship among genetic var-
iants, gene expression, and organism-level traits is more complex than
the simple, local model.

In recent years the conversation around the genetic architecture
of common disease traits has been addressing this complexity, and
there is increased interest in more distant (distal) genetic effects as
potential drivers of trait variation15,18–21. In general, distal effects are
defined as being greater than 4 or 5Mb away from the transcription
start site of a given gene. We use the terms local and distal rather than
cis and trans because cis and trans have specific biochemical
meanings22, whereas local and distal are defined only by genomic
position. The importance of distal genetic effects is proposed in the
omnigenic model, which posits that trait-driving genes are cumula-
tively influenced by many distal variants. In this view, the heritable

Received: 5 November 2024

Accepted: 17 June 2025

Check for updates

1The Jackson Laboratory, BarHarbor,Maine, USA. 2University ofWisconsin-Madison, BiochemistryDepartment,Madison,WI, USA. 3The Jackson Laboratory for
GenomicMedicine, Farmington,CT,USA. 4National Heart andLung Institute, ImperialCollege, London,UK. 5These authors contributedequally:Anna L. Tyler,
J. Matthew Mahoney. e-mail: gary.churchill@jax.org; gregory.carter@jax.org

Nature Communications |         (2025) 16:5507 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8371-2377
http://orcid.org/0000-0001-8371-2377
http://orcid.org/0000-0001-8371-2377
http://orcid.org/0000-0001-8371-2377
http://orcid.org/0000-0001-8371-2377
http://orcid.org/0000-0003-1425-5939
http://orcid.org/0000-0003-1425-5939
http://orcid.org/0000-0003-1425-5939
http://orcid.org/0000-0003-1425-5939
http://orcid.org/0000-0003-1425-5939
http://orcid.org/0000-0002-7405-5552
http://orcid.org/0000-0002-7405-5552
http://orcid.org/0000-0002-7405-5552
http://orcid.org/0000-0002-7405-5552
http://orcid.org/0000-0002-7405-5552
http://orcid.org/0009-0008-7793-3008
http://orcid.org/0009-0008-7793-3008
http://orcid.org/0009-0008-7793-3008
http://orcid.org/0009-0008-7793-3008
http://orcid.org/0009-0008-7793-3008
http://orcid.org/0000-0002-7599-7365
http://orcid.org/0000-0002-7599-7365
http://orcid.org/0000-0002-7599-7365
http://orcid.org/0000-0002-7599-7365
http://orcid.org/0000-0002-7599-7365
http://orcid.org/0000-0002-0568-2261
http://orcid.org/0000-0002-0568-2261
http://orcid.org/0000-0002-0568-2261
http://orcid.org/0000-0002-0568-2261
http://orcid.org/0000-0002-0568-2261
http://orcid.org/0000-0001-9190-9284
http://orcid.org/0000-0001-9190-9284
http://orcid.org/0000-0001-9190-9284
http://orcid.org/0000-0001-9190-9284
http://orcid.org/0000-0001-9190-9284
http://orcid.org/0000-0002-2834-8186
http://orcid.org/0000-0002-2834-8186
http://orcid.org/0000-0002-2834-8186
http://orcid.org/0000-0002-2834-8186
http://orcid.org/0000-0002-2834-8186
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61228-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61228-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61228-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61228-9&domain=pdf
mailto:gary.churchill@jax.org
mailto:gregory.carter@jax.org
www.nature.com/naturecommunications


transcriptomic signatures driving clinical traits are an emergent state
arising from the myriad molecular interactions defining and con-
straining gene expression. Consistent with this view, it has been sug-
gested that part of the difficulty in explaining trait variation through
local eQTLsmay arise in part because gene expression is notmeasured
in the appropriate cell types16, or cell states23, and thus local eQTLs
influencing traits cannot be detected in bulk tissue samples. This
context dependence emphasizes the essential role of complex reg-
ulatory and tissue networks in mediating variant effects. The
mechanistic dissection of complex traits in this model is more chal-
lenging because it requires addressing network-mediated effects that
are weaker and greater in number. However, the comparative impor-
tance of distal effects over local effects is currently only conjectured
and challenging to address in human populations.

To assess the role of wide-spread distal gene regulation in the
genetic architecture of complex traits, we used genetically diverse
mice as a model system. In mice we can obtain simultaneous mea-
surements of the genome, transcriptome, and phenome in all indivi-
duals. We used diet-induced obesity and metabolic disease as an
archetypal example of a complex trait. In humans, these phenotypes
are genetically complex with hundreds of variants mapped through
GWAS24,25 that are known to act through multiple tissues26,27. Likewise
in mice, metabolic traits are also genetically complex28 and synteny
analysis implicates a high degree of concordance in the genetic
architecture between species12,28. Furthermore, in contrast to humans,
in micewe have access tomultiple disease-relevant tissues in the same
individuals with sufficient numbers for adequate statistical power.

We generated two complementary data sets: a discovery data set
in a large population of Diversity Outbred (DO) mice29, and an inde-
pendent validation data set derivedby crossing inbred strains from the
Collaborative Cross (CC) recombinant inbred lines30 to form CC
recombinant inbred intercross (CC-RIX) mice. Animals in populations
were maintained on a high-fat, high-sugar diet to model diet-induced
obesity and metabolic disease12.

The DO population and CC-RIX were derived from the same eight
inbred founder strains: five classical lab strains and three strains more
recently derived from wild mice29, representing three subspecies and
capturing 90% of the known variation in laboratorymice31. The DOmice
aremaintainedwith a breeding scheme that ensures equal contributions
from each founder across the genome, thus rendering almost the whole
genome visible to genetic inquiry and maximizing power to detect
eQTLs29. The CC mice were initially intercrossed to recombine the gen-
omes fromall eight founders, and then inbred for at least 20generations
to create recombinant inbred lines30–32. Because these two populations
have commonancestral haplotypes but highly distinct kinship structure,
we could directly and unambiguously compare the local genetic effects
on gene expression at the whole-transcriptome level while varying the
population structure driving distal regulation.

In the DO population, we paired clinically relevant metabolic traits,
including body weight and plasma levels of insulin, glucose and lipids12,
with transcriptome-wide gene expression in four tissues related to
metabolic disease: visceral adipose tissue (gonadal fat pad), pancreatic
islets, liver, and skeletal muscle. Wemeasured similar metabolic traits in
a CC-RIX population and gene expression from three of the four tissues
used in the DO: visceral adipose tissue (gonadal fat pad), liver, and
skeletal muscle. Measuring gene expression inmultiple tissues is critical
to adequately assess the extent to which local gene regulation varies
across the tissues and whether such variability might account for pre-
vious failed attempts to identify trait-relevant local eQTLs. Because the
CC-RIX carry the same founder alleles as the DO, the local gene regula-
tion is expected to match between the populations. However, because
the alleles are recombined throughout the genome, distal effects are
expected to vary from those in the DO, allowing us to directly assess the
role of distal gene regulation in driving trait-associated transcript var-
iation. Tomechanistically dissect distal effects onmetabolic disease, we

developed a novel dimension reduction framework called high-
dimensional mediation analysis (HDMA) to identify the heritable tran-
scriptomic signatures driving trait variation, which we compared
between mouse populations and to human data sets with measured
adipose gene expression. Together, these data enable a comprehensive
view into the genetic architecture of metabolic disease.

Results
Genetic variation contributed to wide phenotypic variation
Although the environment was consistent across the DO mice, the
genetic diversity present in this population resulted in widely varying
distributions across physiological measurements (Fig. 1). For example,
body weights of adult individuals varied from less than the average
adult C57BL/6J (B6) body weight to several times the body weight of a
B6 adult in both sexes (Males: 18.5–69.1g, Females: 16.0–54.8g)
(Fig. 1A). Fasting bloodglucose (FBG) also varied considerably (Fig. 1B),
although few of the animals had FBG levels that would indicate pre-
diabetes (19 animals, 3.8%), or diabetes (7 animals, 1.4%) according to
previously developed cutoffs (pre-diabetes: FBG ≥250 mg/dL, dia-
betes: FBG ≥300, mg/dL)33. Males had higher FBG than females on
average (Fig. 1C) as has been observed before suggesting either that
males were more susceptible to metabolic disease on the high-fat,
high-sugar (HFHS) diet, or that males and females may require differ-
ent FBG thresholds for pre-diabetes and diabetes.

Body weight was strongly positively correlated with food con-
sumption (Fig. 1D; Linear regression R2 = 0.51; beta coefficient = 12.6 ±
0.57 standarderror; t= 22.2;p<2. 2−16) andFBG (Fig. 1E; Linear regression
R2 = 0.21; beta coefficient = 2.49±0.22 standarderror; t= 11.34;p<2. 2−16)
suggesting a link between behavioral factors and metabolic disease.
However, the heritability of this trait and others (Fig. 1F) indicates that
genetics contribute substantially to correlates of metabolic disease in
this population.

The trait correlations (Fig. 1G) showed that most of the metabolic
trait pairs were only modestly correlated, which, in conjunction with
the trait decomposition (Supplementary Fig. 1), suggests complex
relationships among the measured traits and a broad sampling of
multiple heritable aspects of metabolic disease including overall body
weight, glucose homeostasis, and pancreatic function.

Distal heritability correlated with phenotype relevance
It is widely assumed that variation in traits is mediated through local
regulation of gene expression. To test this assumption, we measured
transcriptome-wide gene expression in four tissues–adipose, liver,
pancreatic islet, and skeletal muscle–in the DO cohort. (Basic results
from a standard eQTL analysis34 (Methods) are available in Supple-
mentary Fig. 2). We estimated the local genetic contribution to each
transcript as the variance explained by the haplotype probabilities at
the genetic marker closest to the gene transcription start site. We
estimated the distal heritability as the heritability of the residuals after
local haplotype had been accounted for (Methods). Importantly, this
estimate was not based on distal eQTL, but rather the unlocalized
contribution of the genome after removing the local genetic effect.

Overall, local and distal genetic factors contributed approximately
equally to transcript abundance. In all tissues, both local and distal fac-
tors explained between 8% and 17% of the variance in the median tran-
script (Fig. 2A). This 50% contribution of local genetic variation to
transcript abundance contrasts with findings in humans in which local
variants have been found to explain only 20–30% of total heritability,
while distal effects explain the remaining 70–80%35,36. This discrepancy
may arise due to the high degree of linkage disequilibrium in the DO
mice compared to human populations and to the high degree of con-
fidence with which we can estimate ancestral haplotypes in this popu-
lation. At each position in the mice we can estimate ancestral haplotype
with a high degree of accuracy. Haplotype at any given genetic marker
captures genomic information from a relatively large genomic region
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surrounding each marker. In contrast, there is a much higher degree of
recombination in humanpopulations and ancestral haplotypes aremore
numerous and more difficult to estimate than in the mice. Thus in the
mice, each marker may capture more local regulatory variation than
SNPs or estimated haplotypes capture in humans. It has been found that
transcripts with muliple local eQTL have higher local heritability than
transcripts with single local eQTL37. Because of the high diversity in the
DO and the high rates of linkage disequilibrium, it is possible that there

aremore local variants regulating transcription creating aproportionally
larger effect of local regulation.

To assess the importance of genetic regulation of transcript levels
to clinical traits, we compared the local and distal heritabilities of
transcripts to their trait relevance. We defined trait relevance for a
transcript as its maximum absolute Spearman correlation coefficient
(ρ) across all traits (Methods). The local heritability of transcripts was
negatively associated with their trait relevance (Fig. 2B), suggesting

Fig. 1 | Clinical overview. ADistributions of final bodyweight in female (green) and
male (blue) diversity outbred mice. The average B6 female and male adult weights
at 24 weeks of age are indicated by green and blue bars respectively on the x-axis.
B Distributions of fasting glucose in female (green) and male (blue) DO mice.
Normal (green), pre-diabetic (yellow), and diabetic (red) fasting glucose ranges for
mice are shown by colored bars along the x-axis. CMales (blue n = 242) had higher
fasting blood glucose on average (mean = 170.0 mg/dL) than females (green
n = 240, mean = 136) (two-sided Welch’s t test: t = 8.02, df = 428.9, 95% CI of
difference = 25.4 to 42.0 mg/dL; p = 1.05 × 10−14). Lines in boxes correspond to the
median; lower and upper edges of boxes indicate the first and third quartiles;
whiskers indicate the first and third quartiles ± 1.5 times the interquartile range;
dots indicate outliers beyond 1.5 times the interquartile range. D The relationship
between food consumption andbodyweight for female (green) andmale (blue)DO
mice. (Linear regression R2 = 0.51; beta coefficient = 12.6 ± 0.57 standard error;
t = 22.2; p < 2. 2−16). E Relationship between body weight and fasting glucose for

female (green) and male (blue) DO mice. (Linear regression R2 = 0.21; beta coeffi-
cient = 2.49 ± 0.22 standard error; t = 11.34; p < 2. 2−16). In D and E, blue lines show
line of best fit. F Data presented are heritability estimates for each physiological
trait. Bars show standard error of each estimate. The number of animals used in
each estimate is shown inparentheses after each trait name.GCorrelation structure
between pairs of physiological traits. The upper and lower triangle show the
Pearson correlation coefficients (r) between LODtraces of trait pairs (blue) and trait
pairs (purple) respectively. The diagonal (orange) shows the estimated heritability
of each trait. BMD - bone mineral density, WPIC - whole pancreas insulin content,
Glu tAUC - glucose total area under the curve, HOMA IR - homeostatic measure-
ment of insulin resistance, HOMAB - homeostaticmeasureof beta cell health, VLDL
- very low-density lipoprotein, LDL - low-density lipoprotein, IDL - intermediate
density lipoprotein, HDL - high-density lipoprotein, TG - triglyceride. Source data
are provided as a Source Data file.
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that themore local genotype influenced transcript abundance, the less
effect this variation had on the measured traits. Conversely, the distal
heritability of transcripts was positively associated with trait relevance
(Fig. 2C). That is, transcripts that were more highly correlated with the
measured traits tended to be distally, rather than locally, heritable.
This pattern was consistent across all tissues. This finding is also con-
sistent with previous observations that transcripts with low local her-
itability explain more expression-mediated disease heritability than
transcripts with high local heritability19. However, the positive rela-
tionship between trait correlation and distal heritability demonstrated
further that there are diffuse genetic effects throughout the genome
converging on trait-related transcripts.

High-Dimensional Mediation Analysis identified a high-
heritability composite trait that was mediated by a composite
transcript
The above univariate analyses establish the importance of distal her-
itability for trait-relevant transcripts. However, the number of

transcripts dramatically exceeds the number of phenotypes. Thus, we
expect the heritable, trait-relevant transcripts to be highly correlated
and organized according to coherent, biological processes repre-
senting the mediating endophenotypes driving clinical trait variation.
To identify these endophenotypes in a theoretically principledway, we
developed a novel dimension-reduction technique, high-dimension
mediation analysis (HDMA), that uses the theory of causal graphical
models to identify a transcriptomic signature that is simultaneously 1)
highly heritable, 2) strongly correlated to the measured phenotypes,
and 3) conforms to the causal mediation hypothesis (Fig. 3). In HDMA,
we first use a linear mapping called kernelization to dimension-reduce
the genome, transcriptome, and phenome to kernel matrices GK, TK
and PK respectively, which each have the dimensions n × n where n is
the number of individuals (Methods). These kernel matrices describe
the relationships among the individual mice in genome space, tran-
scriptome space, andphenomespace andensure that these threeomic
spaces have the same dimensions, and thus the same weight in the
analysis. If not dimension-reduced, the transcriptome would outweigh

Fig. 2 | Transcript heritability and trait relevance. A Distributions of local
(brown) and distal (gray) heritability of transcripts across the four tissues. Overall
local and distal factors contribute equally to transcript heritability. Each distribu-
tion contains 14102 transcripts. Numbers below distributions indicate the median
and standarddeviation of each.B local (brown) and (C) distal (gray) heritability and
trait relevance across all four tissues. Here trait relevance is defined as the max-
imumcorrelation between the transcript and all traits. The upper and lower dashed

line in each panel show the 95th and 5th percentile correlation respectively. The
solid line shows the mean trait correlation in transcripts with increasing variance
explained either locally (B) or distally (C). Transcripts that are highly correlated
with traits tend to have low local heritability and high distal heritability. All p values
fromSpearman rank correlation tests are two-sided. No adjustmentsweremade for
multiple comparisons. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-61228-9

Nature Communications |         (2025) 16:5507 4

www.nature.com/naturecommunications


the phenome in themodel. We then projected these n × n-dimensional
kernel matrices onto one-dimensional scores–a composite genome
score (GC), a composite transcriptome score (TC), and a composite
phenome score (PC)–and used the univariate theory of mediation to
constrain these projections to satisfy the hypotheses of perfect med-
iation, namely that upon controlling for the transcriptomic score, the
genome score is uncorrelated to the phenome score. A complete
mathematical derivation and implementation details for HDMA are
available in the Methods.

Using HDMA we identifed the major axis of variation in the tran-
scriptome that was consistent with mediating the effects of the gen-
ome on metabolic traits (Fig. 3). Figure 3A shows the partial
correlations (ρ) between the pairs of these composite vectors. The
partial correlation between GC and TC was 0.43, and the partial

correlation between TC and PC was 0.79. However, when the tran-
scriptome was taken into account, the partial correlation between GC

and PCwas effectively zero (0.027). PC captured 30% of the overall trait
variance, and its estimated heritability was 0.71 ± 0.084, which was
higher than any of themeasured traits (Fig. 1F). Thus, HDMA identified
amaximally heritablemetabolic composite trait and a highly heritable
component of the transcriptome that are correlated as expected in the
perfect mediation model.

As discussed in the Methods, HDMA is related to a generalized
form of canonical correlation analysis (CCA). Standard CCA is prone to
over-fitting because in any two large matrices it can be trivial to
identify highly correlated composite vectors38. To assess whether our
implementation of HDMAwas similarly prone to over-fitting in a high-
dimensional space, we performed permutation testing. We permuted

Fig. 3 | High-dimensional mediation. A Workflow indicating major steps of high-
dimensional mediation. The genotype, transcriptome, and phenotype matrices
were kernelized to yield single matrices representing the relationships between all
individuals for each datamodality (GK = genomekernel,TK = transcriptome kernel;
PK = phenome kernel). High-dimensional mediation was applied to these matrices
to maximize the direct path G → T → P, the mediating pathway (arrows), while
simultaneously minimizing the direct G → P pathway (dotted line). The composite
vectors that resulted from high-dimensional mediation were GC, TC, and PC. The
partial correlations ρ between these vectors indicated perfect mediation.

Transcript and trait loadings were calculated as described in the methods. B The
null distribution of the path coefficient derived from 10,000 permutations. Com-
parisons are shown to the observed path coefficient (red) the path coefficient using
a distal-only model (gray) and the path coefficient using the local-only model
(brown). C. The null distribution of the GC-TC correlation vs. the TC-PC correlation.
Comparisons are shown to the observed values (red), and those derived from the
distal-only model (gray) and the local-only model (brown). Source data are pro-
vided as a Source Data file.
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the individual labels on the transcriptome matrix 10,000 times and
recalculated the path coefficient, which is the correlation of GC and TC
multiplied by the correlation of TC and PC. This represents the strength
of the path from GC to PC that is putatively mediated through TC. The
permutations preserved the correlation between the genome and
phenome, but broke the correlations between the genome and the
transcriptome, as well as between the transcriptome and the phe-
nome. We could thus test whether, given a random transcriptome,
HDMAwould overfit and identify apparentlymediating transcriptomic
signatures in randomdata. The null distribution of the path coefficient
is shown in Fig. 3B, and the observed path coefficient from the original
data is indicatedby a red arrow. The observed path coefficientwaswell
outside the null distribution generated by permutations (empirical
p < 10−16). Figure 3C illustrates this observation in more detail.
Although we identified high correlations between GC and TC, and
modest correlations between TC and PC in the null data (Fig. 3C), these
two values could not be maximized simultaneously in the null data. In
contrast, the red dot shows that in the real data both the GC-TC cor-
relation and the TC-PC correlation could be maximized simultaneously
suggesting that the path from genotype to phenotype through the
transcriptome is highly non-trivial and is identifiable in this case.

To test whether the presence of local eQTLs affected the result,
we generated two additional transcriptomic kernel matrices. We gen-
erated a local-effects only kernel using only locally determined gene
expression and a distal-effects only kernel using only distally deter-
mined gene expression, i.e., the effects of local haplotype were
regressedout. Thepath coefficient identifiedusing the local kernelwas
not significantly different from the null (Fig. 3B), suggesting that
locally determinedgene expressiondoes notmediate the effects of the
genome on the phenome. In contrast, the path coefficient identified
using the distal kernel, was highly significant and indistinguishable
from that identified using the full transcriptome.

Further, the GC-TC and TC-PC correlations derived from the distal
kernal were indistinguishable from those derived from the original
transcriptomic kernel. In contrast, the GC-TC correlation derived with
the local kernel was high (Pearson correlation r = 0.92), reflecting the
fact that the local transcriptomic kernel wasderiveddirectly from local
haplotypes. The TC-PC correlation, however, was low (Pearson corre-
lation r = 0.14), suggesting that the these locally derived transcripts
were not highly related to phenotype. In other words,mice that shared
many local eQTLwere not highly similar in trait space. Taken together,
these results suggest that composite vectors derived from the mea-
sured transcriptomic kernel represent genetically determined varia-
tion in phenotype that is mediated through genetically determined
variation in transcription, and that this genetically deremined variation
in transcription is largely driven by distal factors.

Body weight and insulin resistance were highly represented in
the expression-mediated composite trait
Each composite score is a weighted combination of the measured vari-
ables. The magnitude and sign of the weights, called loadings, corre-
spond to the relative importance and directionality of each variable in
the composite score. The loadings of each measured trait onto PC indi-
cate how much each contributed to the composite phenotype. Body
weight (Weight_Final) contributed the most (Fig. 4A), followed by
homeostatic insulin resistance (HOMA_IR) and fasting plasma insulin
levels (Insulin_Fasting).We can thus interpretPC as an indexofmetabolic
disease (Fig. 4B). Individuals with high values of PC had a higher meta-
bolic disease index (MDI) and greater metabolic disease, including
higher body weight and higher insulin resistance. We refer to PC as MDI
going forward. Traits contributing the least to MDI were measures of
cholesterol and pancreas composition. Thus, when we interpret the
transcriptomic signature identified by HDMA, we are explaining pri-
marily the putative transcriptionalmediation of bodyweight and insulin
resistance, as opposed to cholesterol measurements.

High-loading transcripts had low local heritability, high distal
heritability, and were linked mechanistically to obesity
We interpreted large loadings onto transcripts as indicating strong
mediation of the effect of genetics on MDI. Large positive loadings
indicate that higher expression was associated with a higher MDI (i.e.,
higher risk of obesity and metabolic disease on the HFHS diet)
(Fig. 4C–E). Conversely, large negative loadings indicate that high
expression of these transcripts was associated with a lower MDI (i.e.,
lower riskofobesity andmetabolicdiseaseon theHFHSdiet) (Fig. 4C–E).
Figure 4D compares the observed transcript loading distributions to null
distributions and indicates howmany transcripts in each tissue had large
positive andnegative loadings. A direct comparison of the tissues can be
seen in Supplementary Fig. 3. We used gene set enrichment analysis
(GSEA)39,40 to look for biological processes and pathways that were
enriched at the top and bottom of this list (Methods).

In adipose tissue, both GO processes and KEGG pathway enrich-
ments pointed to an axis of inflammation and metabolism (Supple-
mentary Figs. 4 and 5). GO terms and KEGG pathways associated with
inflammation were positively associated with MDI, indicating that
increased expression in inflammatory pathways was associated with a
higher burden of disease. It is well established that adipose tissue in
obese individuals is inflamed and infiltrated by macrophages41–45, and
the results here suggest that this may be a dominant heritable com-
ponent of metabolic disease.

The strongest negative enrichments in adipose tissuewere related
to mitochondial activity in general, and thermogenesis in particular
(Supplementary Figs. 4 and 5). Genes in the KEGG oxidative phos-
phorylation pathway were almost universally negatively loaded in
adipose tissue, suggesting that increased expression of these genes
was associated with reduced MDI (Supplementary Fig. 6). Consistent
with this observation, it has been shown previously thatmouse strains
with greater thermogenic potential are also less susceptible to obesity
on an obesigenic diet46.

Transcripts associated with the citric acid cycle as well as the
catabolism of the branched-chain amino acids (valine, leuceine, and
isoleucine) were strongly enriched with negative loadings in adipose
tissue (Supplementary Figs. 5, 7 and 8). Expression of genes in both
pathways (for which there is some overlap) has been previously asso-
ciated with insulin sensitivity12,47,48, suggesting that heritable variation
in regulationof thesepathwaysmay influence risk of insulin resistance.

Looking at the 10 most positively and negatively loaded tran-
scripts from each tissue, it is apparent that transcripts in the adipose
tissue had the largest loadings, both positive and negative (Fig. 5A bar
plot). This suggests thatmuch of the effect of genetics on body weight
and insulin reisistance ismediated through gene expression in adipose
tissue. Thisfinding does not speak to the relative importance of tissues
not included in this study, such as brain, in which transcriptional var-
iation may mediate a large portion of the genetic effect on obesity49.
The strongest loadings in liver and pancreas were comparable, and
those in skeletalmusclewere theweakest (Fig. 5A), suggesting that less
of the genetic effects were mediated through transcription in skeletal
muscle. Heritability analysis showed that transcripts with the largest
loadings had higher distal heritability (31.8%) than local heritability
(5%) (Fig. 5A) (two-sided Welch’s t-test t = 16.4; df = 100.2; difference
95% CI = 0.24 to 0.30; p < 2. 2−16). We also performed TWAS in this
population by imputing transcript levels for each gene based on local
genotype only and correlating the imputed transcript levels with each
trait. In contrast to HDMA, the TWAS procedure (Fig. 5B) tended to
nominate transcripts with lower loadings, higher local heritability
(15%), and lower distal heritability (20%) (two-sided Welch’s t-test
t = 1.9; df = 151.7; difference95%CI = −0.002 to0.1;p =0.77). Finally, we
focused on transcripts with the highest local heritability in each tissue
(Fig. 5C). This procedure selected transcripts with low loadings on
average, consistent with our findings above that high local heritability
was associated with low trait correlations (Fig. 2B).
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We performed a literature search for the genes in each of these
groups along with the terms diabetes, obesity, and the name of the
expressing tissue to determine whether any of these genes had pre-
vious tissue-specific associations with metabolic disease in the litera-
ture (Methods). Multiple genes in each group had been previously
associated with obesity and diabetes in the represented tissue (Fig. 5
bolded gene names). Genes with high loadings were most highly
enriched for previous literature support. They were 2.2 times more
likely thanTWAShits and4 timesmore likely thangeneswith high local
heritability to be previously associated with obesity or diabetes.

Tissue-specific transcriptional programs were associated with
metabolic traits
Clustering of transcripts with top loadings in each tissue showed
tissue-specific functional modules associated with obesity and insulin
resistance (Fig. 6A) (Methods). The clustering highlights the

importance of immune activation, particularly in adipose tissue. The
mitosis cluster had large positive loadings in three of the four tissues
potentially suggesting system-wide proliferation of immune cells.
Otherwise, all clusters were strongly loaded in only one or two tissues.
For example, the lipid metabolism cluster was loaded most heavily in
liver. The positive loadings suggest that high expression of these
genes, particularly in the liver,was associatedwith increasedmetabolic
disease. This cluster included the gene Pparg, whose primary role is in
the adipose tissue where it is considered a master regulator of
adipogenesis50. Agonists of Pparg, such as thiazolidinediones, are FDA-
approved to treat type II diabetes, and reduce inflammation and adi-
pose hyptertrophy50. Consistent with this role, the loading for Pparg in
adipose tissue was negative, suggesting that higher expression was
associated with leaner mice (Fig. 6B). In contrast, Pparg had a large
positive loading in liver (Fig. 6B), where it is known to play a role in the
development of hepatic steatosis, or fatty liver. Mice that lack Pparg

Fig. 4 | Interpretation of loadings. A. Loadings across traits. Body weight and
insulin resistance contributed themost to the composite trait.B. Phenotype scores
across individuals. Individuals with large positive phenotype scores had higher
body weight and insulin resistance than average. Individuals with large negative
phenotype scores had lower body weight and insulin resistance than average.
C. Distribution of transcript loadings in adipose tissue (purple). For transcripts with
large positive loadings, higher expression was associated with higher phenotype
scores. For transcripts with large negative loadings, higher expression was asso-
ciated with lower phenotype scores. D. Distributions of loadings across tissues
compared to null distributions. Shaded areas represent loadings that were more
extreme than the null distribution. Numbers indicate how many transcripts had
loadings above and below the extremes of the null. Transcripts in adipose tissue

(purple) had themost extreme loadings indicating that transcripts in adipose tissue
were the best mediators of the genetic effects on body weight and insulin resis-
tance. E. Scatter plots showing correlations between composite vectors for the
genome (GC), the transcriptome (TC), and the phenome (PC). TheGC - TC association
was significant (Linear regression R2 = 0.18; beta coefficient = 7.8 ± 0.86 standard
error; t = 9.03; p < 2. 2−16). The TC - PC association was significant (Linear regression
R2 = 0.62; beta coefficient = 3.1 ± 0.13 standard error; t = 24.4; p < 2. 2−16). There is no
association between GC and PC (Linear regression R2 = 7.1 × 104; beta coefficient =
2.0 ± 3.8 standard error; t = 0.51; p = 0.61). This correlation structure is consistent
with perfectmediation. Blue lines show lines of best fit. Source data are provided as
a Source Data file.
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specifically in the liver, are protected from developing steatosis and
show reduced expression of lipogenic genes51,52. Overexpression of
Pparg in the livers of mice with a Ppara knockout, causes upregulation
of genes involved in adipogenesis53. In the livers of both mice and
humans high Pparg expression is associated with hepatocytes that
accumulate large lipid droplets and have gene expression profiles

similar to that of adipocytes54,55. The local and distal heritability of
Pparg is low in adipose tissue suggesting its expression in this tissue is
highly constrained in the population (Fig. 6B). However, the distal
heritability of Pparg in liver is relatively high suggesting it is complexly
regulated and has sufficient variation in this population to drive var-
iation in phenotype. Both local and distal heribatility of Pparg in the

Fig. 5 | Transcripts with high loadings have high distal heritability and litera-
ture support. Each panel has a bar plot showing the loadings of transcripts
selected by different criteria. Bar color indicates the tissue of origin. The heat map
shows the local (L - left) and distal (D - right) heritability of each transcript.
A Loadings for the 10 transcripts with the largest positive loadings and the 10
transcripts with the largest negative loadings for each tissue. Mean distal herit-
ability (31.8%) was significantly higher than mean local heritability (5%) (two-sided
Welch’s t-test t = 16.4; df = 100.2; difference 95% CI = 0.24 to 0.30; p < 2. 2−16).
B Loadings of TWAS candidates with the 10 largest positive correlations with traits
and the largest negative correlations with traits across all four tissues. Mean local
(15%) and distal (20%) heritability were not significantly different for this group of

transcripts (two-sidedWelch’s t-test t = 1.9; df = 151.7; difference 95%CI = −0.002 to
0.1; p = 0.77). C The transcripts with the largest local heritability (top 20) across all
four tissues. Mean local heritability (90%) was significantly higher thanmean distal
heritability (15%) of these genes (two-sided Welch’s t = 45.0; df = 82.0; difference
95% CI = 0.72 to 0.78; p < 2. 2−16). Lines in boxes correspond to the median; lower
andupper edgesof boxes indicate thefirst and thirdquartiles;whiskers indicate the
first and third quartiles ± 1.5 times the interquartile range; dots indicate outliers
beyond 1.5 times the interquartile range. All p values derived from two-sided
Welch’s t-test and are not adjusted for multiple comparisons. Source data are
provided as a Source Data file.
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islet are relatively high, but the loading is low, suggesting that varia-
bility of expression in the islet does not drive variation in MDI. These
results highlight the importance of tissue context when investigating
the role of heritable transcript variability in driving phenotype. Gene
lists for all clusters with tissue-specific loadings are available in Sup-
plementary Data 1.

Gene expression, but not local eQTLs, predicted body weight in
an independent population
To test whether the transcript loadings identified in the DO could be
translated to another population, we tested whether they could pre-
dict metabolic phenotypes in an independent population of CC-RIX
mice, which were F1 mice derived from multiple pairings of Colla-
borative Cross (CC)32,56–58 strains (Fig. 7) (Methods). We asked whether
the loadings identified in theDOmicewere relevant to the relationship
between the transcriptome and the phenome in the CC-RIX. We pre-
dicted body weight (a surrogate for MDI) in each CC-RIX individual
using measured gene expression in each tissue and the transcript
loadings identified in the DO (Methods). The predicted body weight
and acutal body weight were highly correlated (Fig. 7B). The best
prediction was achieved for adipose tissue, which supports the
observation in the DO that adipose expression was the strongest
mediator of the genetic effect on MDI. This result also confirms the
validity and translatability of the transcript loadings and their rela-
tionship to metabolic disease.

We then investigated the source of the relevant variation in gene
expression. If local regulation was the predominant factor influencing
trait-relevant gene expression, we should be able to predict phenotype
in the CC-RIX using transcripts imputed from local genotype (Fig. 7A).
The DO and the CC-RIX were derived from the same eight founder

strains and so carry the same alleles throughout the genome. We
imputed gene expression in the CC-RIX using local genotype and were
able to estimate variation in gene transcription robustly (Supplemen-
tary Fig. 9). However, these imputed values failed to predict body
weight in the CC-RIX when weighted with the loadings from HDMA.
(Fig. 7C). This result suggests that local regulation of gene expression
is not the primary factor driving heritability of complex traits. It is also
consistent with our findings in the DO population that distal herit-
ability was a major driver of trait-relevant gene expression and that
high-loading transcripts had comparatively high distal, and low local,
heritability.

Distally heritable transcriptomic signatures suggested variation
in composition of adipose tissue and islets
The interpretationof global genetic influences on gene expression and
phenotype is potentially more challenging than the interpretation and
translation of local genetic influences, as genetic effects cannot be
localized to individual gene variants or transcripts. However, there are
global patterns across the loadings that can inform mechanism. For
example, heritable variation in cell type composition can be inferred
from transcript loadings. We observed above that immune activation
in the adipose tissue was a highly enriched process correlating with
obesity in the DO population. In humans, it has been extensively
observed that macrophage infiltration in adipose tissue is a marker of
obesity and metabolic disease59. To determine whether the immune
activation reflected a heritable change in cell composition in adipose
tissue in DOmice, we compared loadings of cell-type specific genes in
adipose tissue (Methods). The mean loading of macrophage-specific
genes was significantly greater than 0 (Holm-adjusted two-sided
empirical p < 2 × 10−16) (Fig. 8A), indicating that obese mice were

Fig. 6 | Tissue-specific transcriptional programs are associated with obesity
and insulin resistance. A Heat map showing the loadings of all transcripts with
loadings greater than 2.5 standard deviations from themean in any tissue. The heat
map was clustered using k medoid clustering. Functional enrichments of each

cluster are indicated along the left margin.B Loadings for Pparg in different tissues
indicated by color. C Local (brown) and distal (gray) of Pparg expression in dif-
ferent tissues. Source data are provided as a Source Data file.
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genetically predisposed to have high levels of macrophage infiltration
in adipose tissue in response to the HFHS diet. Loadings for marker
genes for other cell types were not statistically different from zero
(Adipocytes: p = 0.08, Progenitors: p = 0.58, Leukocytes: p = 0.28; all
Holm-adjusted two-sided empirical p), indicating that changes in the
abundance of those cell types was not a mediator of MDI.

We also compared loadings of cell-type specific transcripts in islet
(Methods). The mean loadings for alpha-cell specific transcripts were
significantly greater than 0 (Holm-adjusted two-sided empirical
p = 0.002), while the mean loadings for transcripts specific to delta
cells (Holm-adjusted two-sided empirial p < 2 × 10−16) and endothelial
cells (Holm-adjusted two-sided empirical p = 0.01) were significantly
less than 0 (Fig. 8B). These results suggest that mice with higher MDI
inherited an altered cell composition that predisposed them to
metabolic disease, or that these compositional changes were induced
by theHFHSdiet in a heritableway. In either case, these results support
the hypothesis that alterations in islet composition drive variation in
MDI. Notably, the mean loading for pancreatic beta cell marker tran-
scripts was not significantly different from zero (Holm-adjusted two-
sided empirical p =0.95). We stress that this is not necessarily reflec-
tive of the function of the beta cells in the obese mice, but rather
suggests that any variation in the number of beta cells in these mice
was unrelated to obesity and insulin resistance, themajor contributors
to MDI. This is further consistent with the islet composition traits
having small loadings in the phenome score (Fig. 4).

Heritable transcriptomic signatures translated to human
disease
Ultimately, the heritable transcriptomic signatures thatwe identified in
DO mice will be useful if they inform mechanism and treatment of
human disease. To investigate the potential for translation of the gene
signatures identified in DOmice, we compared them to transcriptional
profiles inobese andnon-obese humansubjects (Methods).We limited
our analysis to adipose tissue because the adipose tissue signature had
the strongest relationship to obesity and insulin resistance in the DO.

We calculated a predicted MDI for each individual in the human
studies based on their adipose tissue gene expression (Methods) and
compared the predicted scores for obese and non-obese groups as
well as diabetic and non-diabetic groups. In all cases, the predicted
MDIs were higher on average for individuals in the obese and diabetic
groups comparedwith the lean and non-diabetic groups (Fig. 8D). This
indicates that the distally heritable signature of MDI identified in DO
mice is relevant to obesity and diabetes in human subjects.

Existing therapies are predicted to target mediator gene
signatures
Another application of the transcript loading landscape is in ranking
potential drug candidates for the treatment of metabolic disease.
Although high-loading transcripts may be good candidates for under-
standing specific biology related to obesity, the transcriptome overall is
highly interconnected and redundant. The ConnectivityMap (CMAP)

Fig. 7 | Transcription, but not local genotype, predicts phenotype in the
CC-RIX. A Workflow showing procedure for translating HDMA results to an inde-
pendent population of mice. B Relationships between the predicted metabolic
disease index (MDI) and the mean of the rank normal body weight. In this column,
MDI was derived from measured transcripts. Adipose: R2 = 0.60; beta coefficient =
0.89 ± 0.17 standard error; t = 5.21; p = 5.9 × 10−5. Liver: R2 = 0.35; beta coefficient =
1.1 ± 0.34 standard error; t = 3.1; p = 6.4 × 10−3. Muscle: R2 = 0.29; beta coefficient =
0.64±0.24 standarderror; t= 2.7;p=0.014.C In this column,MDIwasderived from
transcripts imputed from local genotype. Adipose: R2 = 8.0 × 10−4;

beta coefficient = − 0.2 ± 0.16 standard error; t = − 0.12; p = 0.91. Liver: R2 = 0.035;
beta coefficient = 0.13 ± 0.16 standard error; t = 0.81; p = 0.43. Muscle: R2 = 0.079;
beta coefficient = 0.19 ± 0.16 standard error; t = 1.24; p = 0.23. Gray boxes indicate
measured quantities and blue boxes indicate calculated quantities. G - genome;
T - transcriptome; P - phenome (here MDI). The dots in each panel represent
individual CC-RIX strains. Each strain was represented by between 19 and 24 indi-
viduals. The gray lines show the standard deviation of mean body weight for the
strain. Source data are provided as a Source Data file.
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database60,61 developedby theBroad Institute allowsquerying thousands
of compounds that reverse or enhance the extreme ends of tran-
scriptomic signatures in multiple different cell types. By identifying
drugs that reverse pathogenic transcriptomic signatures, we can
potentially identify compounds that have favorable effects on gene
expression. To test this hypothesis, we queried the CMAP database
through the CLUE online query tool (https://clue.io/query/, version
1.1.1.43) (Methods). We identified top anti-correlated hits across all cell
types (Supplementary Figs. 10and 11). Togetmore tissue-specific results,
wealso lookedat topresults in cell types thatmost closely resembledour
tissues. We looked at results in adipocytes (ASC) as well as pancreatic
tumor cells (YAPC) regardless ofp value (Supplementary Figs. 12 and 13).

The CMAP database identified both known diabetes drugs (e.g.,
sulfonylureas), as well as drugs that target pathways known to be
involved in diabetes pathogenesis (e.g., mTOR inhibitors). These
findings help support the mediation model we fit here. Although the
composite variables we identified here are consistent with mediation,
they do not prove causality. However, the results from CMAP suggest
that reversing the transcriptomic signatures we found also reverses
metabolic disease phenotypes, which supports a causal role of the
transcript levels in driving pathogenesis of metabolic disease. These
results thus support the mediation model we identified here and its
translation to therapies in human disease.

Discussion
Herewe investigated the relative contributions of local and distal gene
regulation in four tissues to heritable variation in traits related to

metabolic disease in genetically diverse mice. We found that distal
heritability was positively correlated with trait relatedness, whereas
high local heritability was negatively correlated with trait relatedness.
We used a novel high-dimensional mediation analysis (HDMA) to
identify tissue-specific composite transcripts that are predicted to
mediate the effect of genetic background on metabolic traits. The
adipose-derived composite transcript robustly predicted body weight
in an independent cohort of diverse mice with a disparate population
structure. It also predictedMDI in four human cohorts. However, gene
expression imputed from local haplotype failed topredict bodyweight
in the second mouse population. Taken together, these results high-
light the complexity of gene expression regulation in relation to trait
heritability and suggest that heritable trait variation is mediated pri-
marily through distal gene regulation.

Our result that distal regulation accounted for most trait-related
gene expression differences is consistent with a complex model of
genetic trait determination. It has frequently been assumed that gene
regulation in cis is the primary driver of genetically associated trait var-
iation, but attempts to use local gene regulation to explain phenotypic
variation have had limited success16,17. In recent years, evidence has
mounted that distal gene regulation may be an important mediator of
trait heritability18,19,62,63. It has been observed that transcripts with high
local heritability explain less expression-mediated disease heritability
than those with low local heritability19. Consistent with this observation,
genes located near GWAS hits tend to be complexly regulated18. They
also tend to be enriched with functional annotations, in contrast to
genes with simple local regulation, which tend to be depleted of

Fig. 8 | HDMA results translate to humans. A Distribution of loadings for cell-
type-specific transcripts in adipose tissue (purple). Numbers in parentheses indi-
cate the number of transcripts in each group. B Distribution of loadings for cell-
type-specific transcripts in pancreatic islets (green). Each box in this panel repre-
sents 10 transcripts. C Null distributions from 10,000 permutations for the mean
loading of randomly selected transcripts in each cell type compared with the
observedmean loadingof each groupof transcripts (red asterisk). Violinplot colors
indicate the tissue of each cell type andmatch (A and B) (purple = adipose; green =
islet) (D). Predictions of metabolic disease index (MDI) in four adipose transcrip-
tion data sets downloaded from GEO. In each study the obese/diabetic patients
were predicted to have greater MDI than the lean/non-diabetic patients based on
the HDMA results from DOmice. 1) two-sided Welch’s t test: t = 2.28, df = 58.1, 95%

CI of difference = 2.1 × 10−5 to 3.2 × 10−4 A.U.; p = 0.027 2) two-sided Welch’s t test:
t= 3.04, df = 11.84, 95%CI of difference=9.3 × 10−4 to 5.7 × 10−3 A.U.;p=0.01 3) linear
mixedeffectsmodel:fixedeffectdiabetic = 1.4 × 10−3 ± 5.6 × 10−4 Std. Error; t= 2.4, df
= 4, p = 0.075 4) two-sided Welch’s t test: t = 2.95, df = 11.89, 95% CI of difference =
6.8 × 10−5 to 4.6 × 10−4 A.U.; p = 0.012 Lines in boxes correspond to the median;
lower and upper edges of boxes indicate the first and third quartiles; whiskers
indicate either the minimum and maximum values if no outliers, or the first and
third quartiles ± 1.5 times the interquartile range if there are outliers; dots indicate
outliers beyond 1.5 times the interquartile range. The number of patients in each
group is indicated by numbers in parentheses with the number of technical repli-
cates (reps) if relevant. No adjustments were made for multiple comparisons.
Source data are provided as a Source Data file.
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functional annotations suggesting they are less likely to be directly
involved in disease traits18. These observations are consistent with
principles of robustness in complex systems in which simple regulation
of important elements leads to fragility of the system64–66. Our results are
consistent, instead, with a more complex picture where genes whose
expression can drive trait variation are buffered from local genetic var-
iationbut are extensively influenced indirectly bygenetic variation in the
regulatory networks converging on those genes.

Our results are also consistent with the recently proposed omni-
genic model, which posits that complex traits are massively polygenic
and that their heritability is spread out across the genome67. In the
omnigenic model, genes are classified either as core genes, which
directly impinge on the trait, or peripheral genes, which are not directly
trait-related, but influence core genes through the complex gene reg-
ulatory network. HDMA explicitly models a central proposal of the
omnigenic model which posits that once the expression of the core
genes (i.e., trait-mediating genes) is accounted for, there should be no
residual correlation between the genome and the phenome. Here, we
were able to fit this model and identified a composite transcript that,
when taken into account, left no residual correlation between the
composite genome and composite phenome scores (Figs. 3A, and 4E).

Unlike in the omnigenic model, we did not observe a clear
demarcation between the core and peripheral genes in loading mag-
nitude, but we do not necessarily expect a clear separation given the
complexity of gene regulation and the genotype-phenotype map68.

An extension of the omnigenic model proposed that most herit-
ability of complex traits is driven by weak distal eQTLs that are
potentially below the detection threshold in studies with feasible
sample sizes62. This is consistent with what we observed here. For
example, the gene Nucb2, had a high loading in islets and was also
strongly distally regulated (65% distal heritability) (Fig. 5). This gene is
expressed in pancreatic β cells and is involved in insulin and glucagon
release69–71. Although its transcription was highly heritable in islets,
that regulation was distributed across the genome, with no clear distal
eQTL (Supplementary Fig. 14). Thus, although distal regulation of
some genes may be strong, this regulation is likely to be highly com-
plex and not easily localized.

Individual high-loading transcripts also demonstrated biologically
interpretable, tissue-specific patterns. We highlighted Pparg, which is
known to be protective in adipose tissue50 where it was negatively loa-
ded, and harmful in the liver51–55, where it was positively loaded. Such
granular patterns may be useful in generating hypotheses for further
testing, and prioritizing genes as therapeutic targets. The tissue-specific
natureof the loadings alsomayprovideclues to tissue-specific effects, or
side effects, of targeting particular genes system-wide.

In addition to identifying individual transcripts of interest, the
composite transcripts can be used as weighted vectors in multiple
types of analysis, such as drug prioritization using gene set enrichment
analysis (GSEA) and the CMAP database. In particular, the CMAP ana-
lysis identified drugs that have been demonstrated to reverse insulin
resistance and other aspects of metabolic disease. This finding sup-
ports the hypothesis that HDMA identified transcripts that truly
mediate genetic effects on traits. HDMA identifies transcriptional
patterns that are consistent with a mediation model, but alone does
not prove mediation. However, the finding that these drugs act both
on the transcriptional patterns and on the desired traits support the
mediation model and the hypothesis that these transcripts play a
causal role in pathogenesis of metabolic disease.

Together, our results have shown that both tissue specificity and
distal gene regulation are critically important to understanding the
genetic architecture of complex traits. We identified important genes
and gene signatures that were heritable, plausibly causal of disease,
and translatable to other mouse populations and to humans. Finally,
we have shown that by directly acknowledging the complexity of both
gene regulation and the genotype-to-phenotype map, we can gain a

new perspective on disease pathogenesis and develop actionable
hypotheses about pathogenic mechanisms and potential treatments.

Methods
Statistics and reproducibility
In this study we used two populations of laboratory mice (Mus mus-
culus): 1) a population of 482 diversity outbred mice (J:DO, JAX
strain#:009376) (n = 240 females and n = 242 males), and 2) a popu-
lation of 466 CC-RIX mice (n = 234 females, and n = 232 males), which
were F1 mice derived from crosses of the following JAX strains of
Collaborative Cross mice: CC043/GeniUncJ (strain#:023828), CC011/
UncJ (strain#018854), CC030/GeniUncJ (strain#:025426), CC002/
UncJ (strain#:021236), CC051/TauUncJ (strain#:021897), CC019/
TauUncJ (strain#:CC019), CC027/GeniUncJ (strain#:025130), CC012/
GeniUncJ (strain#:028409), CC024/GeniUncJ (strain#:021891),
CC075/UncJ (strain#:027293), CC005/TauUncJ (strain#:020945),
CC059/TauUncJ (strain#:025125), CC001/UncJ (strain#:021238),
CC042/GeniUncJ (strain#:020947), CC040/TauUncJ (strain#:023831),
CC004/TauUncJ (strain#:020944), CC009/UncJ (strain#:018856),
CC013/GeniUncJ (strain#:021892), and CC060/UncJ (strain#:026427).
Counts of male and female mice in each strain are available in the
Supplementary Data 2. All DO mice were maintained on a high-fat,
high-sugar diet. The CC-RIX mice were randomized to a high-fat or a
low-fat diet. The diets were different colors, so blinding was not
possible. CC-RIX mice were sacrificed in a 6-month cohort and a 12-
month cohort. In the DOpopulation, we used sex, DO generation, and
DOwave as covariates in all statistical tests. In the CC-RIX population,
we used diet, sex, and age as covariates in all statistical tests. We did
not investiagate sex-specific effects on genetic architecture in order
to maximize power and generalizability, as well as to simplify the
overall analysis. CC-RIX animals were randomly assigned to housing
and diets based on litters with multiple litters in each group. While
undergoing metabolic phenotyping animals were randomly assigned
an order for testing. Sample sizes were determined using statistical
rules of thumb72. We included at least four biological replicates that
were tested over multiple months to increase replication power. No
data were excluded. Further experimental details and statistical
testing are described individually in the following Methods sections.

Diversity outbred mice
Mice were maintained and treated in accordance with the guidelines
approved by the Department of Biochemistry animal vivarium at the
University of Wisconsin. Animal husbandry and in vivo phenotyping
methodswerepreviously published are are described briefly below12,28.

A population of 482 diversity outbred mice (split evenly between
male and female) fromgenerations 18, 19, and 21, was placed on a high-
fat (44.6% kcal fat), high-sugar (34% carbohydrate), adequate protein
(17.3% protein) diet from Envigo Teklad (catalog number TD.08811)
starting at fourweeks of age as describedpreviously12. Individualswere
assessed longitudinally for multiple metabolic measures including
fasting glucose levels, glucose tolerance, insulin levels, body weight,
and blood lipid levels.

When mice were harvested at 22 weeks of age, their pancreatic
islets were isolated by hand. Insulin per islet wasmeasured, and whole
pancreas insulin content was calculated from the insulin per islet
measure and the total numer of islets per pancreas12. RNAwas isolated
from the whole islets and sent to The Jackson Laboratory for high-
throughput sequencing12.

Trait measurements. Trait measurements were described previously
in Keller et al. 201812. Briefly, body weight was measured every two
weeks, and 4-h fasting plasma samples were collected to measure
insulin, glucose, and triglycerides (TG). At around 18 weeks of age, an
oral glucose tolerance test (oGTT) was conducted on 4-hour fasted
mice to assess changes in plasma insulin and glucose. Glucose (2 g/kg)
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was given via oral gavage. Blood samples were taken from a retro-
orbital bleed before glucose administration, and at 5, 15, 30, 60, and
120minutes afterward. The area under the curve (AUC) was calculated
for glucose and insulin. Glucose was measured using the glucose oxi-
dase method, and insulin was measured by radioimmunoassay.

HOMA-IR and HOMA-B, which are homeostatic model assess-
ments of insulin resistance (IR) and pancreatic islet function (B), were
calculated using fasting plasma glucose and insulin values at the start
of the oGTT. HOMA-IR = (glucose × insulin) / 405 and HOMA-B =
(360 × insulin) / (glucose - 63). Plasmaglucoseand insulinunits aremg/
dL and mU/L, respectively.

Genotyping. Genotypes at 143,259 markers was performed using the
Mouse Universal Genotyping Array (GigaMUGA)73 at Neogen (Lincoln,
NE) as described previously12,74. Genotypes were converted to founder
strain-haplotype reconstructions using the R/DOQTL software75 and
interpolated onto a grid with 0.02-cM spacing to yield 69,005 pseudo-
markers. Individual chromosome (Chr) haplotypes were reconstructed
from RNA-seq data using a hidden Markov model76 (GBRS, https://
github.com/churchill-lab/gbrs). Using both methods to call haplotypes
provided redundancy for quality control. Three mice had inconsistent
calls between the two methods and were excluded from the analysis12.

Trait selection in DO. We filtered themeasured traits in this study to a
set of relatively non-redundantmeasures thatwerewell-represented in
the population (having at least 80% of individuals measured). A com-
plete description of trait filtering can be found at Figshare https://doi.
org/10.6084/m9.figshare.2706697977 in the file Documents > 1.DO >
1b.Trait_Selection.Rmd.

We took two approaches for traits with multiple redundant
measurements, for example longitudinal body weights. In the case of
longitudinal measurements, we used the final measurement, as this
was the closest physiological measurement to the measurement of
gene expression, which was done at the end of the experiment. The
labels for these traits have the word Final appended to their name. For
traits with multiple highly related measurements, such as cholesterol,
we used the first principal component of the group of measurements.
For example, we used the first principal component of all LDL mea-
surements as the measurement of LDL. For each set of traits, we
ensured the first principal component had the correct sign by corre-
lating it with the average of the traits. For pearson correlation coeffi-
cients (r) less than0, wemultiplied the principal component by −1. The
labels for these traits have the term PC1 appended to their name.

Heritability of each trait was estimates using the R package qtl234.
Standard errors of heritability were estimated using a purpose-built
function by Karl Broman available on GitHub [https://github.com/rqtl/
qtl2/issues/193]. This method is based on Equation 2 in Visscher and
Goddard (2015)78.

Processed DO data. The DO data used in this study were generated in
a previous study12,28. We downloaded genotypes, phenotypes, and
pancreatic islet gene expression data from Dryad https://doi.org/10.
5061/dryad.pj10579.

Collaborative cross recombinant inbred mice (CC-RIX)
CC-RIX mice were derived by crossing strains of Collaborative Cross
(CC) mice to produce heterozygous F1 mice. Each strain included
between 19 and 24 biological replicates. The strains used and the
number of mice in each are reported in the supplemental file
CC-RIX_strain_table.txt.

Mice were cared for and treated following the guidelines approved
by the Association for Assessment and Accreditation of Laboratory
Animal Care at The Jackson Laboratory. All animals were obtained from
The Jackson Laboratory. Themice were kept in a pathogen-free room at
a temperature ranging from 20 to 22 °C with a 12-h light/dark cycle.

Starting at 6 weeks of age, they were fed either a custom-designed high-
fat, high-sugar (HFHS) diet (ResearchDiets D19070208) or a control diet
(Research Diets D19072203) ad libitum. Body weight was measured
weekly until the mice were about 16 weeks old, after which measure-
ments were taken every other week. Food intake measurements were
collected at 14 weeks, 23 weeks (for 6-month cohorts), 26 weeks (for 12-
month cohorts), 38 weeks, and 51 weeks by weighing the grain contents
in the cage over a three-day period. Fasted serum was collected at
14 weeks, 28 weeks (for 6-month cohorts), 26 weeks (for 12-month
cohorts), 38 weeks, and 56 weeks of age via retro-orbital or submental
vein. Sex, diet, and age were used as covariates in all analyses.

CC-RIX genotypes
We used themost recent common ancestor (MRCA) genotypes for the
Collaborative Cross (CC) mice available on the University of North
Carolina Computational Systems Biology website: http://www.csbio.
unc.edu/CCstatus/CCGenomes/.

To generate CC-RIX genotypes, we averaged the haplotype
probabilities for the two parental strains at each locus.

Clinical chemistries. CC-RIX animalswere fasted for four hours before
serum collection via the retro-orbital or submental vein. Whole blood
was left at room temperature for 30–60min before being centrifuged
for 5 minutes at 14,674 g. The serum was then tested for glucose
(Beckman Coulter; OSR6121), cholesterol (Beckman Coulter;
OSR6116), triglycerides (Beckman Coulter; OSR60118), insulin (MSD;
K152BZC-1), or c-peptide (MSD; K1526JK-1).

Intraperitoneal glucose tolerance testing. After a fasting period of
4–6 h, baseline glucose measurements were taken from CC-RIX mice
using an AlphaTrak2 glucometer and test strips (Zoetis) by making a
small nick in the tail tip. A bolus intraperitoneal injection of 20% glu-
cose (1g/kg) was then administered, and additional tail tip nicks were
performed at 15, 30, 60, and 120 minutes post-injection to measure
glucose levels.

Bulk tissue collection. At either 28 weeks of age (for the 6-month
cohort) or 56 weeks of age (for the 12-month cohort), CC-RIX animals
were humanely euthanized by cervical dislocation. Tissues, including
visceral adipose (gonadal fat pad), skeletal muscle (gastrocnemius),
and the left liver lobe, were harvested and flash-frozen in liquid
nitrogen for RNA sequencing.

Whole pancreas insulin content
The animalswere humanely euthanized at 16weeks of age and the entire
pancreas was removed, ensuring no excess fat or mesentery tissue was
included. The pancreas tissue was placed in a pre-weighed 20 mL glass
scintillation vial containing acid ethanol (75% HPLC grade ethanol
(ThermoFisher; A995-4), 1.5% concentrated hydrochloric acid (Thermo-
Fisher; A144-212) in distilled water). The weight of the pancreas was
measured for normalization. Using curved scissors, the pancreas was
chopped for four minutes, and the samples were stored at −20 °C until
all animals were harvested. For insulin measurements, the contents of
the scintillation vials were rinsed with 4 mL PBS (Roche; 1666789) with
1% BSA (Sigma; A7888), neutralizedwith 65 μL 10NNaOH (Fisher; SS255-
1), and vortexed for 30 seconds. The samples were then centrifuged at
4 °C for 5minutes at 452 g. The samples were diluted 5000X in PBSwith
1% BSA, and insulin was measured (MSD; K152BZC-1).

RNA isolation and QC
RNA from both DO and CC-RIX adipose, gastrocnemius, and left liver
lobe tissues was isolated using the MagMAX mirVana Total RNA Iso-
lation Kit (ThermoFisher; A27828) and the KingFisher Flex purification
system (ThermoFisher; 5400610). The frozen tissues were pulverized
with a Bessman Tissue Pulverizer (Spectrum Chemical) and
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homogenized in TRIzol™ Reagent (ThermoFisher; 15596026) using a
gentleMACS dissociator (Miltenyi Biotec Inc). After adding chloroform
to the TRIzol homogenate, the RNA-containing aqueous layer was
extracted for RNA isolation, following the manufacturer’s protocol,
starting with the RNA bead binding step using the RNeasy Mini kit
(Qiagen; 74104). RNA concentrations and quality were assessed using
the Nanodrop 8000 spectrophotometer (Thermo Scientific) and the
RNA 6000 Pico or RNA ScreenTape assay (Agilent Technologies).

Library construction
Before library construction, 2 μL of diluted (1:1000) ERCC Spike-in
Control Mix 1 (ThermoFisher; 4456740) was added to 100 ng of each
RNA sample. Libraries were then constructed using the KAPA mRNA
HyperPrep Kit (Roche Sequencing Store; KK8580) following the man-
ufacturer’s protocol. The process involves isolating polyA-containing
mRNA using oligo-dT magnetic beads, fragmenting the RNA, synthe-
sizing the first and second strands of cDNA, ligating Illumina-specific
adapters with unique barcode sequences for each library, and per-
forming PCR amplification. The quality and concentration of the
libraries were evaluated using the D5000 ScreenTape (Agilent Tech-
nologies) and the Qubit dsDNA HS Assay (ThermoFisher; Q32851),
respectively, according to the manufacturers’ instructions.

Sequencing
Libraries were sequenced on an Illumina NovaSeq 6000 using the S4
Reagent Kit (Illumina; 20028312). All tissues underwent 100 bp paired-
end sequencing, aiming for a target readdepthof 30million readpairs.

Processing of RNA sequencing data
We used the Expectation-Maximization algorithm for Allele Specific
Expression (EMASE)80,81 to quantify multi-parent allele-specific and
total expression from RNA-seq data for each tissue. EMASE was per-
formedby theGenotype byRNA-seq (GBRS) software package (https://
gbrs.readthedocs.io/en/latest/). In the process, R1 and R2 FASTQ files
were combined and aligned to a hybridized (8-way) transcriptome
generated for the 8 DO founder strains as single-ended reads. GBRS
was also used to reconstruct the mouse genotype probabilities along
~ 69Kmarkers, which was used for confirming genotypes in the quality
control (QC) process. For the QC process, we used a Euclidean dis-
tances method (developed by Greg Keele - Churchill Lab) to compare
theGBRSgenotypeprobabilities between the tissues and the genotype
probabilities array for all mice. The counts matrix for each tissue was
processed to filter out transcripts with less than one read for at least
half of the samples. RNA-seq batch effects were removed by regressing
out batch as a random effect and considering sex and generation as
fixed effects using lme4 R package82. RNA-Seq counts were normalized
relative to total read counts using the variance stabilizing transform
(VST) as implemented in DESeq283 and using rank normal score.

eQTL analysis
We used the R package qtl234 to perform eQTL analysis. We used the
rank normal score data and used sex, DO generation, and DO wave as
additive covariates. We also used kinship as a random effect. We used
permutations to find a LOD threshold of eight for significant QTLs
which corresponded to a genome-wide p value of 0.0184.

To assess whether eQTL were shared across tissues, we con-
sidered significant eQTLs within 4Mb of each other to be overlapping.
We considered local and distal eQTLs separately. Local eQTL were
defined as an eQTL within 4Mb of the transcription start site (TSS) of
the encoding gene. Distal eQTL were defined as an eQTL greater than
4Mb from the TSS of the encoding gene.

Local and distal heritability of transcripts
To estimate local and distal heritability of each transcript, we scaled
each normalized transcript to have a variance of 1. We then modeled

this transcript with the local genotype using the fit1() function in the R
package qtl234. We used the resulting model to predict the transcript
values. The variance of the predicted transcript is its local heritability.
We then estimated the heritability of the residual of the model fit. The
variance of the residual multiplied by its heritability is the estimate of
the distal heritability of the transcript.

We compared local and distal estimates of heritability to mea-
sures of trait relevance for each transcript. To calculate trait relevance
of a given transcript, we adjusted normalized transcript values for sex,
DO wave, and DO generation. We similarly adjusted traits by sex, DO
wave, and DO generation.We then calculated all Spearman correlation
coefficients (ρ) between adjusted traits and adjusted transcripts. The
trait relevance of a given tanscript was the maximum absolute corre-
lation coefficient across all traits.

High-dimensional mediation analysis
In this section we derive the objective function for high-dimensional
mediation analysis (HDMA) and present an iterative algorithm to
optimize this objective function. Our starting point is the univariate
case, where we describe perfect mediation as a constraint on the
covariancematrix among variables.We then leverage this constraint to
define projections of multivariate data that are maximally consistent
with perfect mediation (HDMA). Next, we demonstrate how to kerne-
lize HDMA to limit dimensionality of the model and enable non-linear
HDMA models.

Perfect mediation as a constraint on covariance matrices. Suppose
we have three random variables x, m, and y. Assume they each have
unit variance and that they satisfy the following structural equation
model (SEM) such that m perfectly mediates the effect of x on y:

m=αx + ϵm ð1Þ

y=βm+ ϵy ð2Þ
From these structural equations, we have the model-implied

covariance matrix, Σ, given by

Σ =

1 α αβ

α 1 β

αβ β 1

2
64

3
75 ð3Þ

Note that the assumption of perfect mediation forces the covar-
iance between x and y to be αβ. In any finite data set, however, the
observed covariance matrix, S = [Sij], will not typically satisfy this
constraint.

The general log-likelihood fitting function for an SEM is given by

L= tr SΣ�1
� �

+ log∣Σ∣, ð4Þ

where ∣ ⋅ ∣ denotes the determinant of a matrix and trð�Þ denotes the
trace85. For the perfect-mediation model, these values are

∣Σ∣= ð1� α2Þð1� β2Þ ð5Þ

Σ�1 =

1=ð1� α2Þ α=ð1� α2Þ 0

α=ð1� α2Þ ð1� α2β2Þ= ð1� α2Þð1� β2Þ
� �

β=ð1� β2Þ
0 β=ð1� β2Þ 1=ð1� β2Þ

2
664

3
775 ð6Þ

Plugging these into the likelihood function, we get

L= log ð1� α2Þð1� β2Þ
� �

+ 3�α2�β2�α2β2

ð1�α2Þð1�β2Þ + 2α
1�α2 S12 +

2β
1�β2 S23 ð7Þ
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To simplify notation, we define

Fðα,βÞ= log ð1� α2Þð1� β2Þ
� �

+
3� α2 � β2 � α2β2

ð1� α2Þð1� β2Þ
, ð8Þ

so the likelihood function is now

L= Fðα,βÞ+ 2α
1� α2 S12 +

2β

1� β2 S23 ð9Þ

Note that this likelihood ismaximized by fitting regression coefficients
α and β between x and m and m and y, respectively, but the log-
likelihood formulation is useful for the multivariate extension below.

Projecting multivariate data to identify latent mediators. Suppose
now that we have three data matrices, X, M, and Y (individuals by
variables) that are mean centered by column. The central assumption
ofHDMA is that thesemultivariate data encode latent variables that are
causally linked according to the perfect-mediation model, in a sense
made precise as follows.

We use the log-likelihood function (Eqn. (7)) of the perfect med-
iation model as an objective function to identify latent variables, lX, lM,
and lY, that are are correlated as closely aspossible to the constraints of
the perfect mediation model, Eqn. (3). We estimate these latent vari-
ables as linear combinations of the measured variables

lX =Xa ð10Þ

lM =Mb ð11Þ

lY = Yc ð12Þ
The coefficient vectors a, b, and c, are called loadings, analogous

to the terminology in PCA and CCA. Because the data matrices are
mean centered, we have

meanðlX Þ=meanðlMÞ=meanðlY Þ=0, ð13Þ

and we assume the loadings are scaled so that each latent variable has
unit variance

varðlX Þ= varðlM Þ= varðlY Þ= 1: ð14Þ
Plugging these formulae into the objective function (Eqn. (9)), we

have

S12 = corr lX , lM
� � ð15Þ

S23 = corr lM , lY
� � ð16Þ

Lðα,β,a,b, cÞ= Fðα,βÞ+ 2α
1� α2 corr lX , lM

� �
+

2β

1� β2 corr lM , lY
� �

ð17Þ

= Fðα,βÞ+ 2α
1� α2 corr Xa,Mbð Þ+ 2β

1� β2 corr Mb, Ycð Þ ð18Þ

This yields an objective function of two sets of parameters: the
structural parameters α and β that define the causal model among
latent variables, and the loading vectors a, b, and c, that define the
latent variables in terms of the measured variables. The goal of HDMA
is to optimize L as a function of all parameters simultaneously. The
form of the objective function, Eqn. (17), is effectively a weighted sum
of correlation coefficients, connecting it to so-called

sum-of-correlation, or SUMCOR, optimization problems86, which we
discuss further below.

Analgorithm forHDMA. The global optimizationof (17) is challenging
because it is not a convexproblem.However, the decomposition of the
variables into structural and loading variables suggests an iterative
algorithm, similar to the expectation-maximization algorithm, that
converges at least to a stationary point. The overall idea is to use a
block-coordinate-ascent strategy that iterates betweenoptimizinga,b,
and c, then optimizing α and β.

For fixed a, b, and c, the optimal α and β are simply given by
regression coefficients between lX and lM and lM and lY, respectively.
Given these regression coefficients,α and β, we then optimize a, b, and
c. Forfixedα and β, the term F(α,β) is irrelevant, somaximizing the log-
likelihood function reduces to maximizing the reduced function

Lredða,b, cÞ=
2α

1� α2 corr Xa,Mbð Þ+ 2β

1� β2 corr Mb, Ycð Þ, ð19Þ

which is a weighted sum of correlation coefficients. This is exactly a
(weighted) SUMCOR optimization problem86. These optimization
problems are still not convex, but Tenenhaus et al. have recently
proved convergence for iterative algorithms that optimize weighted
SUMCORproblems86–88. These algorithmsonly guarantee convergence
to a stationarypoint not necessarily amaximum, as is common in other
non-convex problems, but this can be overcomewithmultiple random
restarts, if needed.Thus,wehavea sub-routinewSUMCOR(X,M,Y,w1,w2)
that solves the weighted SUMCOR problem

LwSUMCORða,b, c,w1,w2Þ=w1corr Xa,Mbð Þ+w2corr Mb, Ycð Þ: ð20Þ
Iterating between optimizing the structural parameters and

loading parameters, we reduce the negative log-likelihood at each step
and converge to a fixed point.

We summarize our optimization procedure in Algorithm 1.

Algorithm 1. High-dimensional mediation analysis
Intput: X, M, Y ▹ Data matrices
Output: α, β, a, b, c, lX, lM, lY ▹ Structural parameters,

loadings, scores
α ← 0.5, β ← 0.5 ▹ Initialize structural parameters
While converge ≠ TRUE do
d 2α

1�α2 + 2α
1�α2 ▹ Normalization constant for weights

w1  1
d

2α
1�α2, w2  1

d
2β

1�β2 ▹ Set weights (sum to one)
(a, b, c) ← wSUMCOR(X, M, Y, w1, w2) ▹ Compute loadings
lX ← Xa, lM ← Mb, lY ← Yc ▹ Compute scores α ← corr(lX, lM),

β ← corr(lM, lY) ▹ Update structural parameters
end while

Kernel HDMA. For large datamatrices X,M, and Y, especially with high
correlation among variables, as is common for high-throughput bio-
logical assays (e.g., ~1M alleles for genotypes, ~20k transcripts), we can
further reduce the dimensionality of the HDMA model by requiring
that loading vectors lie in the span of the the measured individuals,
namely

a=XT ~a ð21Þ

b=MT ~b ð22Þ

c= YT~c: ð23Þ

This replaces the full feature data, say X, with the covariances
among individuals (aka, Gram matrices), CX= XXT, and reduces the
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dimensionality from the number of measured variables down to the
number of individuals

lx =XX
T ~a=CX ~a ð24Þ

lM =MMT ~b=CM
~b ð25Þ

lM = YYT~c =CY~c: ð26Þ

This reduction is called kernelization88 and is widely applied to
other linear models, including CCA, linear regression, and classification.

It is interesting to note that kernelization is oftenused to convert a
linear model to a non-linear model by replacing the covariance
matrices, e.g., CX, with more complex kernel matrices KX that encode
similarity measures among individuals that are non-linear functions of
the measured variables. non-linear model by replacing the covariance
matrices, e.g., CX, with more complex kernel matrices KX that encode
similarity measures among individuals that are non-linear functions of
the measured variables. Promoting a linear model to a non-linear
model in this way is called the kernel trick and is widely used in the
machine learning field. The above considerations show that HDMA is
kernelizable in the same way as other linear models, although the
exploration of non-linear models is outside the scope of this study.

We generated kernel matrices for the genome, phenome, and
transcriptome as described above. To test the effect of the presence of
local eQTLs on mediation, we further generated two additional tran-
scriptomic kernels. 1) A distal-only kernel was derived first by regres-
sing out the effect of local haplotype on all transcripts as described
above and generating the kernel matrix using the residual expression
(distal-affected only). 2) A local-only kernel was derived by imputing
transcription levels for each transcript as described above and then
calculating the kernel with only these locally derived expression
values. We replaced the original transcriptomic kernel with each of
these additional kernels in turn and performed HDMA. We calculated
the correlation between all pairs of latent variables and the path
coefficient for each instance.

Implementation details. We have implemented HDMA (Algorithm 1)
in the R programming language. Tenenhaus et al. have implemented
their optimizers in the Regularized Generalized Canonical Correlation
Analysis (RGCCA) R package89, which we use as the subroutine
wSUMCOR. As Tenenhaus et al. discuss optimizing the empirical corre-
lation coefficient per se is numerically unstable due to the inversion of
the covariancematrices of themeasured variables (e.g., the transcript-
transcript covariance matrix). To overcome this, the RGCCA package
uses a regularized form of the covariance matrix developed by
Schaeffer and Strimmer90, which can be estimated rapidly using an
analytic formula.

As a convergence criterion, we stop the iterations when both α and
β change by less than 10−6 from their previous value in one iteration.

All code required to run HDMA is available at Figshare: https://
figshare.com/https://doi.org/10.6084/m9.figshare.2706697979.

Enrichment of biological terms
We performed gene set enrichment analysis (GSEA)40 using the tran-
script loadings in each tissue as gene weights. GSEA determines
enrichmentof pathways basedonwhere the containedgenes appear in
a ranked list of genes. If the genes in the pathway are more con-
centrated near the top (or the bottom) of the list than expected by
chance, the pathway can be interpreted as being enriched with posi-
tively (negatively) loaded transcripts.We used the R package fgsea39 to
calculate normalized enrichment scores for all GO terms and all KEGG
pathways.

We downloaded all KEGG91 pathways forMusmusculus using the R
package clusterProfiler91. We then used fgsea to calculate enrichment
scores in each tissue using the transcript loadings in each tissue as our
ranked list of genes. We reported the normalized enrichment score
(NES) for the 10 pathways with the largest positive NES and the 10
pathways with the largest negative NES.

We used the R package pathview92 to visualize the loadings from
each tissue in interesting pathways. We scaled the loadings in each
tissue by the maximum absolute value of loadings across all tissues to
compare them across tissues.

We downloaded GO term annotations from Mouse Genome
Informatics at the Jackson Laboratory93 https://www.informatics.jax.
org/downloads/reports/index.html. We removed gene-annotation
pairs labeled with NOT, indicating that these genes were known not
to be involved in these GO terms. We also limited our search to GO
terms with between 80 and 3000 genes. We used the R package
annotate94 to identify the ontology of each term and the R package
pRoloc95 to convert between GO terms and names. As with the KEGG
pathways, we used fgsea to calculate a normalized enrichment score
for each GO term and collected loadings for the transcripts in each
term to compare across tissues.

TWAS in DO mice
Weperformed a transcriptome-wide analysis (TWAS)9,11 in the DOmice
to compare to the results of high-dimensional mediation. To perform
TWAS, we fit a linear model to explain variation in each transcript
across the population using the genotype at the nearest marker to the
gene transcription start site (TSS). We used kinship as a random effect
and sex, diet, and DO generation as fixed effects. The predicted tran-
script from each of these models was the imputed transcript based
only on the local genotype.

We correlated each imputed transcript with each of the meta-
bolic phenotypes after adjusting phenotypes for sex, diet, DO
generation, and DO wave. To calculate significance of these corre-
lations, we performed permutation testing by shuffling labels of
individual mice and recalculating correlation values. Significant
correlations were those more extreme than any of the permuted
values, corresponding to an empirical p-value of 0. These are tran-
scripts whose locally encoded expression level was significantly
correlated with one of the metabolic traits. This suggests an asso-
ciation between the genetically encoded transcript level and the
trait but does not identify a direction of causation.

Literature support for genes
To determine whether each gene among those with large loadings
or large heritability had a supported connection to obesity or dia-
betes in the literature, we used the R package easyPubMed96. We
searched for the terms (diabetes OR obesity) along with the tissue
name (adipose, islet, liver, or muscle), and the gene name. We
restricted the gene name to appear in the title or abstract as some
short names appeared coincidentally in contact information. We
checked each gene with apparent literature support by hand to
verify that support, and we removed spurious associations. For
example, FAU is used as an acronym for fatty acid uptake and CAD is
used as an acronym for coronary artery disease. Both terms co-
occur with the terms diabetes and obesity in a manner independent
of the genes Fau and Cad. Other genes that co-occurred with dia-
betes and obesity, but not as a functional connection were similarly
removed. For example, the gene Rpl27 is used as a reference gene
for quantification of the expression of other genes, and co-
occurrence with diabetes and obesity is a coincidence. We coun-
ted the abstracts associated with diabetes or obesity and each gene
name and determined that a gene had literature support when it had
at least two abstracts linking it to the terms diabetes or obesity in
the respective tissue.
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Tissue-specific clusters
To compare the top loading genes across tissues, we selected genes
with a loading at least 2.5 standard deviations from themean across all
tissues. We made a matrix consisting of the union of these sets
populated with the tissue-specific loading for each gene. We used the
pam() function in the R package cluster97 to cluster the loading profiles
around k medoids. We tested k = 2 through 20 and used silhouette
analysis to compare the separation of the clusters. The best separation
was achieved with k = 12 clusters. For each cluster we used the R
package gprofiler298 to identify enriched GO terms and KEGG path-
ways for the genes in each cluster.

Imputation of gene expression in CC-RIX
To impute gene expression in the CC-RIX, we performed the following
steps for each transcript in each tissue (adipose, liver, and skeletal
muscle):
1. Calculate diploidCC-RIX genotype for all CC-RIX individuals at the

marker nearest the transcription start site of the transcript.
2. Multiply the genotype probabilities by the eQTL coefficients

identified in the DO population.

To check the accuracy of the imputation, we correlated each
imputed transcript with themeasured transcript. The average Pearson
correlation (r) was close to 0.5 for all three tissues (Supplementary
Fig. 9A), and as expected, the correlation between the imputed tran-
script and themeasured transcript was highly positively dependent on
the local eQTL LOD score of the transcript (Supplementary Fig. 9B).

Prediction of CC-RIX traits
We used both measured expression and imputed expression com-
bined with the results from HDMA in the to predict metabolic disease
index (MDI) in the CC-RIX. The traits measured in the DO and the CC-
RIX were not identical, so we limited our prediction to body weight,
which was measured in both populations, and was the largest con-
tributor to MDI in the DO.

For each CC-RIX individual, we multiplied the transcript abun-
dances across the transcriptome by the loadings derived from the
HDMA in the DO population. This resulted in a vector with n elements,
wheren is the number of transcripts in the trancriptome. Each element
was a weighted value that combined the relative abundance of the
transcript with how that abundance affected MDI. We averaged the
values in this vector to calculate an overall predicted MDI for the
individual CC-RIX animal.

After calculating this predicted MDI across all CC-RIX animals, we
correlated the predicted values from each tissue with measured body
weight (Supplementary Fig. 9B).

Cell type specificity
We investigated whether the loadings derived from HDMA reflected
tissue composition changes in theDOmiceprone toobesity on thehigh-
fat diet. To do this, we acquired lists of cell-type specific transcripts from
the literature. In adipose tissue, we looked at cell-type specific tran-
scripts for macrophages, leukocytes, adipocyte progenitors, and adi-
pocytes as defined in Ehrlund et al. (2017)99. In pancreatic islets, we
looked at cell-type specific transcripts for alpha cells, beta cells, delta
cells, ductal cells, mast cells, macrophages, acinar cells, stellate cells,
gamma and epsilon cells, and endothelial cells as defined by Elgamal
et al. (2023)100. Both studies defined cell-type specific transcripts based
on human cell types. We collected the loadings for each set of cell-type
specific transcripts in the respective tissue and asked whether the mean
loading for the cell type differed significantly from 0. A significant
positive loading for the cell type would suggest a genetic predisposition
to have a higher proportion of that cell type in the tissue. To determine
whether eachmean loading differed significantly from 0, we performed
permutation tests. We randomly sampled n genes outside of the cell-

type specific, where nwas the number of genes in the set. We compared
the distribution of loading means over 10,000 random draws to that
seen in the observed data. We used a significance threshold of 0.01.

Comparison of transcriptomic signatures to human tran-
scriptomic signatures
To compare the transcriptomic signatures identified in the DOmice to
those seen in humanpatients, we downloaded humangene expression
data from the Gene Expression Omnibus (GEO)101,102. We focused on
adipose tissue because this had the strongest relationship to obesity
and insulin resistance in the DO.We downloaded the following human
gene expression data sets:

• Accession number GSE152517 - Bulk RNA sequencing on visceral
adipose tissue resected from seven diabetic and seven non-
diabetic obese individuals.

• Accession number GSE44000 - Agilent-014850 4X44K human
whole genome platform arrays (GPL6480) measuring gene
expression in purified adipocytes derived from the subcutaneous
adipose tissue of seven obese (BMI>30) and seven lean (BMI<25)
post-menopausal women.

• Accession number GSE205668 - Subcutaneous adipose tissue was
resected during elective surgery from 35 normal weight, and 26
obese children. Gene expression was measured by RNA sequen-
cing with an Illumina HiSeq 2500.

• Accession number GSE29231 - Visceral adipose biopsies were
taken from three (four technical replicates each) female patients
with type 2 diabetes, and three (four technical replicates each)
non-diabetic female patients. Expression was measured with
Illumina HumanHT-12 v3 Expression BeadChip arrays.

We downloaded each data set from GEO using the R package
GEOquery103. In each case, we verified that gene expression was log
transformed and performed the transformation ourselves if it had not
already been done.When covariates such as age and sexwere available
in the metadata files, we regressed out these variables (GSE205668—
sex and age; GSE44000—none; GSE29231—age; GSE152517—none). We
mean-centered and standardized gene expression across transcripts.

We matched the human gene expression to the mouse gene
expression by pairing orthologs as defined in The Jackson Laboratory’s
mouse genome informatics data base (MGI)104. We multiplied each
transcript in the human data by the adipose tissue loading of its
ortholog in the DO mice. This resulted in a vector of weighted tran-
script values for eachpatient basedon their own transcriptional profile
and the obesity-related transcriptional signature from the DO analysis.
The mean of this vector for an individual was the prediction of their
obesity status (MDI). Higher values indicate a prediction of higher
obesity or risk ofmetabolic disease based on adipose gene expression.

We then compared the values across groups, either obese and
non-obese, or diabetic and non-diabetic depending on the groups in
each study. For the three studies without technical replicates (acces-
sion numbers GSE152517, GSE44000, and GSE205668), we used
Welch’s t-test to compare the means of the two groups. This is the
default t-test in base R and assumes unequal variance across groups.
For the study that included technical replicates (GSE29231) we fit a
linear mixed model from the R packages lme482 and lmerTest105. We
used subject ID as a random variable.

Connectivity map queries
We queried the transcript loading signatures from adipose tissue and
pancreatic islets with the CMAP database. These tissues are the most
related to metabolic disease and diabetes respectively.

The gene expression profiles in the Connectivity Map database are
derived from human cell lines and human primary cultures and are
indexed by Entrez gene IDs. To query the CMAP database, we identified
the Entrez gene IDs for the human orthologs of the mouse genes
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expressed in each tissue. Each CMAP query takes the 150 most up-
regulated and the 150 most down-regulated genes in a signature, how-
ever, not all human genes are included in their database. To ensure we
had as many genes as possible in the query, we selected the top and
bottom200geneswith themost extremepositive andnegative loadings
respectively. We pasted these into the CLUE query application available
at https://clue.io/query. These gene lists are available as Source Data.

We filtered the results in two ways: First, we looked at the most
significantly anti-correlated (�log10ðFDRqÞ> 15) hits across all cell types.
Second, we looked at the most anti-correlated within the most related
cell type to the query and considered hits regardless of �log10ðFDR qÞ.
For adipose tissue we looked in normal adipocytes, abbreviated ASC in
the CMAP database, and for pancreatic islets we looked in pancreatic
cancer cells, abbreviated YAPC in the CMAP database.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
DOmice: Genotypes, phenotypes, and pancreatic islet gene expression
data were previously published12. Gene expression for the other tissues
can be found at the Gene Expression Omnibus with the following
accession numbers: DO adipose tissue - GSE266549; DO liver tissue -
GSE266569; DO skeletal muscle - GSE266567. Expression data with cal-
culated eQTLs are available at Figshare. 10.6084/m9.figshare.
2706697977. CC-RIX mice: Gene expression can be found at the Gene
Expression Omnibus with the following accession numbers: CC-RIX adi
pose tissue -GSE237737; CC-RIX liver tissue - GSE237743; CC-RIX skeletal
muscle - GSE237747. Count matrices and phenotype data can be found
on Figshare. 10.6084/m9.figshare.2706697977. Source Data for figures in
this manuscript are available on Figshare. 10.6084/m9.figshare.
29247428106. Data from previous publications: We downloaded gen-
otypes, phenotypes, and pancreatic islet gene expression data from
Dryadhttps://doi.org/10.5061/dryad.pj10579. To predict human MDI
from RNA-seq profiles, the following data were downloaded from the
Gene Expression Omnibus: * Accession number GSE152517 Gene
expression in visceral adipose tissue resected from seven diabetic and
seven non-diabetic obese individuals. * Accession number GSE44000
Gene expression in purified adipocytes derived from the subcutaneous
adipose tissue of seven obese (BMI > 30) and seven lean (BMI < 25) post-
menopausal women. * Accession number GSE205668 Gene expression
in subcutaneous adipose tissue from 35 normal weight, and 26 obese
children. * Accession number GSE29231 Visceral adipose biopsies were
measured in four technical replicates each in three female patients with
type 2 diabetes, and three non-diabetic female patients.

Code availability
Code: All code used to run the analyses reported here are available at
Figshare: https://figshare.com10.6084/m9.figshare.2706697977.
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