
Article https://doi.org/10.1038/s41467-025-61251-w

Functional contrast across the gray-white
matter boundary

Muwei Li 1,2 , Lyuan Xu1,3, Soyoung Choi1,2, Yuanyuan Qin4, Fei Gao5,
Kurt G. Schilling 1,2, Yurui Gao 1,6, Zhongliang Zu 1,2, AdamW. Anderson1,2,6,
Zhaohua Ding 1,3,6,7 & John C. Gore1,2,6

Functional magnetic resonance imaging studies have traditionally focused on
gray matter, overlooking white matter despite growing evidence that func-
tional blood oxygenation-level dependent effects also occur there. In parti-
cular, functional coupling across the gray-white matter boundary, an interface
between local and global processing, remains poorly understood. This study
introduces two metrics: gray-white matter functional connectivity, which
captures temporal synchrony across the boundary, and gray-white blood
oxygenation-level dependent power ratio, which reflects differences in signal
amplitude. Gray-white matter functional connectivity aligns with patterns of
myelination, long-range connectivity, and sensorimotor organization, sug-
gesting efficient signal transmission. In contrast, the power ratio shows an
inverse pattern, with higher values in higher-order regions, possibly reflecting
increased metabolic demands in white matter. It also increases with age (8 to
21 years), suggesting developmental shifts in energetic demands. Together,
these metrics highlight distinct yet complementary roles of signal fidelity and
energy modulation at the gray-white matter boundary.

The human brain is intricately organized into gray matter (GM) and
white matter (WM), two structurally and functionally distinct tissues
that both play essential roles in neural processing. Gray matter
consists predominantly of neuronal cell bodies, dendrites, unmyeli-
nated axons, and synapses, which are responsible for local informa-
tion processing and integration, while white matter comprises
myelinated axons that enable long-range signal transmission
between distant GM regions. The boundary between GM and WM,
linking local cortical processing with broader white matter pathways
that support large-scale brain communication, represents a unique
and critical interface for understanding brain connectivity. Structural
studies have examined the GM-WM boundary using T1-weighted
(T1w) imaging. These studies primarily focus on the structural con-
trast between GM and WM, measured as the ratio of T1w intensity

between adjacent GM and WM points aligned perpendicular to the
boundary1. This contrast has been found to vary with myelination2

and water content3 in WM, and it can become blurred with aging1,
Alzheimer’s disease3, and Parkinson’s disease4. In addition, due to its
intricate microstructural organization, the boundary is particularly
vulnerable to various diseases and injuries, such as abscesses5,
metastasis6, and diffusive axonal injury7. Despite its importance, the
nature of functional coupling across the boundary, which potentially
reflects alterations in BOLD signals as they traverse from one type of
tissue to another, remains poorly understood. Given the distinct
metabolic, neurovascular, and structural properties of GM and WM,
it is expected that the characteristics of functionalMRI (fMRI) signals,
based on the BOLD (blood oxygenation-level dependent) effect, will
differ on either side of the boundary.
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Understanding such differences is key to revealing how the brain
integrates local processing (in GM) and global information transmis-
sion (through WM), and how these processes might vary across
regions of the brain. Unfortunately, such insights have been limited to
only one side of the boundary, as fMRI studies have historically
focused almost exclusively on the GM. This focus stems from our
observations that BOLD signals, which reflect changes in blood flow,
volume, and oxygenation, are more pronounced in GM due to its
higher vascularization and metabolic activity8, thus leading to BOLD
effects in WM being overlooked. However, recent studies have chal-
lenged this notion. Clear evidence shows that signals representing
neural activities within WM are measurable using appropriate analy-
tical methods9–18, and resting-state BOLD synchronization between
different WM regions reveals interacting networks and
communities19–22. These findings provide opportunities for further
exploration of functional interactions between the two sides of the
boundary. Such interactions may reflect brain adaptations to support
efficient signal propagation, influenced by factors such asmyelination,
regional functional load, metabolism, and neurochemical activity.

Here we introduce two metrics of functional activity that com-
plement traditional structural contrast measures, andwhich quantify
the similarities and differences in BOLD signals between two GM and
WM points (voxels) that are near, and aligned perpendicular, to the
GM-WM boundary, thereby enabling characterization of functional
contrast across this critical interface. These features are character-
ized in two ways. First, we introduce gray-white matter functional
connectivity (GWFC) by calculating the Pearson correlation between
the BOLD signals of those two points, which we propose reflects the
fidelity of signal transmission across the boundary. High values of
GWFC reflect strong temporal similarity between BOLD signals in
neighboring GM and WM regions. Second, we define the gray-white
BOLD power ratio (GWBPR) as the ratio of the fractional amplitudes
of low-frequency fluctuations23 (fALFF) between these two points, to
capture how the spectral power of the BOLD signal alters across the
boundary. These two measurements may reflect distinct biological
processes. GWFC reflects signal synchronization and likely relates to
local infrastructure that maintains the accuracy of signal transmis-
sion, such that both GM andWMelicit correlated vascular responses.
In contrast, the GWBPR reflects changes in signal magnitudes, which
may be more associated with the different magnitudes of oxygena-
tion and blood volume changes required to support the metabolic
energy demands of signal transmission in WM and GM24. Together,
thesemetrics provide complementary insights into the efficiency and
integrity of signal propagation across the GM-WM boundary. To
further contextualize the functional patterns we observe, we also
examined the regional homogeneity25 (ReHo), which captures the
functional connectivity among neighboring GM points that are
aligned tangentially to the boundary. By comparing GWFC to ReHo,
we aim to demonstrate that GWFC provides unique insights into
functional coupling across the GM-WM boundary, offering informa-
tion that cannot be captured by connectivity measurements con-
fined to GM.

Our results reveal a significant correlation between GWFC and
myelin content, with higher GWFC observed in regions with greater
myelin content (T1-weighted to T2-weighted ratio). In contrast, ReHo,
which is primarily driven by local intra-GM connectivity, shows a
weaker correlation with myelin content, indicating BOLD contribu-
tions to ReHo reflect a different type of neural interaction. Addition-
ally, long-range functional connectivity (the mean FC between a GM
point and all WM points across the brain) is better predicted by GWFC
than by ReHo. GWFC was also found to be positively correlated with
regions involved in sensorimotor functions, as defined by a previously
reported sensorimotor-association axis map26. It is also positively
correlated with the density of neurotransmitter receptors associated
with specific neurochemical processes (e.g., 5-HT1F, β1, H2) and

negatively correlated with transmodal regions and receptors linked to
higher-order cognition (e.g., 5-HT3A, 1A, 7).

GWBPR exhibits an approximately inverse distribution compared
to GWFC, showing negative correlations with myelin content but
positive correlations with higher-order functions. Building on these
findings, we further examined how GWBPR varies with age during late
childhood and adolescence (8–21), a developmental period during
which lower-order functions are largely developed, while higher-order
functions are still maturing27. We observed widespread regions show-
ing a positive correlation between GWBPR and age, withmost of these
regions being associated with higher-order functions.

In conclusion, the functional contrasts proposed here offer a
unique perspective on brain connectivity by capturing how functional
signals are transmitted across the GM-WM boundary. Their distribu-
tions are related to structural (myelination), functional (sensorimotor
vs. association regions), and neurochemical (receptor distribution)
tissue characteristics, and they provide a more comprehensive view of
specific aspects of brain connectivity that may have both clinical and
theoretical significance.

Results
Two functional contrasts, GWFC and GWBPR, were computed for each
vertex on the GM-WM boundary. These metrics were derived from
resting-state fMRI data from twopublicly available cohorts: theHuman
Connectome Project–Development28 (HCP-D; n = 571, ages 8–21) and
the Human Connectome Project-Young Adult29 (HCP-Y; n = 687, ages
22–35). As shown in Fig. 1, GWFC measures the Pearson correlation
between BOLD signals at corresponding GM and WM points along a
perpendicular axis, while GWBPR quantifies the ratio of fALFF between
these points. Additionally, ReHo (Regional Homogeneity) was calcu-
lated to assess functional connectivity along the tangential direction
within GM. It should be noted that the WM points were sampled 1mm
beneath the GM-WM boundary, while the fMRI data have a 2mm iso-
tropic resolution. Although trilinear interpolationwas used to estimate
sub-voxel BOLD values, some partial volume effects are possible,
especially near subcortical structures. We addressed this by zeroing
out intensities from subcortical voxels, though residual signal con-
tamination cannot be entirely excluded.

Distribution of GWFC and its relationship to myelin content
The spatial distribution of GWFC averaged across all subjects is shown
in Fig. 2. The highest correlations are observed in sensory areas,
including the primary visual and primary sensory cortex, while the
lowest intensities are seen in the anterior cingulate cortex. In contrast,
ReHo exhibits more consistently high intensities across the brain,
though noticeably low intensities are found in the hippocampus,
inferior parietal cortex, and anterior TE2 area. However, similar to
GWFC, ReHo also shows noticeably high intensity in the primary sen-
sory cortex. To further contextualize these patterns, we compared
GWFC and ReHo with cortical myelin content, estimated using the
T1w/T2w ratio from the HCP-Y structural dataset. Visual inspection
reveals that the distribution of GWFC is highly consistent with that of
myelin content. Correlation analyses confirm that the myelin map is
more strongly associated with GWFC (r(358) = 0.40, p = 2.7470e-15,
95%CI = [0.31, 0.48]) thanwithReHo (r(358) = 0.32, p = 2.9541e-10, 95%
CI = [0.23, 0.41]). To further assess the robustness and reproducibility
of this pattern, we conducted a validation analysis. Specifically, we
randomly selected 100 subjects from the full dataset (n = 687) and
repeated the group-level GWFC, ReHo, and myelin computations
across the cortical surface. We then computed the correlation of
GWFC/ReHo with the myelin map across regions. This process was
repeated 30 times. As shown in Figure S1, across these 30 random
subsets, GWFC consistently showed stronger correlations with myelin
than ReHo, suggesting that the observed trend is stable and
reproducible.
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It is important to note that myelin content was not measured at a
single vertex; instead, for each vertex, a ribbon was reconstructed,
covering the entire space between the pial and white matter surfaces.
To ensure that this result is not driven by the method of estimating
myelin using values averaged across cortical layers, we repeated the
analysis using myelin maps computed at the mid-thickness surface
only. This test was conducted on a subset of 100 HCP-Y subjects (the
first 100 sorted by study ID). As shown in Figure S2, the resulting
correlation between mid-thickness myelin and the full-layer myelin
map was high (r(358) = 0.9787, p = 3.3179e-248, 95% CI = [0.97, 0.98]),
confirming that our findings are robust to how myelin is sampled
across the cortex.

Relationship between GWFC and long-range FC
To assess the relationship between local and global functional organi-
zation, we introduced a long-range FC measure for each GM vertex.
This was computed as themean Pearson correlation between the BOLD
signal of that vertex and all WM voxels across the brain, capturing
the extent of global integration through WM pathways. As shown in
Fig. 3, although both GWFC and ReHo show a noticeable correlation

with long-range FC, the correlation is stronger for GWFC (r(358) =0.67,
p = 7.5282e-49, 95% CI = [0.61, 0.73]), likely due to its ability to capture
connections extending into WM, reflecting the direct role of this
interface in facilitating communication across distant brain regions. In
contrast, the correlation between ReHo and long-range FC is weaker
(r(358) =0.42, p = 3.7826e-17, 95% CI = [0.34, 0.51]), presenting weaker
evidenceof local synchronizationwithinGMplaying a role in long-range
connections. There is a potential bias in the comparison between ReHo
and GWFC due to the difference in calculation methods. ReHo is based
on KCC, whereas GWFC and long-range FC are computed using Pear-
son’s correlation. To address this, we tested an alternative version of
ReHo (based on 100 subjects) by replacing KCC with the mean of
pairwise Pearson correlations among neighboring voxels. As shown in
Figure S3, the two ReHo measures are highly correlated
(r(358) =0.9991, p < 2.2e − 16, 95% CI = [0.9989, 0.9993]), indicating
strong agreement between the methods. Importantly, even with this
alternative calculation, ReHo still exhibits a weaker correlation with
long-range functional connectivity (r(358) = 0.31, p = 3.5201e-08, 95% CI
= [0.20, 0.41]) compared to GWFC (r(358) =0.67, p = 7.5282e-49, 95% CI
= [0.61, 0.73]), supporting the robustness of our original result.

W

MidThickness
Cortical Surface

Gray-white matter
Boundary Surface

Normal to surface Tangential to surface

a

c d

b

Fig. 1 | Overviewof functional contrast across the gray-whitematter boundary.
a The whitematter surfaces are shown from a lateral view, highlighting the primary
motor cortex in blue. bMesh surface of mid-thickness cortex (red) and gray-white
matter boundary (blue). c Schematic of functional contrastmeasures normal to the
surface. For a given vertex vi on the boundary surface, its corresponding GM vertex

(G) and WM point (W) are identified along the line perpendicular to the surface.
d Schematic of functional connectivity measures tangential to the surface. ReHo is
calculated for each vertex vi on the mid-thickness surface by measuring the cor-
relation of BOLD signals among neighboring vertices, which are connected along
the tangential direction to the surface. ReHo regional homogeneity.
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To further evaluate the spatial nature of long-range connectivity
captured by this approach, we generated voxel-wise WM FC maps for
two representative GM seed clusters exhibiting the highest GWFC
values. As shown in Figure S4, these spatial maps illustrate widespread
correlations between GM seeds (in somatosensory and visual cortices)
and distributed WM regions across the brain, consistent with known
projection pathways such as corticospinal tracts and posterior tha-
lamic radiations.

Relationship between GWFC and Sensorimotor-association axis
Figure 4 shows the significant negative correlation (r(358) = −0.41,
p = 2.3242e-16, 95% CI = [−0.50, −0.32]) between the spatial maps of
GWFC and the sensorimotor-association axis. This axis, originally
reported by a previous study26, represents a principal gradient of
cortical organization derived from various techniques, including neu-
roimaging data, evolutionary and developmental markers, meta-
analysis markers, and gene expression profiles. Given the nature of
the sensorimotor-association axis, higher GWFC values are associated
with lower-order brain functions, such as those involved in sensory and

motor processing, whereas lower GWFC values correspond to inte-
grative higher-order functions, such as abstract thinking,memory, and
language.

Relationship between GWFC and neurotransmitter receptors
Neurotransmitter receptor distribution maps, derived from a recently
compiled multimodal atlas of the human brain30 were used to inves-
tigate the neurochemical correlates of GWFC. 35 out of 48 neuro-
transmitter receptors show significant correlations with GWFC
(p <0.05, Bonferroni correction). Figure 5 shows the three neuro-
transmitter receptors that exhibit the highest positive correlation with
GWFC distribution, serotonin 1 F, noradrenergic beta1, and histamine
2, as well as the three receptors with the highest negative correlation,
serotonin 3a, 1a, and 7. These receptors are associated with a diverse
range of physiological and cognitive functions. Specifically, serotonin
1 F is involved in pain and migraine modulation31,32, noradrenergic
beta1 plays a role in cardiac function regulation33, and histamine 2 is
linked to gastric acid secretion34. In contrast, serotonin 3 A35,36 is rela-
ted to nausea and anxiety regulation, serotonin 1 A is associated with
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Fig. 2 | Correlations between myelination, GWFC, and ReHo across the cortex.
a A scatter plot showing the positive correlation (r(358) = 0.40, p = 2.7470e-15, 95%
CI = [0.31, 0.48]) between GWFC and myelin content. b Spatial distribution of
myelin content. c A scatter plot showing a weaker positive correlation
(r(358) = 0.32, p = 2.9541e-10, 95% CI = [0.23, 0.41]) between ReHo and myelin
content. d Spatial distribution of GWFC and corresponding anatomical diagrams.
e Spatial distribution of ReHo and corresponding anatomical diagrams. Each point
in the scatterplot represents a brain region, and the fitted line depicts the general
relationship between the two measured metrics. Two-sided Pearson correlation

wasused to assess the association between variables. For the distributionmaps, the
color represents themetric value (blue = low, red = high). These diagrams ind, e are
intended to conceptually illustrate how different orientations of functional con-
nectivity, perpendicular for GWFC and tangential for ReHo, may reflect varying
underlying anatomical andmyelin characteristics. The top and bottom schematics,
alignedwith the color bars, correspond to regionswith highand lowGWFCorReHo
values, respectively. Some elements in d, ewere created with Figdraw. GWFC gray-
white matter functional connectivity; ReHo = regional homogeneity.
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mood and anxiety regulation37, and serotonin 7 contributes to circa-
dian rhythms and mood regulation38.

Distribution of GWBPR
As shown in Fig. 6, theGWBPR shows an inverse relationshipwithGWFC
and is negatively correlated with the myelin map (r(358) = −0.32,
p = 2.2825e-09, 95% CI = [−0.42, −0.22]) and positively correlated with
the sensorimotor-association axis (r(358) =0.41, p = 5.9262e-15, 95%CI =
[0.32, 0.50]). This indicates that regions with higher power coupling
across the boundary are more likely to be associated with higher-order

cognitive functions and engage less myelinated white matter tracts.
GWBPR also shows significant negative correlations with GWFC
(r(358) = −0.68, p = 1.2889e-45, 95% CI = [−0.73, −0.61]) and long-range
FC (r(358) = −0.73, p =4.3120e-56,CI = [−0.78,−0.68]), as shown in Fig. 7.
To further examine the functional relevance of GWBPR, we explored its
relationship with neurotransmitter receptor distribution. Specifically,
we analyzed the correlations betweenGWBPR and the six receptors that
showed the strongest positive and negative associations with GWFC (as
identified in Fig. 5). As shown in Figure S5, GWBPR exhibits an inverse
correlation pattern with these receptors compared to GWFC.
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Fig. 3 | Correlations of GWFC and ReHo with long-range FC. a–c Illustration of
GWFC, long-range functional connectivity, and ReHo. The blue points are on the
mid-thickness cortical surface. The green points are in white matter. Some ele-
ments in this figure were created with Figdraw. d–f Spatial distributions of GWFC,
long-range FC, and ReHo. The color represents the metric value (blue = low, red =
high). g The scatter plot demonstrates a significant positive correlation
(r(358) = 0.67, p = 7.5282e-49, 95% CI = [0.61, 0.73]) between GWFC and long-range

FC.hRelationshipbetweenReHo and long-range FC, showing a positive butweaker
correlation (r(358) = 0.42, p = 3.7826e-17, 95% CI = [0.34, 0.51]). Each point in the
scatterplot represents a brain region, and the fitted line depicts the general rela-
tionship between the two measured metrics. Two-sided Pearson correlation was
used to assess the association between variables. GWFC gray-white matter func-
tional connectivity, ReHo regional homogeneity; long-range FC long-range func-
tional connectivity.
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Development of GWBPR over age
The average distribution of GWBPR, calculated based on the HCP-D
dataset, is displayed in Fig. 8a. Visual inspection reveals that the late
childhood and adolescent group shows widespread lower GWBPR
compared to young adults. Statistical comparisons between the two
groups were not performed due to differences in scanners, imaging
protocols, and preprocessing pipelines. However, within the HCP-D
group, a region-by-region analysis of the change in GWBPR with age
was conducted. As shown in Fig. 8b, significant correlations (p <0.05,
Bonferroni correction) were identified in 107 out of 180 regions
defined by theMMP1.0 atlas, all showing positive correlations between
age and GWBPR. Figure 8c–j highlights the top 8 regions with the
highest correlations, including the ventral visual complex, middle
insular area, TG dorsal area, parahippocampal 1 area, anterior agra-
nular insular complex, posterior OFC complex, 47 s area, and TE2
posterior area. These regions are primarily distributed around the
temporal, insular, and orbitofrontal cortices and are involved in var-
ious higher-order functions, such as visual processing, memory
encoding, emotional regulation, social cognition, and decision-
making.

Discussion
We have introduced two functional metrics, GWFC and GWBPR, which
measure the fidelity and power coupling of BOLD signal variations
across the GM-WM boundary. Our results reveal that GWFC is more

strongly associated with myelination, long-range FC, and lower-order
functions, while GWBPRs demonstrate a strong association with
higher-order cognitive regions.

Our results indicate that GWFC, which represents functional
connectivity perpendicular to the GM-WM boundary, correlates more
strongly with myelin content than ReHo, which represents con-
nectivity tangential to the boundary. This difference may reflect the
distinct underlying biological connections captured by these metrics.
GWFCmay bemore influenced by axonal pathways that cross the GM-
WM boundary, which are often more heavily myelinated to facilitate
efficient signal transmission. Supporting this, a diffusion MRI study39

demonstrated that the principal diffusion orientation in the cortex
aligns perpendicular to the GM-WM boundary, consistent with the
organization of myelinated axons. By contrast, ReHo captures more
local synaptic interactions40. Therefore, its association with myelin
content is naturally weaker.

Based on this evidence, we propose that the distribution of GWFC
is strongly influenced by the myelin profiles at different boundary
locations. This effect could arise from the level of myelination itself or
the specific organization of myelinated axons. First, higher levels of
myelination, particularly in projection fibers, could enhance the fide-
lity and speed of signal transmission, leading to greater GWFC in
relevant boundary locations. Second, the organization of these mye-
linated axons also plays a crucial role. The same diffusion MRI study39

revealed that within superficial white matter regions containing
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U-fibers and association fibers, the orientation of fibers tends to be
more complex and variable. In these regions intersecting signals41

potentially mix or cancel each other out, reducing their correlation
with cortical activity. In contrast, projection fibers are characterized by
more consistent and coherent orientations, often aligning

perpendicular to the GM-WM boundary, supporting more synchro-
nized signal transmission across the boundary.

AlthoughReHo is less strongly correlatedwithmyelin thanGWFC,
the correlation remains significant. This could be due to the fact
that myelination facilitates efficient signal transmission not only in
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long-range projection fibers but also in local circuits within the cortex.
Even though the connections captured by ReHo are primarily intra-
cortical and short-range, the presence of even low levels of myelina-
tion may contribute to local signal precision, which in turn may influ-
ence fMRI synchrony measures such as ReHo.

While both GWFC and ReHo show correlations with long-range
functional connectivity (FC), the stronger correlation observed with
GWFC suggests that it captures additional information relevant to the
integration of signals across the GM-WM boundary and to distant
regions. Notably, both long-range FC and GWFC exhibit particularly
high values in sensorimotor regions compared to other areas of the
brain. This finding can be explained by two factors. First, sensorimotor
regions are connected by densely packed and heavily myelinated
tracts, as demonstrated by diffusion MRI studies42,43, which report
consistently high fractional anisotropy (FA) over the entire tracts.
These high FA values indicate well-organized fiber structures with
minimal crossing or interference from other pathways, leading to
signal transmission that is less contaminated by surrounding neural
noise. Consequently, the increased signal-to-noise ratio (SNR)

contributes to the higher GWFC and long-range FC observed in these
areas. Second, the higher degree of myelination in these tracts
enhances the strength and accuracy of functional connectivity, facil-
itatingmore synchronized communication even between distant brain
regions. Therefore, the combination of well-organized fiber orienta-
tion and high myelination allows sensorimotor tracts to maintain
stronger correlations of GWFC with long-range FC in these regions.

The significant correspondences between GWFC and certain
neurotransmitter receptor distributions, particularly those associated
with lower-order functions, may offer clues to the potential neuro-
chemical correlates of GWFC. The pattern of agreement suggests that
regions with high GWFC may be involved in unimodal signal trans-
mission supported by neurotransmitter systems crucial for basic
physiological functions. This aligns with the idea that lower-order
functions require rapid and accurate information flow, often necessi-
tated by heavily myelinated fibers, thereby enhancing the synchroni-
zation and functional connectivity in these regions.

In contrast, receptors that show negative correlations with GWFC
are associated with higher-order functions and pathologies. Higher-
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Fig. 6 | Relationship between GWBPR, myelination, and sensorimotor-
association axis. a–c The cortical distributions of myelination, GWBPR, and the
sensorimotor-association axis are shown across the brain. The color represents the
metric value (blue = low, red = high). d A negative correlation (r(358) = −0.32,
p = 2.2825e-09, 95% CI = [−0.42, −0.22]) is observed between GWBPR and myelin
content. eApositive correlation (r(358) = 0.41, p = 5.9262e-15, 95%CI = [0.32, 0.50])

is found between the GWBPR and the sensorimotor-association axis. Each point in
the scatterplot represents a brain region, and the fitted line depicts the general
relationship between the two measured metrics. Two-sided Pearson correlation
was used to assess the association between variables. GWBPR gray-white BOLD
power ratio.
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order regions that process complex cognitive and emotional functions
often require flexible, integrative signal transmission26 rather than
rapid and precise transfer44. The slower signal transmission and more
diverse, less uniform pathways might be beneficial for fine-tuning and
complex information processing.

GWBPR is not an absolute measure of BOLD signal amplitude in
WM alone but a relative measure between a WM point and its paired
GM point across the GM-WM boundary. It reflects the gradient or
contrast in signal power, an approximate indicator of local energy
demand or metabolic activity24, between the two tissue types at each
location. Our findings suggest that regions with lower GWBPR values
tend to exhibit higher levels of myelination. This aligns with the
understanding that heavilymyelinatedfibers associatedwith rapid and
accurate signal transmission45, as observed in sensorimotor regions, in
general produceweaker BOLD effects. The dense and highly organized
myelin sheaths that wrap these axons not only reduce signal loss but
may also lower the energy demands46 for signal transmission through
highly insulated channels47. Consequently, this efficient transmission
process in the nearby WM, along with the relatively simple and

unimodal nature of the transmitted signals, leads to the sharper con-
trast of signal power (reduced GWBPR) observed in these regions. In
contrast, regions involved in higher-order processing are often asso-
ciated with higher GWBPR, reflecting a different type of signal propa-
gation that may not prioritize rapidity but a more balanced energetic
profile across the boundary in support of diverse, multimodal
processing48, and may indirectly relate to a gradient in vascularization
or neurovascular coupling between the two tissues. While it is well
established that energy demand is generally supported by vascular-
ization, we do not have direct evidence regarding regional differences
in vascular density across the boundary.

The observed age-related increase in the GWBPR, particularly in
regions associated with higher-order functions, suggests that as these
regions mature, they may prioritize increased BOLD power to support
the greater metabolic demands of complex processing. This observa-
tion alignswith the developmental trajectory of higher-order cognitive
functions. Unlike sensorimotor functions, which generally reach full
maturation between ages 9 and 1227, higher-order functions continue
to mature through adolescence and into early adulthood49–52.
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was used to assess the association between variables. GWFC gray-white matter
functional connectivity; GWBPR gray-white BOLD power ratio; long-range FC long-
range functional connectivity.
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Consequently, the maturation of higher-order regions is associated
with the greater BOLDdemands observed, potentially supporting their
increasing functional and structural complexity during those ages. It is
worth noting that although low-order functions, better captured by
GWFC, are largely mature by late childhood, we still observed sig-
nificant age-related increases inGWFCwithin certain regions, as shown
in Figure S6. However, the spatial extent of these changes is relatively
limited, which is consistent with our expectations.

Our findings also suggest promising avenues for future research
using GWFC and GWBPR as markers of structure-function coupling at

the gray-white mfatter boundary. Given the unique microstructural
properties of the boundary, where diverse axonal projections con-
verge and myelination gradients shift, these functional measures may
be sensitive to early changes in development, learning, and neuro-
pathology. For example, longitudinal studies could explore whether
GWFC is altered in the early stages of demyelinating diseases (e.g.,
multiple sclerosis) or neurodegenerative conditions (e.g., Alzheimer’s
disease), potentially serving as an early functional indicator before
widespread white matter disruption. Similarly, boundary metrics may
provide insight into experience-dependent plasticity during learning
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the HCP-D cohort: a spatial map (ROI-wise) of the correlation between GWBPR and
age is presented, with red colors of each ROI indicating stronger positive correla-
tions. Two-sided Pearson correlation was used to assess the association between
variables. Regions showing significant correlations (p <0.05, Bonferroni correc-
tion) are displayed. c–j Scatter plots showing the relationship betweenGWBPR and
age for the top eight regions that show the highest correlation with age. Each point
in the scatterplot represents a brain region, and the fitted line depicts the general
relationship between the two measured metrics. The statistics for the eight

comparisons are: c r(178) = 0.41, p = 2.6478e-22, 95% CI = [0.33937, 0.47604].
d r(178) = 0.37, p = 1.5498e-17, 95% CI = [0.29524, 0.43721]. e r(178) = 0.36,
p = 4.8513e-17, 95% CI = [0.29028, 0.43281]. f r(178) = 0.36, p = 7.1917e-17, 95% CI =
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or cognitive training, particularly in association cortices where myeli-
nation is prolonged into adulthood. Future work integrating these
boundary measures with structural imaging across time could help
clarify whether functional changes at the GM-WM interface precede,
accompany, or follow underlying anatomical changes.

A key limitation of this study is the interpolation used to estimate
BOLD signals in WM voxels that are 1mm away from the GM-WM
boundary, given that the fMRI resolution is 2mm. This interpolation
could inadvertently include signals fromnearby subcortical structures,
potentially contaminating WM signal measurements. Although we
applied amask to exclude subcortical structures by setting their values
to zero, this may have introduced extremely low GWBPR values near
zero, which may not accurately reflect true power alteration. The
exclusion of subcortical structures also prevented us from examining
the functional role of subcortical structures, such as the thalamus and
basal ganglia, which are known to act as key relays in brain commu-
nication. This issue is a limitation of current imaging techniques, as all
surface-based fMRI studies face similar challenges.Nonetheless, future
work should aim to utilize higher-resolution data and incorporate
subcortical structures into the analysis to provide a more complete
picture of large-scale signal integration.

A related concern is that, due to this 1mmdistance, partial volume
effects may allow GM signals to contaminate WM measurements. To
investigate this, we conducted a control analysis using a more con-
servative sampling distance of 4mmbeneath the boundary, equivalent
to two fMRI voxels, where contamination from the GM signal is
expected to be minimal. As shown in Figure S7 and Figure S8, the
spatial distributions of both GWFC and GWBPR remained consistent
with our original findings, and their correlations with the myelin con-
tent were preserved. These results support the robustness of our
conclusions and suggest that they are not driven by partial volume
contamination.

Another limitation of our analysis is that the neurotransmitter
receptor maps were derived from independent datasets and therefore
are not directly linked to the fMRI data used to compute GWFC. As a
result, the observed correlations may not fully capture the true bio-
logical coupling between receptor distribution and functional
dynamics.

In conclusion, our findings provide a comprehensive view of how
myelination, functional connectivity, and neurotransmitter distribu-
tion shape the functional architecture of the GM-WM boundary of the
brain. GWFCandGWBPRoffer complementary insights into thefidelity
and magnitude variation of signal propagation across the GM-WM
boundary, with implications for understanding both healthy brain
function and potential disruptions in neurodevelopmental and neu-
rodegenerative disorders.

Methods
Ethics Statement
The data involved in this research are publicly available and have been
previously approved for use by theWashingtonUniversity Institutional
Review Board. All participants provided written informed consent to
participate in this study. The authors did not collect any new data
involving human participants.

Dataset
We selected 687 entries from the Human Connectome Project Young
Adult (HCP-Y)29 repository (comprising 335 males and 352 females, all
between the ages of 22 and 35 years) and 571 subjects from HCP
development (HCP-D)28 repository (259 males and 312 females,
between ages of 8 and 21 years), adhering to criteria that included the
completeness of a 3 T scan and associated physiological data, along
with adequate data quality. We have included only the relevant MRI
modalities that were pertinent to our study from these databases. The
sex of participants was recorded based on self-report in the HCP

dataset. No sex- or gender-based analyses were conducted in
this study.

For HCP-Y, the imaging protocols are detailed elsewhere53 and
were performed with 3 T Siemens Skyra scanners. Resting-state scans
were acquired using multiband gradient-echo EPI sequences. Each
session consisted of two runs of scans with opposing phase encoding
directions and lasted 14min and 33 sec, with parameters TR = 720ms,
TE = 33.1ms, and an isotropic voxel resolution of 2mm, totaling 1200
volumes. Concurrent recordings of physiological responses, such as
respiration and heartbeat, were captured during fMRI scans. Addi-
tionally, T1-weighted images were obtained using a single-echo
MPRAGE sequence with a TR of 2400ms, TE of 2.14ms, and voxel
dimensions of 0.7mm isotropic. T2-weighted images were obtained
using a 3DT2-SPACE sequencewith a TR of 3200ms, TE of 565ms, and
voxel dimensions of 0.7mm isotropic.

For HCP-D, the imaging protocols are more thoroughly described
elsewhere54. Briefly, scans were executed on Siemens 3 T Prisma
scanners with 32-channel head coils. The resting-state fMRI protocol
involved four runs with opposing phase encoding directions, each
6min and 41 sec, with TR = 800ms, TE= 37ms, voxel dimension = 2
mm isotropic, and a total of 488 volumes for each run, while physio-
logical parameters were also documented. T1-weighted images were
obtained using a multi-echoMPRAGE sequence, with a TR of 2500ms,
TEs of 1.8/3.6/5.4/7.2ms, and voxel dimensions of 0.8mm.

Preprocessing
The datasets acquired through ICA-FIX, which have regressed out
whitematter signals, werenot used in this study55. Our approachwas to
employ ‘uncleaned’ images that underwent only the Minimal Pre-
processing Pipelines56. Briefly, T1-weighted images were nonlinearly
coregistered to MNI space using FNIRT57, with subsequent processing
via the Freesurfer suite, resulting in mesh surface profiles for different
cortical layers, volumetric and surface parcellations, as well as voxel
(volumetric) and vertex (surface) -wise BOLD time series58. This study
utilizes two mesh surfaces generated by Freesurfer: the WM surface,
marking the boundary between GM and WM; and the mid-thickness
cortical surface, located midway between the pial and white matter
surfaces. These surface profiles record the MNI coordinates of each
vertex and the connectivity between vertices, which are organized into
triangular faces.Meanwhile, the T2-weighted imageswere alignedwith
the native T1-weighted images using 6 degrees of freedom (DOF) and
subsequently registered to MNI space along with the T1-weighted
images. The fMRI processing encompassed the removal of head
movement artifacts, correction of distortions from susceptibility
effects using FSL based on the two runs of data with opposite-phase
encoding directions, and then nonlinear registration to MNI space.
Further processing steps included regressing out confounding vari-
ables including 12 head movement parameters and physiological
fluctuations, modeled by the RETROICOR technique59. This preceded
the application of linear trend corrections and temporal filtering using
a band-pass filter covering the frequency range of 0.01–0.1 Hz.

GWFC, GWBPR, and ReHo calculation
In surface analysis, the cortical surfaces of different layers are spatially
aligned, meaning that each vertex on one surface corresponds to a
vertex on the other surface. For example, a vertex on the pial surface
has a corresponding vertex on the whitematter surface, and those two
represent the same location in the cortex, but on different layers,
allowing for consistent comparisons and measurements across sur-
faces. The line connecting two corresponding vertices is approxi-
mately aligned with the normal direction of both surfaces.

In our study, two functional contrasts, including GWFC and
GWBPR, were calculated for each vertex vi on the boundary surface,
based on the BOLD signals from a GM point and a WM point on either
sideof theboundary. As shown in Fig. 1c, theGMpoint is definedby the
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vertex on the mid-thickness surface, which spatially corresponds to vi.
The WM point lies along the normal line extending from vi to WM,
positioned 1mm away from the boundary surface. Note that the fMRI
voxel size in this study is 2mm isotropic, and thereby trilinear inter-
polation was applied to estimate the BOLD signal at sub-voxel preci-
sion at those points and vertices. It is important to note that, as some
subcortical structures are physically close to certain boundary areas,
such as the putamen, the interpolation process could introduce GM
signals into themeasured signal ofWMpoints. To eliminate this, we set
the fMRI intensity of all subcortical structures to zero before calcu-
lating GWFC and the GWBPR. The GWFC is defined as Pearson’s cor-
relation between each pair of GM and the WM points that are aligned
perpendicular to the surface.

GWFC vi
� �

= corr BOLDG,BOLDW

� �

The GWBPR is defined as the ratio of fALFF at theWMpoint to the
fALFF at the GM point, where fALFF is itself calculated as the ratio of
the power within the low-frequency range (0.01–0.1 Hz) to the total
power of all frequencies detectable in the signal.

GWBPR við Þ =
f ALFFW

f ALFFG

ReHo for each vertex is calculated based on the functional con-
nectivity among a group of vertices on the mid-thickness surface,
including the vertex itself and its directly connected neighboring
vertices, as shown in Fig. 1d. Such connectivity was quantified by
Kendall’s coefficient of concordance (KCC)60.

ReHo vi
� �

=KCC BOLDNeighbors of vi

n o� �

In summary, while GWFC and the GWBPR represent contrasts in
connectivity along the perpendicular direction to the surface, ReHo
captures connectivity along the tangential direction to the surface.

Myelin map
We quantified myelin content using the T1-weighted (T1w) to T2-
weighted (T2w) ratio method, leveraging data obtained from the HCP
young adults. This approach is grounded in the principle that the ratio
of T1w to T2w signal intensities in brain images correlates with myelin
content, as demonstrated by Glasser and Van Essen61 and further ela-
borated by Ganzetti et al.62. The surface myelin map for each subject
was obtained from the HCP database, where the T1w/T2w ratio was
calculated for each vertex, producing a surface map that illustrates
myelin distribution and density across different cortical regions. It is
important to note that myelin content was not measured at a single
vertex; instead, for each vertex, a ribbon was reconstructed, covering
the entire space between the pial and white matter surfaces. The T1w/
T2w values were sampled and averaged from multiple points within
this ribbon, meaning the measured myelin content represents the
average across all cortical layers.

Long-range FC
One of our hypotheses is that connections perpendicular to the GM-
WM boundary are likely to be involved in long-distance information
exchange through WM tracts. To test this, a long-range functional
connectivity (FC) measure was generated for each vertex on the
boundary. This was achieved by first calculating the Pearson correla-
tion coefficients between the BOLD signals of each GM vertex on the
mid-thickness cortical surface and all WM voxels (30,932 in total)
across thebrain, and then averaging these 30,932 coefficients. TheWM
voxels were selected using a groupWMmask, created by averaging the
Freesurfer-derived WM parcellations from all participants and apply-
ing a threshold of 0.95.

Sensorimotor-association axis map
The sensorimotor-association axismapwas replicated from a previous
study26. It describes a continuum from primary and unimodal sensory
and motor cortices (regions that process basic sensory inputs and
controlmovements) tomultimodal areas (which integrate information
from multiple sensory modalities), and ultimately to trans-modal
association cortices (regions involved in higher-order cognitive func-
tions, such as abstract thinking, decision-making, and social cogni-
tion). Briefly, the values that parameterize this map represent an
integration of multiple neurobiological properties measured from
various techniques, including neuroimaging data, evolutionary and
developmental markers, meta-analysis markers, and gene expression
profiles. Itwas reconstructed by first ranking each vertex on aproperty
map according to its relevance to cortical function, with lower-order
properties at one end andhigher-order tasks at the other. For example,
the gene expression map was ranked based on the gradient from
vertices expressing genes related to sensory functions to those asso-
ciated with higher-order cognitive functions. All different rank-order
maps (10 in total)were then averaged to reconstruct the sensorimotor-
association axis map used in this study.

Neurotransmitter receptors
The receptor maps used in this study were replicated from a previous
work30,63. Briefly, these maps were generated using Gaussian process
regression to predict mRNA expression (Allen Human Brain atlas
http://www.brain-map.org) levels of neurotransmitter receptors
across the cortical surface. This method allowed for comprehensive
receptor distribution maps, even in regions where direct receptor
binding measurements were not available. To ensure the accuracy of
these maps, the predicted mRNA expression levels were validated
against positron emission tomography (PET) binding potential data
collected from 30 healthy individuals. The strong correlation between
the predicted receptor distributions and PET data provided external
validation of the receptor maps. In total, 48 receptor maps were pro-
duced, spanning multiple neurotransmitter systems, including ser-
otonin, dopamine, noradrenaline, and acetylcholine receptors. These
receptor maps were then used in the present study for multimodal
comparisons to examine the neurochemical basis of the distribution of
boundary functional contrast.

Similarities between spatial maps
A group-averaged surface map was reconstructed for each of the
measurements mentioned above. The similarities between these spa-
tial maps were assessed using Pearson’s correlation. Specifically, by
using the multi-modal parcellation (MMP) 1.0 atlas64, each map was
segmented into 360 regions (180 per hemisphere), thereby converting
themap into a vector of length 360, with each element corresponding
to the mean measurement within a region. Pearson’s correlation was
calculated to evaluate the spatial similarity between thesemaps across
the 360 regions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MRI data used in this study are available in the HCP database
https://www.humanconnectome.org/ The source data used for gen-
erating the Figures in this study are provided in the Supplementary
Information/SourceData file. Source data are providedwith this paper.

Code availability
The code used for generating the two metrics in this study is
available on GitHub at: https://github.com/geyerou/Gray-White-Matter-
Boundary. Detailed instructions for reproducing the key results are
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provided in the repository’s README file. Other software and toolboxes
that are required for running the code include: DPABI: http://rfmri.org/
DPABI GIFTI: https://www.nitrc.org/projects/gifti/ HCP workbench:
https://www.humanconnectome.org/software/connectome-workbench.
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