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SE(3)-equivariant ternary complex
prediction towards target protein
degradation

Fanglei Xue 1, Meihan Zhang 2, Shuqi Li 3, Xinyu Gao4,
James A. Wohlschlegel 5, Wenbing Huang 3,6 , Yi Yang 7 &
Weixian Deng 5

Targeted protein degradation (TPD) has rapidly emerged as a powerful mod-
ality for drugging previously “undruggable” proteins. TPD employs small
molecules like PROTACs andmolecular glue degraders (MGD) to induce target
protein degradation via the formation of a ternary complex with an E3 ligase.
However, the rational design of these degraders is severely hindered by the
difficulty of obtaining these ternary structures. Here we introduce Deep-
Ternary, a novel end-to-enddeep learning approach using an SE(3)-equivariant
encoder and a query-based decoder to accurately and rapidly predict these
critical structures. Trained on carefully curated TernaryDB, DeepTernary
achieves state-of-the-art performance on PROTAC benchmarks without prior
exposure to known PROTACs and shows notable prediction capability on the
more challengingMGDbenchmarkwith a blinddocking protocol. Remarkably,
the buried surface areas calculated from predicted structures correlate with
experimental degradation potency metrics. Overall, DeepTernary offers a
powerful tool for the development of targeted protein degraders.

Targeted protein degradation (TPD) is a rapidly evolving field in drug
discovery, representing a promising therapeutic approach to
degrade target proteins via harnessing the ubiquitin-proteasome
system and autophagy-lysosome system1–4. Traditional drug dis-
covery mainly focuses on inhibiting the activity of target proteins,
which may not always be effective, especially in cases where the
target protein is ‘undruggable’ by occupancy-driven inhibitors like
small molecules5. These “undruggable” proteins include oncology
targets in the SWI/SNF complex6,7 and many kinases8 which share
high homology active domainwith their essential non-disease related
family members, and transcriptional factors9 that are highly
unstructured until they form active conformations. TPD presents an
alternative strategy, which is to induce the degradation of target

proteins rather than inhibit their activity to achieve desirable ther-
apeutic outcomes. The mode of action (MOA) for TPD offers several
advantages: Firstly, TPD molecules do not require targeting “active
site”, allowing them to selectively target disease-driver proteins
without affecting other essential homologous proteins that often
share conserved active sites, and exert potential to engage highly-
unstructured transcriptional factors10 and other scaffolding targets
that do not depend on active sites10. Secondly, its transient protein
interaction via event-driven mechanism reduces the reliance on
strong binding affinity, in contrast to inhibitor drugs11. Furthermore,
its catalytic nature mitigates the requirement for high dosages and
the subsequent challenges associated with off-target effects12. Lastly,
even for existing targetable proteins by inhibitors, it still offers
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alternative therapeutic options to fight against drug resistance
caused by active site mutations13.

Proteolysis-targeting chimeras (PROTACs) and molecular glue
degraders (MGDs) are two main modes of TPD11. As shown in Fig. 1a,
PROTACs are hetero-bifunctional small molecules consisting of three
moieties, including a warhead, which is the ligand of the protein of
interest (POI), an anchor, which is the ligand of an E3 ubiquitin ligase
being employed, and a linker linking thewarhead and anchor.With the
hetero-bifunctional structure, PROTACs recruit the POI to an E3 ubi-
quitin ligase, leading to the ubiquitination of the POI and its sub-
sequent degradation process by UPS2,14. As of January 2023, there have
been 18PROTACsunder evaluationby regulatory authorities, targeting

different malignant cancer diseases15. MGDs, in contrast, are small
molecules that facilitate the interaction between the POI and an E3
ubiquitin ligase, enabling the ubiquitination and degradation pro-
cesses of the POI16. Unlike PROTACs, they do not require a bifunctional
structure but act by stabilizing existing protein–protein interactions or
inducing new interactions17. Despite their distinct modes of action,
both PROTACs andMG(D)s share a common feature: the induction of a
ternary complex structure that is crucial for their respective
mechanisms.

Understanding the ternary structure induced by PROTACs or
MGDs provides crucial insights into the molecular basis of induced
protein degradation. In the context of PROTACs, the ternary structure

Fig. 1 | DeepTernary is a deep learningmodel for predicting the structure of the
ternary complex induced by PROTACs andMG(D)s. a TheMOAof PROTACs and
MGDs. The protein of interest (POI) and the E3 ligase are recruited to proximity by
PROTACs or MGDs to form a ternary complex, and then the Ubiquitin-Proteasome
System (UPS) is employed to transfer the ubiquitin and degrade the POI. b To
mitigate the scarcity of known PROTACs and MG(D)s structures, a large-scale
ternary complex dataset (named TernaryDB) was collected by searching and
cleaning complexes from the Protein Data Bank (PDB) archive. The collected
samples were then grouped into clusters by similarity. Any complex that is similar
to known PROTAC and MG(D) induced complexes was excluded from the training
set. DeepTernary was trained on this filtered database by predicting the original
complex structure using disassembled monomers. c DeepTernary is an SE(3)-
equivalent graph neural network equipped with attention blocks to facilitate effi-
cient information exchange. It begins by representing two proteins and a small

molecule as three graphs, encoding node coordinates, diverse amino acid or atom
characteristics as node features, edge types, and distances as edge features. The
three graphs are fed into an encoder consisting of a series of SE(3)-equivariant
blocks, enabling both intra- and inter-graph learning to capture interactions
effectively. The encoder will predict the conformation of the small molecule and
output the refined node features/coordinates of the two proteins. Subsequently, a
decoder comprising several attention-based blocks employs these refined features/
coordinates to generate two pairs of pocket points and a predicted aligned error
(PAE). The pocket points are then used to align both the small molecule and pro-
tein2 to protein1. * For PROTAC, the pocket points are derived from unbound
structures, don’t need to be predicted. ** For MG(D), the ligand and protein2 are
simultaneously aligned to protein1. Image created with BioRender. Xue, F. (2025)
https://BioRender.com/o91e3ly, with permission.
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elucidates how the PROTAC molecule facilitates the connection
between the POI and the E3 ligase, demonstrating the interacting
poses, properties of the contact interface, and solvent-exposed amino
acid residues essential for efficient ubiquitination. For instance, the
buried surface area (BSA) of the ternary structure18 is a critical para-
meter indicating the extent of interaction surface between the PRO-
TAC, the POI, and the E3 ligase, directly correlating with the stability
and efficacy of the induced degradation17,19. The ternary structure can
also suggest possible modifications in terms of the length and the
composition of the PROTAC linker in order to improve selectivity and
reduce off-target effects19. Similar to PROTACs, the BSA of the MGD-
induced ternary structure is a crucial determinant of their functional
impact, influencing both the strength and specificity of the interaction
between the POI and the E3 ligase17, which can alsoprovide clues about
the molecular features that are crucial for the molecular glue’s
activity20.

Existing experimental approaches toobtain the PROTAC-orMGD-
induced ternary structures, such asX-ray crystallography and cryo-EM,
often depend on costly instrumentation and intricate reagents and
remain a formidable challenge for seasoned structural biologists due
to the necessity of high-purity proteins and precise buffer conditions.
Instead, in silico approaches have been proposed to predict ternary
structures that primarily using various docking methods (such as
PatchDock21,22, FRODock23,24, RosettaDock22,24,25, and PIPER19,26,27) to
generate big pools of structures and then to rank, filter, and refine the
docked ternary structures by minimizing free energy19,22,27, atom
clash27–29, constraining distance to E2 ligase27, andmolecular dynamics
simulations19. In spite of the encouraging progress, the structures
predicted by existing docking methods still deviate greatly from
experimentally determined ones, and the docking process is usually
time-consuming. Recently, deep learning technologies such as
AlphaFold230 and RosettaFold31 have shown promising prediction
accuracy for protein structure prediction by making use of deep and
sophisticated neural networks to distill crucial features from extensive
training datasets. These remarkable achievements have attracted sig-
nificant scientific interest in extending deep learning to other related
tasks, including protein–protein32,33 and protein–ligand complex
structure prediction34,35. However, to our best knowledge, there were
no reported research on predicting PROTAC- or MGD-induced ternary
structures by using deep learning approaches. This can be attributed
to the heightened complexity of modeling ternary structures com-
pared to the unitary or binary structures tackled in prior studies.
Additionally, the scarcity of training data presents a significant
obstacle to training deep learning models, as there are only a few
resolved ternary structures for both PROTACs andMGDs17,36, making it
impractical to train such models with such limited data.

In this work, we introduce a deep learning-based framework for
predicting ternary complexes induced by PROTACs and MG(D)s (We
use the term MG(D) to denote both degraders and non-degraders, as
the formation of MGD ternary complexes can be generalized to non-
degraders). To achieve this, we curated TernaryDB, a large-scale
dataset comprising over 20,000 ternary complexes from the protein
data bank (PDB). The dataset focuses on high-quality complexes that
include a smallmolecule and twoproteinswhile deliberately excluding
known PROTACs and MG(D)s from the training list. Figure 1b outlines
the construction process of the dataset. Leveraging TernaryDB, we
trained DeepTernary, an SE(3)-equivariant graph neural network spe-
cifically designed for ternary structure prediction (Fig. 1c). In this
model, the ternary complexes were disassembled into three
components-p1 (protein1), lig (ligand), and p2 (protein2)-each mod-
eled as a graph. Graph neural networks(GNN)37 offer a powerful fra-
mework for processing graph-structured data through message
passing between nodes and edges. To improve data efficiency, we
employed an SE(3)-equivariant GNN, leveraging the symmetry prop-
erties of SE(3) to ensure invariance to the translationand rotationof 3D

structures. Additionally, we introduced a novel ternary inter-graph
attention mechanism to capture the intricate relationships between
ternary components, along with a query-based pocket points decoder
to predict the final complex structure. With these innovations, Deep-
Ternary effectively predicts both the conformation of the small
molecule and the docking poses of the ternary complex. DeepTernary
was evaluated against existing PROTAC and MG(D) benchmarks,
achieving state-of-the-art performance with DockQ scores of 0.65 and
0.21, with average inference times of ~7 and 1 s, respectively. The
model’s ability to generalize from a non-PROTAC/MG(D) PDB dataset
to PROTAC/MG(D) ternary structures highlights its capacity to capture
the fundamental interaction patterns governing ternary complex for-
mation, rather than relying onmemorization. Moreover, the predicted
buried surface area (BSA) of the PROTACcomplexes aligns closelywith
values reported in existing literature, with BSA ranging from 1100 to
1500, indicating high degradation potential. These results demon-
strate DeepTernary’s potential to advance our understanding and
manipulation of protein degradation mechanisms.

Results
The construction of TernaryDB
There are only a few dozen experimentally determined PROTAC- and
MG(D)-involved ternary complexes in the PDB38. Despite the
remarkable success of deep learning in protein structure
prediction30,31, protein–protein docking32, and protein–ligand
interactions34,39, its application to targeted protein degradation
(TPD) remains underdeveloped, primarily due to the scarcity of
training data. We hypothesized that TPD complexes adhere to the
same fundamental atom-interaction principles as other tripartite
complexes. To test this hypothesis and enable deep learning-based
prediction of TPD complex structures, we curated a comprehensive
dataset of ternary complexes from the PDB. After stringent data fil-
tering (details are provided in Methods 4), the final dataset com-
prised 22,303 complexes, with their key attributes illustrated in
Fig. 2. The distribution of ligand atom counts, excluding hydrogens,
is shown in Fig. 2b, revealing that the majority of ligands contain
fewer than 60 heavy atoms, with only a small subset exceeding 100.
The chemical diversity of these ligands, represented by Morgan fin-
gerprints (Fig. 2f), highlights the broad chemical space and drug-like
properties of the dataset. Proteins from 363 species, ranging from
bacteria to humans, are included in the dataset (Fig. 2d). Although
the protein space is relatively sparse, it adequately covers PROTAC-
and MG(D)-induced proteins (Fig. 2e).

To rigorously assess our method, we integrated known PROTAC
and MG(D) ternary complexes into the test sets. To prevent data
leakage, we utilized MMseqs240 to cluster the dataset based on pro-
tein sequence similarity. Clusters containing known PROTAC or
MG(D) complexes were excluded from the training set and served as
a validation set if their ligands were not similar to the test set
(detailed in the Methods section), ensuring no overlap between
training and test data. This clustering approach yielded 16,203
complexes distributed across 1398 clusters for PROTACs and 22,046
complexes across 1982 clusters for MG(D)s. The distribution of
cluster sizes is shown in Fig. 2c, where most clusters are small,
although a few contain over 100 complexes.

Tomitigate potential biases during training, we adopted a cluster-
wise sampling strategy. Traditional uniform sampling within batches
could result in the selection of highly similar complexes, thereby
skewing the training process. Instead, we first randomly sampled a
cluster with equal probability and then selected the representative
complexwith a 20% likelihood; otherwise, a random complex from the
cluster was chosen. The representative complexwas determined using
the MMseqs2 toolkit during clustering. This approach ensures a
diverse and representative sampling of the training data, enhancing
the model’s ability to generalize across complex structures.
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The architecture of DeepTernary
DeepTernary is designed to predict the structures of small molecule-
induced ternary complexes, such as those formed by PROTACs and
MG(D)s-induced E3 ligase with POI complexes. Unlike existing methods
that rely on standardprotein–protein docking programs to approximate
the interaction between two proteins, often neglecting the presence of
smallmolecules,DeepTernary employs adeepneural network todirectly
learn the intricate dynamics of protein–protein and protein–ligand
interactions within ternary complexes. As shown in Fig. 1b, the model is
trained by learning to re-dock disassembled ternary structures. During
inference, for PROTAC-induced complexes, DeepTernary utilizes the
respective monomer forms of the two protein structures (E3 ligase and
target protein) alongwithdockedwarheads andanchors fromother PDB
entries (unbound structures), in addition to the PROTAC Simplified
Molecular Input Line Entry System (SMILES) strings. For MG(D)-induced
complexes, where obtaining unbound structures poses a challenge, we
instead employ the in-complex form of the two protein structures
(subjected to random rotations and transformations) and with the cor-
responding MG(D) SMILES strings as input.

Building upon these input modalities, the overall architecture of
DeepTernary is composed of an encoder and a decoder that work in
tandem to capture and reconstruct the intricate structural details of the
ternary complexes. The process begins by generating a random con-
formation of the small molecule using RDKiT41 and randomly displacing

the smallmolecule andprotein2 (p2) away fromprotein1 (p1). This serves
as the starting point for learning the interactions between the two pro-
teins and the ligand. As illustrated in Fig. 1c, these three monomers are
encoded as graphs andprocessed through an SE(3)-equivariant encoder.
This encoder facilitates the interaction of the encoded entities in a
geometrically consistent manner. Multiple blocks of alternating intra-
and inter-graph message passing are employed to update the coordi-
nates and latent features of the three monomers. To efficiently capture
the symmetry in their interactions, the parameters in the encoders for p1
and p2 are weight-shared (Method 4). Following the encoding stage, the
confirmation of the small molecule is utilized as the final conformation.
The final ternary structure is generated based on this predicted con-
formation and pocket points. For PROTACs, the pocket points are
derived from unbound structures, while for MG(D)s, these points are
predictedby theproposedprompt-basedpocketpoints decoder (PPPD).
With this information,we can rigidly align the ligand andp2back top1 to
form thefinal structure. ThePPPDwill alsopredict an alignment error for
this predicted structure. Notably, benefiting from the Transformer
architecture’s inherent ability to handle variable numbers of input
queries without architectural modifications, the proposed PPPD archi-
tecture is unified for both PROTAC andMG(D). This simplifies themodel
design and implementation. For PROTACs, only PAE queries are input to
the decoder, while for MG(D)s, both pocket point and PAE queries
are used.

Fig. 2 | TernaryDB construction and visualization. a The process of collecting
and cleaning the ternary complexes dataset. Initially, a search of ternary structures
from the PDB yielded 46,797 PDB IDs, each of which contains at least two proteins
and one small molecule. High-quality PDB IDs were retained based on criteria such
as X-ray crystallography data, resolution, and R-free value. From this subset, 42,441
complexes were extracted, each comprising just two proteins and one small
molecule. These complexes underwent further refinement based on peptide chain
length and the numberof contacts. Ultimately, 22,303 complexesmet our stringent
criteria and were used to train our model. b Histogram of the ligand atom number
(excluding hydrogens) within the dataset. c Histogram of cluster sizes within the
dataset according to the protein sequence similarity. d The distribution of protein

source organisms in the dataset. e Proteome-wide view of the collected dataset.
ESM-1b60 sequence embeddings for the two proteins in each complex are calcu-
latedand concatenated.This is followedby two-dimensional (2D)uniformmanifold
approximation and projection (UMAP). Similar complexes to PROTACs- andMG(D)
s-involved ternary structures are denoted as red and green square points, respec-
tively. f Chemical space covered by the dataset. Morgan fingerprints are converted
to 1024-length vectors and visualized through a 2D UMAP. The points on the map
are differentiated and colored by molecular weight (hydrogen excluded). PRO-
TACs- and MG(D)s-like molecules are highlighted as red and green square points,
respectively.
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Effectiveness of model designs
Based on the binary interaction predictionmodel32,34, we had explored
various choices of model designs and hyperparameters for Deep-
Ternary. To ensure robust model selection, we employed a validation
set consisting of curated structures that are dissimilar to the training
set and also not similar to the test set (ligand Tanimoto similarity
<0.85). Model performance on this validation set was assessed using a
simple score calculated as the average of the DockQ scores for the top-
ranked prediction and the best overall prediction (detailed informa-
tion is provided in Supplementary Sec. 1.1).

First, DeepTernary incorporates a ternary inter-graph attention
mechanism in the encoder, enabling it to capture more complex
ternary interactions. However, the initial decoder design, denoted as
IEGMN, struggled to effectively translate the encoded information into
accurate binding poses (Fig. 3a). By introducing the newly developed
Prompt-based Pocket Points Decoder (PPPD) (detailed in Methods 4),
we significantly enhanced performance, with many samples achieving
medium to high quality (DockQ >0.49). Additionally, although multi-
head attention is advantageous in natural language processing, it per-
forms less effectively in predicting pocket point coordinates for our
model. Specifically, increasing the number of attention heads initially
causes a slight decrease in the DockQ score, which then recovers when
eight heads are used (Fig. 3b). Therefore, we adopted single-head

attention in the PPPD to achieve accurate and efficient coordinate
extraction. Transitioning from binary to ternary interaction prediction
posed additional challenges. We discovered that increasing the latent
embedding space improved the model’s capacity to learn complex
triplet interactions, particularly for MG(D) complexes, which exhibit
greater structural complexity (Fig. 3c). Besides, to avoid the risk of
overfitting, we increased the noise added to both the coordinates and
latent features, from 1 to 2, which improved performance across both
PROTAC and MG(D) benchmarks (Fig. 3d). Nevertheless, adding too
much noise (noise level from 2 to 3) will hinder the performance.

In line with previous studies24,27,36, DeepTernary utilizes RDKit41 to
generate initial conformations for small molecules, sampling multiple
conformations with different seed numbers during inference. Our
ablation studies (Fig. 3e) demonstrated that both the DockQ score and
accept rate (DockQ >0.23) increased as the number of sampled con-
formations for PROTAC grew. Conversely, MG(D) complexes showed
little change. This discrepancy can be attributed to the fact that
PROTACs have more atoms and exhibit greater structural flexibility,
while MG(D)s have a smaller conformation space. Based on these
findings,we sample 40 initial randomconformations for each PROTAC
and rank the predicted results using the PAE score. For MG(D) pre-
dictions, we use a single initial conformation to conserve computa-
tional resources.

Fig. 3 | Effectiveness of DeepTernary designs on PROTAC andMG(D) validation
benchmarks. a Comparison of decoder types: Our proposed pocket points
decoder significantly outperforms IEGMN in predicting more medium- to high-
quality binding poses (DockQ >0.49). Statistical analysis was performed using the
two-sided independent t-test. b Impact of multi-head attention on coordination
prediction: A single attention head achieves performance comparable to an eight-
head configuration, while reducing computational demands. c Influence of latent
embedding dimension on model performance: VPS results indicate that larger
dimensions enhance learning learning, especially for MG(D) complexes. d Effect of
noise level on model robustness: Increasing the noise level from 1 to 2 improves
performance on both PROTAC and MG(D) benchmarks, as reflected by VPS.

e Impact of the number of sampled random conformations on test results: An
increased number of sampled conformations correlates with higher DockQ scores
and acceptance rates (DockQ >0.23) for PROTACs, while MG(D) performance
remains largely unchanged. Data are presented as mean values with error bars
representing 95% confidence intervals estimated from 22 PROTAC and 94 MG(D)
samples. (All box plots in this figure extend from the first quartile (Q1) to the third
quartile (Q3) of the data, with a line at the median. The whiskers extend from the
box to the farthest data point lying within 1.5x the inter-quartile range (IQR) from
the box. Flier points are those past the end of the whiskers. The sample number (n)
is annotated under each plot. Source data are provided as a Source Data file.
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DeepTernary achieves the highest accuracy in PROTACs-
induced ternary structure prediction
To evaluate ourmethod,weutilized the PROTACbenchmark compiled
by ref. 36, which consists of 22 known PROTAC-induced ternary
structures serving as the test set. The unbound protocol adopted in
this benchmark emulates the real-world scenario encountered during
drug discovery, where the experimental structure of the ternary
complex is often unavailable. In this protocol, an unbound complex
refers to a protein with a bound ligand similar to the warhead or
anchor of the PROTAC, but not co-crystallized with the entire PROTAC
molecule. To align with the rational design process of PROTACs, we
followed this unbound protocol to evaluate DeepTernary.

To mitigate data leakage, we excluded any similar protein pairs
from the dataset used to train our model. Unlike previous methods,
which rely on human-defined heuristics—such as manually set thresh-
olds for free energy19,22,27, atom clashes27–29, or linker ends distances27—
to filter ternary conformations, we leveraged deep learning to auto-
matically capture high-dimensional interactions between PROTACs
and proteins. Furthermore, in contrast to refs. 28,29, our model was
trained without any PROTAC-involved structures and directly eval-
uated on the PROTAC benchmark, using a zero-shot protocol. This
approach tests the model’s ability to learn general interaction rules
applicable to any ternary structure, not just those induced by PRO-
TACs, offering a stringent measure of how well the model generalizes
from non-PROTAC to PROTAC data.

For a comprehensive comparison, we employed several evaluation
metrics, including DockQ scores (Fig. 4a), rank of the first prediction
achieving a DockQ score greater than 0.23 (Fig. 4b), the percentage of
CAPRI high/medium/acceptable predictions (Fig. 4d), and the percen-
tageof predictionswithRMSD<10Å (Fig. 4f). Thesemetrics are detailed
in Evaluation metrics. As we can see, DeepTernary consistently pro-
duces higher DockQ scores and higher rates of acceptable predictions
(both in terms of High/Medium/Acceptable predictions and <10Å)
compared to other published methods, including FRODock- and
RosettaDock-Based methods24, BOTCP36, Method 428, Method 4B29,
PRosettaC22, and most recently published AlphaFold342 and Chai-143.
Specifically, it achieved an average DockQ score of 0.65 across the test
set, significantly outperforming the recently proposed BOTCP36, which
scored0.44. Althoughothermethodswereonly evaluatedon subsets of
the benchmark, DeepTernary demonstrated superior performance
across overlapping tested structures. Notably, as illustrated in Fig. 4c,
DeepTernary surpasses the top-performing RosettaDock-based
method24 for most testing structures.

PROTAC molecules, with their larger atom counts compared to
natural small molecules, exhibit diverse conformations due to their
significant degrees of freedom. To model this flexibility, we employed
the RDKit toolkit to generate multiple initial conformations of the
ligand using different random seeds, each of which was input into our
model. To estimate the prediction quality, we introduced a predicted
aligned error (PAE), allowing us to rank the predicted results and select
the most confident output. With an average rank of 4.06 under 40
seeds (Fig. 4b), DeepTernary reliably generated acceptable predictions
(DockQ >0.23). In other words, there is generally at least one accep-
table prediction within the top four results. To compare with existing
methods, we also calculate the prediction success rate for each com-
plex based on another two criteria: CAPRI criteria and RMSD <10Å
(Fig. 4d, f). As we can see, DeepTernary significantly improves the
success rate to around 50%, which means for most of the test com-
plexes, more than half of the predictions are above acceptable quality.
Since the ground-truth structure is typically unavailable in practice,
distinguishing between higher- and lower-quality output structures
remains challenging without a reliable scoring or ranking system. Our
DeepTernary addresses this challenge by incorporating a PAE pre-
dictor, where lower PAE values indicate higher confidence in predic-
tions (Supplementary Fig. 2). The mean Top-1 DockQ based on PAE

reaches up to 0.4 (Supplementary Table 5), surpassing the acceptable
cutoff of 0.23, which enhances its utility in real-world drug discovery
applications.

Finally, we examined the performance of DeepTernary across the
three distinct E3 ligases present in the 22 benchmark complexes. As
shown in Fig. 4d, DeepTernary consistently achieved desirable DockQ
scores across all ligases, highlighting its robustness and general-
izability. Visual comparisons of the predicted and experimentally
determined structures (Fig. 4e, f) demonstrate that our model can
generate high-quality predictions, with DockQ values exceeding 0.9.
Notably, for PDB IDs 6W7O and 6W8I, which share the same E3 ligase
and POI pair but differ in their PROTACs, DeepTernary accurately
captured the structural differences, producing predictions aligned
with experimental expectations.

DeepTernary reaches acceptable accuracy in MG(D)-induced
ternary complex structure prediction
Molecular gluedegraders (MGDs) represent a novel class of TPDdrugs,
distinct from PROTACs due to their lower molecular weight and
alternativeMOA. These characteristics often result in an advantageous
starting point for medicinal chemistry optimization, as well as
enhanced drug-like physicochemical properties44. Their simplicity in
structure further facilitates later-stage drug development. The rising
interest in MGDs has prompted significant research efforts and cor-
porate investments focused on this new modality. In particular,
structure-based rational design plays a crucial role in maximizing the
chances of successful drug discovery. For instance, the crystal struc-
ture of the β-TrCP, β-catenin, and NRX-1933 ternary complex has been
instrumental in developing MGDs with improved mutant selectivity45.
Similarly, the discovery of ALV2, a mutant-specific Ikaros degrader,
relied on known crystal structures for guidance46,47.

MG(D)s can either stabilize endogenous protein–protein interac-
tions or induce non-native ones48. However, predicting MG(D)-induced
ternary complex structures poses a challenge due to the often weak
binding affinity between the small molecule and one of the proteins.
With no existing in silico method specifically designed for MG(D)-
induced complexes, we employed EquiDock32, a protein–protein dock-
ing approach, to test whether weak interactions between two proteins
could approximate MG(D)-induced binding features. Using MG(D)-
induced complexes collectedbyRui et al.17 as a test set, we evaluated the
models’ performance using DockQ scores, similar to our approach with
PROTACexperiments. The results, shown inFig. 5a, reveal that EquiDock
achieves an averageDockQ score of only 0.04. In contrast, DeepTernary
significantly improves the score to0.21, demonstrating the advantageof
incorporating small molecule information and modeling ternary inter-
actions within the model architecture.

Recently, DeepMind introduced AlphaFold3 (AF3)42, which is able
to predict complexes involving nearly all molecular types in the PDB,
including proteins and small molecules. However, since the code has
not yet been released and the AlphaFold Server does not currently
allow customization of small molecules, we used AF3 solely
for protein–protein binding predictions, as we did with EquiDock.
Figure 5b illustrates a prediction for PDB ID 7BQU, where AF3, thought
better than EquiDock, performs significantly worse than DeepTernary,
which predicts a structure closest to the co-crystallized ground truth
(green vs. gray). We show the PAE matrix in the top right corner. The
PAE inAlphaFold,measured inÅngströms (Å), represents the expected
positional error between two residues in the predicted structure.
Typically, an AF PAE value exceeding 15 Å is considered indicative of a
less confident prediction. In this prediction, the PAE values are ~20Å,
highlighting AF3’s lower confidence in this predicted interaction.

Rui et al. categorized the collected MG(D)-induced complexes
into twogroups basedon the nature of their protein–protein interface:
Group 1 involves domain-domain interactions, where two proteins
bind throughwell-structured domains (as shown in Fig. 5d), andGroup
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2 involves sequence motif-domain interactions, where a protein
sequence motif binds to a structured domain (illustrated in Fig. 5c).
Our results indicate that both EquiDock and DeepTernary perform
better onGroup 2 complexes than onGroup 1, as shown in Fig. 5e. This
suggests that the large, well-folded domains in Group 1 complexes
involve more complex binding rules, which may not be adequately
covered by the training set (Supplementary Fig. 3). In contrast, the

interactions involving small recognition motifs in Group 2 are better
captured, leading to improved predictions.

The total buried surface area (BSA) from our predicted struc-
tures strongly correlates with degradation potency
Experimental work by ref. 19 has demonstrated a strong correlation
between the total buried surface area (BSA) of PROTAC-mediated

Fig. 4 | DeepTernary achieves the highest accuracy in PROTACs-induced tern-
ary structure prediction. DeepTernary outperforms existing methods in pre-
dicting 22 existing PROTAC-induced ternary structures regarding themetricsof the
DockQ score (a) and the first acceptable rank containing at least one prediction
with DockQ ≥0.23 (b). For those that failed to generate an acceptable result, we
manually set the rank value to 41 for a fair comparison. Besides, DeepTernary
achieves better DockQ performance on most complexes compared to the current
best model, the RosettaDock-Based model (c). d, e DeepTernary outperforms
existing methods on the percentage of High/Medium/Acceptable.
f, g, DeepTernary has a higher potential to generate decent (RMSD <10Å) results.
hDockQperformance comparison among different E3 ligases. i Surface illustration

of the predicted structure of PDB ID 5T35. j Three examples of predicted ternary
structures (teal and orange for the protein and ligand, respectively) overlaid with
the experimental structures (gray and green for the protein and ligand). The
receptor protein is colored red, and the chemical structure diagrams of PROTAC
molecules are illustrated at the bottom. (All box plots in this figure extend from the
first quartile (Q1) to the third quartile (Q3) of the data,with a line at themedian. The
whiskers extend from the box to the farthest data point lying within 1.5x the inter-
quartile range (IQR) from the box. Flier points are those past the end of the whis-
kers. Statistical analyses were performed using the two-sided independent t-test.
The sample number (n) is annotated under each plot. Source data are provided as a
Source Data file.
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ternary complexes and the equilibriumdissociation constant (KLPT) for
VHL-PROTAC-SMARCA2. Their findings revealed that BSA has a nega-
tive correlation with ln(KLPT), while a lower KLPT corresponds to higher
degradation potency. In other words, a higher BSA corresponds to
higher degradation potency. To test whether our predicted ternary
structures could reflect this relationship, we calculated the total BSA
for the predicted VHL-PROTAC-SMARCA2 complexes (Fig. 6b). Con-
sistent with the experimental data, our predictions also show a gen-
erally negative correlation between total BSA and ln(KLPT), supporting
the findings of Wurz et al.

In a separate study, ref. 49 investigated the effect of PROTAC
linker length on degradation potency, using cereblon (CRBN) as the E3
ligase to induce degradation of Bruton’s tyrosine kinase (BTK). They
synthesized 11 PROTACs with varying linker lengths (PROTACs 1–11)
and found that longer PROTACs (6–11) yield detectable ternary com-
plex formation via fluorescence resonance energy transfer (FRET) and
demonstrated potent cellular BTK degradation. In contrast, shorter
PROTACs (1–4) showedweakorno FRET signals andwere ineffective in
cells. PROTAC (5) displayed intermediate behavior.

To further explore the relationship between degradation
potency and ternary structure, we used DeepTernary to predict the
ternary structures induced by these 11 PROTACs and computed their
total BSA. The results, illustrated in Fig. 6c, indicate that as linker
length increases, total BSA decreases sharply at first before pla-
teauing. This trend correlates negatively with degradation potency,
consistent with the findings from Zorba et al. For the predicted
structures of PROTACs (1–4), severe atom clashes between proteins

lead to higher BSAs (left side of Fig. 6d), which explains their inability
to form stable ternary complexes and induce degradation. In con-
trast, for PROTACs (5–11), the increased linker length allows formore
flexibility, reducing atomic clashes (right side of Fig. 6d) and facil-
itating productive protein–protein interactions, which correlate with
effective degradation.

Although both Wurz et al. and Zorba et al. demonstrated strong
correlations between PROTAC degradation potency and factors like
BSA and linker length, it remained unclear whether the observed
relationships for VHL-SMARCA2 PROTACs could be generalized to
CRBN-BTKPROTACs. By employing DeepTernary tomodel the ternary
structures and calculate BSA for all PROTACs whose degradation
potency was experimentally validated, we were able to compare their
results and examine these conclusions more thoroughly. In the VHL-
SMARCA2 system (Fig. 6b), higher BSA correlates with higher degra-
dation potency (lower log(KLPT)), whereas in the CRBN-BTK system
(Fig. 6c), higher BSA–indicative of shorter linker lengths–is associated
with lower degradation potency, highlighting conflicting trends
(Supplementary Fig. 4).

By synthesizing the findings from both studies (Fig. 6b, c), we
conclude that their conclusions do not inherently conflict. This is
because the correlation between BSA and degradation potency
appears to bemorenuanced than a simple linear correlation. In Fig. 6a,
we analyzed the BSA range for 22 known PROTAC-induced complexes
with experimentally determined structures, highlighting a range of
1175 to 1422Å2 (shaded gray). When comparing the BSA values of
PROTAC-induced complexes inFig. 6b, c, we found that PROTACs tend

Fig. 5 | DeepTernary reaches acceptable accuracy for MG(D)-induced ternary
complex structure prediction. a Since no MG(D)-induced complex prediction
method exists, we compared DeepTernary with the traditional protein–protein
interaction (PPI) prediction method EquiDock. DeepTernary significantly outper-
forms EquiDock by precisely modeling ternary interactions. b Comparison with
EquiDock and the recently realeased AlphaFold3 (AF3) on PDB ID 7BQU. The pre-
dicted aligned error (PAE) matrix from AF3 is shown in the top right corner. AF3
predicts the structure with plDDT values between 50 and 90 but shows low con-
fidence for docking, with PAE values exceeding 20 between p1 and p2.
c Visualization of the predicted ternary structure for PDB ID 4JDD (Group 2),

displayed using both cartoon and surface illustrations. d Two predicted results
from Group 1. e Performance comparison across different interaction modes:
domain-domain (Group 1) and sequence motif-domain (Group 2). (All box plots in
this figure extend from the first quartile (Q1) to the third quartile (Q3) of the data,
with a line at the median. The whiskers extend from the box to the farthest data
point lying within 1.5x the inter-quartile range (IQR) from the box. Flier points are
those past the end of the whiskers. Statistical analyses were performed using the
two-sided independent t-test. The sample number (n) is annotated under each plot.
Source data are provided as a Source Data file.
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to exhibit higher degradation potencywhen their total BSA falls within
the 1100 to 1500Å2 range. This suggests that BSA could be a useful
metric for virtual screening and inform future PROTAC design.

DeepTernary is significantly faster than existing methods
Existing methods for predicting ternary structures often require gen-
erating numerous candidate structures and applying multiple filtering
criteria to identify the most viable options. For instance, Weng et al.
utilized a multi-step protocol involving FRODOCK for local docking,
followed by energy scoring with Open Babel Obenergy and AutoDock
Vina, and further refinement using RosettaDock24. This approach,
while effective, is time-consuming, taking approximately one hour on
an 18-core CPU for the FRODOCK-based process alone, with
RosettaDock-based refinement adding another nine hours. More
recent methods like BOTCP, which employ Bayesian optimization to
expedite candidate sampling, have reduced the process to
around 2 h36.

In contrast, DeepTernary introduces a substantial leap in effi-
ciency by leveraging an end-to-end neural network that embeds
learned knowledge directly into its parameters. Unlike traditional
docking-based techniques that rely on iterative candidate generation
and refinement, DeepTernary predicts PROTAC ternary structures in
a fraction of the time. Using 40 seeds, it can predict a ternary

complex in just 12.37 seconds on a 15-core CPU, and as little as 6.48 s
with GPU acceleration. For MG(D) complexes, the process is even
faster, requiring only a single forward pass of the embedded graphs,
yielding results in under 1 second (Fig. 6e). It is worth noting that this
time includes both the model’s forward time and the data pre-
processing time (such as using RDKit to generate initial conforma-
tions and file operations), making it instructive for real-world
applications. The model-only forward time is reported in Supple-
mentary Table 7.

This dramatic improvement in prediction speed has the potential
to revolutionize drug discovery by facilitating the rapid in silico
screening of a significantly large number of candidates, making it
feasible to explore a broader range of compounds in less time.

Discussion
In this study, we introduced DeepTernary, a novel deep learning fra-
mework consisting of an SE(3)-equivariant graph neural network and a
pocket point decoder to predict ternary complex structures induced
by PROTACs andMG(D)s. DeepTernary offers a powerful tool for drug
discovery by modeling complex interactions within ternary com-
plexes, enabling the optimization of key drug characteristics such as
selectivity and potency. Unlike traditional docking methods, which
rely on predefined strategies, DeepTernary learns the underlying

Fig. 6 | The buried surface area (BSA) based on our predicted structures cor-
relates with degradation potency. a The BSA of 22 known PROTAC-induced
ternary complexes from experimental structures. b Correlation analyses between
BSA and ln(KLPT) for the predicted BRD4-VHL ternary complex with various PRO-
TACs. The quantity ln(KLPT) has been proven in previous work19 to have a positive
relationship with ln(DC50). The red line represents a linear regression of the points.
c Correlation analyses between BSA and linker length for predicted CRBN-BTK
complexes induced by 11 different PROTACs. As PROTAC ID increases, the linker

length increases. The red line shows a second-order polynomial regression. Nota-
bly, PROTACs (6–11) are associated with significant cellular knockdown, while
shorter PROTACs(1–4) exhibit weak/no degradation capability. d Predicted ternary
structures for CRBN-BTK complexes induced by PROTAC (1) and PROTAC (10),
illustrating severe atom clashes in PROTAC (1) and increased flexibility to avoid
clashes in PROTAC (10). e DeepTernary predicts ternary structures ~100 times
faster than existing methods.
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physical-chemical rules governing ternary complex formation, result-
ing in both improved prediction accuracy and significant reductions in
computational time. This allows for rapid screening of PROTAC
libraries across different E3 ligases and protein targets, providing
structure-guided insights for drug development. Themodel’s ability to
correlate buried surface area (BSA) with degradation potency further
enhances its utility in designing more potent degraders. Additionally,
DeepTernary excels in predicting low-affinity, transient interactions
for MG(D)s, overcoming limitations of traditional methods and sup-
porting the growing interest in MG(D)s as therapeutics with distinct
mechanisms of action.

While DeepTernary is a significant advance, it shares a common
limitation with many data-driven approaches: its dependence on large
datasets and potential susceptibility to biases present in the training
set. Although we have collected a broad dataset from the PDB, there is
still room for improvement. Expanding the training data and incor-
porating lower-resolution experimental datasets could further
enhance the model’s accuracy and applicability. Additionally, for
MG(D)s, we benchmarked using bound structures due to the sub-
stantial effort required to obtain unbound structures. Updating the
model to predict structure directly from sequence can help address
this limitation. We believe that future developments in this direction
will further extend DeepTernary’s impact and enable broader appli-
cation in drug discovery.

In conclusion, DeepTernary offers a fast and accurate approach
for predicting ternary complexes, representing a valuable tool in the
development of TPD therapeutics. In addition, theBSA calculated from
generated complexes by DeepTernary may offer valuable insights into
the degraded potency, potentially facilitating the structure-guided
TPD design. By refining this framework and integrating additional
structural data, we anticipate even greater contributions to the field of
targeted protein degradation.

Methods
Data collection and filtering
In our quest to identify potential ternary complexes, we searched the
Protein Data Bank (PDB) to extract potential ternary complexes,
applying filters to select structures with at least two proteins andmore
than one small molecule. This initial filtration process yielded 46,797
potential PDB entries. Subsequently, the filtered candidates were fur-
ther refined by selecting only X-ray structures that met our high-
quality standards-specifically, those with a resolution of 3.5Å or better
and an R-free value of 0.26 or lower-thereby refining our dataset to
22,221 PDB IDs.

From these entries, we extracted 42,441 ternary complexes, some
of which included multiple complexes within a single entry, such as
assemblies (e.g., 5T35_D_A_759 and 5T35_H_E_759) and instances where
different ligands interacted with the same protein pair (e.g.,
6ZO8_B_C_LPX and 6ZO8_B_C_PTY). To ensure meaningful protein-
small molecule interactions, we imposed additional criteria: the small
molecule must share a chain ID with one of the proteins, and the
protein components must meet a minimum length requirement of
seven amino acids for PROTACs and three for MG(D)s. This was
exemplifiedby theTRAPmotif inPDB ID4TR950. Such stringent criteria
effectively pruned nearly half of the initial complexes, leaving us with
25,756 viable candidates for further analysis.

In our final step to validate meaningful protein–ligand interac-
tions, we implemented a two-tiered filtering approach. First, we
excluded complexes where the ligand established fewer than three
contacts with the protein, defined as ligand atoms positioned within
4Å of any protein atom. Second, we removed complexes exhibiting
steric clashes, identified as any heavy atom pair (one from the ligand
and one from the protein) separated by less than 2Å. While this
stringent criteria led to the exclusion of some well-characterized
PROTACs and MG(D)s, such as PDB ID 6HAX51 (R-free = 0.268), which

marginally exceeded our 0.26 threshold, and PDB ID 6BN752 (chain B
ligand clash of 1.97Å), these structures were manually curated and
retained in our database due to their established significance. Addi-
tionally, many ligands in the PDB are crystallization buffers that fre-
quently appear across numerous PDB entries and are not functionally
relevant. To address this, we manually exclude commonly occurring
ligands such as ACT, GOL, PEG, SO4, TRS, XYP, BME, EDO, PG4, and
PG5 from the dataset. The culmination of our efforts resulted in a
comprehensive structure collection dataset comprising 22,303
complexes.

Similarity-based dataset splitting
To mitigate the risk of test data leakage and to prevent model over-
fitting, we adopted a similarity-based dataset splitting strategy. This
approach was designed to rigorously evaluate the model’s general-
ization capabilities by ensuring that training complexes were not
similar to those in the validation and test sets.

We utilized MMseqs240, a highly efficient toolkit for sequence
clustering, to group proteins based on a minimum sequence identity
threshold of 50%. This involved clustering proteins with similar
sequences. Any cluster containing a test set complexwasdesignated as
a test cluster. Tomaintain the integrity of our training set, we excluded
all complexeswithin the test clusters from the training set. Specifically,
any protein complex with a sequence similarity exceeding 50% to any
test complexwas removed from the training data and, if the ligandwas
dissimilar to those in the test set (Tanimoto similarity <0.85), assigned
as a validation sample.

For PROTACs, the 22 known-structure test complexes were clus-
tered into seven groups, resulting in the exclusion of 16 test-similar
complexes from the training set, all of which were PROTAC-induced,
ensuring the validation set’s relevance. 11 of them were chosen as the
validation set. For MG(D)s, the 94 test complexes clustered into 44
groups, resulting in 182 excluded training set complexes, of which 137
were chosen as the validation set. This rigorous approach ensured the
test set’s novelty and provided a robust evaluation of the model’s
generalization ability.

Featurization
Following the EquiBind approach34, both the ligand and proteins were
encoded as geometric graphs using the k-nearest neighbor method,
and their features were extracted frommultiple sources of knowledge,
including traditional chemical information and learned amino acid
type embeddings53. Specifically, in the ligand graph Glig = ðV lig, EligÞ,
each node (representing an atom) vi 2 V lig was characterized by atom
attributes fi (a list feature of atomic number, chirality, total degree,
formal charge, number of implicit hydrogens, number of hydrogen,
radical electrons, hybridization state, aromaticity, and ring participa-
tion) and a 3Dpositionvectorxi 2 R3. Edges Elig weredefinedbetween
atoms within a distance of less than 4 Å, determined by relative
Euclidean distances and bond angles. For the protein graphs
Gp1 = ðVp1, Ep1Þ and Gp2 = ðVp2, Ep2Þ, nodes were defined as amino acid
type and edges were defined similarly as ligand.

For PROTACs, we utilized the known-pocket unbound evaluation
protocol from previous studies24,27–29,36. This protocol requires prior
knowledge of the unbound structures of both anchor-E3 ligase and
warhead-POI binary complexes during inference—a standard practice
in PROTAC discovery. To integrate pocket information into Deep-
Ternary, we introduced pocket embeddings for graph nodes asso-
ciated with pockets. These embeddings were integrated into the node
features by summation. During training, pocket node coordinates
were replaced with their actual values (after random rotation and
transformation), while during inference, pocket coordinates from
unbound pockets were used. Note that we had ensured that the atom
indexes of the unbound pockets and the candidate complexes were
well aligned beforehand.
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Model architecture
DeepTernary leverages an SE(3)-equivariant graph neural network
along with the attention mechanism, allowing invariant message pas-
sing regarding the atom attributes and equivariant message passing
regarding the atom coordinates. The model accepts inputs in various
formats: the structures of twoproteins (E3 ligase and PoI) in PDBorCIF
format and the 2D geometry of the small molecule derived from
SMILES strings or files in PDB,mol2, or structure-datafile (SDF) format.
Initially, the RDKit toolwas employed to generate possible coordinates
of the small molecule. Subsequently, the proteins and the ligand were
represented as geometric graphs. The model is fundamentally com-
posed of two primary components: the encoder and the decoder. The
encoder learns SE(3)-invariant semantic features and SE(3)-equivariant
coordinates, while the decoder outputs pocket points and predicted
aligned errors. The comprehensive network architecture of Deep-
Ternary was already depicted in Fig. 1c.

Encoder. After obtaining the graph representations of the proteins
and the ligand, we employed the independent E(3)-equivariant graph
matching network (IEGMN)32 by extending its input from binary
complex to ternary complex, in order to facilitate interactions among
triplets. This extension involves a series of layers where node coordi-
nates and feature embeddings were updated through both in-graph
and cross-graph message passing. Unlike the original IEGMN, our
extension allowed for feature updates in a triplet-wise fashion,
enabling each monomer to update its features with the awareness of
the other two monomers. The update of the coordinates maintains
E(3)-equivariance, ensuring that the output faithfully mirrors any
independent rotations and translations applied to the input. Formally,
there are totally M encoder layers and the latent embedding hl + 1

i and
node coordinate xl + 1

i at the (l + 1)-th layer were computed as follows:
(1) Intra-graph message passing, which updates edge and node

latent embeddings:

mj!i =ϕ
eðhðlÞ

i ,hðlÞ
j , jjxðlÞ

i � xðlÞ
j jj2, f j!iÞ,8ði, jÞ 2 Elig ∪ Ep1 ∪ Ep2, ð1Þ

mi =
1

jN ðiÞj
X

j2N ðiÞ
mj!i, 8i 2 V lig ∪Vp1 ∪Vp2, ð2Þ

(2) Ternary inter-graph message passing: For the nodes of the
ligand, the message from the nodes of the other two graphs Vp1 ∪Vp2

was computed by

aj!i =
exp <ϕqðhðlÞ

i Þ,ϕkðhðlÞ
j Þ>

� �

P
j02Vp1 ∪Vp2

exp <ϕqðhðlÞ
i Þ,ϕkðhðlÞ

j0 Þ>
� � ,8i 2 Vlig, ð3Þ

μj!i =aj!iWhðlÞ
j ,μi =

X

j2Vp1 ∪Vp2

μj!i,8i 2 V lig, ð4Þ

We also derived cross-graph message μi for the nodes Vp1 and Vp2

similar to the above processes.
(3) Calculation of the new node coordinates and embeddings:

xðl + 1Þ
i =Ψ xðlÞ

i +
X

j2N ðiÞ

xðlÞ
i � xðlÞ

j

k xðlÞ
i � xðlÞ

j k
ϕxðmj!iÞ

0
@

1
A, ð5Þ

hðl + 1Þ
i = ð1� βÞ � hðlÞ

i + β � ϕhðhðlÞ
i ,mi,μi, f iÞ,8i 2 V lig ∪Vp1 ∪Vp2: ð6Þ

Here,ϕe,ϕx,ϕh,ϕq,ϕk denotemulti-layer perceptrons (MLPs), fj→i and fi
represents the initial edge and node features (prior to processing
through the IEGMN layers), separately, N ðiÞ collects all the neighbors

of node i, aj→i indicates the SE(3)-invariant cross-attention coefficient
(ai→i indicates the self-attention coefficient), < ⋅ > computes the inner
product of two vectors,W is a learnable matrix that transforms latent
embeddings according to the cross-attention coefficients, Ψ is a
function that imposes distance geometric constraints34, and β is a
trade-off parameter. After the encoder process, the latent embeddings
and coordinates of all nodes across the three graphs were updated to
reflect the intricate interactions among the triple molecules. The
predicted coordinates of the ligand (xl

i , 8i 2 V lig) were assumed to
represent the ligand’s final conformation within the predicted ternary
complex.

Given a ternary complex composed of protein1, a ligand, and
protein2 (p1-lig-p2), the predicted structure should be invariant to the
order of the proteins. In other words, the predicted structure should
be the same regardless of whether the input is (p1-lig-p2) or (p2-lig-p1).
To learn this symmetry, the two protein encoders share parameters to
learn generalized protein features. During training, the p1 and p2 were
randomly swapped for data augmentation.

Decoder. For the prediction of ternary structures, we use the ligand
conformation derived from IEGMN and require two pairs of pocket
points to rigidly align the secondprotein (protein2) and the ligandwith
thefirst protein (protein1), forming a complex. Additionally, themodel
mustpredict thepredicted alignment error (PAE) for protein2 to assess
the quality of the prediction. To this end, we designed a Transformer-
based decoder to extract necessary information from graph embed-
dings. We designed two different decoders for MG(D)s and PROTACs
owing to their different MOAs.

Specifically, for MG(D)s, we defined two pairs of pocket points:
(Plig,Pp1!lig) and (Pp2,Pp1!p2). The first pair represents the pocket
points between the ligand and protein1, where Plig denotes the ligand
pocket bound to protein1, and Pp1!lig denotes the protein1 pocket
bound to the ligand. Similarly, the second pair represents the pocket
points between protein2 and protein1, with Pp2 denoting the protein2
pocket bond to protein1, and Pp1!p2 denoting the protein1 pocket
bond to protein2. Their corresponding queries are matrices
Qlig, Qp1→lig, Qp2, Qp1→p2, each row of which denotes the query of each
node. In addition, we denote the PAE query as qPAE. All these values
were initialized randomly and processed through an N-layer decoder.
Each layer requires computing the attention function, represented as
Attn(Q, K, V):

AttnðQ,K ,V Þ=aðQ,KÞWV , ð7Þ

where Q, K and V represent the querie, key, and value matrices,
respectively; a(Q, K) returns the attention matrix, and its element of
the ith row and jth column was given by the attention coefficient aj→i
defined in Eq. (3). When Q, K and V become the same, we call it self-
attention, otherwise, we call it cross-attention.

We now introduce how to process the queries
Qlig, Qp1→lig, Qp2, Qp1→p2 and qPAE, with the information of the hidden
embeddings obtained from the encoder before. We first conducted
column-wise concatenation:

Q=Qlig k Qp1!lig k Qp2 k Qp1!p2 k qPAE, ð8Þ

where ∥ denotes column-wise concatenation. For conciseness, we
collect the updated coordinates and embeddings of the final layer in
the encoder over all nodes asX andH, henceforth. Specifically forHwe
further involved the graph embedding features e in order to
distinguish the graph identity:

H = ki2V lig
ðhi + eligÞ

� �
k kj2Vp1

ðhj + ep1Þ
� �

k kk2Vp2
ðhk + ep2Þ

� �
, ð9Þ
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Then the pocket queries Q were updated with the following attention
layer:

Q=AttnðQ, Q, QÞ, ð10Þ

Q0 =ϕðAttnðQ, H , HÞÞ, ð11Þ

H 0 =AttnðH , Q0, Q0Þ: ð12Þ

where ϕ is a learnable MLP. We repeated the above attention layer
several times. The final queries and embeddings were unfolded as:

Q00 =ϕðAttnðQ0, H 0, H 0ÞÞ: ð13Þ

Qlig,Qp1!lig,Qp2,Qp1!p2,qPAE = unfoldðQ00Þ, ð14Þ

H lig, Hp1, Hp2 = unfoldðH 0Þ: ð15Þ
For the pocket coordinates, we first computed the attention

values between the queries of each local pocket and the embeddings
of the corresponding global graph.We then derived the coordinates of
each pocket atom as a weighted sum of the coordinates of the entire
graph. Specifically, we computed:

Plig =aðQlig,H ligÞX lig, ð16Þ

Pp1!lig =aðQp1!lig,Hp1ÞXp1, ð17Þ

Pp2 =aðQp2,Hp2ÞXp2, ð18Þ

Pp1!p2 =aðQp1!p2,Hp1ÞXp1, ð19Þ

where the matrices P denote the predicted pocket point coordinates.
The PAE qPAE was estimated using an MLP, reflecting the predic-

tion confidence. Given the computational intensity of real-timeDockQ
score calculations, we use the root mean square deviation (RMSD)
between predicted and actual coordinates of protein2 as a training
surrogate for PAE. With predicted pocket points and the ligand con-
formation, the final ternary complex structure is assembled, which will
be detailed in the next subsection.

For PROTACs, we directly bound the two proteins at their two
ends, and designed two protein–ligand pocket coordinates:
(Pp1, Plig→p1) and (Pp2, Plig→p2), representing pockets of (E3, anchor) and
(POI, warhead), respectively. Different from MG(D)s, these pocket
points are already known from the unbound structures. Thus, without
the need of the computations above derived for MG(D)s, Pp1 and Pp2

were directly taken from the unbound protein structures, Plig→p1 and
Plig→p2 were taken from the predicted ligand coordinates X from the
encoder according to unbounded pocketmasks. The decoder predicts
the PAE for PROTACs using the same architecture but with only the
PAE query reserved. In other words, we conducted Equation (10) -
Equation (13) by setting Q = qPAE.

Transformation to generate the final output
Considering the different modes of action of PROTAC and MGD, we
adopted two slightly different ways to construct the final complex
structure. PROTAC molecules comprise three elements: the anchor,
warhead, and connecting linker. The anchor and warhead are typically
selected from known bounded ligands to E3 ligase and the POI,
respectively. This selection facilitates rational design, leveraging existing
unbound binding data between the anchor and E3, as well as the war-
headandPoI, toconstruct thecomplex structure. Following thisprocess,

the PROTAC was first aligned with the unbound pocket of E3 (protein1)
based on the predicted pocket points for the anchor. The linker and
warheadcoordinatesweredeterminedaccording to the conformationof
the PROTAC. Subsequently, the coordinates of POI (protein2) were
determined by aligning its unbound structures to the aligned warhead
positions according to predicted protein2 pocket points:

Rlig, t lig = kabschðPlig!p1,Pp1Þ, ð20Þ

xlig = ðRligx
>
ligÞ

>
+ t lig, ð21Þ

P0
lig!p2 = ðRP>

lig!p2Þ
>
+ t, ð22Þ

Rp2, tp2 = kabschðPp2,P
0
lig!p2Þ, ð23Þ

xp2 = ðRp2x
>
p2Þ

>
+ tp2, ð24Þ

where kabsch denotes the Kabsch algorithm54, ⊤ denotes matrix
transpose.

Amore direct alignment approach was employed forMG(D)s. Both
the ligand and protein2 were aligned directly to protein1. This was
achieved by predicting the pocket points of interaction between pro-
tein1 and the ligand, as well as between protein1 and protein2. The
decoder’s predictedpocket points facilitated the alignment of the ligand
andprotein2 toprotein1, resulting in thefinal ternary complex structure:

Rlig, t lig = kabschðPlig,Pp1!ligÞ, ð25Þ

xlig = ðRligx
>
ligÞ

>
+ t lig, ð26Þ

Rp2, tp2 = kabschðPp2,Pp1!p2Þ, ð27Þ

xp2 = ðRp2x
>
p2Þ

>
+ tp2: ð28Þ

Training and inference
During the training process, protein structures were derived from
bound structures and ligand conformations generated by the RDKit
toolkit41. For each training ligand, we pre-generated a pool of 50 ran-
dom conformations. In each training iteration, protein1 or protein2
was randomly fixed, while the other protein and a randomly selected
conformation from the ligand’s 50-conformation pool were subjected
to random rotations and translations from their original positions.
Coordinates were normalized before being input into the model to
stabilize the training process, with random noise added to graph fea-
tures and coordinates to avoid overfitting.

The model was trained with six losses to guide it toward gen-
erating accurate outputs. The total loss is formulated as follows:

L=Llig +Lkabsch lig +Lot1 +Lot2 +Lintersection +LPAE: ð29Þ

where Llig indicated the mean squared error (MSE) loss between the
predicted and ground-truth ligand coordinates, andLkabsch lig denoted
the MSE loss after rigid alignment of the predicted ligand to the
ground truth using theKabschalgorithm54.Lot1 andLot2 corresponded
to the optimal transport loss55 between the predicted pocket points
and target pocket coordinates.Lintersection represented the intersection
punishment between proteins and the ligand, and LPAE indicated the
predicted aligned error of protein2, calculated using the L1 loss
between the predicted and ground-truth RMSD of protein2.
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During inference, unbound structures were used for PROTACs
and bound structures for MG(D)s. The initial ligand conformations
were randomly generated by RDKit using different seeds. For each
PROTAC, we performed 40 samplings and ranked the results based on
predicted PAEs. Formolecule glues, only one sampling was performed
due to their limited atom numbers and conformational flexibility.

DeepTernary contains 16.73 million parameters and was trained
for about 8 h on two Nvidia L40 GPUs.

Calculation of buried surface area (BSA)
The buried surface area (BSA) was calculated using ChimeraX56.
Ligands were assigned unique sequence IDs separate from proteins,
and the “interfaces” command computed solvent-accessible surface
area (SASA) for each interacting chain pair within the complexes. The
total BSA was determined by summing the SASA values across all
protein–protein and protein–ligand interactions. The BSA represented
in Fig. 6 is the average BSA of the top five most confident (lower PAE)
predictions from DeepTernary.

Evaluation metrics
Following recent studies24,36, we adopted the DockQ score57 as a quan-
titative measure to evaluate prediction quality. The DockQ score is a
continuous metric ranging from 0 to 1, calculated based on three
components: Fnat, LRMS, and iRMS. Fnat represents the fraction of native
contactsmaintained in the predicted complexes. LRMS is the rootmean
square deviation (RMSD) between backbone atoms after aligning the
predicted structure to the native one. iRMS is the RMSD of backbone
atoms of the interface residues. By integrating these three criteria, the
DockQ score provides a comprehensive measure of prediction quality,
with higher values indicating higher-quality predictions.

To compare our methods with previously published approaches,
we also calculated the fraction of acceptable predictions and com-
pared them with other methods. It is worth noting that the criteria for
an “acceptable" prediction vary across different studies.We categorize
these criteria as follows:

DockQ >0.23. This threshold indicates a quality prediction based on
the DockQ scoring system.

CAPRI criterion. Derived from the critical assessment of predicted
interaction (CAPRI)58), predictions are classified into high, medium, or
acceptable. This criterion has been employed to assess the quality of
PROTAC-induced complex predictions, as used by ref. 29.

RMSD <10Å. This criterion involves calculating the Cα RMSD and is
commonly used as the upper limit for an “acceptable” pose in
protein–protein docking contexts. It is straightforward and easy to
compute.

For PROTACs, given the model’s generation of multiple predic-
tions from varying initial conformations, we employ the Acceptable
Rankmetric, following existingmethods. Thismetric is determined by
sorting predictions basedon their predicted alignment error (PAE) and
identifying the rank of the first prediction achieving a DockQ score
greater than 0.23.

By applying these metrics, we ensure a robust evaluation of our
model’s performance in predicting ternary complex structures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The TernaryDB complex list, cluster results of the training dataset,
training log, pretrained model weights, and unbound structures for
PROTAC testing have been deposited at https://github.com/

youqingxiaozhua/DeepTernaryfor public access. A snapshot of the
TernaryDB dataset is stored in Zenodo at https://doi.org/10.5281/
zenodo.15514874. The complex crystal structures are downloaded
from the Protein Data Bank at https://www.rcsb.org/. Source Data are
provided with this paper. The PDB IDs analysed in this manuscript are:
5T35, 6W7O, 6W8I, 7BQU, 4JDD, 4TR9, 6HAX, and 6BN7. Source data
are provided with this paper.

Code availability
Codes for running DeepTernary have been released on GitHub and are
free for academic, personal, and commercial use at https://github.
com/youqingxiaozhua/DeepTernary. A snapshot of the current ver-
sion is stored in Zenodo at https://doi.org/10.5281/zenodo.1551519759.
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