
Article https://doi.org/10.1038/s41467-025-61362-4

Parametric matrix models

Patrick Cook 1,2,5, Danny Jammooa 1,2,5, Morten Hjorth-Jensen 1,2,3,
Daniel D. Lee 4 & Dean Lee 1,2

We present a general class of machine learning algorithms called parametric
matrix models. In contrast with most existing machine learning models that
imitate thebiologyof neurons, parametricmatrixmodels usematrix equations
that emulate physical systems. Similar to how physics problems are usually
solved, parametric matrix models learn the governing equations that lead to
the desired outputs. Parametric matrix models can be efficiently trained from
empirical data, and the equations may use algebraic, differential, or integral
relations. While originally designed for scientific computing, we prove that
parametric matrix models are universal function approximators that can be
applied to general machine learning problems. After introducing the under-
lying theory, we apply parametric matrix models to a series of different chal-
lenges that show their performance for a wide range of problems. For all the
challenges tested here, parametric matrix models produce accurate results
within an efficient and interpretable computational framework that allows for
input feature extrapolation.

One of the first steps in solving any physics problem is identifying the
governing equations. While the solutions to those equations may
exhibit highly complex phenomena, the equations themselves have a
simple and logical structure. The structure of the underlying equations
leads to important andnontrivial constraints on the analytic properties
of the solutions. Some well-known examples include symmetries,
conserved quantities, causality, and analyticity. Unfortunately, these
constraints are not always reproduced by machine learning algo-
rithms, leading to inefficiencies and limited accuracy for scientific
computing applications. Many constraints can be guaranteed by the
architecture of specifically designed neural networks, such is the case
with equivariant neural networks. However, it is not straightforward to
construct a neural network that conforms to more complicated phy-
sical constraints and as such current physics-inspired and physics-
informed machine learning approaches aim to constrain the solutions
by penalizing violations of the underlying equations1–3, but this does
not guarantee exact adherence. Furthermore, the results of many
modern deep learning methods suffer from a lack of interpretability.
To address these issues, in this work we introduce a class of machine
learning algorithms called parametric matrix models. Parametric
matrix models (PMMs) work by replacing operators in the known or

supposed governing equations with trainable, parametrized ones.
Parametric matrix models take the additional step of applying the
principles of model order reduction and reduced basis methods4,5 to
find efficient approximate matrix equations with finite dimensions.
Such equations are guaranteed to exist and can be constructed, in
theory, via methods such as the proper orthogonal decomposition6.

While most machine learning methods optimize some prescribed
functional form for theoutput functions2,7–12, PMMsbelong to a class of
machine learningmethods based on implicit functions13–18. We define a
PMM as a set of matrix equations with unknown parameters that are
optimized to express the desired outputs as implicit functions of the
input features. There are many possible choices for the matrix equa-
tions. When the form of the governing equations is known or sup-
posed, as is the case for data from physical systems, the form of the
PMM will be analogous to these equations. This is what lends many
PMMs their interpretability.

In this work, we define a basic PMM form composed of primary
matrices, Pj, and secondary matrices, Sk. All of the matrix elements of
the primary and secondarymatrices are analytic functions of the set of
input features, cl

� �
. For dynamical systems, one of the input features

would be time. We consider functional forms for the primary and

Received: 27 January 2025

Accepted: 18 June 2025

Check for updates

1Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA. 2Department of Physics and Astronomy, Michigan State University, East
Lansing, MI, USA. 3Department of Physics and Center for Computing in Science Education, University of Oslo, Oslo, Norway. 4Department of Electrical and
Computer Engineering, Cornell Tech, New York, NY, USA. 5These authors contributed equally: Patrick Cook, Danny Jammooa. e-mail: leed@frib.msu.edu

Nature Communications | (2025) 16:5929 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7934-5428
http://orcid.org/0000-0002-7934-5428
http://orcid.org/0000-0002-7934-5428
http://orcid.org/0000-0002-7934-5428
http://orcid.org/0000-0002-7934-5428
http://orcid.org/0000-0001-9646-6160
http://orcid.org/0000-0001-9646-6160
http://orcid.org/0000-0001-9646-6160
http://orcid.org/0000-0001-9646-6160
http://orcid.org/0000-0001-9646-6160
http://orcid.org/0000-0003-0174-1364
http://orcid.org/0000-0003-0174-1364
http://orcid.org/0000-0003-0174-1364
http://orcid.org/0000-0003-0174-1364
http://orcid.org/0000-0003-0174-1364
http://orcid.org/0000-0003-4239-8777
http://orcid.org/0000-0003-4239-8777
http://orcid.org/0000-0003-4239-8777
http://orcid.org/0000-0003-4239-8777
http://orcid.org/0000-0003-4239-8777
http://orcid.org/0000-0002-3630-567X
http://orcid.org/0000-0002-3630-567X
http://orcid.org/0000-0002-3630-567X
http://orcid.org/0000-0002-3630-567X
http://orcid.org/0000-0002-3630-567X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61362-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61362-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61362-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61362-4&domain=pdf
mailto:leed@frib.msu.edu
www.nature.com/naturecommunications

second matrix elements that are preserved under unitary transfor-
mations of thematrices. The primarymatrices are, in this work, square
matrices that are either Hermitian matrices or unitary matrices, and
their corresponding normalized eigenvectors, vðiÞ

j , are used to form
bilinears with secondary matrices of appropriate row and column
dimensions to form scalar outputs of the form, vðiÞy

j Skv
ði0 Þ
j0 . When i= i0

and j = j0, the resulting output is the expectation value of Sk associated
with eigenvector vðiÞ

j . When i≠i0 or j≠j0, the output is the transition
amplitude induced by Sk between eigenvectors vðiÞ

j and vði
0 Þ

j0 . Since the
transition amplitudes carry an arbitrary complex phase, we work with
transition probabilities composed of squared absolute values of the
amplitudes. Depending on the structure of the specific problem the
PMM is being applied to, either the primary or the secondary matrices
may be completely omitted—as is the case with unitary time evolution
and eigenvalue emulation respectively. We note the close analogy
between outputs of PMMs of this basic form and observables in
quantummechanics. This has the practical benefit that gradients with
respect to any unknownparameters can be computed efficiently using
first-order perturbation theory19,20. This design feature is very useful
for efficient parameter optimization.

When optimizing the unknown trainable parameters of a PMM in
the form described above, the search process can be accelerated by
applying unitary transformations to thematrices and eigenvectors. For
each column or row dimension n used in a PMM, we let Un be an
arbitraryn ×n unitarymatrix.Wemultiply each eigenvector of lengthn
by Un and multiply each n ×mmatrix by Un on the left and Uy

m on the
right. The unitary transformation leaves all outputs invariant while
producing significant changes to the parameter values. We have found
that combining random unitary transformations with local updating
methods is very useful for accelerating parameter optimization
in PMMs.

In order to provide an intuitive picture of the implicit functions
being crafted by PMMs, we describe the connection between PMMs
and a reduced basis method called eigenvector continuation (EC)21–30.
Let us consider a family of Hermitian matrices H({cl}) whose elements
are analytic functions of real input features, cl

� �
. The EC calculation

starts by picking some set of eigenvectors at selected values for the
input features, and projects all vectors to the subspace spanned by
these eigenvector “snapshots”. The problem then reduces to finding
the eigenvalues and eigenvectors of a much smaller Hermitian matrix
M({cl}), whose elements are also analytic functions of cl

� �
. The

eigenvalues are roots of the characteristic polynomial,
det½λI�MðfclgÞ�. If we approximate the dependence on the input
features over some compact domain using polynomials, then each
eigenvalue, λ, corresponds to the roots of a polynomial in λ with
coefficients that are themselves polynomials with respect to the input
features. For all real values of the input features, λ is analytic and
bounded by the norm of M({cl}). Using only general arguments of
analyticity, in ref. 30 it is shown that for p input features and N
eigenvector snapshots, the error of the EC approximation diminishes
as a decaying exponential function ofN1/p in the limit of largeN. For the
case of eigenvalue problems, PMMs capture the essential features of
EC calculations by proposing some unknown Hermitian matrixM({cl})
and then learning the matrix elements from data. In Methods, we
discuss the connection further and consider examples where PMMs
outperform EC.

Parametric matrix models can be designed to incorporate as
much mathematical and scientific insight as possible or used more
broadly as an efficient universal function approximator. It is useful to
consider a class of PMMswhere thematrix elements of theprimary and
secondary matrices are polynomial functions of the input features,
cl
� �

, up to somemaximumdegreeD. InMethods, we prove a universal
approximation theorem for such PMMs using only affine functions of
the input features, corresponding to D = 1. In the numerical examples
presented here, we show that these D = 1 PMMs achieve excellent

performance comparable to or exceeding that of other machine
learning algorithms—while requiring fewer parameters. In addition,
PMMs typically need fewer hyperparameters to tune as comparedwith
other machine learning approaches, therefore requiring less fine-
tuning and model crafting. This efficiency of description does not
imply a loss of generality or flexibility. It is instead the result of a
natural inductive prior that prioritizes functions with the simplest
possible analytic properties. As the physics of eigenstates, dynamics,
and transition probabilities of Hermitian systems has been well-
studied in the field of quantum mechanics, the generality of such a
PMM does not preclude its interpretability.

While matrix-based approaches have also been widely used in
machine learning for dimensionality reduction31–33, PMMs represent an
approach based on physics principles and implicit functions derived
from matrix equations. We first demonstrate the superior perfor-
mance of PMMs for three scientific computing examples:multivariable
regression, quantum computing, and quantum many-body systems.
We then show the broad versatility and efficiency of PMMs on several
supervised image classification benchmarks as well as hybrid machine
learning when paired together with both trainable and pre-trained
convolutional neural networks.

In this work we consider the number of trainable parameters as a
concise and interpretable indicator of efficiency. This is not because
the limiting factor in machine learning is the storage of model para-
meters. Instead it is because—for the forms of PMMs in this work and
the ubiquitous feedforward neural network—training and inference
complexity scales proportionally to the number of trainable para-
meters. This relation also holds for individual layers of significantly
more advanced neural network architectures such as the self-attention
layer which composes the transformer deep learning architecture, and
which in turn plays a central role in large language models34. This is
discussed further inMethods. Additionally in the context of emulating
physical systems, where the trainable parameters may have physical
significance and therefore the determination of the parameters is
potentially as important as finding a model that reproduces the data,
the number of trainable parameters provides a lower bound on the
number of informative training examples necessary to identify suffi-
ciently narrow neighborhoods of parameter solutions35. A direct
comparison in the number of CPU hours or other empirical measures
of computational cost between PMMs and existing techniques is not
included in this work as such a comparison would be heavily biased in
favor ofmethodswith the benefit of decades of software and hardware
optimization. We therefore present the number of trainable para-
meters as a usefulmetric indicative of both the computational cost and
model size that will serve as a useful baseline for future work solidi-
fying such comparisons.

Results
Regression
For our first benchmark, we have compared the performance of the
general, basic, affine PMM for multivariable regression against several
standard techniques, each of which were hyperparameter-tuned using
grid search: Kernel Ridge Regression (KRR), Multilayer Perceptron
(MLP), k-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB),
Support Vector Regression (SVR), and Random Forest Regression
(RFR). See, for example, ref. 36 for a description of most of these
methods and ref. 37 for XGB. Full details on the grid searches are
provided in Supplementary Tables 1–4. We consider two-dimensional
test functions that include thirteen individual functions and two clas-
ses of functions that are described in Methods38–42. For each of these
functions, we train a PMM with one primary Hermitian matrix, either
7 × 7 or 9 × 9, and form outputs using the three eigenvectors asso-
ciated with the largest magnitude eigenvalues and Hermitian second-
ary matrices. We also test the performance on the NASA Airfoil
dataset43 of measurements of 2D and 3D airfoils in a wind tunnel and

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 2

www.nature.com/naturecommunications

the CERN dielectron dataset44 of 100,000 collision events. Similar to
the approach used for the test functions, three eigenvectors of a 7 × 7
(15 × 15) primaryHermitianmatrix were used to form the output of the
PMM for the NASA (CERN) dataset. We emphasize that other than the
size of matrices and number of eigenvectors, the same PMM formwas
used in all regression tests here. Moreover, this form was not crafted
using information about any data from any problem, but instead was
designed as a general function approximator only. Full details,
including the explicit form of the PMM used, are given in Methods.

In Panel a of Fig. 1, we show the normalized mean absolute error
on withheld test data for the seventeen different regression examples.
The normalized mean absolute error is the average absolute error
divided by the largest absolute value in the unseen test data. Themean
performance for all benchmarks is indicated by horizontal lines, and
we see that the performance for PMMs is significantly better than that
of the other methods, obtaining the lowest error for fifteen of the
seventeen benchmarks. The functional form for KRR is ideally suited
for bilinear functions, and its corresponding error for Bilinear lies
below the minimum of the plot range in Panel a of Fig. 1. MLP has a
slightly smaller error for the NASA Airfoil dataset. However, PMMs use
atmost an order ofmagnitude fewer trainable real parameters (floats)
than the corresponding MLP for each benchmark example.

Zero-error Trotter step extrapolation
For our second benchmark, we turn to a fundamental problem in
quantum computing regarding the time evolution of a quantum sys-
tem. The Hamiltonian operator H = ∑lHl determines the energy of a
quantum system, and the time evolution operator U(dt) for time step
dt can be approximated as a product of terms

Q
l expð�iHldtÞ with

some chosen ordering. This product is known as a Trotter
approximation45, and higher-order improvements to the Trotter
approximation are given by the Trotter-Suzuki formulae46–48. It is
convenient to define an effective Hamiltonian Heff such that its time
evolution operator expð�iHeffdtÞ matches the Trotter approximation
forU(dt). Using theTrotter approximation, thequantumcomputer can
then find the eigenvalues and eigenvectors of Heff. In the limit dt → 0,
Heff is the sameasH. However, the number of quantumgate operations
scales inversely with the magnitude of dt, and so a major challenge for
current and near-term quantum computing is extrapolating obser-
vables to dt =0 from values of dt that are not very small in magnitude.
Current state-of-the-art approaches to this problem utilize polynomial
fitting techniques49–51.

We consider a quantum spin systemofN = 10 spins corresponding
to a one-dimensional Heisenberg model with an antisymmetric spin-
exchange term known as the Dzyaloshinskii-Moriya (DM)
interaction52,53. Such spin models have recently attracted interest in
studies of quantum coherence and entanglement54–56. For the PMM
treatment of time evolution using this Hamiltonian, we replicate the
matrix product structureof the Trotter approximation using a product
of 9 × 9unitarymatrices,

Q
l expð�iMldtÞ.We thenfind the eigenvalues

and eigenvectors of the Hermitian matrix Meff such that
expð�iMeffdtÞ=

Q
l expð�iMldtÞ. In Panel b of Fig. 1, we show the

lowest three energies of the effective Hamiltonian, Heff, versus time
step dt. We show results for the PMM in comparison with a Multilayer
Perceptron (MLP) with three hidden layers with 20 nodes each using
the hyperbolic tangent activation function and polynomial interpola-
tion (Poly). The depth, width, activation function, regularization
strength, and learning rate for the MLP were found via grid search
hyperparameter tuning. Full details of the grid search can be found in
Supplementary Table 5. The training and validation samples are loca-
ted away from dt = 0, where calculations on a current or near-term
quantum computer are practical. The relative errors at dt =0 for the
predicted energies are shown in the inset, and we see that the PMM is
more accurate than the two other methods for each of the low-lying
energy eigenvalues and more than an order of magnitude better for
the ground state E0.

Emulation of a quantum phase transition
For our third benchmark, we consider a quantumHamiltonian for spin-
1/2 particles onN lattice sites with tunable anharmonic long-range two-
body interactions called the anharmonic Lipkin-Meshkov-Glick
(ALMG) model57,58. Here we take the anharmonicity parameter, α, to
be α = − 0.6. There is a second-order ground-state quantum phase
transition in the two-particle pairing parameter, ξ, at ξ =0.2, above
which the ground state becomes exactly degenerate in the largeN limit
and the average particle density in the ground state, hn̂i=N, becomes
nonzero. For the calculations presented here, we take N = 1000. The
details of the Hamiltonian are described in refs. 57,58. All training and
validation data was taken away from the region of the phase transition.
We employ a 9 × 9 PMM with primary matrices that form an affine
latent-space effective Hamiltonian of the same form as the true
underlying model as well as a secondary matrix that serves as the
latent-space effective observable. The PMM is trained by optimizing
the mean squared error between the lowest two eigenvalues of the

Fig. 1 | PMM results for regression and Trotter extrapolation. a Performance on
regression problems. Normalizedmean absolute error onwithheld test data for the
PMM (blue) compared against several standard techniques: Kernel Ridge Regres-
sion (KRR, orange),Multilayer Perceptron (MLP, green), k-Nearest Neighbors (KNN,
red), Extreme Gradient Boosting (XGB, purple), Support Vector Regression (SVR,
brown), and Random Forest Regression (RFR, pink). Normalized mean absolute
error on provided training and validation data is shown for selected datasets as
contrasting squares. Mean performance on withheld test data across all problems

are shown as horizontal lines. b Extrapolated Trotter approximation for quantum
computing simulations. We plot the lowest three energies of the effective Hamil-
tonian for the one-dimensional HeisenbergmodelwithDM interactions versus time
step dt. We compare results obtained using a PMM (dashed),Multilayer Perceptron
(MLP, dotted), and polynomial interpolation (Poly, dash-dotted). All training (dia-
monds) and validation (circles) samples are located away from dt = 0, where data
acquisition on aquantumcomputerwould bepractical. The inset shows the relative
error in the predicted energies at dt = 0 for the three models.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 3

www.nature.com/naturecommunications

effective Hamiltonian and the expectation value of the effective
observable in the ground state of the effectiveHamiltonian to the data.
A regularization term, proportional to the sum of differences between
unity and the overlapbetween eigenvectors at successive values of ξ, is
added to this loss function to encode for the possibility of a phase
transition. Additionally, the secondary matrix in the PMM is con-
strained to be positive semi-definite, as this is true of the original
observable. The same amount of physical information cannot be
directly encoded in traditional neural networkmethods. The go-to and
state-of-the-art neural network approaches for similar emulation pro-
blems utilize unmodified, standard architectures such as fully-
connected feedforward neural networks or restricted Boltzmann
machines59–61. As such,we compareourmethod to anMLPwith a single
input node, three hidden layers of 100, 100, and 10 neurons eachwith
ReLU activations, and three output neurons which was trained by
optimizing the mean squared error between the predictions and the
data with a standard l2 regularizer on the weights. The hyperpara-
meters of the MLP including the weight of the regularizer, the activa-
tion function, widths of each layer, number of hidden layers, and
learning rate were found via grid search hyperparameter tuning. Full
details on the grid search are provided in Supplementary Table 6. In
the left panel of Fig. 2, we show PMM results versusMLP results for the
lowest two energy levels of the ALMG model versus ξ. In the center

panel of Fig. 2 we show PMM results versusMLP results for the average
particle density in the ground state, hn̂i=N, versus ξ. In the right panel
of Fig. 2 we show the derivative of the energy levels with respect to the
control parameter ξ. Such derivatives are typically taken when
searching for a phase transition in addition to, or in place of, an order
parameter. We see that away from the phase transition, both models
perform comparably. However, at the phase transition, only the PMM
is able to accurately predict the sharp change in character of the sys-
tem. This is especially prevalent in the derivatives of the energy levels.

In addition to superior numerical performance for scientific
computing, PMMs also provide functionality formathematical analysis
that is difficult to match using other machine learning methods. The
advantage for PMMs lies in its core design, which is based on mathe-
matical equations that can be analytically continued into the complex
plane without extra information. In Fig. 3, we show predictions using
the same PMM as discussed above for the complex-valued ground
state energy of the ALMG model for complex values of ξ. We empha-
size that the PMM is trained using only real values of ξ. The left plot
shows the exact results, the middle plot shows the PMM predictions,
and the right plot shows the absolute errorwith contour lines outlining
the region where the error is less than 0.05. The ability of the PMMs to
accurately extrapolate the behavior of systems to complex parameters
from purely real-valued—and therefore physical—data is invaluable for

Fig. 2 | ALMG model results. Left Panel: Lowest two energy levels of the ALMG
model versus ξ. We show PMM results compared withMultilayer Perceptron (MLP)
results. Theupperplots show the energies, and the lower plots showabsolute error.
Themain plots show the region around thephase transition; the insets show the full
domain where data was provided. Center Panel: Average particle density for the
ground state of the ALMG model versus ξ. We show PMM results compared with
Multilayer Perceptron (MLP) results. The upper plots show the average particle
density, and the lower plots show absolute error. The main plots show the region

around the phase transition; the insets show the full domain where data was pro-
vided. Right Panel: Derivative of the lowest two energy levels with respect to the
control parameter ξ as a function of ξ. We show PMM results compared with
Multilayer Perceptron (MLP) results. The upper plots show the derivatives of the
energies with respect to the control parameter, and the lower plots show absolute
error. Themain plots show the region around the phase transition; the insets show
the full domain where data was provided. No data on the derivatives was provided
to either model.

Fig. 3 | Complex-valued ground state energy of the ALMGmodel for complex ξ.
We show PMM predictions for the complex-valued ground state energy for com-
plex values of ξ, using training data at only real values of ξ. The left plot shows the

exact results, themiddle plot shows the PMMpredictions, and the right plot shows
the absolute error.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 4

www.nature.com/naturecommunications

understanding and analyzing the mathematical structures giving rise
to exceptional points, avoided level crossings, and phase transitions.

Image classification
Todemonstrate the efficacy of PMMsbeyond scientific computing, for
our fourth benchmark we address the problem of supervised image
classification on several standard datasets. The field of computer
vision has long been dominated by convolutional neural networks
(CNNs), and still today, many recent machine learning architectures in
computer vision make significant use of convolutions. However, it is
often the case that without careful regularization, architecture
refinements, or model crafting, these networks become massively
over-parameterized. Here, we formulate a general PMM for the pro-
blemof image classification that is both accurate and highly efficient in
the number of trainable parameters. The form of this PMM is not
guidedby any specific imagedata, but insteadonly by the fundamental
treatment of images as data matrices and the desire to work with
Hermitianmatrices.While the formof the primarymatrices differ from
the PMMs used in the regression experiments, the form of the sec-
ondary matrices remains unchanged.

A natural encoding for images in the context of Hermitian matrix
equations is to consider smaller fixed square or rectangular windows
of each image,Wl. The row-wise and column-wiseGrammatrices of the
windows,WlW

y
l andW y

l W l respectively, are combined using trainable
transformations into a single primary matrix for each possible output
class, as described in Methods. We then form bilinears of the eigen-
vectors of the primary matrices with trainable secondary matrices and
use the resulting scalars to produce class probabilities for the input
images. We train the model using complex-valued gradient descent to
minimize the categorical cross-entropy loss function, a measure of the
difference between the predicted and true probabilities. Full details of

the architecture are found in Methods. In Table 1, we show results for
this pure PMMmodel versus the performance of other highly efficient
methods on several longstanding image classification datasets. The
datasets were chosen as they are well-established benchmarks still
used in recent publications. We compare this introductory imple-
mentation of PMMs to neural-network-based approaches which have
had nearly a decade to develop with themost recent of these datasets.
We present the accuracy on withheld test sets in percent as well as the
number of trainable floating point parameters.We see that in all cases,
the performance of our method is comparable or superior to existing
methods, despite using fewer parameters.

While we have thus far focused on standalone applications of
PMMs, we expect there to be significant community interest in com-
bining PMMswith othermachine learning algorithms that have already
demonstrated excellent performance and computational scaling. To
demonstrate this application, we formulate a convolutional PMM
(ConvPMM) by using the aforementioned image classification PMM to
replace the head of several traditional, but complex-valued, convolu-
tional neural network model architectures. All parameters in the
ConvPMM, both the convolutional layers and the PMM head, can be
trained simultaneously via backpropagation. The results for thismodel
are also reported in Table 1 and demonstrate that traditional techni-
ques can be combined with PMMs to achieve highly accurate and
efficient models. Further details on the ConvPMM architecture are
found in Methods.

To further demonstrate the capability of PMMs to integrate with
existing neural networks, our fifth benchmark is a hybrid transfer
learning model for image recognition, where a pre-trained convolu-
tional neural network called ResNet5062 is combined with a PMM.
ResNet50 is used as a feature extractor and the PMM is used as a
trainable classifier on these extracted features. The PMMsusedwereof
the same form as those used for the regression experiments. The 2048
outputs of the spatially-pooled ResNet50 network form the input
features and the softmax of the outputs form the class probability
predictions. The number, rank, and size of matrices in the PMMs were
chosen to accommodate the complexity, size, andnumber of classes in
each dataset. Further details can be found in Methods. In Table 2, we
show hybrid transfer learning results obtained for several different
image datasets when combining ResNet50 with either a PMM or a
feedforward neural network (FNN). We have performed 10 trials for
each dataset with 10 training epochs each, and reported the mean test
accuracy and number of trainable floating point parameters for each
dataset and model. This experiment demonstrates that PMMs can be
directly used with the encoded latent-space features from existing,
pre-trained, purely-artificial-neural-network models.

Table 1 | Supervised machine learning on image datasets

Dataset Model Acc. float

MNIST Digits86 PMM 97.38 4990

ConvPMM 99.10 129416

DNN-287 96.5 ~ 311650

DNN-387 97.0 ~ 386718

DNN-587 97.2 ~ 575050

GECCO88 98.04 ~ 19000

CTM-25089 98.82 31750

CTM-800089 99.4 527250

Eff.-CapsNet90 99.84 161824

Fashion MNIST91 PMM 88.58 16744

ConvPMM 90.94 278280

GECCO88 88.09 ~ 19000

CTM-25089 88.25 31750

CTM-800089 91.5 527250

MLP92 91.63 2913290

VGG8B92 95.47 ~ 7300000

F-T DARTS93 96.91 ~ 3200000

EMNIST Balanced94 PMM 81.57 13792

ConvPMM 85.95 349172

CNN95 79.61 21840

CNN (S-FC)95 82.77 13820

CNN (S-FC)95 83.21 16050

HM2-BP96 85.57 665647

We show PMM and ConvPMM results compared to other highly efficient methods on several
image classification datasets. We present the accuracy on withheld test sets in percent and the
number of trainable floating point parameters.

Table 2 | Hybrid transfer learning results for ResNet50 com-
bined with either a PMM or a feedforward neural network
(FNN) head

PMM FNN

Dataset float Accuracy float Accuracy

CIFAR-1097 95176 83:11+0:18�0:27
271178 83:68+0:19

�0:45

CIFAR-10097 115570 56:17+0:23
�0:23

277028 55:05 +0:66
�0:66

SVHN98 206920 65:28+0:20
�0:46

271178 65:22+0:35
�0:35

STL-1099 66880 86:14+0:40
�0:40

271178 85:94+0:17
�0:17

Caltech256100 227207 65:9+ 1:0
�1:0 1:4 287233 75:48+0:30

�0:46

CINIC-10101 66880 72:93+0:11
�0:16

271178 72:91+0:23�0:10

Eachmodel was randomly initialized 10 times and trained for 10 epochs. Themean test accuracy
over the trials are reported alongside the number of trainablefloating point parameters. The pre-
trained ResNet50 network uses ~ 23 × 106 trainable parameters. The positive (negative) uncer-
tainty is the difference between the mean score and the mean of all scores greater (less) than
the mean.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 5

www.nature.com/naturecommunications

Discussion
We have presented parametric matrix models, a class of machine
learning algorithms based on learning the underlying equations which
govern data. PMMs have shown superior performance for several dif-
ferent scientific computing applications. The performance advantage
over othermachine learningmethods is likely due to at least twomajor
factors. Thefirst is that PMMscan incorporate importantmathematical
structures such as operator commutation relations associatedwith the
physical problem of interest. The second is that the forms of PMMs
presented produce output functions with analytical properties deter-
mined by the eigenvalues and eigenvectors of the primary matrices.
Using the properties of sharp avoided level crossings, these PMMs are
able to reproduce abrupt changes in data without also producing the
unwanted oscillations typically generated by other approaches.

While there are numerous studies that combine classical machine
learning with quantum computing algorithms63–65, the general form
PMMs considered in this work use the matrix algebra of quantum
mechanics as their native language. This unusual design also sets
PMMs apart from other physics-inspired and physics-informed
machine learning approaches1–3. Rather than imposing auxiliary con-
straints on the output functions, important mathematical structures
such as symmetries, conservation laws, and operator commutation
relations come directly from the known or supposed underlying
equations. Once gate fidelity and qubit coherence are of sufficient
quality for the operations required, the general form PMM can be
implemented using techniques similar to those used in a field of
quantum computing algorithms called Hamiltonian learning66–68.
Although the primary computational advantage of PMMs is in the area
of scientific computation, we have also shown that PMMs are universal
function approximators that can be applied to general machine
learning problems such as image recognition and can be readily
combined with other machine learning approaches. For general
machine learning problems, we have found that PMMsare competitive
with or exceed the performance of othermachine learning approaches
when comparing accuracy versus number of trainable parameters.
While the performanceof PMMs for very largemodels hasnot yet been
investigated, the demonstrated efficiency and hybrid compatibility of
PMMs show the value of PMMs as a tool for general machine learning.

Methods
Where not otherwise explicitly stated, we will use additional notation
to clearly distinguish trainable-, fixed-, and hyper-parameters. Train-
able parameters will be denoted by an underline, x. Hyperparameters
will be denoted by anoverline, η. And parameters fixed by the problem
or data are written plainly, s. Optimization, or training, of the trainable
parameters of a PMM can be accomplished by a global optimizer if the
PMM is small enough or, in general, a modified version of the Adam
gradient descent method69 for complex parameters—as we have cho-
sen in this work.

Properties of PMMs
As described in the main text, the basic PMM form consists of primary
matrices, Pj, and secondary matrices, Sk. All of the matrix elements of
the primary and secondarymatrices are analytic functions of the set of
input features, cl

� �
. The primary matrices are square Hermitian or

unitary matrices, and their normalized eigenvectors, vðiÞj , are used to
form bilinears with secondary matrices of the appropriate row and
column dimensions to form scalar outputs of the form vðiÞyj Skv

ði0 Þ
j0 .

Making an analogy with quantum mechanics, we can view the set of
eigenvectors used in this form of PMM as describing the possible
quantum states of a system. The primary matrices Pj are quantum
operators simultaneously being measured, resulting in the collapse
onto eigenvectors of themeasured operators. The secondarymatrices
correspond to observables that measure specific properties of the
quantum state or transitions between different quantum states. If we

ignore the irrelevant overall phase of each eigenvector, the total
number of real and imaginary vector components that comprise the
eigenvectors used in the PMM should be viewed as the number of
dimensions of the latent feature space. This is analogous to the mini-
mumnumber of nodes containedwithin one layer of a neural network.

Theoutput functions of neural networks donot correspond to the
solutions of any known underlying equations. Rather, they are nested
function evaluations of linear combinations of activation functions.
Many commonly-used activation functions have different functional
forms for x < 0 and x≥0 and therefore are not amenable to analytic
continuation. Most of the other commonly-used activation functions
involve logarithmic or rational functions of exponentials, resulting in a
more complicated analytic structure.

Let us consider a PMM that uses Hermitian primary matrices with
matrix elements that are polynomials of the input features up to
degree D. Suppose now that we vary one input feature, cl, while
keeping fixed all other input features. The output functions of cl can be
continued into the complex plane, with only a finite number of
exceptional points where the functions are not analytic. These
exceptional points are branch points where two or more eigenvectors
coincide. A necessary condition for such an exceptional point is that
the characteristic polynomial of one of the primary matrices,
det½λI� PjðfclgÞ�, has a repeated root. This in turn corresponds to the
discriminant of the characteristic polynomial equaling zero. If the
primary matrix has n × n entries, the discriminant is a polynomial
function of cl with degree n(n − 1)D. We therefore have a count of
n(n − 1)D branch points as a complex function of cl for each primary
matrix. If a branch point comes close to the real axis, then we have a
sharp avoided level crossing and the character of the output function
changes abruptly near the branch point. Our count of n(n − 1)D branch
points for each primarymatrix gives a characterization of the Riemann
surface complexity for the functions that can be expressed
using a PMM.

For the case where the primary matrix is a unitary matrix, we can
restrict our analysis to unitary matrices close to the identity and write
U = expð�iMÞ, where M is a Hermitian matrix. If we have a multi-
plicative parameterization forU of the formU =∏lUl, thenwe canwrite
expð�iMÞ=Ql expð�iMlÞ and use the Baker-Campbell-Hausdorff
expansion to relate M to the products and commutators of Ml. This
analysis is analogous to parameterizing the algebra of a Lie group.

A detailed characterization of analytic structure is not possible for
neural network output functions. However, we can make the qualita-
tive statement that neural network output functions reflect a change in
slope, in some cases quite abruptly, as each of the activation function
used in the network crosses x = 0. We can therefore compare our
estimate of n(n − 1)D branch points for each primary matrix with the
number of network nodes with activation functions.

Computational and parameter scaling. An instructive comparison
between artificial neural networks and the PMM forms considered in
this work can be made in the computational complexity of a single
inferencecalculation aswell as in the scalingof the number of trainable
parameters in relation to the “expressivity” of eachmodel.We quantify
expressivity by the number of possible non-analytic points in the
complex-valued output space of the model. Consider the case where
there are p input features and q output values. A simplified MLP with l
hidden layers each composed of m neurons requires O lm2

� �
floating

point multiplication operations to perform a single inference. Simi-
larly, the same MLP is described by O lm2

� �
trainable floating point

values.
We compare the scaling of this simplified MLP with the two con-

structed model PMMs considered in this work, the affine eigenvalue
PMM (AE-PMM) detailed in Methods section “Eigenvalue and Eigen-
state Observable Emulation” and the more general affine observable
PMM (AO-PMM) detailed in Methods section “Regression and

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 6

www.nature.com/naturecommunications

Classification PMMs”. In either form, let the primary matrix of the
PMMs be n × n. The computation of the full spectrum of the primary
matrix in both forms requires O n3

� �
multiplication operations in

practice. However, if only a small subset of the spectrum, r levels, is
required then this complexity reduces to O rn2

� �
. In the case that the

eigenvalues are the outputs, then r = q. In the case of the AO-PMM, in
which each output is formed from taking bilinears of these r eigen-
vectors with ~ qr2 secondary matrices, the number of multiplication
operations is O qr2n2

� �
. The affine eigenvalue PMM needs only the

O pn2
� �

trainable values in the primary matrix. In contrast, the scaling
of the number of trainable parameters in the AO-PMM is jointly
dominated by the number of elements in the trainable secondary
matrices; so the number of trainable parameters is O p+ qr2

� �
n2

� �
.

These scaling results are summarized in Table 3 and allow for
further analogies to be made between standard size hyperparameters
in neural networks and PMMs. We see that, in the context of expres-
sivity, the dimension of the PMM matrices, n, plays the same role as
both the width and depth of the MLP. However, in the context of both
the inference complexity and the number of trainable parameters for
both PMM formulations, the dimension of the matrices functions
comparably to only the width of the MLP. In the case of the AE-PMM,
the number of outputs and number of input features each affect the
scaling of the inference complexity and model size respectively in the
same way that the number of layers in the MLP does. We emphasize
that thesequantities arefixedby theproblemand thus the scalingof all
relevant quantities of the AE-PMM are determined by a single hyper-
parameter, n. This single-hyperparameter property can be both an
advantage—encouraging model simplicity—or a disadvantage, for
example when more control over the model is desired or the number
of input features is large. This disadvantage motivates the AO-PMM,
for which the quantity p + qr2 acts similarly to the number of layers in
the MLP in the scaling of the complexity and number of trainable
parameters. While this introduces an additional hyperparameter, it is
important to note that r and n are not independent as r must be less
than or equal to n. Furthermore, typical values of m, l, and analogous
hyperparameters for other neural networks like CNNs are in the range
of O 101

� �
to O 104

� �
. Such a wide range of possible values even for

modest network sizes necessitates expensive hyperparameter tuning
or aggressive model crafting. The analogous hyperparameters in
PMMs have a much more limited range by comparison with typical
values of n and r in the ranges of 5–25 and 1–5 respectively. We note
that the number of hyperparameters in a general feedforward neural
network, instead of the simplified fixed-width MLP considered here,
can be substantially larger as the size and connectivity of each layer
may be important hyperparameters. Moreover, all neural network

approaches rely on the choice of the activation function for each layer
—for which there are, in principle, unlimited possibilities.

The results in Table 3 reproduce the known result thatdeepneural
networks—those with many more layers than nodes per layer, l ≫ m—

are preferable to the alternative. This can be seen by the result that
both the complexity and expressivity of theMLP scale linearly with the
depth l, compared to quadratically and linearly respectively withm. By
comparison, the expressivity of the two general PMMs considered
both scale linearly with the complexity, regardless of what size
hyperparameters are changed. This property of expressivity scaling
proportionally to complexity is how we define an “efficient” universal
function approximator in this work. Both the two general PMMs con-
sidered and the simplified MLP have this property.

Additional control over the scaling of PMMs can be gained by
specifying the rank of the trainable matrices. By using low-rank
matrices—aswehave done for several of the examples in thiswork—the
model can be made significantly more efficient. This is analogous to
sparse layers and sparsity-promoting regularization in neural
networks.

We note that the computational complexity of back-propagation
for the MLP and either of the two PMMs considered scales propor-
tional to the inference complexity of each model. Thus, the cost of
training the models is equivalent, to leading order and up to constant
factors, to the number of trainable parameters.

Although we have not applied PMMs to sequential data in this
work, further comparisons with more recent and complex sequence
transduction models provide additional context for the number of
trainable parameters and computational complexities presented
above. We focus on the scaling for a single layer of various archi-
tectures: recurrent (R), convolutional (C), self-attention (SA), and
restricted self-attention (RSA). For an input sequence of h inputs each
of dimension pin a single layer transforms this into an output sequence
of equal length, h, where eachoutput has dimension qout. In the case of
the convolutional layer an additional hyperparameter k denotes the
size of the kernel. If the entire model were just a single layer, the total
input (output) size hpin (hqout) is roughly analogous to the number of
input (output) features, p (q), discussed above. However, we focus on
the case in which the layer is an internal, or hidden, layer in a model
where it is a common choice to set pin = qout ≡ d. The forward-pass
computational complexity of each of these layers to leading order in
architecture hyperparameters is34

χR =hd
2, χC = khd

2,

χSA =h
2d +hd2, χRSA = rhd + rd2

:
ð1Þ

Table 3 | Leading-order scaling for various properties of PMMs and a fixed-width MLP

Quantity In terms of… MLP AE-PMM AO-PMM

Non-analytic points, ξ Architecture hyperparameters lm n2 n2

Inference complexity χ χ/m χ/q χ/q

Trainable parameters Σ Σ/m Σ/p Σ= p +qr2
� �

Inference complexity, χ Architecture hyperparameters lm2 qn2 qr2n2

Non-analytic points ξ mξ qξ qr2ξ

Trainable parameters Σ Σ Σ Σ

Trainable parameters, Σ Architecture hyperparameters lm2 pn2 p +qr2
� �

n2

Non-analytic points ξ mξ pξ p +qr2
� �

ξ

Inference complexity χ χ χ χ

The two constructed model PMMs considered in this work are shown: the affine eigenvalue PMM (AE-PMM, Methods section “Eigenvalue and Eigenstate Observable Emulation”) and the affine
observablePMM (AO-PMM,Methods section “Regression andClassificationPMMs”). Allmodels are considered to havep input features andq output values. Each of the lhidden layers of theMLPhas
m neurons. The size of the matrices in the PMMs is n × n and the number of eigenvectors used in the AO-PMM is denoted by r. We assume that l ≫ p, l ≫ q, and p ~ q.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 7

www.nature.com/naturecommunications

We compare this with the scaling of the number of trainable para-
meters in each architecture,

ΣR =d
2, ΣC = kd

2, ΣSA =d
2, ΣRSA =d

2, ð2Þ

and note that the scaling for the computational complexity for each of
these layers is—to leading order in architecture hyperparameters and
up to constant factors—again the same as the scaling for the number of
trainable parameters.

Eigenvalue and eigenstate observable emulation
The simplest PMM in the context of emulating Hamiltonian systems is
that of the affine PMM used for emulating energies and eigenstate
properties. By affine, we mean that the dependence of the matrix
elements on the input features is at most linear. Suppose the true
underlying system is described by a Hamiltonianwhich is a function of
p features, cl : 1≤ l ≤p

� �
. Given data for some subset of the energy

levels at somevalues of these parameters, we can emulate the energies
with the following affine PMM,

M cl
� �� �

=M0 +
Xp
l = 1

clMl , ð3Þ

where Ml are p + 1 independent n×n Hermitian matrices. When the
PMM has this simple form and the output function is a set of eigen-
values of M cl

� �� �
, we will refer to the PMM as an affine eigenvalue

PMM (AE-PMM). An eigenvalue as a PMM output can be viewed as the
expectation value of a secondarymatrix that is the same as the primary
matrix that produced the eigenvector. The hyperparameter nmust be
chosen to be large enough to accommodate all of the levels provided
in the data as well as the degrees of freedom required by the data. The
elements of each Ml are found by optimizing the mean squared error
between the data and the eigenvalues of M evaluated at the corre-
sponding values of cl

� �
. A suitablemapping between the energy levels

of the PMM and the true levels must be used. Typically, the provided
data contains some number of the lowest lying energies of the true
system, in which case the mapping can be the identity. That is, the
ground state of the PMM is compared with the ground state data, the
first excited state of the PMM is compared with the first excited state
data, and so on. More complex mappings may be used in the case that
the data contain arbitrary energy levels.

This PMM can be trivially extended to emulate observables mea-
sured in the eigenstates of the original Hamiltonian as a function of the
same cl

� �
. Given data for some number of observables measured in

some subset of the eigenstates of the original Hamiltonian, the PMM
can accommodate this new information via the introduction of a sec-
ondary matrix for each observable in the data, Ok . The loss function is
modified to include the mean squared error between the data and
expectation values of these secondary matrices in corresponding
eigenstates of the PMM primary matrix. Weighting hyperparameters
which control the strength of the energy error and observable error
terms in the loss function may be included to further control the
learning of the PMM. Constraints on these observables—such as
ensuring a given observable commutes with the Hamiltonian, is posi-
tive semi-definite, or is a raising operator—canbe incorporateddirectly
by specific construction of the corresponding secondary matrices in
the PMM. For example, to ensure that the secondary matrix that
emulates a density observable is positive semi-definite it can be con-
structed as O=QyQ where Q is the Hermitian matrix whose elements
are fit to the data.

As mentioned in the main text, a simple and physically motivated
regularizer arises naturally in this formulation. In most physical sys-
tems, one expects the eigenstates to change smoothly as a function of
the Hamiltonian input features. Equivalently, one expects the overlap
between an eigenstate at some level for some values of the

Hamiltonian input features with the eigenstate for the same level at
nearby values of the Hamiltonian input features to have magnitude
nearunity.We can encourage this behavior by adding a penalty term to
the loss function which is proportional to the difference between
neighboring eigenstate overlaps and unity. Let v be the vector whose
entries are 1� ∣hψi cl

� �� �jψi cl + δcl
� �� �i∣2, where ∣ψi

�
is the ith eigen-

state of the PMM, for all levels and feature space areas of interest. Then
the penalty γ vk kαα can be added to the previous loss function to
encourage the smoothnessof the eigenstates. Here, �k kαα is the Lα-norm
to the power ofα, whereα can be chosen to elicit the desired behavior.
Most commonly, α = 1 encourages a fewnumber of locationswhere the
eigenstates are not smooth and α =2 encourages a high average
smoothness. The hyperparameter γ controls the strength of this reg-
ularization. Finally, it may be beneficial to modify the elements of v by
normalizing them by each δcl

� �
, as we have chosen to do in our

implementation.

Universal approximation theorem for PMMs
InMethods section “Eigenvalue and EigenstateObservable Emulation”,
we discussed an affine eigenvalue PMM composed of one primary
matrix that is a Hermitian matrix whose matrix elements are at most
linear functions of the input features, cl

� �
, and whose output corre-

sponds to one particular eigenvalue of the primary matrix. In this
section, we prove that even thismost basic PMM is a universal function
approximator. In more precise terms, we prove that for any compact
domain of the input features, any uniform error tolerance ϵ > 0, and
any continuous real-valued function f({cl}), we can find an affine
eigenvalue PMM that reproduces f({cl}) over the compact domain with
uniform error less than ϵ.

We start by proving an addition theorem for affine eigenvalue
PMMs. Suppose that we have two AE-PMMs with output functions
f({cl}) and g({cl}) corresponding to eigenvalues of primary matrices
Pf({cl}) and Pg({cl}) respectively. We can define another affine eigenva-
lue PMMwith output function f({cl}) + g({cl}) by constructing the tensor
product of the two vector spaces and defining the new primary matrix
as Pf + g ðfclgÞ=Pf ðfclgÞ � I+ I� Pg ðfclgÞ.

Next, we prove the universal approximation theorem for affine
eigenvalue PMMs with one input feature, c1. Any continuous function
f(c1) over a compact domain can be uniformly approximated to arbi-
trary accuracy using a concatenation of line segments with finite slope
as shown by the thick line in Fig. 4. Let us label the line segments as
s1, s2, …, sM, where our ordering corresponds to ascending values for
c1. For each line segment, sj, let us write the affine function that passes
through sj as fj(c1) = ajc1 + bj. We now construct a Hermitianmatrixwith
the jth diagonal element given by fj(c1). If the off-diagonal elements are
all zero, then the eigenvectors are decoupled from each other and the

Fig. 4 | Concatenated line segments for one input feature. The thick line shows a
particular eigenvalue λ(c1) that traces out a function composed of several con-
catenated line segments. The dashed lines show the affine functions fj(c1) = ajc1 + bj
that describe the line segments.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 8

www.nature.com/naturecommunications

eigenvalues are the affine functions fj(c1).We nowmakeeach of the off-
diagonal matrix elements an infinitesimal but nonzero constant. The
details are not important except that they mix the eigenvectors by an
infinitesimal amount and produce sharp avoided level crossings. We
now assume that each ∣aj∣ is large enough so that fj(c1) = ajc1 + bj does
not intersect any line segment other than sj. Let nb be the total number
of affine functions fj(c1) that pass below the first segment s1. We note
that for any line segment sj0 , exactlynb affine functions fj(c1) pass below
sj0 . We conclude that the ðnb + 1Þst eigenvalue from the bottom of the
spectrum will pass through all of the line segments s1, s2, …, sM. This
completes the proof of the universal function approximation theorem
for affine eigenvalue PMMs with a single input feature.

We now turn to the case with p input features c1, …, cpwith p > 1.
Let us consider any monomial ck1

1 ck2
2 � � � ckp

p with total degree
k = k1 + ⋯ + kp. We can write the monomial as a finite linear combi-
nation of the form

ck1
1 ck2

2 � � � ckp
p =

XJ
j = 1

bj

Xp
l = 1

aj, lcl

" #k
, ð4Þ

where J is afinite positive integer and all of the coefficientsbj andaj,l are
real numbers. This follows from the fact that

Xp
l = 1

aj, lcl

" #k
=

X
k1 + k2 + ...+ kp = k

k

k1, k2, . . . , kp

 !
ðak1

j, 1a
k2
j, 2 � � �a

kp

j,pÞ ðc
k1
1 ck2

2 � � � ckpp Þ, ð5Þ

and the functions

k

k1, k2, . . . , kp

 !
ðak1

j, 1a
k2
j, 2 � � �a

kp

j,pÞ ð6Þ

are linearly independent functions of {aj,1, aj,2, …, aj,p} for each dis-
tinct set of nonnegative integers {k1, k2, …, kp}. For sufficiently large
but finite J, we can therefore write any homogeneous polynomial of
total degree k as a linear combination of J polynomials of the form

Xp
l = 1

a1, lcl

" #k
,
Xp
l = 1

a2, lcl

" #k
, . . . ,

Xp
l = 1

aJ, lcl

" #k8<
:

9=
;, ð7Þ

where eachof the coefficient values {aj,l} are fixed. Further literatureon
this topic and the minimum integer J required can be found in
ref. 70–72.

Each term in the outer sum of Eq. (4) has the form

bj

Xp
l = 1

aj, lcl

" #k
: ð8Þ

For each index j, this is a function of a single linear combination of
input features. We can therefore construct an AE-PMM for each j to
uniformly approximate Eq. (8) to arbitrary accuracy. By the addition
theorem for AE-PMMs, we can perform the sum over j and uniformly
approximate anymonomial ck1

1 ck2
2 � � � ckp

p and therefore anypolynomial.
By the Stone-Weierstrass theorem73,74, we can uniformly approximate
any continuous function of the input features cl

� �
over any compact

domain using polynomials. We have therefore proven that any
continuous function of the input features cl

� �
over any compact

domain can be uniformly approximated to arbitrary accuracy by
AE-PMMs.

We define a unitary affine eigenvalue PMM to be a generalization
of the affine eigenvalue PMM where the output is an eigenvalue of
single primary matrix that is the exponential of the imaginary unit
times a Hermitian matrix composed of affine functions of the input

features. Theproof of theuniversal approximation theorem forunitary
affine eigenvalue PMMs is analogous to the proof for affine eigenvalue
PMMs. The precise statement is that for any compact domain of the
input features, any uniform error tolerance ϵ > 0, and any continuous
real-valued function f ({cl}),we canfindaunitary affine eigenvalue PMM
that reproduces exp if cl

� �� �	

over the compact domain with uniform

error less than ϵ.
Analogous to the addition theorem for affine eigenvalue PMMs,

we can prove the multiplication theorem for unitary affine eigenvalue
PMMs. Suppose that we have two unitary affine eigenvalue PMMswith
output functions f ({cl}) and g({cl}) corresponding to primary matrices
Pf ({cl}) and Pg({cl}) respectively. We can define another unitary affine
eigenvalue PMM with output function f({cl})g({cl}) by constructing the
tensor product of the two vector spaces and defining the new primary
matrix as Pf⋅g({cl}) = Pf({cl}) ⊗ Pg({cl}).

For unitary affine eigenvalue PMMs with one input feature c1, the
proof of the universal approximation theorem uses exponentials of
affine functions multiplied by the imaginary unit. We assign
f jðc1Þ= exp i ajc1 +bj

� �h i
to the jth diagonal entry of the primarymatrix.

Analogous to the monomial ck1
1 ck2

2 � � � ckp
p for affine eigenvalue PMMs

with more than one input feature, for unitary affine eigenvalue PMMs
we approximate the exponentiatedmonomial exp ick1

1 ck2
2 � � � ckp

p

� �
. The

other steps in the proof are straightforward and analogous to the
derivations for the affine eigenvalue PMMs. Having proven that affine
eigenvalue PMMs and unitary affine eigenvalue PMMs are universal
function approximators, we conclude that all PMMs of the basic forms
described in the main text with Hermitian or unitary primary matrices
are universal function approximators.

Comparison of PMMs and eigenvector continuation
We consider the problem of finding the eigenvalues and eigenvectors
for a family of Hermitian matrices, Hð cl

� �Þ, whose elements are ana-

lytic functions of real input features, cl
� �

. The reduced basis approach
of eigenvector continuation21 (EC) is well suited for this problem. We
select some set of eigenvector snapshots at training points

cð1Þl
n o

, cð2Þl

n o
, � � �

n o
. After projecting to the subspace spanned by

these snapshots, we solve for the eigenvalues and eigenvectors of the
much smaller Hermitian matrix Mð cl

� �Þ, whose elements are also

analytic functions of cl
� �

. While this works very well for many pro-
blems, there is a general problem that traditional reduced basis
methods such as EC can lose accuracy for systems with many degrees
of freedom. In such cases, the number of snapshots may need to scale
with the number of degrees of freedom in order to deliver the same
accuracy.

In the main text, we have noted that PMMs can reproduce the
performance of EC by learning the elements of the matrices M({cl})
directly from data. In the following, we present an example where
PMMs perform better than EC for a problem with many degrees of
freedom.We consider a simple system composed ofN non-interacting
spin-1/2 particles with the one-parameter Hamiltonian

HðcÞ= 1
2N

XN
i

σz
i + cσ

x
i

� �
: ð9Þ

Here,σz
i andσx

i are the z and xPaulimatrices for spin i, respectively.We
see in Fig. 5, that the EC method has difficulties in reproducing the
ground state energy E0 for large N using five training points, or snap-
shots, which here are the eigenpairs obtained from the solution of the
full N-spin problem. The PMM representation does not have this pro-
blem and is able to exactly reproduce E0 for all N using a learned 2 × 2
matrixmodel only of the formMðcÞ= σz + cσxð Þ=2.While this particular
example is a rather trivial non-interacting system, it illustrates the
general principle that PMMs have more freedom than traditional

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 9

www.nature.com/naturecommunications

reduced basis methods. They do not need to correspond to a
projection onto a fixed subspace, and this allows for efficient solutions
to describe a wider class of problems.

It should be noted that for this simple example, the extrapolation
problems for the EC calculation can be cured by computing a formal
power series expansion around c = 0 and truncating the series up to
any finite order in c. However, it is both notable and convenient that
the problem never arises in the PMM framework and so no such
additional analysis is needed.

Regression and classification PMMs
We address the general problem of regression and classification in
machine learning where the model learns to reproduce feature-label
pairs xi, yi

� �
: xi 2 Rp, yi 2 Rq� �

and generalize to unseen data.
Regression and classification are fundamentally the same problem,
differentiated only by the nature of the labels yi

� �
and therefore sui-

table choices of loss functions.
The simplest PMM for this task uses a primary matrix which is

affine in the input features, as shown previously in Eq. (3). This is the
form we have chosen for our regression experiments as well as our
hybrid transfer learning experiments. The form of the primary matrix
or matrices can bemodified to accommodate known properties of the
data, for example the image classification PMM discussed in Methods
section “Image Classification PMM”.

The first r eigenvectors associated with the largest magnitude
eigenvalues form bilinears with Hermitian secondary matrices Δkij 2
Cn×n where 1≤k≤q and 1≤ i, j ≤ r andΔkij =Δkji to produce the output of
the PMM. That is, for each output index k and each pair of eigenvector
indices i, j there is an independent secondary matrix Δkij . These bilin-
ears—which can be thought of as expectation values (transition
amplitudes)when i= j (i≠ j)—are summed togetherwith a trainable bias
vector g 2 Rq and a fixed bias proportional to the spectral norm of the
secondary matrices to form the output of the PMM,

zk = gk +
Xr
i, j = 1

∣vðiÞyΔkijv
ðjÞ∣

2 � 1
2

Δkij

��� ���2
2
: ð10Þ

Equivalently, the summay be restricted to i ≤ j for efficiency. The fixed
bias term is a deliberate addition to ensure that the output of the PMM
is both unbounded and invariant under suitable unitary transforma-
tions of the trainable matrices. This output vector may be augmented
by fixed or trainable activation functions, such as the softmax function
in the case of classification.

The form of this PMM—which we call the affine observable PMM
(AO-PMM) due to the analogy with observables and transition prob-
abilities in quantummechanics—is not motivated by any specific data,
but instead purely by the desire to generalize the affine eigenvalue
PMM described in Methods section “Eigenvalue and Eigenstate
Observable Emulation” to cases with multiple outputs of arbitrary
algebraic order.

Regression experiments. We have compared the performance of
PMMs for multivariable function regression against several standard
techniques: Kernel Ridge Regression (KRR), Multilayer Perceptron
(MLP), k-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB),
Support Vector Regression (SVR), and Random Forest Regression
(RFR) (see for example ref. 36 for many of these methods and37 for
XGB). We have considered thirteen different two-dimensional test
functions from refs. 38–42 as well as two classes of functions (Fourier
series and polynomials) with exact forms given in Supplementary
Table 7. For these functions the dataset consisted of a 200 point
training set sampled fromauniformdistribution and 10,000point test
set drawn from a grid with uniform spacing. For the classes of func-
tions, 1000 functions were sampled and the mean performance for
each model is reported. For each experiment, 10% of the training set
wasused as a validation set for the PMM,where the full training setwas
used for the other machine learning models optimized using k-fold
cross-validation and grid search for hyperparameter tuning. For the
two-dimensional test functions 10-fold cross validation was used, and
the remaining experiments used 5-fold cross validation. Nearly all of
the relevant hyperparameters for the non-PMM methods were tuned
as follows: (KRR) the regularization strength, the kernel function, and
the kernel function parameter if applicable; (MLP) the architecture by
means of the number of layers and the number of nodes in each layer—
not necessarily fixed-width—the activation function, the regularization
strength, and the learning rate; (KNN) the number of neighbors, the
weighting method, and the size of the leaves in the constructed tree;
(XGB) the number of estimators, maximum depth, and learning rate;
(SVR) the kernel function, the kernel parameter, and regularization
strength; and (RFR) the number of estimators, maximum depth, and
minimum number of samples required to split a node. Full details on
the parameters searched are provided in Supplementary Tables 1–4.
For the thirteen test functions (two classes of functions) a 7 × 7 (9 × 9)
primary matrix with r =3 PMM was tested against the other machine
learning models. Finally, two standard regression datasets consisting
of real-world data—the NASA airfoil43 and CERN dielectron44 datasets—
were used to test the performance of PMMs. For these datasets, 35% of
the data was used as the training set. For the NASA (CERN) dataset a
7 × 7 (15 × 15) primary matrix with r =3 PMM was used.

Image classification PMM. To maximize efficiency in the task of
image classification, we reformulate the primary matrices of the PMM
to take advantage of the properties of images. A typical non-
convolutional method will take the input features to be the vector-
ized, or flattened, images. Instead, we consider surrogates for the row-
wise and column-wise correlation matrices of fixed windows of the
images. This formulation yields a natural interpretation of images as
the principle components of their constituent windows.

Given a grayscale image X 2 Rn×m—or a color image whose color
channels are compressed to two components using a method such as
Independent Component Analysis and encoded as the real and ima-
ginary parts of complex numbers, X 2 Cn×m—we select w windows of
shape sl × tl , l = 1, 2, . . . ,w from the image. The area of the image that
these windows cover can overlap or be entirely disjoint. For each
window, we use the associated part of the image, Wl 2 Csl × tl , to cal-
culate the row-wise and column-wise Grammatrices,WlW

y
l andW y

l W l

respectively, as efficient surrogates for the row-wise and column-wise
correlation matrices. These matrices are uniformly normalized

Fig. 5 | Comparison of PMM and EC results for ground state energy extra-
polation.We show results for a 2 × 2 PMM (dashedblue) and EC (dotted red) with 5
training samples on the task of extrapolating the ground state energy of a systemof
N non-interacting spins. The exact ground state energy is shown in solid black.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 10

www.nature.com/naturecommunications

element-wise such that the maximum magnitude of the entries is 1.0
beforefinally thediagonal elements are set to unity. Denote thesepost-
normalized matrices by Rl /

�
WlW

y
l 2 Csl × sl and Cl /

�
W y

l W l 2 Ctl × tl .
These Hermitian matrices encode much of the information of the
original image. This process of encoding the image as a set of Rl and Cl

canbe done either as a preprocessing step or included in the inference
processof the PMM. This allows the PMMtobe trained efficientlywhile
still being able to operate on new previously-unseen data.

Using this Hermitian matrix encoding for images, we form the
primary matrices of the image classification PMM in two steps. First,
for each window we apply a quasi-congruence transformation using a
trainable matrix Kl 2 Ca× sl (Ll 2 Ca× tl) to Rl (Cl) and sum over the
windows to form a single Hermitianmatrix,M 2 Ca×a, which contains
the latent-space features of the image,

M =
Xw
l

KlRlKl
y + LlClLl

y: ð11Þ

We describe the terms KlRlK
y
l and LlClL

y
l as quasi-congruence

transformations since Kl and Ll are not necessarily square matrices
and thus these transformations are not exactly congruence transfor-
mations. With M constructed, we apply another quasi-congruence
transformation for each possible class output using trainablematrices,
Dk 2 Cb×a, and add trainable Hermitian bias matrices, Bk 2 Cb×b, to
form a primary matrix for each output,

Hk =DkMDk
y +Bk , k = 1, 2, . . . ,q: ð12Þ

These primary matrices represent the latent-space class-specific
features of the image. The eigensystems of these primary matrices
are used to formpredictions in a nearly identical way to the regression
PMM shown in Eq. (10). However, for the image classification PMM
described thus far the bilinears with the trainable secondary matrices
need to account for the q different primary matrices and so Eq. (10)
becomes

zk = gk +
Xr
i, j = 1

vðiÞy
k Δkijv

ðjÞ
k

��� ���2 � 1
2

Δkij

��� ���2
2
, k = 1, 2, . . . ,q, ð13Þ

where vðiÞ
k is the ith eigenvector for primary matrix Hk. Finally, these

outputs are converted to predicted class probabilities by means of a
standard softmax with temperature τ,

ρk = softmax zk=τ
� �

=
expðzk=τÞPq

k0 = 1
expðzk0=τÞ : ð14Þ

This image classification PMM algorithm is summarized dia-
grammatically in Fig. 6 for the example of a q = 2 class dataset.We note
that the form of the primary matrices in this PMM was not motivated
by any specific data but rather by the natural interpretation of images
as data matrices where the information is contained within a relatively
small number of principle components.

Convolutional image classification PMM. We demonstrate the abil-
ity for existing neural network methods to be combined with PMMs,
including the ability for gradients to be propagated through the
PMM, by constructing and training a convolutional image classifica-
tion PMM (ConvPMM). The ConvPMM is built on the image classifi-
cation PMM described in Methods section “Image Classification
PMM” with the normalization of the row- and column-wise Gram
matrices skipped. The ConvPMM uses a trainable complex-valued
convolutional neural network to compute filtered complex-valued
“images” which the image classification PMM then processes. The
architecture of the convolutional layers of the ConvPMMused for the

MNIST-Digits dataset consisted of four layers of 64, 32, 16, and 8
filters of size 3 × 3 with a stride of 1 and a ReLU activation function.
The first two layers used “valid” padding while the last two layers
used “same” padding. Panel a of Fig. 7 shows the convolutional layer
architecture used in the ConvPMM for the MNIST-Digits dataset. For
the Fashion-MNIST and EMNIST-Balanced datasets, the number of
filters in each layer was doubled and an additional layer with 8 filters
of size 3 × 3, a stride of 1, and “same” padding was added to the end.

Hybrid transfer learning with ResNet50. To demonstrate the ability
for PMMs to be used in conjunction with and to complement estab-
lishedmachine learningmodels, we have performed experiments with
a hybrid transfer learning model built on ResNet5062. ResNet50 is a
deep convolutional neural network that has been pre-trained on the
ImageNet dataset of over one million images. For each of the datasets
used in the experiments, the ResNet50 model—with a suitably-shaped
input, 6 × upsampling layer, and final classification layer replaced with
a global spatial pooling layer as shown in Panel b of Fig. 7—was used to
extract the features from the images. This resulted in a feature vector
of length 2048 for each image. A feedforward neural network (FNN)
with the architecture shown in Panel c of Fig. 7 as well as a PMM of the
form described in Methods section “Regression and Classification
PMMs”, with a softmax on the outputs, were trained on these features.
This can equivalently be thought of as a single self-contained model
with several frozen, pre-trained traditional neural network layers fol-
lowed either by more, trainable, traditional neural network layers
(FNN) or by a trainable PMM acting as the final layer.

The sizes of the layers in the FNN were fixed and the dropout
percentage hyperparameter was tuned via a grid search using the
CIFAR-10 dataset. The sizes of the matrices and number of eigenvec-
tors used in the PMM were chosen such that the number of trainable
parameters was less than the corresponding FNN. For each dataset,
each model was randomly initialized 10 times and trained for 10
epochs with the Adam optimizer69 using the categorical cross-entropy
loss function. For datasets that were not pre-split into training and
validation sets, 10% of the training set was used as a validation set. The
number of epochs was chosen such that training converged for all
models. The top-1 accuracy of the models was calculated on the pro-
vided test sets and the mean with asymmetric uncertainties was
reported. The positive (negative) uncertainty was calculated as the
difference between the mean accuracy and the mean of all accuracies
greater (less) than the mean accuracy.

Zero-error Trotter step extrapolation
There are several efficient algorithms that determine energy levels on a
quantum computer using the complex phases produced during the
time evolution of quantum states75–83. We consider the problem of
extrapolating to dt =0 given data of energies for dt ≤π=jjHjj22. The
Hamiltonian considered in this work is the one-dimensional Heisen-
berg model with an antisymmetric spin-exchange term known as the
Dzyaloshinskii-Moriya (DM) interaction term with periodic boundary
conditions.

H =B
XN
i

riσ
z
i

+ J
XN
i

σz
i σ

z
i+ 1 + σ

x
i σ

x
i+ 1 + σ

y
i σ

y
i + 1

� �

+D
XN
i

σx
i σ

y
i + 1 � σy

i σ
x
i + 1

� �
ð15Þ

Where ri are random real numbers ranging from 0, 1½ Þ, and we have
chosen B = 2, J = 2, and D = 0.65. The Trotter approximation for this
underlying Hamiltonian consists of five terms: the external field term

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 11

www.nature.com/naturecommunications

and each of the two interaction terms split by parity. We replicate this
structure using the unitary eigenvalue PMM described in Methods
section “Properties of PMMs”,

UðdtÞ=
Y5
l

expð�iMldtÞ ð16Þ

where Ml are the five independent n×n Hermitian matrices of the
PMM which form the unitary primary matrix. The q desired energies,
Ek

� �
, are determined by setting expð�iEkdtÞ equal to the eigenvalues

of U(dt). As mentioned in Methods section “Eigenvalue and Eigenstate
Observable Emulation”, one must consider an appropriate mapping
between the energy levels of the PMM and the true levels of the data.
The elements of Ml are found by optimizing the mean squared error
between the data and the energies evaluated at the corresponding
values of dt. Twelve points were generated as a training set for each
energy level. The closest point to dt = 0 was used as a validation point
for the PMM. The MLP was optimized through leave-one-out cross-

validation and hyperparameters were tuned via grid search. The
polynomials were fit to all the available data.

Data availability
All of the data produced in associationwith this work have been stored
and are publicly available in this Code Ocean capsule.

Code availability
All of the codes produced in association with this work have been
stored and are publicly available in this Code Ocean capsule.

References
1. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed

neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019).

2. Karniadakis, G. E. et al. Physics-informed machine learning. Nat.
Rev. Phys. 3, 422–440 (2021).

Fig. 6 | Diagram of the image classification PMM algorithm.We conceptually
illustrate the inference process of the image PMM in the context of classifying
images of dogs and cats. We start with the original image divided into four rec-
tangular windows, W1, …, W4, with trainable quasi-congruence transformation
matrices K1, L1

n o
, . . . , K4, L4

n o
. From each window the normalized row- and

column-wise Grammatrices, R1,…, R4 and C1,…, C4, are calculated and summed to
form the latent space feature encoding matrix M. Additional trainable quasi-

congruence transformationmatrices,D1 andD2, are applied and added to trainable
Hermitian bias matrices, B1 and B2, to form the class-specific latent-space feature
matrices, H1 and H2, which are the primary matrices of the PMM. Finally, the
eigensystem of these primary matrices are used to form bilinears with the sec-
ondary matrices of the PMM before finally a softmax is applied to convert the
predictions to probabilities.

Fig. 7 | Diagrams showing architectures. a Diagram of the convolutional layer
architecture used in the ConvPMM for the MNIST-Digits dataset. The architecture
consists of four layers of 64, 32, 16, and 8 trainable complex-valued filters of size
3 × 3with a strideof 1 and a ReLUactivation function. The first two layers use “valid”
padding while the last two layers use “same” padding. b Model diagram for the
frozen, pre-trained ResNet50 model used as a feature extractor in the hybrid

transfer learning experiments. The input shape is determined by the dataset, which
is 32 × 32 × 3 for the CIFAR-10 dataset used in this figure as an example. The output
shape is 2048 for the extracted feature vector. c Model diagram for the trainable
feedforward neural network (FNN) used in the hybrid transfer learning experi-
ments. The output shape of the final layer is determined by the number of classes in
the dataset, which is 10 in this figure as an example.

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 12

https://codeocean.com/capsule/5052239/tree/v2
https://codeocean.com/capsule/5052239/tree/v2
www.nature.com/naturecommunications

3. Schuetz, M. J., Brubaker, J. K. & Katzgraber, H. G. Combinatorial
optimization with physics-inspired graph neural networks. Nat.
Mach. Intell. 4, 367–377 (2022).

4. Quarteroni, A., Manzoni, A. & Negri, F. Reduced Basis Methods for
Partial Differential Equations: An Introduction, vol. 92 of UNITEXT
(Springer, 2015).

5. Hesthaven, J., Rozza, G. & Stamm, B.Certified Reduced Basis
Methods for Parametrized Partial Differential Equations. Spring-
erBriefs in Mathematics (Springer International Publishing, 2016).
https://doi.org/10.1007/978-3-319-22470-1.

6. Berkooz, G., Holmes, P. & Lumley, J. L. The proper orthogonal
decomposition in the analysis of turbulent flows. Annu. Rev. Fluid
Mech. 25, 539–575 (1993).

7. Hopfield, J. J. Artificial neural networks. IEEE Circuits and Devices
Magazine 4, 3–10 (1988).

8. Hinton, G. E. Howneural networks learn fromexperience. Sci. Am.
267, 144–151 (1992).

9. Jain, A. K., Mao, J. & Mohiuddin, K. M. Artificial neural networks: A
tutorial. Computer 29, 31–44 (1996).

10. Hinton,G. E. &Salakhutdinov, R. R. Reducing the dimensionality of
data with neural networks. Science 313, 504–507 (2006).

11. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev.
Neurosci. 16, 487–497 (2015).

12. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

13. Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural
ordinary differential equations. Adv. Neural Inf. Process. Syst. 31,
6571–6583 (2018).

14. Bai, S., Kolter, J. Z. & Koltun, V. Deep equilibrium models. Adv.
Neural Inf. Process. Syst. 32, 688–699 (2019).

15. Zhang, Z., Kag, A., Sullivan, A. & Saligrama, V. Equilibrated
recurrent neural network: Neuronal time-delayed self-feedback
improves accuracy and stability. Preprint at https://arxiv.org/abs/
1903.00755 (2019).

16. Kag,A., Zhang, Z. & Saligrama, V. RNNs evolving on an equilibrium
manifold: A panacea for vanishing and exploding gradients? Pre-
print at https://arxiv.org/abs/1908.08574 (2019).

17. Gu, F., Askari, A. & El Ghaoui, L. Fenchel lifted networks: A
lagrange relaxation of neural network training. In AISTATS,
3362–3371 (PMLR, 2020).

18. El Ghaoui, L., Gu, F., Travacca, B., Askari, A. & Tsai, A. Implicit deep
learning. SIAM J. Math. Data Sci. 3, 930–958 (2021).

19. Kato, T. Perturbation Theory for Linear Operators (Springer, 1966).
20. Shavitt, I. & Bartlett, R. J.Many-body methods in chemistry and

physics: MBPT and coupled-cluster theory (Cambridge University
Press, 2009).

21. Frame, D. et al. Eigenvector continuation with subspace learning.
Phys. Rev. Lett. 121, 032501 (2018).

22. Demol, P. et al. Improved many-body expansions from eigen-
vector continuation. Phys. Rev. C 101, 041302 (2020).

23. König, S., Ekström, A., Hebeler, K., Lee, D. & Schwenk, A.
Eigenvector Continuation as an Efficient and Accurate Emu-
lator for Uncertainty Quantification. Phys. Lett. B 810,
135814 (2020).

24. Ekström, A. & Hagen, G. Global sensitivity analysis of bulk
properties of an atomic nucleus. Phys. Rev. Lett. 123,
252501 (2019).

25. Furnstahl, R. J., Garcia, A. J., Millican, P. J. & Zhang, X. Efficient
emulators for scattering using eigenvector continuation. Phys.
Lett. B 809, 135719 (2020).

26. Sarkar, A. & Lee, D. Convergence of Eigenvector Continuation.
Phys. Rev. Lett. 126, 032501 (2021).

27. Hicks, C. & Lee, D. Trimmed sampling algorithm for the noisy
generalized eigenvalue problem. Phys. Rev. Res. 5, L022001
(2023).

28. Melendez, J. A., Drischler, C., Furnstahl, R. J., Garcia, A. J. & Zhang,
X. Model reduction methods for nuclear emulators. J. Phys. G 49,
102001 (2022).

29. Bonilla, E., Giuliani, P., Godbey, K. & Lee, D. Training and project-
ing: A reduced basis method emulator for many-body physics.
Phys. Rev. C 106, 054322 (2022).

30. Duguet, T., Ekström, A., Furnstahl, R. J., König, S. & Lee, D. Collo-
quium: Eigenvector continuation andprojection-based emulators.
Rev. Mod. Phys. 96, 031002 (2024).

31. Lee, D. & Seung, H. S. Algorithms for non-negative matrix factor-
ization. Adv. Neural Inf. Process. Syst. 13, 535–541 (2000).

32. Wang, Y.-X. & Zhang, Y.-J. Nonnegative matrix factorization: A
comprehensive review. IEEE Trans. Knowl. Data Eng. 25,
1336–1353 (2012).

33. Saul, L. K. A geometrical connection between sparse and low-rank
matrices and its application to manifold learning. Trans. Mach.
Learn. Res. https://openreview.net/forum?id=p8gncJbMit (2022).

34. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process
Syst. 30 (2017).

35. Ljung, L. System identification (2nd ed.): theory for the user (Pre-
ntice Hall PTR, USA, 1999).

36. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference and Prediction (Springer Verlag,
Berlin, 2009).

37. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference
onKnowledgeDiscovery andDataMining (ACM, 2016). https://doi.
org/10.1145/2939672.2939785.

38. Runge, C. Über empirische Funktionen und die Interpolation zwi-
schen äquidistanten Ordinaten. Z. Math. Phys.46, 224–243 (1901).

39. McLain, D. H. Drawing contours from arbitrary data points. Com-
put. J. 17, 318–324 (1974).

40. Franke, R. A critical comparison of somemethods for interpolation
of scattered data. Tech. Rep. NPS-53-79-003, Naval Postgraduate
School, Monterey, California https://hdl.handle.net/10945/
35052 (1979).

41. Romero, V., Burkardt, J., Gunzburger, M. & Peterson, J. Compar-
isonof pure and “Latinized”centroidal Voronoi tessellation against
various other statistical sampling methods. Reliab. Eng. Syst. Saf.
91, 1266–1280 (2006).

42. Burkardt, J. test_interp_2d. https://people.sc.fsu.edu/~jburkardt/
py_src/test_interp_2d/test_interp_2d.html (2016). Accessed:
May (2024).

43. Brooks, T., Pope, D. & Marcolini, M. Airfoil Self-Noise. UCI Machine
Learning Repository (2014). https://doi.org/10.24432/C5VW2C.

44. McCauley, T. Events with two electrons from 2010. CERN Open
Data Portal. https://doi.org/10.7483/OPENDATA.CMS.
PCSW.AHVG.

45. Trotter, H. F. On the product of semi-groups of operators. Proc.
Am. Math. Soc. 10, 545–551 (1959).

46. Suzuki, M. Generalized Trotter’s formula and systematic approx-
imants of exponential operators and inner derivations with appli-
cations to many-body problems. Comm. Math. Phys. 51, 183–190
(1976).

47. Suzuki,M.General decomposition theoryof orderedexponentials.
Proc. Jpn. Acad. Ser. B 69, 161–166 (1993).

48. Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of
Trotter error with commutator scaling. Phys. Rev. X 11, 011020
(2021).

49. Endo, S., Zhao, Q., Li, Y., Benjamin, S. & Yuan, X. Mitigating algo-
rithmic errors in a hamiltonian simulation. Phys. Rev. A 99,
012334 (2019).

50. Vazquez, A. C., Hiptmair, R. &Woerner, S. Enhancing the quantum
linear systems algorithm using richardson extrapolation. ACM
Trans. Quantum Comput. 3, 1–37 (2022).

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 13

https://doi.org/10.1007/978-3-319-22470-1
https://arxiv.org/abs/1903.00755
https://arxiv.org/abs/1903.00755
https://arxiv.org/abs/1908.08574
https://openreview.net/forum?id=p8gncJbMit
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://hdl.handle.net/10945/35052
https://hdl.handle.net/10945/35052
https://people.sc.�fsu.edu/~jburkardt/py_src/test_interp_2d/test_interp_2d.html
https://people.sc.�fsu.edu/~jburkardt/py_src/test_interp_2d/test_interp_2d.html
https://doi.org/10.24432/C5VW2C
https://doi.org/10.7483/OPENDATA.CMS.PCSW.AHVG
https://doi.org/10.7483/OPENDATA.CMS.PCSW.AHVG
www.nature.com/naturecommunications

51. Rendon, G., Watkins, J. & Wiebe, N. Improved accuracy for trotter
simulations using chebyshev interpolation. Quantum8 (2024).

52. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferro-
magnetism of antiferromagnetics. J. Phys. Chem. Solids 4,
241–255 (1958).

53. Moriya, T. Anisotropic superexchange interaction and weak fer-
romagnetism. Phys. Rev. 120, 91 (1960).

54. Motamedifar, M., Sadeghi, F. & Golshani, M. Entanglement trans-
mission due to the Dzyaloshinskii-Moriya interaction. Sci. Rep. 13,
2932 (2023).

55. Radhakrishnan,C., Parthasarathy,M., Jambulingam,S. &Byrnes, T.
Quantum coherence of the Heisenberg spin models with
Dzyaloshinsky-Moriya interactions. Sci. Rep. 7, 13865 (2017).

56. Li, Q., Miao, C., Xu, Y. & Kong, X. Quantum entanglement in Hei-
senberg model with Dzyaloshinskii-Moriya interactions. J. Super-
cond. Nov. Magn. 36, 957–964 (2023).

57. Heiss, W. D., Scholtz, F. G. & Geyer, H. B. The large n behaviour of
the lipkinmodel andexceptional points. J. Phys. A38, 1843 (2005).

58. Gamito, J., Khalouf-Rivera, J., Arias, J. M., Pérez-Fernández, P. &
Pérez-Bernal, F. Excited-state quantum phase transitions in the
anharmonic Lipkin-Meshkov-Glick model: Static aspects. Phys.
Rev. E 106, 044125 (2022).

59. Bayram, T., Akkoyun, S. & Kara, S. O. A study on ground-state
energies of nuclei by using neural networks.Ann. Nucl. Energy63,
172–175 (2014).

60. Gardas, B., Rams, M. M. & Dziarmaga, J. Quantumneural networks
to simulate many-body quantum systems. Phys. Rev. B 98,
184304 (2018).

61. Wolfgruber, T., Knöll, M. & Roth, R. Precise neural network pre-
dictions of energies and radii from the no-core shell model. Phys.
Rev. C 110, https://doi.org/10.1103/PhysRevC.110.014327 (2024).

62. He, K., Zhang, X., Ren, S. &Sun, J. Deep residual learning for image
recognition. Proceedings of the 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, 770–778 (2016).

63. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to
quantum machine learning. Contemp. Phys. 56, 172–185 (2015).

64. Biamonte, J. et al. Quantum machine learning. Nature 549,
195–202 (2017).

65. Ciliberto, C. et al. Quantum machine learning: a classical per-
spective. Proc. R. Soc. A 474, 20170551 (2018).

66. Granade, C. E., Ferrie, C., Wiebe, N. & Cory, D. G. Robust online
hamiltonian learning. New J. Phys. 14, 103013 (2012).

67. Wiebe, N., Granade, C., Ferrie, C. & Cory, D. G. Hamiltonian
learning and certification using quantum resources. Phys. Rev.
Lett. 112, 190501 (2014).

68. Wang, J. et al. Experimental quantum Hamiltonian learning. Nat.
Phys. 13, 551–555 (2017).

69. Kingma, D. P. & Ba, J. Adam: Amethod for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2017).

70. Alexander, J. & Hirschowitz, A. Polynomial interpolation in several
variables. J. Algebraic Geom. 4, 201–222 (1995).

71. Terracini, A. Sulle Vk per cui la varietà degli Sh(h + 1)-seganti ha
dimensione minore dell’ordinario. Rend. Circ. Mat. Palermo 31,
392–396 (1911).

72. Kleppe, J. Representing a homogenous polynomial as a sum of
powers of linear forms. University of Oslo 7 (1999).

73. Weierstrass, K. Über die analytische Darstellbarkeit sogenannter
willkürlicher Functionen einer reellen Veränderlichen. Sitzungs-
ber. Königl. Preuß. Akad. Wiss. Berlin 2, 364 (1885).

74. Stone, M. H. The generalizedWeierstrass approximation theorem.
Math. Mag. 21, 237–254 (1948).

75. Kitaev, A. Yu. Quantum measurements and the Abelian stabilizer
problem. Electron. Colloq. Comput. Complex. 3, https://eccc.
weizmann.ac.il/report/1996/003/ (1996).

76. Abrams, D. S. & Lloyd, S. Simulation of many body Fermi systems
on a universal quantum computer. Phys. Rev. Lett. 79,
2586–2589 (1997).

77. Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev.
Lett. 102, 040403 (2009).

78. Svore, K. M., Hastings, M. B. & Freedman, M. Faster phase esti-
mation. Quantum Info. Comput. 14, 306–328 (2014).

79. Choi, K., Lee, D., Bonitati, J., Qian, Z. &Watkins, J. RodeoAlgorithm
for Quantum Computing. Phys. Rev. Lett. 127, 040505 (2021).

80. Ruiz Guzman, E. A. & Lacroix, D. Accessing ground-state and
excited-state energies in a many-body system after symmetry
restoration using quantum computers. Phys. Rev. C 105,
024324 (2022).

81. Qian, Z. et al. Demonstration of the rodeo algorithm on a quantum
computer. Eur. Phys. J. A 60, 151 (2024).

82. Bee-Lindgren, M. et al. Controlled Gate Networks Applied to
Eigenvalue Estimation. Preprint at https://arxiv.org/abs/2208.
13557 (2022).

83. Cohen, T. D. & Oh, H. Optimizing the rodeo projection algorithm.
Phys. Rev. A 108, 032422 (2023).

84. Somasundaram, R. et al. Emulators for scarce and noisy data:
application to auxiliary field diffusion Monte Carlo for the deu-
teron. Phys. Lett. B 866, 139558 (2025).

85. Reed, B. T. et al. Towards accelerated nuclear-physics parameter
estimation from binary neutron star mergers: Emulators for the
Tolman-Oppenheimer-Volkoff equations. Astrophys. J. 974,
285–296 (2024).

86. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based
learning applied to document recognition. Proc. IEEE 86,
2278–2324 (1998).

87. Pishchik, E. Trainable activations for image classification. Preprint
at https://doi.org/10.20944/preprints202301.0463.v1 (2023).

88. Fein-Ashley, J. et al. A single graph convolution is all you need:
Efficient grayscale image classification. Preprint at https://arxiv.
org/abs/2402.00564v1 (2024).

89. Granmo,O.-C. et al. The convolutional Tsetlinmachine. Preprint at
https://arxiv.org/abs/1905.09688 (2019).

90. Mazzia, V., Salvetti, F. & Chiaberge, M. Efficient-capsnet: capsule
network with self-attention routing. Sci. Rep.11 https://doi.org/10.
1038/s41598-021-93977-0 (2021).

91. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. Preprint
at https://arxiv.org/abs/1708.07747 (2017).

92. Nøkland, A. & Eidnes, L. H. Training neural networks with local
error signals. Proceedings of the 36th International Conference on
Machine Learning, vol. 97, 4839–4850 (PMLR, 2019).

93. Tanveer, M., Khan, M. K. & Kyung, C. Fine-tuning DARTS for image
classification. In 2020 25th International Conference on Pattern
Recognition (ICPR), 4789–4796 (IEEE Computer Society, Los Ala-
mitos, CA, USA, 2021). https://doi.ieeecomputersociety.org/10.
1109/ICPR48806.2021.9412221.

94. Cohen, G., Afshar, S., Tapson, J. & van Schaik, A. EMNIST: an
extension of MNIST to handwritten letters. 2017 International Joint
Conference on Neural Networks, 2921–2926 (2017). https://doi.
org/10.1109/IJCNN.2017.7966217.

95. Kabir, H. M. D. et al. SpinalNet: Deep neural network with gradual
input. IEEE Trans. Artif. Intell. 4, 1165–1177 (2020).

96. Jin, Y., Zhang,W.& Li, P. Hybridmacro/micro level backpropagation
for training deep spiking neural networks. In Proceedings of the
32nd International Conference on Neural Information Processing
Systems, NIPS’18, 7005–7015 (Curran Associates Inc., Red Hook,
NY, USA, 2018).

97. Krizhevsky, A. CIFAR-10 and CIFAR-100 datasets. https://www.cs.
toronto.edu/~kriz/cifar.html. Accessed: May (2024).

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 14

https://doi.org/10.1103/PhysRevC.110.014327
https://arxiv.org/abs/1412.6980
https://eccc.weizmann.ac.il/report/1996/003/
https://eccc.weizmann.ac.il/report/1996/003/
https://arxiv.org/abs/2208.13557
https://arxiv.org/abs/2208.13557
https://doi.org/10.20944/preprints202301.0463.v1
https://arxiv.org/abs/2402.00564v1
https://arxiv.org/abs/2402.00564v1
https://arxiv.org/abs/1905.09688
https://doi.org/10.1038/s41598-021-93977-0
https://doi.org/10.1038/s41598-021-93977-0
https://arxiv.org/abs/1708.07747
https://doi.ieeecomputersociety.org/10.1109/ICPR48806.2021.9412221
https://doi.ieeecomputersociety.org/10.1109/ICPR48806.2021.9412221
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/IJCNN.2017.7966217
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
www.nature.com/naturecommunications

98. Netzer, Y. et al. Readingdigits in natural imageswith unsupervised
feature learning. NIPS Workshop on Deep Learning and Unsu-
pervised Feature Learning http://ufldl.stanford.edu/
housenumbers/ (2011).

99. Coates, A., Ng, A. & Lee, H. An analysis of single-layer networks in
unsupervised feature learning. In Gordon, G., Dunson, D. & Dudík,
M. (eds.) Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, vol. 15 of Proc. Mach. Learn.
Res., 215–223 (PMLR, Fort Lauderdale, FL, USA, 2011). https://
proceedings.mlr.press/v15/coates11a.html.

100. Griffin, G., Holub, A. & Perona, P. Caltech-256 object category
dataset (2007).

101. Darlow, L. N., Crowley, E. J., Antoniou, A. & Storkey, A. J. CINIC-10
is not imagenet orCIFAR-10. Preprint at https://arxiv.org/abs/1810.
03505 (2018).

Acknowledgements
We are grateful for discussions with Pablo Giuliani and Kyle Godbey,
who have been developing methods that combine reduced basis
methods with machine learning, and they have written several papers
with collaborators since the posting of our original manuscript84,85. We
also thank Scott Bogner, Wade Fisher, Heiko Hergert, Caleb Hicks, Felix
Köhler, Yuan-Zhuo Ma, Jacob Watkins, and Xilin Zhang for useful dis-
cussions and suggestions. This research is supported in part by U.S.
Department of Energy (DOE) Office of Science grants DE-SC0024586,
DE-SC0023658 and DE-SC0021152. P.C. is supported by the Michigan
State University (MSU) University Distinguished Fellowship (UDF) Pro-
gram and was partially supported by the U.S. Department of Defense
(DoD) through the National Defense Science and Engineering Graduate
(NDSEG) Fellowship Program. M.H.-J. is partially supported by U.S.
National Science Foundation (NSF) Grants PHY-1404159 and PHY-
2310020. Da.L. is supported by the Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) grant funded by the
Korean Government (MSIT) (No. RS-2024-00457882, National AI
Research Lab Project). De.L. is partially supported by DOE grant DE-
SC0013365, NSF grant PHY-2310620, and SciDAC-5 NUCLEI
Collaboration.

Author contributions
P.C. and D.J. carried out the theoretical and numerical analyses. De.L.
contributed to the theoretical analyses. M.H.-J., Da.L., and De.L.

supervised the work. All authors contributed to the discussion of the
results and the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-61362-4.

Correspondence and requests for materials should be addressed to
Dean Lee.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-61362-4

Nature Communications | (2025) 16:5929 15

http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v15/coates11a.html
https://arxiv.org/abs/1810.03505
https://arxiv.org/abs/1810.03505
https://doi.org/10.1038/s41467-025-61362-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Parametric matrix models
	Results
	Regression
	Zero-error Trotter step extrapolation
	Emulation of a quantum phase transition
	Image classification

	Discussion
	Methods
	Properties of PMMs
	Computational and parameter scaling

	Eigenvalue and eigenstate observable emulation
	Universal approximation theorem for PMMs
	Comparison of PMMs and eigenvector continuation
	Regression and classification PMMs
	Regression experiments
	Image classification PMM
	Convolutional image classification PMM
	Hybrid transfer learning with ResNet50

	Zero-error Trotter step extrapolation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

