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Quantifying the intra- and inter-species
community interactions in microbiomes by
dynamic covariance mapping

Melis Gencel1,2, Gisela Marrero Cofino3, Cang Hui 4,5, Zahra Sahaf1,2,
Louis Gauthier1,2, Chloé Matta1,2, David Gagné-Leroux1,2, Derek K. L. Tsang6,
Dana P. Philpott 6, Sheela Ramathan7, Alfredo Menendez3,
Shimon Bershtein 8 & Adrian W. R. Serohijos 1,2

A microbiome’s composition, stability, and response to perturbations are
governed by its community interaction matrix, typically quantified through
pairwise competition. However, in natural environments, microbes encounter
multispecies interactions, complex conditions, and unculturable members.
Moreover, evolutionary and ecological processes occur on overlapping time-
scales, making intra-species clonal diversity a critical but poorly understood
factor influencing community interactions. Here, we present Dynamic Covar-
iance Mapping (DCM), a general approach to infer microbiome interaction
matrices from abundance time-series data. By combining DCM with high-
resolution chromosomal barcoding, we quantify inter- and intra-species
interactions during E. coli colonization in themouse gut under three contexts:
germ-free, antibiotic-perturbed, and innate microbiota. We identify distinct
temporal phases in susceptible communities: (1) destabilization upon E. coli
invasion, (2) partial recolonization of native bacteria, and (3) a quasi-steady
state where E. coli sub-lineages coexist with resident microbes. These phases
are shaped by specific interactions between E. coli clones and community
members, emphasizing the dynamic and lineage-specific nature of microbial
networks. Our results reveal how ecological and evolutionary dynamics jointly
shape microbiome structure over time. The DCM framework provides a scal-
able method to dissect complex community interactions and is broadly
applicable to bacterial ecosystems both in vitro and in situ.

The microbiome’s dynamic composition, stability, and response to
perturbations are crucial to their function in the environment and to
the health of their host1,2. These characteristics can often be explained
using the community matrix, which quantifies pairwise effects of one
species’ abundance on another’s population growth3,4. The community
matrix, a core concept of ecology, has been scrutinized in diverse
systems of plants, animals, and microbes3–17. The gold standard
method tomeasure the community interactions is to perform pairwise

co-culture competition experiments in vitro and in vivo. Indeed,
measurements of such interactions, a form of “bottom-up” approach,
have been shown to predict simple assembly rules of the
community18,19. In their natural environment, however, microbes con-
currently experience multiple species, face conditions that may be
difficult to mimic in vitro, and some of these species may be challen-
ging to culture or practically isolate. A complementary “top-down”
approach is to estimate the community interaction matrix from the
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time series of the abundance of community members in situ20–23.
However, prior approaches involve parameterizing ecological models
(e.g., generalized Lotka-Volterra (gLV))24–26, which are difficult to verify
in natural environments. Most non-parametric models of the com-
munity matrix do not incorporate potential evolutionary forces acting
on the population27. Due to limited experimental resolution of 16S
rRNA profiling, the communitymatrix is also typically described at the
level of species or higher-level taxonomic groupings5–12,28,29.

Importantly, because of the overlap of evolutionary and ecologi-
cal timescales within microbiomes, the community matrix is in prin-
ciple also influenced by intra-species diversity, but to what extent it
matters remains poorly understood30–34. A species rarely exists as a
homogenous population due to spatial partitioning and genomic
variation from pre-existing or de novo mutations35. Despite the pre-
valence of intra-species variation (ISV) in nature, how ISV affects the
community matrix is not fully known. Indeed, the role of ISV on
community composition and stability has rarely been tested
experimentally29,31–33,36–39. Some theoretical studies have also yielded
contradictory results regarding the role of intraspecific variation on
species coexistence34.

Depending on host phenotype and genetics, a typical human gut
microbiome, for example, consists of ~1013 individual bacterial cells,
which can be partitioned into ~103 species40,41. The relatively high
mutation rate, large population size, and frequency-dependent selec-
tion could lead to ~105 clones co-existing in a population of a single
bacterial species42. Some of these clones, albeit present at very low
frequencies, could nonetheless provide rapid adaptation43–46. Alto-
gether, there is a critical need for quantitative methods and experi-
mental approaches to assess the inter- and intra-species community
matrix within the microbiome, and thus, understand its stability and
dynamics.

Here, we develop a general approach, called Dynamic Covariance
Mapping (DCM), to estimate the community matrix from high-
resolution community abundance time-series data, which we apply
during colonization of the mouse gut microbiome. We expand the
definition of community matrix interactions, traditionally defined
between species or families, to include both intra-species and
between-species interactions. To this end, we combineDCMwith high-
resolution lineage tracking by chromosomal barcoding. Deciphering
the effects of intra-species clonal variation on community dynamics
requires the ability to track intraspecific clonal lineages at very high
resolutions. In our previous work43, we utilized Tn7 transposon
machinery to integrate ~500,000distinct chromosomalDNAbarcodes
into a population of roughly 108 E. coli cells. This technique allows for
the tracking of clonal lineagedynamics at high resolution. Thismethod
has proven particularly useful in quantifying at high resolution how E.
coli populations adapt to antibiotic resistance during laboratory
evolution43. High-resolution chromosomal barcoding techniques have
been applied in studies involving single species, such as yeast45,46,
bacteria43, or mammalian cell lines47,48.

First, we provide a theoretical foundation for the DCM analysis
and demonstrate that the pairwise covariance between the abun-
dance time series of one member and the time derivative of the
abundance of another (“growth rate”) is an accurate estimate of the
inter-, intra-, and inter-/intra-species interactions in the community.
The eigenvalue decomposition of the time-dependent community
matrix identifies distinct temporal domains based on community
stability. Second, by applying the DCM to the gut invasion data, we
were able to identify distinct temporal phases during colonization.
Third, we demonstrate that these temporal phases uniquely arise due
to the specific interaction between E. coli clonal clusters and certain
families of the resident microbiota. Notably, such interactions were
reproducible across mice colonization replicates that were suscep-
tible to E. coli invasion. Lastly, we performed whole-genome
sequencing to uncover the genetic underpinnings behind the

dynamics of the clonal clusters. Through our analysis of high-
resolution barcoded populations in complex environments, we
demonstrated that DCM could identify the dynamical stability
changes while describing the interplay between ecology and evolu-
tion in microbial communities.

Results
Dynamic covariance mapping (DCM)
Theory. We first provide a formal introduction to the ecological and
mathematical theory behind DCM and its biological intuition. Without
loss of generality, the microbiome as an ecological community can be
described as a system of nonlinear ordinary differential equations2,9,17:

_zi = f i = ziϕi ð1Þ

where zi represents the time-varying abundance of community
member i (=1,…,n), and _zi the time derivative of its abundance; fi is
the population growth rate, and because the autocatalytic nature of
population growth it is further expressed as the product of abundance
and the per-capita population growth rate (ϕi) of member i. Both rates
(fi and ϕi) are functions of the abundances of all community members
(z = ½z1, . . . , zn�T ). Here, ‘member’ can refer to species, family, or
operational taxonomic unit (OTU) by which the community is
described. In our application of DCM for the gutmicrobiome, this vec-
tor of abundance time series describe the community at the inter- and
intra-species level (Fig. 1a).

Let the abundance vector and the population growth rate vector

at time t* be denoted by z* = ½z1ðt*Þ, . . . , znðt*Þ�T and f* = ½f i z*
� �

, . . . ,

f i z*
� ��T respectively. The community dynamics can be approximated

by Taylor expansion at time t* as _z � f * + J*ðz� z*Þ, where J* is the
system Jacobian matrix evaluated at z*, with its non-diagonal entry
Jijðz*Þ= ∂f i=∂zj jz = z* = ziðt*Þ∂ϕi=∂zjjz = z* for i≠ j. The non-diagonal entry

Jijðz*Þ of the Jacobian matrix can be used to indicate the overall impact
of the variation of member j’s abundance on the population growth
rate of member i at point z*, while the per-capita impact of j on i at

point z* is thus Jijðz*Þ=zi t*
� �

=∂ϕi=∂zj
���
z = z*

� aij z*
� �

. This allows us to

approximate Eq. 1 as the following:

_zi
zi

=ϕi � ϕi z*
� �

+ /
Xn
j = 1

aij z*
� �

zj tð Þ � zj t*
� �� �

: ð2Þ

Both Jij and aij have been used to indicate the interaction strength
of member j on i17, and they are not necessarily time invariant. Only in
some simple models of second-order differential equations (e.g., the
generalized Lotka-Volterra model (gLV)), aij is assumed to be time-
invariant parameters. The correspondence between Eq. 2 and gLV
model with constant interactionmatrix is shown in the Supplementary
Information section B.1.

In dynamical systems theory, the Jacobiannot only provides away
to estimate the community interaction strengths, but also the stability
of the community2,9,17,49. Let the matrix of aij z*

� �
be named A*. Since

J =diagðzÞA, where diagðzÞ is a diagonal matrix with zi as the diagonal
elements; it can be shown that for an eigenvalue μi of A, there is a
corresponding eigenvalue λi of J such that λi = ziμi (Methods). If z* is a
feasible equilibrium of the system (i.e., f * =0), the stability of this
equilibrium can be assessed by the eigenvalues of J (and thus also the
eigenvalues of A), with a positive eigenvalue signaling system
instability and the system state z moving away from this equilibrium. If
z* is not an equilibrium, a positive eigenvalue would indicate the sys-
tem state z departures from the reference interaction-free path _z= f *.
Indeed, the abundance time series of the community members can be
expressed as a linear combination of periodic functions with varying
amplitudes, where the intuition of instability refers to the presence of
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positive real parts for some eigenvalues and the presenceof oscillatory
behavior corresponds to the imaginary component of complex
eigenvalues (Methods).

If the community abundance is recorded at time t1, . . . , tk within a
τ-width time window ðt* � τ=2, t* + τ=2Þ centered at t*, we can denote

zj t*
� �

= zj t1
� �

, . . . , zj tk
� �h iT

the abundance time-series for species j

and ϕi = ϕi t1
� �

, . . . ,ϕi tk
� �� �T the computed vector of per-capita

population growth rate of species i. Note that the per-capita interac-
tion strength in Eq. 2 aijðz*Þ can be viewed as the slope of a linear
regression between ϕi and zj, and can be estimated using ordinary
least squares as the covariance between the two variables
(Methods)50,51. Thus, the covariance can be used as a metric for inter-
action strength, with aij z*

� �
=Covðϕi, zjÞ representing the effect of

zj on ϕi measured in units scaled by the standard deviation of zj its
sign indicates the direction of the linear relationship. Similarly, the
overall interaction strength Jijðt*Þ can be estimated as

Jij t*
� �

=Covðf i, zjÞ. The dynamic covariances Covðϕi, zjÞ and Covðf i, zjÞ
provide us estimates of the per-capita andoverall interaction strengths

of member j on i near t*
11. DCM analysis thus maps the interaction

network of the microbiota as estimated matrices A* and J*, while the
system stability is captured by their eigenvalues.

Implementation. To implement DCM, we calculate the interaction
strength Jij z*

� �
=Covðf i, zjÞ over an expanding time window τ (Fig. 1a,

b). Alternatively, the Jacobian could be calculated over a sliding time
window52, but it is more sensitive to noise in real time series data
compared to an expanding time window52,53. In each window, we cal-
culate the n eigenvalues of the Jacobian (n is size of the abundance
time-series vector) to determine if the community is stable/unstable
and exhibits oscillatory behaviors (Fig. 1c, left panel)54–58. These ana-
lyses lead to a time-dependent estimate of the community interaction
matrix and the stability of the community. Finally, to determine phases
due to shifts in the interaction matrix and community stability, we
perform principal component analysis (PCA) on the n eigenvalues,
specifically tracking PC1 and PC2 (Fig. 1c, right panel). Boundaries
between the phases are identified using change point analysis, which is
a statistical technique to detect changes within time-series data59–64

(Methods).

�

�

�

Fig. 1 | Dynamic covariance mapping (DCM) to estimate the community
interaction matrix during colonization of the gut microbiota. a Microbial
community is described by abundance time series ½zi tð Þ� of member i that could
include inter- or intra-species composition. b The community matrix JijðτÞ esti-
mated over the time interval τ reflects the influenceof the abundance of amember j
on the rate of increase of another member i. It is quantified by the covariance
between zjðtÞ and f i. When the time-series data includes inter- and intra-species
compositions, the covariance matrix describes the community matrix within-
community, within-clones, and between community and clones. c The stability and
dynamicsof the community canbe inferred from the eigenvalues of the community
matrix JijðτÞ. Specifically, the abundance timeseries is a linear combination of the
periodic functions with frequency defined by Imðλk Þ and amplitude by expðReðλkÞÞ
(Main text). Consequently, the eigenvalues define stability and oscillatory features
of the community. Principal component analysis (PCA) of the time-dependent

eigenvalues can reveal distinct temporal domains in community dynamics. In DCM,
we look at the first two components PC1 and PC2. d, e Application of DCM to high-
resolution community inter-species and intra-species abundance data during gut
colonization. A population of ~108 E. coli cells with ~5 × 105 unique chromosomal
barcodes is introduced into mice with reduced microbiota by antibiotic pre-
treatment (cohort 1, rm) and mice with innate microbiota (cohort 3, im).
Community-level and intra-species dynamics were then tracked in fecal samples
over a 2-week period. As comparison, samples were also collected inmicewith only
the colonizing E. coli (germ-free or gf, cohort 2) and in mice with only the resident
bacteria and no colonization (cohort 4, nc).Mouse schema is “Created in BioRender.
Serohijos, A. (2025) https://BioRender.com/8gmahgd”. e E. coli bacterial load mea-
sured as colony-forming units (CFU) per gram of sampled feces for the colonized
mice cohorts with innate microbiota (im), reduced microbiota (rm), and germ-free
(gf). Dashed line represents the resolution limit.
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As an illustrative example, we applied DCM to a 5-species gLV
systemwith an interaction strengthmatrix A1 that shifts tomatrixA2 at
time t = 20 (Supplementary Fig. 1a, f and see also Supplementary
Movie 1). DCM’s time dependent estimate of the community interac-
tion matrix captures the gLV interaction matrices before and after the
shift (Supplementary Fig. 1b). Five distinct phases are identified based
on the eigenvalues and their dynamic interpretations (stable/unstable
or oscillatory) (Supplementary Fig. 1c, d). Phase I corresponds to the
equilibration of the abundances of 5 species (due to their initial values
set at 15). The second phase corresponds shift in the interactionmatrix
A1 and A2. Phase III is the sudden change in abundances due to shift in
A1 to A2. Phase IV is the drop in abundances ofmost species. Phase V is
marked by the increase of species 3. Phase VI is the return to equili-
brium. Notably, one of the major dynamic temporal boundaries cor-
responds to the shift in ecological matrix A1 and A2 at t = 20. These
results show how DCM captures the dynamical changes within a con-
stant gLVmatrix (e.g., equilibration in abundances in the time intervals
where A1 and A2 are constant) as well as changes in the interaction
matrix itself (e.g., shift from A1 to A2). Additional illustrative examples
of DCM on gLV systems are described in Supplementary Information
section B.2. We also investigated the effect of the abundance sampling
time step on DCM's accuracy (Supplementary Fig. 13).

Next, we applied DCM analysis to a mouse gut microbial com-
munity perturbed by infection of the pathogen C. difficile in a prior
study65 (Supplementary Fig. 2a, see also Supplementary Movie 2). The
principal components PC1 and PC2 of the eigenvalues of the Jacobian
identify four phases (Supplementary Fig. 2b-c): Phase I is the entry and
establishment of a Gnotocomplexmicroflora, while Phase II reflect the
transient instability detected from the rise in A. mucinphilia and B.
ovatus. Phase III is the collapse in abundance upon entry of C. difficile.
Phase IV is the return to stability accompanied by the increase of A.
mucinphilia and B. ovatus to baseline levels in Phase I.

Altogether, this demonstrates that DCMdetects actual changes in
species interactions, such as shifts in interactionmatrices and invasion
by a pathogen. DCM,which is based on analysis of the time-series data,
can also capture transient dynamics associated to fixed interaction
matrices, such as during equilibration of gLV constant matric models.
Importantly, DCM does not need to be informed a priori of the pre-
sence of a community shift or when this occurred.

High-resolution intra-species and inter-species dynamics during
colonization of gut bacterial community
To gain insight into community dynamics during gut microbiome
colonization, we next aimed to infer the community interactionmatrix
and assess the system’s dynamic stability. Specifically, we were inter-
ested in understanding how intra-species variation influences both
stability and colonization dynamics. To achieve this, we generated
high-resolution abundance time-series data for the colonizing species
and the community as awhole.Wepreviously used theTn7 transposon
machinery to introduce ~500,000 distinct chromosomal DNA bar-
codes into a population of ~108 E. coli cells43. Since the barcodes are
transmitted from parent to daughter cells, this allowed the tracking of
the clonal lineagedynamics of E. coli at a resolutionof ~1/106 cells as the
population developed antibiotic resistance during in vitro lab
evolution43. Such high-resolution chromosomal barcoding techniques
have been used for single-species analysis43,45–48,66, but never in a
complex and species-rich ecological community. Lineage tracking via
barcoded plasmids have also been used to study the colonization
dynamics in germ-free mice67. Here, we used barcodes to simulta-
neously track high-resolution clonal lineage dynamics of an E. coli
population colonizing mouse guts (Fig. 1d).

It is well-established that higher diversity and species richness of
an ecological community makes it less susceptible to invasion or
perturbation, including the gut microbiota68,69. However, this resis-
tance to invasion can be compromised upon environmental

perturbations, such as antibiotic treatments, that reduce community
diversity, making them susceptible even to non-pathogenic bacteria.
Additionally, the gut itself presents a complex “biogeographical”
environment, where distinct selective niches arise from heterogeneity
in the availability of metabolites, nutrients, and immune effectors, as
well as, epithelial topography and mucus architecture70. With these
considerations in mind, we designed four mice cohorts with different
complexities in their gut bacterial microbiomes (Fig. 1d): mice with
reduced microbiome due to pre-treatment of antibiotics (cohort 1,
“rm”); germ-free mice (cohort 2, “gf”); and mice with innate micro-
biome (cohort 3, “im”). Lastly, as a control for the community
dynamics in the absence of colonization, we had another cohort of
mice that received antibiotic treatment to reduce its microbiota like
the rm cohort but not colonized by E. coli (cohort 4, “nc”). Cohorts 1
and 4 were pre-treated with an antibiotic cocktail (metronidazole,
neomycin, ampicillin, and vancomycin) for three weeks followed by
three days of no treatment to flush out the antibiotics. On day zero,
barcoded E. coli populations were introduced in mice of cohorts 1, 2,
and 3. Then, for all cohorts (1–4), fecal samples were taken at 3 h, 6 h,
12 h, and 24 h on day one, and then once daily for two weeks. The
multiple sampling on day one was required to capture the kinetics of
transit through the gut of the colonizing bacteria71 (Fig. 1d). Extraction
of bacterial genomicDNA from the feces, followedbydeep sequencing
of the E. coli barcoded region, afforded high-resolution lineage track-
ing during gut colonization (Fig. 2a, d, and Supplementary Fig. 3, see
Methods for experimental details). We also simultaneously tracked the
community dynamics of resident bacteria using 16S rRNA profiling
(Fig. 2c, f, g).

To ascertain that the barcode dynamics are not affected by
potential dropout due to technical and experimental factors, we
simulated the effects of PCR bias due to jackpotting, skewness of the
barcode at t = 0, and the number of E. coli genomes for PCR ampli-
fication (see Supplementary section A). We found that accurate
barcode dynamics are guaranteed when the amount of E. coli geno-
mic DNA is at least 105 cells, and ideally up to ~106 (see “Methods”;
Supplementary Information section A, Supplementary Fig. 11–12). In
our experiments, both the gf and rm cohorts exceeded this cut-off
(Supplementary Fig. 4a and b). This is evidenced by the sufficient
bacterial load in the fecal samples (Fig. 1e), which allowed for the use
of at least ~106 cells as input for barcode amplification. However, the
im cohort, due to unsuccessful gut colonization, falls below this
criterion (Fig. 1e, and Supplementary Fig. 4c). Consequently, the
barcode dynamics in this cohort are likely affected by an insufficient
number of E. coli cells and barcode sampling. Nevertheless, the 16S
rRNA dynamics, which are not limited by the amount of E. coli cells,
were accurate for all three cohorts (except gf, which only had the
barcoded E. coli).

Expectedly, the gut community of the im cohort was resistant to
the invasion of the E. coli, where after an initial of ~106 to ~108 colony-
forming units (CFU)/gram of feces within ~3 h, the bacterial load
reduced to below ~104 CFU/gram by day 6 (Fig. 1e). The unsuccessful
invasion in the im cohort is also reflected in the diversity of its bac-
terial community, with dynamics that are largely unperturbed by the
entry of E. coli into the community (Supplementary Fig. 5e). In con-
trast, E. coli successfully colonized the rm cohort, reaching bacterial
loads of ~108 colony-forming units (CFU)/gram of feces within ~6 h
(Fig. 1e), which coincided with the maximal barcode diversity (q = 1 in
Supplementary Fig. 5a). The absence of resident bacteria in the gf
cohort resulted in E. coli reaching a higher bacterial load of ~1010 CFU/
gram of sample within ~6 h. Interestingly, despite the difference in
their CFU levels (Fig. 1e), both the gf and rm cohorts reach highest
diversity in ~6 h (q = 1 in Supplementary Fig. 5a and b). Nonetheless,
after day 6, the drop in barcode diversity of E. coli populations (q = 1)
was more precipitous in gf than in rm mice, suggesting a stronger
intraspecies selection pressure in the absence of resident bacteria.
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Notably, the CFU counts for mice in the same cohort are broadly
indistinguishable (Fig. 1e) despite the complexity of the underlying
clonal dynamics viewed at higher resolution (Fig. 2a, d, Supplemen-
tary Fig. 3a and b). Although barcodes begin appearing within ~3 h
(Fig. 2a, d), they were not observed in the CFU counts for the rm and

gf cohorts (Fig. 1e). Lineages that appeared first were not always the
dominant ones at the end (Supplementary Fig. 3a, b). These results
highlight the stochasticity of transmission kinetics through the
intestinal gut’s distinct “island” niches70, which is not reflected simply
by measuring the total bacterial count of the invading species.

Fig. 2 | High resolution community and intra-species population dynamics
during gut colonization. a Population of ~108 E. coli cells with ~5 × 105 unique
chromosomal barcodes is introduced into mice with reduced microbiota by anti-
biotic pre-treatment (cohort 1). Fecal samples were collected over a 2-week period
to track both community-level and intra-species dynamics. The leftmost panel
shows the barcodes in the input (gavage) sample. The 1000 most frequent bar-
codes are uniquely colored, whereas the rest are shown in gray. Identical barcodes
are colored consistently across mouse replicates and cohorts (see Supplementary
Fig. 3a for Muller plot). b Dominant clonal clusters were identified by clustering
barcodes that persisted formost of the 2-weekperiod. Pairwise Pearson correlation
of barcode frequency time series was used as the distance metric. These dominant
clusters represent ~5–7% of total unique barcodes. The clusters are ranked by their
average frequency (see Supplementary Fig. 6d). Roman numerals indicate distinct
phases determined by DCM (Fig. 3). c Community dynamics by 16S rRNA profiling

are analyzed at the level of the family. d Barcode frequency dynamics in germ-free
(gf) mice colonized with the same E. coli population. The most frequent 1000
barcodes are colored uniquely, whereas the rest are shown in gray. Identical bar-
codes are colored similarly across mouse replicates and cohorts (see Supplemen-
tary Fig. 3b for the Muller plot). e. Dominant clonal clusters are determined by
clustering of barcodes that persisted for most of the 2-week period (see Supple-
mentary Fig. 6e). Phases are determined from DCM analysis of the gf cohort
(Supplementary Fig. 7: DCM of gf cohort). f Community dynamics (16S rRNA pro-
filing) are analyzed at the level of the family. E. colidid not successfully colonize the
community, as shown by the CFU (Fig. 1e). There are not enough cells to perform
high-resolution lineage-tracking with sufficient accuracy (Supplementary Fig. 4).
g Community dynamics in mice with reduced microbiota, but non-gavage with E.
coli, showing the recovery of bacterial community from the treatment of antibiotic
cocktail. Colors correspond different bacterial families (legend box).
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Persistent and dominant clonal lineage clusters during
colonization
The ~105 unique barcodes that we introduced could be used to track
the population lineages at high resolution. To simplify the analysis, we
identified the most dominant E. coli lineages using the chromosomal
barcodes (Fig. 2a, d). The barcode lineage dynamics reflects its effec-
tive fitness (selection coefficient) over time45, and thus similarities
between individual barcode lineages can be indicative of E. coli clones
with similar selection coefficients.

We performed a hierarchical clustering analysis of the linage
dynamics (Supplementary Fig. 6) using Pearson correlation as the
similarity measure computed for pairs of barcodes with mean fre-
quency greater than 5 × 10-5 and persisted for at least 12 of the 18
timepoints for rm and 17 timepoints for gf (Supplementary Fig. 6).
These persistent barcodes represent ~5–10% of the total barcoded E.
coli observed in the rm and gf mice (Methods). Clusters of persistent
barcodes were defined as putative lineage clones and ranked based on
average frequency (Supplementary Fig. 6d & e). The running average
(locally estimated scatterplot smoothing (LOESS)) of each cluster is
hereafter referred to as a “clonal cluster” (Fig. 2b for the rm cohort and
Fig. 2e for the gf cohort). Interestingly, the clonal cluster C1 always
contained the dominant barcode lineages that exhibited the sweeps
even if C1 cluster itself did not have the largest number of barcodes
(Supplementary Fig. 6d & e). Altogether, the high-density barcoding
and clustering identified the persistence of very low-frequency E. coli
lineage clonal clusters during gut colonization (Fig. 2b & e).

Dynamic covariance mapping defines distinct temporal phases
of colonization
Next, we applied DCM on the rm cohort using the combined relative
abundance time-series of the community from 16S rRNAdynamics and
the colonizing E. coli fromclonal lineage clusters (Fig. 3).We calculated
the community matrix using the covariance estimate of the Jacobian
over a progressively increasing time intervals and determined its
eigenvalues. Since, for each time interval, there are ~12–19 eigenvalues
(E. coli clonal cluster lineages number plus ~7 community species from
16S rRNA profiling, see Methods), we performed kernel principal
component analysis (PCA) to reduce its dimensionality. The principal
components (PCA 1 and 2) of the eigenvalue matrix of Jτ over the time
interval τ for mouse rm1 are shown in Fig. 3a (see also Supplementary
Movie 3). A change in the direction of either PC1 or PC2 is indicative of
changes in the eigenvalues and hence of dynamical shifts, such as
changes in stable/unstable or manifestation of oscillatory behavior, in
the community. PC1 and PC2 capture 54 to 20% of the variance in the
eigenvalue matrix (Supplementary Fig. 9). Based on this criterion, we
identified distinct invasion phases using changepoint analysis (Meth-
ods). In rm1, we observed three phases, whereas rm2, rm3, and rm4
exhibited four phases. Notably, Phase 1 was consistent across all mice.
Phase I reflects the transient instability in day 1 (positive real eigen-
values) corresponding to the entry of E. coli and the collapse of resi-
dent bacteria (Fig. 3b, left). This phase is accompanied by an increase
in CFU (Fig. 1e, orange lines for rm) and barcode diversity (Supple-
mentary Fig. 5a). The collapse in resident community in Phase I is
manifested in the low bacterial community diversity (Supplementary
Fig. 5c). Phase II is the return to a stable regime (negative real eigen-
values) (Fig. 3b, middle) and the re-emergence of the community
species (Fig. 2c, also Supplementary Fig. 5c). Phase III in rm 1 (Fig. 3b,
right; Fig. 2b,c) and Phase IV in rm2, rm3, and rm4 (Fig. 3d,f,h; Fig. 2b,c)
is quasi-dynamic equilibrium with both oscillations in the clonal and
community dynamics. The oscillatory behavior of the barcode
dynamics that affects the community dynamics is unlikely due to
technical and experimental factors, such as PCR bias, efficiency in
genomeextraction, or number of E. coligenomes for PCRamplification
(see Supplementary Information section A). The dynamical transition
from stability, to instability, and return to stability during colonization

is broadly reproducible across the 4 mice of the rm cohort (Fig. 3c–h;
and Supplementary Movies 3–6).

We applied DCM to the gf cohort’s clonal cluster dynamics and
identified 4 phases for gf1 and gf2 whereas 3 phase for gf3 and gf4
(Supplementary Fig. 7; Supplementary Movies 7–10). For gf1, gf2, and
gf4, Phase I corresponds to the entry of the colonizing E. coli to the gut
(until ~2 d) (Fig. 2e). This phase is alsomanifested in the rapid increase
of the barcode diversity (Supplementary Fig. 5b), which interestingly
lags the peak in bacterial load occurring at ~6 h (Fig. 1e). Phase II of gf1,
gf2 and gf4 is the rise of the dominant clonal clusters C1 or the start of
the clonal sweep and the relative stasis/flatness of the other clonal
clusters (Fig. 2e). This also corresponds to the “shoulder” in the
frequency-weighted barcode diversity (diversity index q = 1 in Sup-
plementary Fig. 5b). Phase III and phase IV is the establishment of the
sweep by C1 accompanied by the decrease in low-frequency clonal
clusters (Fig. 2e). For gf3, our first sample at 3 h already contained a
large fraction of the barcode diversity (Fig. 2e third panel; Supple-
mentary Fig. 5b third panel). Indeed, this leads to distinct dynamical
features from the DCM analysis (Supplementary Fig. 7e). We also
identified 3 phases in gf3, where Phase I is characterized by the relative
stasis in the barcode dynamics, a feature seen in the Phase II of gf1, gf2,
and gf4. Phase II of gf3 also exhibit the rise of clonal cluster lineages
and Phase III is the establishment of the dominant clonal cluster
(Fig. 2e third panel). Overall, the DCM analysis of the gf cohort shows
that its community (strictly on intra-species interaction) matrix has
fewer eigenvalues in the unstable regime compared to the rm cohort’s
community interaction matrix.

DCM applied to the im cohort revealed a lack of distinct phase
separation that is reproducible across its 4 mice (Supplementary
Fig. 8a–d, Supplementary Movies 11–14), contrasting with what we
observed in the gf and rm cohorts. This suggests that the complex
structure of the innate microbiome makes it less susceptible to colo-
nization, as indicated by the two principal components (PCA1 and
PCA2) (Supplementary Fig. 8a–d, and Supplementary Movies 11–14).
Particularly in im3 and im4, we noticed that E. coli invasion drove an
early shift from a stable to an unstable microbial state—a pattern less
evident in im1 and im2 (Supplementary Movies 11–14). This variation
could imply different levels of susceptibility to microbial disturbances
within the im cohort. Moreover, we observed that changes in the sta-
bility of the microbial community correlated with increases or
decreases in the abundance of some families in the innate bacteria. For
instance, on day 4, im1 exhibited instability when the frequency of a
species decreased by one-fold (SupplementaryMovie 11). Additionally,
removing Enterobacteriaceae, which includes the introduced E. coli, led
to more consistent eigenavalue changes across im mice, as well as
enhanced community stability as estimated by DCM (Supplementary
Fig. 8e–h, and SupplementaryMovies 15–18). This finding confirms the
inherent resilience of the im cohort since it still retains its innate
microbiome and is more diverse compared to other cohorts.

In the nc cohort, we noted a two-phase dynamic in the microbial
communities around the 5- or 6-day mark, where the variance in
community stability remained constant, indicating that a dynamic
equilibriumwas reached (Supplementary Fig. 8i–l, and Supplementary
Movies 19–22). This stability represents the recovery from the com-
munity perturbation caused by a month-long antibiotic treatment in
mice prior to gavage, as Lactobacillaceae initially dominated the
environment post-antibiotic treatment, while around days 3-4, other
species began to increase.

Specific interactions between E. coli clonal clusters and other
bacterial families
The DCM analysis showed strong coupling of the intra-species clonal
cluster dynamics and inter-species interactions in the rest of micro-
biome community of the rm cohort. The introduction of E. coli in the
gut microbiome led to a reduction in the abundance of some resident
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bacterial communities in the rmcohort (16S rRNA in Fig. 2c). This quick
initial collapse happens within the first ~3 h and is most clearly mani-
fested in rm2 (16S rRNA inFig. 2c). The eventual establishmentofE. coli
was accompanied by the resurgence of the bacterial community
around day 4, followed by the coexistence of E. coli and the resident
bacterial community. Notably, Sutterellaceae was unperturbed by the
introduction of E. coli in all fourmice (Fig. 2c).Acholeplasmataceaewas
unperturbed in rm 1 and rm 3, and it was the first bacterial family to
rebound in rm 2 and rm 4 (Fig. 2c). The canonical member of a gut
microbiome, Lactobacillaceae, had an intermediate abundance when
E. coli was introduced, but it declined after E. coli established (Fig. 2c).
In the no-colonization cohort (nc), the community also exhibited a
rebound due to the release from the antibiotic treatment (Fig. 1g).
However, the resident community of the nc cohort was dominated by
Lactobacillaceae and was counterintuitively less diverse than the

resident community of the rm cohort. These differences in the nc and
rm cohorts suggest of the potential impact of E. coli introduction on
bacterial community composition. The resurgence of the resident
community has also impacted the E. coli intra-species dynamics char-
acterized by a stabilization of clonal diversity after day 4 (Supple-
mentary Fig. 5a).

To determine whether an individual clonal cluster was associated
and potentially interacting with specific bacterial families, we per-
formed co-clustering of the dynamics of clonal clusters of E. coli and
those of the 16S rRNA bacterial community profiles using the shape-
based algorithm72 (Fig. 4a, and Supplementary Information C Supple-
mentary Fig. 14). These analyses revealed a consistent picture across
the rm cohort. The dominant cluster, C1, was always grouped with
Lachnospiraceae or Enterococcaceae, whereas other low-frequency
clusters grouped with Lactobacillaceae, the canonical member of gut

�

�

�

�

�� �� �� ��

Fig. 3 | Dynamic covariance mapping on the rm cohort defines distinct phases
of colonization. a, b Principal components (PC1 and PC2) of the eigenvaluematrix
of Jτ over the time interval τ for mouse rm1. A change in the direction of either PC1
or PC2 is indicative of a dynamical change in the community. Using this criterion,
three distinct phases are identifiedbasedon the eigenvalues of Jτ and their dynamic
interpretation stable/unstable or oscillatory (b). The eigenvalue colors correspond
to the rank of their magnitude (panel i). Phase I is transient instability (positive real
eigenvalues) corresponding to the entry of E. coli and the collapse of resident

bacteria. Phase II is the return to a stable regime (negative real eigenvalues) and the
re-emergence of the community species. Phase III is quasi-dynamic equilibrium
with both oscillations in the clonal and community dynamics. Dynamic sub-feature
in phase I (*) correspond to the first 6 h of entry of the colonizing E. coli. See
Supplementary Movie 3. c–h, Stability analyses and phases for rm2, rm3, and rm 4.
In these mice, Phases IV is the quasi-dynamic equilibrium with co-existence
between E. coli and the rest of the community. i Themagnitude of the eigenvalues.
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microbiota (Fig. 4a). Interestingly, it was previously shown in coloni-
zation studies of pathogenic strains of E. coli and Lachnospiraceae that
these bacteria utilize similar sugars and thrive in the same
environment73. E. coli has also been observed to exhibit co-
colonization patterns with Enterococcaceae74. Additionally, E. faecalis
can promote the growth and survival of E. coli both in vitro and within
mouse gut through the production of L-ornithine75.

To demonstrate that the degree of co-clustering of E. coli clonal
and bacterial families time-series was specific to the rm cohort, we
applied the co-clustering analysis to other pairs of clonal clusters and
family time-series fromdifferent cohorts ofmice (Fig. 4b). The extent
of co-clustering was measured using the mixing index, Dc,m = 1�
max F cð Þ � FðmÞ

�� ��� �
(Fig. 4b and Supplementary Data Fig. S4), which

compares the clustering distance from clonal lineages to bacterial
families FðmÞ with the distance between clonal lineages F cð Þ (Fig. 4b).
Indeed, the co-clustering between clone and bacterial family time-
series was strongest in the rm cohort (Fig. 4b). Expectedly, co-
clustering was weakest when the 16S rRNA community dynamics of
im and rm were paired with the gf cohort clonal lineages (Fig. 4b).
Altogether, the co-clustering between E. coli clonal lineages and
bacterial families is strongest when they come from the same bio-
logical cohort (Fig. 4b), suggesting intra- and inter-species
interactions.

The dynamic similarity is driven by similar chromosomal
barcodes
How similar are the clonal clusters across different mice, and are they
driven by the same barcodes? To address this question, we performed
pairwise clustering using the Pearson correlation to measure the

similarity of the clonal cluster time-series. In both rm and gf cohorts,
we observed that the dominant clonal clusters (C1 and, to a lesser
extent, C2) have similar time-series (Fig. 5a, d). By calculating the
overlap coefficient between barcodes in each clonal clusters, we found
that the dominant clonal lineages are more likely to be comprised of
the same barcodes, an observation that is notably stronger in the gf
than rmmice (Fig. 5b, c for gf and Fig. 5e, f for rm). The reproducibility
of dominant barcode dynamics could be driven by standing genetic
variation in the colonizing population, potentially followed by the
selection of similar de novo mutations. Additionally, the similarity in
barcode dynamics and composition is understandably weaker in the
rm than in the gf mice, where the effects of standing genetic variation
and/or de novo mutations in rm are modulated by ecological inter-
actions with a changing bacterial community. These observations are
consistent with the findings of the DCM analysis, where the dynamical
features of stable/unstable, including the presence of distinct tem-
poral domains are largely consistent among mice of different cohorts.

Whole-genome sequencing reveal mutations related to motility
loss, carbon metabolism and the TCA cycle
To uncover the genetic underpinnings behind the dynamics of the
clonal clusters, we conducted whole-genome sequencing (WGS)
(Fig. 6). For the initial population (gavage sample), metagenomic
sequencing was utilized to assess the breadth of population genetic
diversity, achieving a resolution of at least ~1% (Fig. 6). In the case of the
experimental endpoints, our objective was to associate genomic
mutations and thebarcodes of predominant clonal lineages; thus,WGS
was executed on individually picked colonies. We cultured the
homogenized fecal samples from gf and rm cohort mice on plates
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Fig. 4 | Lineage-specific community interactions in the gut for the rm cohort.
a Co-clustering E. coli cluster clones with the different bacterial families suggest
clone-specific community interactions. The clonal lineage-to-species interactions
are broadly reproducible across different mice, whereby the dynamics of C1 is
related to Lachnospiraceae in rm1-4, andC8of rm1-2 andC10of rm3-4 are related to
Lactobacillaceae. b E. coli clone and bacterial community interactions are strongest

when coming from the same cohort. Co-clustering is measured by a mixing coef-
ficient that compares the distances in the hierarchical tree among families with
distances between families and clonal clusters (Methods, Supplementary Infor-
mation section C). Statistical significance was assessed using a two-sidedWilcoxon
rank-sum test (n = 1276). Significance is indicated as follows: p ≤0.05
(*), p ≤0.001 (***).
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containing spectinomycin, the barcode selection marker. Subse-
quently, we randomly selected 4 colonies from eachmouse for Sanger
sequencing of the barcode regions (see Supplementary Data 1). Due to
the clonal sweeps, the randomly screened barcodes corresponded to
the dominant lineage cluster C1 for all mice, except for gf2, which
belonged to the second largest lineage cluster C2. For eachmouse, we
performed WGS on two clones, each possessing different barcodes,
except for gf3, where only one clone was sent since all four screened
colonies shared the same barcode (Supplementary Data 1, Methods).
We also measured the fitness of these clones in M9 minimal media
(Supplementary Fig. 10a, b), with the caveat that M9 does not fully
capture the nutrient composition, host factors, and dynamic interac-
tions occurring in the gut environment. Based on cumulative biomass
(Supplementary Fig. 10c), the colonies from clonal cluster C2 have
expectedly lower fitness than all those from C1.

From the WGS, overall, we identified mutations following colo-
nization that were common to both rm and gf cohorts (Group I), or
exclusive only to either gf (Group II) or rm (Group III)((Supplementary
Data 2, Methods). These de novo mutations, consistently identified
across different mice and individual colonies, hint at their adaptive
significance. Several of these mutations, linked to motility, biofilm

production, and fundamental metabolic functions (carbon metabo-
lisms and TCA cycle regulation), were also reported in earlier investi-
gations of E. coli colonization in germ-free and reduced microbiota
environments37,67,76.

The Group I mutations are those shared among multiple repli-
cates of both rm and gf cohorts, potentially driving adaptive responses
to the gut milieu, independent of the resident microbiota or species-
specific interactions. Notably, an IS1 deletion spanning ~15–16 kb from
flhE to flhD, encompassing 17 or 18 genes related to bacterial motility,
was identified in clones from gf3-4 and rm1-4. In the rm cohort, one
barcode appeared in multiple mice (TCGTAACTAAGGCTT in Supple-
mentary Data 1 and, in Fig. 6, rm2.C1. b1, rm3.C1.b1, and
rm4.C1.b1 (notation indicates the isolated genome's barcode (b1),
clonal cluster lineage (C1) and mouse replicate)). This barcode exhib-
ited the exact same ~16.5 kb deletion, suggesting that the deletion
could have been present in this specific barcode prior to gavage,
although not seen in the metagenomics because of resolution. On the
other hand, in the gf cohort, another barcode (ATACAACGTGGTAGC
in Supplementary Data 1 and gf1.C1. b1 and gf4.C1.b1/b2 in Fig. 6) also
appeared in multiple mice. However, only gf4.C1.b1/b4 exhibited a
deletion at this locus ( ~ 6.2 kb), while gf1.C1.b1 did not, suggesting that

Fig. 5 | The similarity of clonal lineage dynamics acrossmice is partly driven by
identical barcodes. a Similarity between the time series of clonal clusters across all
4 gfmicequantifiedby Pearson correlation.Matrix elements are clustered basedon
hierarchy (dendrograms indicated). Colors indicate the clonal cluster’s identity,
while the shape indicates the mouse of origin. b The similarity in barcode identity
between the different clonal cluster is quantified by the overlap coefficient, OC(A,
B) = |A∩B|/min(|A|, |B|), where A and B are the sets of unique raw DNAbarcodes that
belong to two dominant clonal clusters. Identities of matrix elements are similar to

panel (a). c Scatter plot of the similarity in dynamics between two clonal clusters by
Pearson correlation vs. similarity in their barcode identity by overlap coefficient.
Overlap coefficients satisfying two-sided P value <0.05, calculated from z-scores
derived via bootstrap resampling, are shown in blue; otherwise, they are shown in
gray (Methods). The size of the circle is proportional to the significance of the
overlap coefficient. d–f Similarity in dynamics and barcode identity for the colo-
nization in mice with the resident microbiome.
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the mutation is likely be de novo. Indeed, another barcode found
exclusively in gf3 displayed a different form of deletion ( ~ 15.9 kb) at
this locus, further supporting its de novo origin. These type of
expansive motility gene deletions within the flhE-flhD region has been
documented in prior studies of E. coli colonization of gf mice67,76 and
mice with “stripped” microbiota77, and was shown to result in ~90%
reduction in E. coli motility following about two weeks of gut coloni-
zation. This deletion, and consequent loss of motility, might allow E.
coli to reallocate energy resources previously used for flagella synth-
esis and function towards growth. Furthermore, flhD and flhCproteins,
both transcriptional factors, play roles in glucose and fructose uptake
and metabolism, as well as other carbon metabolic pathways78. A
knockout of these genes indeed led to growth retardation, coupled
with increased ATP and NADPH production, shifting carbon flux
towards the TCA cycle and pentose phosphate pathways79.

The Group II mutations are exclusive to the gf cohort, including a
4-base pair insertion within the lacI gene (a DNA-binding transcrip-
tional repressor), observed in sequenced clones of gf1.C1 and gf3.C1
(Fig. 6). This frameshift inactivation of lacI, noted inprevious E. coli gut
colonization studies67,80, might activate the Lac operon, facilitating
lactose breakdown into glucose and galactose. Vasquez et al. also
repeatedly identified a 4-base pair insertion in the lacI gene during gf
mice colonization experiments, albeit only 16 bp upstream the gene
locus. A related mutation, ycjW, a lacI-type transcriptional repressor,
affects carbohydrate metabolic gene expression and thiosulfate sul-
furtransferase PspE81, influencing hydrogen sulfide (H2S) production,
which could act as a defensive mechanism against host immune
responses82. Additional mutations include changes in the lrp, a DNA-
binding transcriptional dual regulator, with 5-bp deletions observed in
intergenic regions (2 clones of gf4) and coding sequences (2 clones of
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Fig. 6 | Whole genome sequencing (WGS) of dominant clonal lineages reveals
mutations leading to motility loss and in genes involved in sugar and carbo-
hydrate metabolism and biofilm formation. Population metagenomic WGS was
performed on the gavage sample, while WGS was performed on single colonies of
the fecal samples fromgf and rmmice at the endof the colonization experiment. 32
colonies were initially randomly picked (4 per mouse), then their chromosomal
barcode was identified to associate them with a clonal lineage (Supplementary
Data 1). Almost all clones belonged to the dominant lineage C1, except gf2 with

clones belonging to the second dominant lineage C2. Unique chromosomal bar-
codes (labeled as b1 and b2) of the 2 screened per mouse were sent for WGS. Only
high-confidencemutations are shown insertions (black), deletions (blue), andpoint
mutations (purple). We found mutations that are present only in the gf cohort, rm
cohort, or both. Some of these mutations, related to motility, biofilm formation,
and core metabolic processes, were also observed by previous studies of E. coli
colonization in germ-free and reduced microbiota37,67. See main text for detailed
description.
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gf3). Lrp proteins, recognized for their feast/famine regulatory func-
tions, respond to environmental nutritional cues, and regulate meta-
bolism, virulence, motility, and stress tolerance genes, essential for
niche adaptation83,84. These mutations were also observed in earlier
studies. For instance, Barroso-Batista et al. found that such genetic
alterations improve E. coli’s amino acid competitive uptake,with serine
and threonine identified as preferredmetabolites in amono-colonized
mouse gut37. Growth assays in vitro and in vivo confirmed this serine
preference and the diminished advantage of lrp mutants impaired in
serine metabolism37. Mutations were also observed in the global reg-
ulator lrHA, controlling several genes associated with motility, che-
motaxis, and flagellum assembly by directly regulating the master
regulator flhDC85. Mutations were also discovered in the maltose reg-
ulon regulatory protein MalI, previously reported with established
adaptive significance76.We hypothesize that inactivating this repressor
gene could enhance malT (maltose transcriptional activator) activa-
tion, serving as a mutational target for gut adaptation.

The final set of mutations (Group III) were uniquely identified in
the rm cohort relates to disruptions within the maltose regulon:malT,
the DNA-binding transcriptional activator of the maltose regulon, and
malE, a periplasmic maltose-binding ABC transporter protein. De
Paepe et al. found that bacteria that lost the ability to use maltose are
often selected following the colonization by E. coli pathogenic strain
536 in antibiotic-treated mice76. This observation suggests that inhi-
biting the maltose regulon may confer adaptive advantages under
certain intestinal conditions. Additional Group III mutations are in the
CsqR gene (also known as YihW), a DNA-binding transcriptional dual
regulator86 that suppresses catabolism of sulfoquinovose (SQ), a
derivative of sulfoquinovosyl diacylglycerol (SQDG) breakdown87.
CsqR likely participates in regulating lactose metabolism, operating
either in synergy with or contrary to cAMP-CRP, a master regulator of
carbohydrate metabolism, serving as a sugar-responsive dual
regulator88. Sulfoquinovose (SQ) is a sulfonated monosaccharide
integral to the plant sulfolipid sulfoquinovosyl diacylglycerol (SQDG).
As a constituent of plant chloroplastmembranes, SQ is prevalent in the
environment, attributed to the massive decomposition of plant mat-
ter. Bacteria, notably those within the gut microbiome, contribute to
SQ degradation as part of the broader process of decomposing plant
substances. Certain bacteria are capable of metabolizing SQ to derive
sulfur. These bacteria possess specialized enzymes that decompose
sulfoquinovose, leading to the release of sulfite, a byproduct of their
metabolic activities. This capacity of specific intestinal bacteria to
generate H2S from substrates like SQ may impact E. coli interactions
with other microbial populations.

Most intriguingly, we identified three synonymous mutations
within isocitrate dehydrogenase icd: one found in all four rm mice
(H366H), another in threemice (G386G), and another in a singlemouse
(T370T) (Fig. 6). None of these were present in the gavage sample.
Isocitrate dehydrogenase is key enzyme of the TCA cycle, a crucial
process in bacteria for energy production and biosynthesis. Tradi-
tionally, synonymous mutations have been viewed as neutral. None-
theless, mounting evidence suggests this may not be the case, as
demonstrated in recent studies. Marx and colleagues demonstrated
that high-impact beneficial synonymous mutations in an essential
metabolic enzyme (Fae, which encodes the formaldehyde-activating
enzyme) prompted rapid, parallel adaptation in M. extorquens89. In a
parallel vein, repeated synonymous mutations occurred in the per-
mease subunit of a glucose-inducible ATP-binding cassette (ABC)
transporter, gtsB, a vital metabolic enzyme responsible for glucose
uptake90,91. Given these observations, we speculate that mutations in
icd could influence the regulation of this essential metabolic pathway,
potentially leading to changes in energy production and resource
distribution.

Wehypothesize in theDiscussion how suchmutationsmay lead to
the highly reproducible interaction of the C1 clonal cluster with

Lachnospiraceae. One potential molecular mechanism by which
synonymous mutations in the icd gene could be adaptive is the mod-
ulation of ICD abundance via co-translational folding. Jacobs et al92.
have analyzed the association between the intermediate folding con-
formations of the nascent polypeptide chains in the E. coli proteome
and the enrichment of rare codons as a sign of translation pauses to
assist with co-translational folding. They detected that such an asso-
ciation exists around the amino acid position ~350 to ~390 of the ICD
protein92, the same region that were mutated in clones from the rm
mice colonization (Fig. 6). The mutations in the icd gene could
potentially be responsible for the pervasive C1-Lachnospiraceae asso-
ciation found in the rmmice. Lachnospiraceae is the main producer of
short-chain fatty acids (SCFA) (propionate and butyrate) in the gut
microbiome93. SCFA, which are utilized via the TCA cycle, were shown
to be important for E. coli’s invasiveness of the gut microbiota94. It is
therefore plausible that icdmutations that are specific to the rm mice
underly the similarity between C1 and Lachnospiraceae dynamics.

Altogether, the presence of mutations that could be part of
standing genetic variation (Group I, rm cohort’s flh loci deletions) and
the repeatability of selected de novo mutations between cohorts and
within cohorts (Groups II and III) corroborate the observed repeat-
ability of barcode dynamics (Fig. 5) and, importantly, of the commu-
nity interaction’s stability analysis by DCM for both the gf and rm
cohorts (Fig. 3, Supplementary Fig. 7).

Discussion
Our experimental and computational framework offers a generalized
approach to quantify microbial community interaction matrix and its
consequences on dynamics and stability, particularly following per-
turbations triggered by invading species. With our experimental bar-
coding protocol, we demonstrate that clonal dynamics from intra-
species variation can be used to estimate time-dependent interactions,
evenduring the very early stages of community colonization. Although
the dynamics are complex, the global colonization dynamics are sur-
prisingly replicable and can be defined by 3 or 4 phases that arise from
the coupling of ecological and evolutionary dynamics. This seems
contradictory to the reported lack of reproducibility and replicability
of microbiome composition across mice replicates95. However, we
note that despite only after two weeks of colonization, we already
observed diverging mutations across the cohorts. We cannot yet
comment on the long-term implication of intra-species variation at the
resolution afforded by this experiment since our barcode diversity is
exhausted after a clonal sweep. This would require a “renewal” or
regeneration of new DNA barcodes, as recently done in yeast96.

Previous studies have also employed DNA barcoding to investi-
gate the dynamics of gut invasion, but typically with a lower barcode
diversity than our method offers. For instance, Vasquez et al. utilized
~200barcodes in plasmids to explore colonization lineage dynamics in
germ-free mice67. In a similar vein, STAMP (sequence tag-based ana-
lysis of microbial populations) was used to demonstrate the complex
spatio-temporal dynamics of Vibrio cholerae infection along the rabbit
gut, as well as to quantify the bottlenecks in Citrobacter rodentium in
mice97,98. Additionally, Barroso-Batista et al. used an isogenic E. coli
population, differentiated only by chromosomally encoded YFP/CFP
fluorescence markers, to track adaptive mutations and their fitness
effects in mice71. Similarly, Grant et al. explored the spatiotemporal
dynamics of invasive bacterial disease using 8 barcoded strains of S.
typhimurium, though the low barcode count limited their ability to
quantify very low-frequency lineages and their correlation with the
microbial community99. Our approach contrasts with these methods
by providing amuch higher DNA barcode diversity. More importantly,
the use of high-density chromosomal barcoding to investigate the
inter- and intra-species ecological dynamics of species-rich commu-
nities in natural environments, such as the gut, remains unexplored.
Altogether, despite varyingdetails in the techniques,we anticipate that
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DCM could be useful in the analysis of abundance time-series arising
from these other lineage-tracking approaches.

Our chromosomal barcoding approach could be extended to
species that are innate to the gut microbiota or more pathogenic
bacteria. The high-resolution colonization dynamics could also be
extended by barcoding pathogenic species, such as P. aeruginosa and
S. enterica, which aremore aggressive colonizers than E. coli. Recently,
the successful barcoding of Pseudomonas fluorescens SBW25100,
demonstrates the potential applicability of our approach for generat-
ing a libraryofmore than 105 barcodes. Additionally, our use of the Tn7
integration site, conserved among Gram-negative bacteria, suggests
that our method could be easily extended to other bacteria in this
group. The transformation step of the two plasmids used for barcod-
ing often presents a bottleneck, thus, enhancing the competency of
cells and the transformation procedure could be necessary for each
new bacterial species. Additionally, themethodical and computational
insights from chromosomal barcoding could be extended to related
approaches inmicrobiology, such as themore robust quantification of
fitness changes in colonization of mutational libraries in Tn-seq
experiments101,102.

In the currentwork,weuse the term “interaction” in the ecological
sense, particularly in the context of the communitymatrix, which is the
correlation between the abundances of communitymembers.We then
aimed to elucidate, with the WGS data, what molecular/genetic
mechanisms might mediate such interactions, at least for the domi-
nant lineage clusters. Determining the molecular/genetic mechanisms
for the low-frequency lineage clusters is currently experimentally
challenging, asmetagenomicWGS is shallow, and screening individual
colonies followed by WGS is biased by the high-frequency clones. To
overcome this challenge in the microbial eco-evolutionary scientific
community, bacterial chromosomal barcoding needs to be coupled
with techniques for enrichment and isolation of in live cells with rare
barcodes, potentially, by utilizing CRISPR/Cas9, similar to methods
used in mammalian cancer cells103–106.

We alsonote that the goal of this study is to correlate intra-species
barcode dynamics with the bacterial community, thus, the barcode
cluster clone analysis focused on persistent barcodes, defined as those
present in 75%of the timepoints. Consequently, typically only themost
frequent ~5%of the barcodes survive. A significant number of barcodes
that become extinct in the initial days of colonization are not included
in the analysis. Additionally, the goal is to simplify the representation
of intra-strain diversity to model lineage dynamics more effectively.
Treating each barcode as a separate sub-lineage would either be
computationally impractical or introduce excessive multiple hypoth-
esis testing challenges.

In this work, the gut microbiome is treated as an ecological sys-
tem, such that all the approaches presented here could be broadly
applicable to most microbial ecological networks. However, the gut
microbiome has particularities. More specifically, the gut microbiota
itself is shaped by the genetics and phenotypes of the mice, which we
do not explore. Indeed, the mice themselves, in general, are not
homogenous and could have an impact on the gut composition. In
human microbiomes, it was shown that genetic variation in humans
could itself impact the diversity of the microbiomes107. In the future,
the impact of host diversity could be explored by performing coloni-
zation experiments in mice with diverse genetic backgrounds.

Broadly, the DCM that we developed here represents a model-
and parameter-free approach to analyzing the stability and distinct
temporal phases of a microbial system, starting simply from high-
resolution time-series abundance data. In the Supplementary Infor-
mation, we provide illustrative examples of how DCM captures the
interaction strength matrix of general Lotka-Volterra (gLV) models.
However, since the gLVmodel assumes nomutation, no intra-species
heterogeneity, no migration (colonization), and a constant environ-
ment, it cannot capture the complexities of coupled ecological-

evolutionary dynamics, such as those occurring during gut micro-
biome colonization. In gLV, the interaction strength matrix is con-
stant, but this is not necessarily the case when there is a supply of
mutations or when environmental conditions fluctuate. The con-
ceptual essence of gLV is that it links the per capita growth rate of a
species (or community member) to the abundance of other com-
munity members. This concept is also central to DCM’s Jacobian
matrix analysis, which is the covariance between the derivative of a
community member’s abundance time-series (i.e., its growth rate)
and the time-series abundance of another community member.
However, unlike gLV, DCM does not assume that the interaction
strength matrix within the community is constant. Therefore, DCM
could serve as a general framework for analyzing coupled ecological-
evolutionary dynamics, extending even beyond gut microbiomes. As
such, the DCM is also available to the general microbial community
via Github (Methods).

The strength of DCM is that it non-parametrically estimates the
community matrix solely from abundance time-series data. However,
this also presents its potential weakness, since DCM strongly depends
on the quality of the time-series. In particular, the sampling frequency
of the abundance needs to sufficiently capture the richness in com-
munity dynamics (see Supplementary Note section B (Fig. S3) on the
effect of sampling rate on LV model communities). Nonetheless, DCM
provides a complementary quantitative analysis to vast microbiome
time-series data, whose resolution, quality, and mode of collection we
anticipate improving in the future.

Finally, our results also showed that these phases of invasion and
the intra- and inter-species interactions are highly reproducible
across mouse replicates. This is rather unexpected, considering the
variability in microbiome compositions, which is the norm in the
microbiome field108. We argue that although specific compositions
may be highly variable across mice, the overall tempo of ecological
and evolutionary dynamics, as manifested by the DCM analysis, are
more reproducible features of the microbiota. To this end, the DCM
and its future incarnations could provide a framework for predicting
the microbiota’s response to perturbations, especially in the context
of the invasion of pathogenic species109 and fecal transplant to treat
human disorders110.

Methods
Dynamic covariance mapping: extended description
Eigenvalue decomposition and stability analysis. Since J =diagðzÞA,
where diagðzÞ is a diagonal matrix with zi as the diagonal elements,
Eq. 2 canbe rewritten as _zðtÞ= JzðtÞ, after a changeof variablewhere the
abundance z is now ðz� zðt*Þ11.Mathematically, thematrix J transforms
the abundance vector~z into a new vector space. By definition, JV = JΛ,
where V= v1, . . . ,vi, . . . , vn

� �
is the eigenvector matrix with the

eigenvector~vi (in the ith column). The eigenvector vi corresponds to
the eigenvalue λj, such that Jvi = λjvi. Λ is the eigenvalue matrix with
diagonal elements λj and zero elsewhere. The solution to _zðtÞ= JzðtÞ is
zðtÞ= zðt*ÞeJt = zðt*ÞVeΛtV�1, which can be written as
ziðtÞ=

Pn
j = 1zjðt*Þvjieλj t . These eigenvalues are, in general, complex

numbers λj = θ+ iω. Using Euler’s formula and taking only the real
components ziðtÞ /

Pn
j = 1vjie

Reðλj Þt fCosðImðλjÞtÞg. Thus, the abundance
time-series of the community members can be expressed as a linear
combination of periodic functions with frequency ω= ImðλkÞ and
amplitude eReðλj Þt. Notably, when the real part of the eigenvalue is
positive, the amplitude increases exponentially, indicative of instabil-
ity, while if negative, the amplitude is bounded, indicative of stability.
Additionally, the magnitude of the eigenvalues’ imaginary component
is indicative of characteristic oscillations in the community.

Estimating the community interaction strength using covariance.
When the community abundance is sampled at time t1, . . . , tk within a
time window τ-width ðt* � τ=2, t* + τ=2Þ centered at t*, we can have
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zjðt*Þ= zj t1
� �

, . . . , zj tk
� �h iT

as the abundance time-series for species j

and ϕiðt*Þ= ϕi t1
� �

, . . . ,ϕi tk
� �� �T as vector of per-capita population

growth rate of species i. According to the Frisch-Waugh-Lovell (FWL)
theorem for solving a multiple linear regression using ordinary least
squares, per-capita interaction strength aijðt*Þ can be estimated as

aij t*
� �

=Covðϕi, zjÞ=VarðzjÞ if abundance fluctuations near t* are inde-
pendent from each other50,51. Other regression methods lead to an
altered estimate51; for instance, aij t*

� �
=Covðϕi, zjÞ=ðSDðzjÞSDðϕiÞÞ

when the reduced major axis is used, while aij t*
� �

=Covðϕi, zjÞ if zj is
standardized. SD is standard deviation. In general, the estimate con-
tains the covariance in the numerator that captures the strength and
direction of the linear relationship between ϕi and zj, while the
denominator represents the unit for interpreting and comparing the
covariance (e.g., the reduced major axis produces a unitless estimate
which is Pearson’s correlation). To ease comparison between
species11,52, we directly chose the covariance as the metric for interac-
tion strength, aij t*

� �
=Covðϕi, zjÞ. Similarly, the overall interaction

strength Jijðt*Þ can be estimated as Jij t*
� �

=Covðf i, zjÞ. Altogether, the
dynamic covariances of Covðϕi, zjÞ andCovðf i, zjÞ provide us estimates
of per-capita and overall interaction strengths ofmember j on i near t*.

Principal component analyses and determining dynamical bound-
aries by change-point analysis. Dynamical analysis of eigenvalues
typically focuses on the largest eigenvalues54,55. However, all eigenva-
lues can contribute to a system’s behavior, resilience, and
resistance56–58; thus, we instead analyze all eigenvalues. Since there are
n eigenvalues (corresponding ton communitymembers) for each time
interval, we sought a simpler representation of the community’s
dynamic behavior. To this end, we used kernel PCA to reduce the
dimensionality of the eigenspace as a function of time. The input to
this kernel PCA dimensionality reduction is a (2N) × (s), where the 2N
columns correspond to the real and imaginary components of the ith
eigenvalue λi, while the s rows is the number of τ time intervals. The
first two principal components (PC1 and PC2) as a function of time
intervals are then tracked to determine the dynamical shifts in the
community (Fig. 1c,). The code and data are available on GitHub:
https://github.com/melisgncl/Intra--and-inter-species-interactions-
drive-phases-of-invasion-in-gut-microbiota-.

To explicitly identify shifts in PC1 and PC2, we employed change-
point analysis, a statistical technique to detect points when the dis-
tributional properties (mean and variance) of the timeseries
changes59–64. Specifically, we used the package geomcp R package111

that implements change-point analysis on multiple timeseries. It also
uses maximum likelihood estimation (MLE) to estimate the timeseries
distribution parameters before and after a changepoint and determine
the number and location of the changepoints. We use the following
parameters: geo_result <- geomcp(data, penalty = penalty_type, test.-
stat = “Empirical”, nquantiles = nq), where data is the combined time-
series PC1 and PC2. The underlying distribution of the timeseries is
derived empirically (test.stat = “Empirical”) based on a specified num-
ber of quantiles (nq).

We performed several independent changepoint analyses, vary-
ing the parameter nq and, importantly, using different types of MLE
penalties (penalty_type) available in geomcp: Modified Bayesian Infor-
mation Criterion (MBIC), Bayesian Information Criterion (BIC),
Schwarz Information Criterion (SIC), and Hannan-Quinn Criterion.
These penalties help reduce the likelihood of overfitting, where too
many irrelevant changepoints are detected, and underfitting, where
critical transitionsmaybemissed111. Changepoints that are consistently
identified as significant bymultipleMLE penalty criteria are denoted as
(***), those identified in 90% of the independent changepoint analyses
are denoted by (**), and those identified in 70% of the analyses are

denotedby (*).We then inspectedwhether the identified changepoints
made intuitive sense. Details of the changepoint analyses are available
in the GitHub link above.

Dynamic covariance mapping: applied to intra-species and
community abundance time-series
Depending on the cohort, our abundance vector
zðtÞ= z1ðtÞ, . . . , ziðtÞ, . . . , znðtÞ

� �
is composed of only community

abundances from 16S rRNA (im and nc cohort), only E. coli intra-
species (gf cohort), or both (rm cohort). Then, we calculate the com-
munity matrix as Jij, τ =Covðdzidt , zjÞτ progressively increasing time
intervals τ (3h-6h, 3h−12h,…, and 3h-15 days), with altogether a total of
16 or 17-time intervals for the rm and gf cohort. Additionally, as the
movies illustrate, the eigenvalues showdistinct “jumps”on the PC1 and
PC2, indicating distinct temporal phases. The codes and data on the
application of DCM to gut invasion dynamics is: https://github.com/
melisgncl/Intra--and-inter-species-interactions-drive-phases-of-
invasion-in-gut-microbiota-. The code for application of DCM on a
generic community time-series (user-generated) data is also provided
in the same Github link.

Experimental procedures
E. colibarcodedpopulation generation. Barcoded E. coli populations
were generated as previously described43 using the Tn7 transposon
library. The first step is transforming the recipient E. coli K12 strain
MG1655 cells with the Tn7 helper plasmid and induction of the trans-
posase integration machinery. The second step is the transformation
of the Tn7 integration plasmid library, which integrates the barcodes
into the chromosome of the bacteria. The Tn7 integration plasmids
with barcode and spectinomycin cassette were extracted from Trans-
forMax EC100Dpir + cells (Lucigen) with a Qiagenmidi kit. Then E. coli
cells were transformed with the Tn7 helper plasmid to induce the
transposase integrationmachinery. Transformed cells with Tn7 helper
plasmid were grown overnight in LB supplemented with 100μg/ml
ampicillin at 30 °C. In these cells, transposon machinery was induced
with arabinose to transform with Tn7 integration plasmids. After
overnight incubation on the bench, they were plated on LB agar plates
containing 100μg/ml spectinomycin. Randomly picked colonies were
checked for chromosomal incorporation of barcode cassettes by tar-
geting the Tn7 integration site. We scraped all the colonies from the
plates, then pooled, thoroughly mixed, and aliquoted them with 15%
glycerol. These stocks were stored at −80 °C pending the mice colo-
nization experiments.

Mice evolution experiments. We used several cohorts of mice to
determine colonization dynamics in their gut: Cohort 1 (im) mice with
innate microbiota followed by E. coli colonization (4 replicates);
Cohort 2 (rm) ormicewith reducedmicrobiota andpre-treatedwith an
antibiotic cocktail followed by E. coli colonization (4 replicates);
Cohort 3 (gf) or mice that were initially germ-free and colonized with
barcoded E. coli barcode (4 replicates); and Cohort 4 (nc) ormice with
microbiota and pre-treated with an antibiotic cocktail but not colo-
nized by E. coli (4 replicates). Cohorts 2 and 4 (rm and nc) were
administered an antibiotic cocktail (metronidazole 1 g/L, neomycin 1 g/
L, ampicillin 1 g/L, and vancomycin 0.5 g/L) for four weeks to reduce
the complexity of the gutmicrobiota.Under these conditions, 99.5%of
the cecal bacteria are eliminated at the end of treatment112,113. Then, we
let them recover for three days without antibiotics before introducing
the barcodedpopulation, whichwe set as our day zero. After gavage of
the barcoded population, fecal samples were taken at 3, 6, 12, and 24 h
and once daily until day 14 for rm and day 15 for gf. The nc cohort fecal
samples were collected for ten days. During the day of fecal collection,
we split the sample, one for bacterial load measurements (see below)
and another for storage at –80 °C until subsequent genomic analysis.
80μl of the feces homogenate was placed with 20μl of 100% glycerol
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to make 20% glycerol stocks for later recovery of live bacteria. Fecal
samples are obtained directly from the mouse anus and placed into a
pre-weighed, sterile 2ml Eppendorf tube.

Over the course of the colonization experiments, individual mice
were housed in different cages (1 mouse/cage and each mouse in the
same cage). All cohortmicewereC57BL/6N (TaconicBiosciences), and
only 12-week-old females were used. Animals were kept in filter-
covered ventilated cages, maintained at 23 °C with 40% humidity,
under a 12-h light/dark cycle. Cohorts were fed ad libitum with the
Teklad 2018SX (Sterilizable) chow, an 18% protein diet that was ster-
ilizedby autoclave. Allmice experimentswere performed at themouse
facility of Université de Sherbrooke, except for the gf cohort which
were performed at the gnotobiotic mouse facility of University of
Toronto. All experimental protocols on mice were approved by Uni-
versité de Sherbrooke Ethics Committee for Animal Care and by Uni-
versity of Toronto’s Animal Care Committee, both in accordance with
guidelines established by the Canadian Council on Animal Care.

Bacterial load measurement. To measure the bacterial load in the
fecal samples, we spread them with increasing dilutions on LB plates
with spectinomycin 50μg/ml to select for the colonizing E. coli. The
chromosomal barcode contains the spectinomycin resistance cassette
(spR)43. Measurements of bacterial loads were done in 3 independent
replicates.

Genomic DNA extraction in fecal samples, chromosomal barcode
amplification, and next-generation sequencing. Genomic DNA
(gDNA) was extracted from whole fecal pellets using the QIAamp Fast
DNA Stool Mini kit (Cat: 51604). Low yield from gDNA extraction of
samples from 3 h of im2 and rm 2,3 means that we could not continue
with their downstream analysis. A two-step PCR was used to amplify
the chromosomal barcodes and then append the Illumina adapter
sequences. For the first PCR, 200 ng of template per sample was used
with PrimeSTARGXLDNAPolymerase fromTAKARA (Cat: R050B). The
parameters for this 1st reaction were as follows: 94 °C for 5min, 30X
(95 °C for 10 s, 53 °C for 15 s, 68 °C for 45 s), 68 °C for 5min, hold at
4 °C. The Primers for this PCR are the following: 5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’, 5’-GTCTCGTGG

GCTCGGAGATGTGTATAAGAGACAG-3’. The resulting amplicon
sequence from this PCR is the following: 5’-gatatcggatcctagtaagc-
cacgttttaattaatcagatccctcaatagccacaacaactggcgggcaaacagtcgttgctgat
tggtcgtcggcagcgtcagatgtgtataagagacagtcgcgccggNNNNNNNNNNNN
NNNtatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgttaac
caccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctc
tcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaacca
ccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctg
gcacgacaggtttcccctgtctcttatacacatctccgagcccacgagacgccactcgagttatt
tgccgactaccttggtgatctcgcctttcacgtag-3’. The contiguous 15 Ns in this
amplicon sequence corresponds to the random nucleotides that serve
as our chromosomal barcodes43. The product from this PCR was pur-
ified and cleaned with NucleoSpin Gel and PCR clean-up kit from
TAKARA. A 2nd PCR was performed with high-fidelity PrimeSTAR GXL
DNA Polymerase (Takara Cat: R050B) to add the Nextera indices
(NexteraXTprimers Set A 96 Indexes, 384 Samples, Cat# FC-131-2001).
We followed the suggested cycling conditions, which are as follows:
94 °C for 5min, 12X (95 °C for 10 s, 55 °C for 15 s, 68 °C for 45 s), 68 °C
for 5min, hold at 4 °C. The primers for this 2nd reaction were the fol-
lowing: 5’CAAGCAGAAGACGGCATACGAGAT[I7]GTCTCGTGGGCTCG
G-3’ and 5’-AATGATACGGCGACCACCGAGATCTACAC[I5]TCGTCGGC
AGCGTC-3’. PCR products from all reaction tubes were purified with
magnetic beads (Beckman Colter) and pooled together, spiked with
15% of PhiX DNA, and sequenced using either Miseq or Nextseq Illu-
mina chips at Université of Montréal’s IRIC Genomic Platform. Bioin-
formatic analyses are described in the Analysis section below.

16S profiling. Similar to the chromosomal barcode amplification, we
used a two-step PCR to amplify the genomic region of interest and
prepare the library for Illumina sequencing. The 16S rRNA V4 region
was PCR-amplified with buffer and polymerase PrimeSTAR GXL DNA
Polymerase (Takara, Cat: R050B). The cycling conditions for the
PCR are as follows: 98 °C for 3min, 35X (95 °C for 10 s, 60 °C for 15 s,
68 °C for 35 s), 68 °C for 5min, hold at 4 °C. The primers for the
reaction are the following: 5’-TCGTCGGCAGCGTCAGATGTGTATAA-
GAGACAGYRYRGTGCCAGCMGCCGCGGTAA-3’ and 5’-GTCTCGTGG
GCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT-
3’. PCR products were purified with Nucleospin Gel and a PCR pur-
ification kit from TAKARA (Cat: 740609). Illumina sequencing
adapters were added to respective samples with PCR using the same
primers and protocols similar to the barcode amplification. The PCR
amplicons of the samples were then pooled after a purification and
concentration equalization process with the AMPureXP Kit (Beckman
Colter). The libraries were processed in an Illumina MiSeq v2 (500
cycles and paired-end).

Clone isolation and growth rate measurements. Glycerol stocks of
fecal samples from the last time point of the gm and rm cohorts were
resuspended in PBS. Subsequently, dilutions of these suspensions
were plated on LB agar containing 100μg/mL spectinomycin and
incubated at 37 °C for 18 h. Fromeachmouse’s agarplate, we randomly
selected four different colonies. The DNA barcodes from these colo-
nies were then amplified using PCR and sent for Sanger sequencing to
confirm their identity and to determine whether the barcodes belon-
ged to the C1 clonal cluster (Supplementary Data 1). Except for gf3,
from which we obtained two different barcodes across both cohorts,
all identified barcodes were included in the C1 cluster. In the case of
gf2, we isolated the C2 cluster.

Next, the clonal bacterial cultures were grown from glycerol
stocks for 12 h in LB medium supplemented with spectinomycin
(100μg/mL) at 37 °C with constant shaking. These cultures were then
washed and diluted into M9 minimal medium supplemented with
D-glucose (0.2%, wt/wt). Each well was filled with a final volume of
200μL, resulting in an inoculum concentration of ~105 cells. The plates
were grown in a BioScreenC MBR and incubated at 37 °C with con-
tinuous shaking,while theOD600wasmeasured every 15minutes for a
duration of 25 h. All BioScreen growth experiments were conducted in
biological triplicates.

Whole genome sequencing. To identify mutations segregating in
the E. coli C1 clonal cluster during colonization of gf and rm cohorts,
we conducted whole-genome sequencing (WGS) analysis. Specifi-
cally, we performed WGS on screened colonies from fecal samples
collected at the endpoint of our experiments. Additionally, we con-
ducted metagenomics analysis on the initial library that was intro-
duced to mice. The screened colonies were grown overnight at 37 °C
with spectinomycin. Subsequently, we isolated bacterial genomic
DNA from bacterial suspensions using Takara Microbial DNA
extraction kit (Cat = 740235). TheDNA amount was quantified using a
Nanodrop spectrophotometer. Whole-genome DNA libraries were
prepared using the Kapa Hyperprep DNA library kit from Roche.
Sequencing was performed on a NextSeq500 MidOutput 150-cycles
flowcell, yielding ~10 million paired-end reads per sample (PE75).
Sequencing were carried out at the Université de Montréal’s IRIC
Genomic platform. Mutations were identified using the BRESEQ
pipeline version 0.23114, with the polymorphism option enabled. For
the analysis of samples from single colonies, we considered muta-
tions with a frequency of 100%. In contrast, for the analysis of the
initial library, we focused on consensus mutations between two
technical replicates (two separate WGS preparations of the gavage
sample).
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Analysis
Barcode extraction from the FASTQ file and determining putative
“true” lineages. To understandhowclonal populations of cells change
over time, we first identified and extracted the barcode sequences
fromour raw sequencing data. To extract barcode sequences fromraw
sequencing data, we first applied a quality filter, discarding any reads
with an average Phred score below 30 to minimize sequencing errors.
Barcode sequences were identified and extracted using
BarcodeCounter239, a Python pipeline that utilizes BLASTn+ v2.6.0115,116

to detect barcodes based on a predefined sequence template. The
pipeline relied on two short, constant flanking sequences located on
either side of the barcodewithin each read. These sequences served as
reference points for barcode identification and reads lacking these
flanking sequences were excluded to prevent misidentification.
BLASTn+ was run with the following parameters: -word_size 8 -outfmt 6
-evalue 1E0 -maxhsps 1. The word size was set to 8 to ensure short
sequences could be accurately identified. The e-value threshold was
set to 1E0, allowing more flexibility in detecting short barcode
sequences. The output format was set to 6, and themaximum number
of high-scoring segment pairs (maxhsps) was limited to 1 to simplify
output processing and reduce redundant matches.

Extracted barcode sequences can vary in length due to sequen-
cing artifacts, synthesis errors, and librarypreparation inconsistencies.
While the expected barcode length was 15 nucleotides (15 N), inser-
tions or deletions can lead to slight deviations. To account for this,
only barcodes between 13 and 17 nucleotides were retained, and
sequences outside this range were excluded. To correct for sequen-
cing errors, including insertions, deletions, and substitutions, we
applied the Deletion-Correct method, a modified version of the
approach from Johnson et al. (2019)117. Thismethod improved barcode
accuracy by clustering similar sequences into deletionneighborhoods,
where barcodes within three edits of each other were grouped toge-
ther. Within each neighborhood, the most abundant sequence was
selected as the true barcode, while less frequent variants were cor-
rected to match it. This ensured that minor sequencing errors did not
artificially increase barcode diversity. The parameters used for
Deletion-Correct were the following: min_counts_for_centroid = 2,
max_edits = 3, poisson_error_rate =0.1. With these settings, barcodes
with at least two reads were considered for correction, only sequences
within three edits of a more common barcode were corrected, and a
Poisson error rate of 0.1 was used to model sequencing error rates.

Visualizing barcode dynamics. To compare barcode trajectories
within and between mice cohorts, we aimed to use consistent color
coding for barcode lineages. First, we assigned a unique color to all
lineages that reached a relative frequency of 5e-05 in their respective
mouse. The frequency f iðkÞ of barcode lineage k in condition i is:

f i kð Þ= xiðkÞP
j xiðjÞ

ð3Þ

where xiðkÞ is the barcode read count. This operation was applied to
each mouse, such that the color scheme was consistent when the
dynamics were compared (Fig. 2a, d and Supplementary Fig. 3). For
example, a barcode lineage that was assigned the color “magenta
[#c20078]”will always have this color in all the figures. Conversely, no
other barcode was assigned the same color. To create the Muller-type
plots for each mouse (Supplementary Fig. 3a, b and d), the barcode
frequencies at every time point were represented in linear scale. In
each mouse, the barcodes were sorted by the maximum frequency
they attained over the time-series. This produced a stacked area plot
where dominant barcodeswere shown starting from the bottomof the
panel and progressively lower-frequency barcodes were shown at the
top. The samedatawasused toplot the frequency trajectories in log10-

transformation (Fig. 2a & d and Supplementary Fig. 3c). Barcodes that
reached aminimum frequencyof 1e-05 throughout its time-serieswere
shown in color, whereas the remaining barcodes were shown in gray
for clarity.

Quantification of barcode diversity. The simplest way to quantify the
diversity of barcoded lineages in a population is to count the number
of unique barcodes observed at a particular time point (Fig. 2a, d and
Supplementary Fig. 5c). However, if lineages differwidely in frequency,
then this measure may not be very informative and will suffer from
substantial sampling bias (since very low-frequency barcodes will be
under-sampled). A more general approach is to quantify the diversity
of barcodes using the effective diversity index118

qD =
X
k

f qk

 !1=ð1�qÞ
ð4Þ

where f k is the frequency of the kth barcode lineage, and q is the
“order” of the diversity index.

When q =0, the index simply counts the absolute diversity in the
sample, i.e., the total number of unique barcode lineage. Thismeasure
is equivalent to the species richness used in ecological studies119. When
q= 1, the index weights each barcode lineage by its frequency. This
measure is equivalent to the exponential of the Shannon entropy
H = �Pk f k log f k

� �
. When q ! 1, the index is equal to the reciprocal

of the proportional abundance of themost common barcode lineages.
Thus, only the higher-frequency lineages contribute to the value of this
index. By comparing the diversity index across these three orders for
q, we could describe the complex dynamics of the barcode composi-
tion over the course of the experiment. In the trivial case when all
barcode frequencies were equal, the effective diversity indexwould be
equal to the absolute number of barcodes regardless of the order of q.
We should expect absolute diversity (q=0) to be no greater than the
maximum theoretical diversity of the barcode library. Additionally, we
should also expect this measure to decrease over time as barcodes are
lost from the population sincediversity is exhausted (no newbarcodes
are generated).

Barcode lineage clustering. To identify the clonal lineages, we clus-
tered the barcode lineages for each mouse based on the similarity of
their time-series behavior. Tomaximize the accuracy of this clustering,
we excluded barcodes with insufficient time points. Specifically, for
each mouse, we retained only the lineages that i) exhibited non-zero
frequency over at least 12 out of 18 time points for the rmcohort and ii)
the mean frequency over the entire time-series is ≥5e-5. Similarly, for
the gf cohort which had 1 time-point less, we retained barcodes with i)
non-zero frequency for at least 11 out of 17 time-points and ii) themean
frequency over the entire time-series is ≥5e-5. This ensured that all
barcode lineages included in the clustering had a sufficient number of
points for pairwise comparison. This proceduremeant that the lineage
clustering focused on dominant and persistent clones; barcodes that
immediately went to extinction were excluded. Altogether, this pro-
cedure was performed on a subset of ~300 to ~1300 lineages for each
mouse, representing ~5% to ~10% of total unique barcodes. These
dominant and persistent lineages represent ~7% to ~50% of the total
number of E. coli cells at the end of the colonization experiment. The
distance ΔFij between two frequency trajectories f i an f j was calcu-
lated as

ΔFij = 1� ρðlog f i, log f jÞ ð5Þ

where ρðlog f i, log f jÞ is the Pearson correlation coefficient between
the trajectories. A distance close to 0 indicated a strong positive
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correlation between the lineages, whereas a distance close to 2 indi-
cated a strong negative correlation. From the resulting pairwise dis-
tance matrix, we applied hierarchical clustering using the “linkage”
method from the scipy.cluster.hierarchymodule in SciPy. We used the
“average” agglomerative clustering method, which implements the
algorithm unweighted pair group method with arithmetic mean
(UPGMA)120. This method computes the distance between two clusters
as the arithmetic mean of the distances between all lineages in both
clusters. Then, for each cluster, we fitted a consensus trajectory using
the local regression (LOESS). LOESS is a formofmoving average where
a line is fit locally using neighboring points weighted by their distance
from the current point. These moving averages were referred in the
text as “clonal clusters”.

To determine the optimal clustering threshold, we note two
general trends (Supplementary Fig. 6a–c). First, the LOESS of clusters
with very few lineages will be sensitive to sequencing error. Thus, we
include only clusters with at least 8 barcodes for the rm and gf
cohorts. Second, when the threshold is too small, there are many
clusters, but multiple clusters are similar to each other. This is
manifested by the value of the smallest distance between the LOESS
average of any cluster pair (black dots). Third, when the threshold is
too large, there are very few clusters where barcodes with distinct
dynamics are grouped together. In clustering, the practice was to
find the cross-over between the smallest distance between cluster
centroids (LOESS) and the number of clusters. This cut-off was
indicated as the red curve in Supplementary Fig. 6b and c). Based on
these cut-offs, 10 clusters for the rm cohort, and 6 or 7 for gf (Sup-
plementary Fig. 6d and e).

Quantification of community dynamics by 16Sprofiling. The paired-
end MiSeq Illumina reads resulting from sequencing of the 16S rRNA
V4 region were processed using the dada2 v1.22 pipeline121. Primer
sequences were removed using cutadapt v2.8122 before
amplicon sequence variant (ASV) inference. Forward and reverse
read pairs were trimmed to a run-specific length defined by a mini-
mumquality score (Phred score ≥25) using the filterAndTrim function
of the dada2 R package121. Error rates were estimated from sequence
composition and quality by applying a core denoising algorithm for
each sequencing run. Then pairs were merged if they overlapped
using the mergePairs function. Bimeras, which were chimeric
sequences, were removed with the removeBimeraDenovo.
Taxonomy was assigned using the assignTaxonomy function that
maps reads onto the SILVA (v. 138) reference database123. We exclu-
ded sequences that matched mitochondrial or chloroplast DNAs. In
each mouse, the relative abundance of a taxonomic unit i at time t is
given by:

ai tð Þ=
riðtÞP
j rjðtÞ

ð6Þ

where rðtÞ is the absolute abundance (number of reads) for the unit.
Similar to the barcode dynamics, we calculated the community’s
effective diversity index but at the level of the family (see Quantifi-
cation of barcode diversity). For further analyses, families with fre-
quency lower than 1e-03 were grouped as “Other”, while the rest of the
groups were clustered under their bacterial family classification.

Co-clustering of E. coli clonal lineages and community dynamics
from 16S. To detect the potential interactions between the bacterial
community and E. coli clonal clusters, as might be manifested in the
correlation between their time-series, we recognized that the inter-
actions could introduce local and transient stretching or lags. Thus, a
straightforward Pearson correlation is ill-suited to detect such

interactions. Therefore, we calculated the pairwise distances using
the shape-based metric (SBD)72. Briefly, the SBD is an iterative algo-
rithm that detects the shape similarity of two time series, regardless
of amplitude or phase differences (Supplementary Data Fig. S4). For
the community dynamics, we used the log-transformed relative
abundances of taxa at the family level with a minimum of 7 non-zero
time points. For the clonal dynamics, we used LOESS smoothing
arising from the clustering of E. coli barcodes. We z-normalized the
time-series vectors to remove the amplitude effect and then calcu-
lated the shape-based distance (SBD)72 implemented in the tsclust
package124 to calculate our distance matrix. Lastly, tree linkage was
performed using the “average” (UPGMA) method to generate den-
drograms (Fig. 4b and Supplementary Data Fig. S4).

Replicability of clonal lineages in different mice from the
samecohort. Todetermine the replicability of clonal lineagedynamics
across differentmice, we applied hierarchical clustering using distance
matrices derived from pairwise Pearson correlation followed by
UPGMA linkage (Fig. 5a, d). The input to these analyses was the LOESS
of the clonal lineages from each mouse (section iv. Barcode lineage
clustering).

Quantification of barcode similarity between mice from the
same cohort. To determine if the similarity in clonal lineage dynamics
in different mice is driven by the same barcodes, we evaluated the
overlap index in raw barcode identity for each cluster. In general, the
overlap coefficient quantifies the Simpson similarity between two sets
A and B that are not necessarily of the same size:

OC A,Bð Þ= A \ Bj j
minð Aj j, Bj jÞÞ ð7Þ

A value close to 1 indicates a high number of common elements,
whereas a value near 0 indicates little overlap. We calculated the
overlap index for all pairs of clonal lineage clusters in mice from the
same cohort (see Fig. 5b, e). To determine that the overlap index did
not arise by chance, we generated different compositions of sets A and
B drawn randomly from our total pool of barcodes. For each compo-
sition, we calculated the overlap index (Eq. 7). This was performed
1000 times to arrive at a distribution of OC A,Bð Þ values. The sig-
nificance of the observed overlap index x between the real clusters A
and B was expressed as a z-score on the simulated distribution of
overlap indices:

Z =
x � μ
σ

ð8Þ

where μ is the mean and σ the standard deviation of the sample dis-
tribution. Lastly, significant overlap coefficient values with |Z| > 1.96 or
P value 0.05 are shown in blue in Fig. 5c, g, and their size is scaled
proportionally to their P value.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw barcode sequencing data from this study have been deposited in
the National Center for Biotechnology Information Sequence Read
Archive. This includes BioProject accession number PRJNA1113167 for
all 16S data, PRJNA1113343 for high-resolution barcode data from
germ-free, reduced microbiota, and innate microbiota cohorts across
different timepoints, and PRJNA1113345 forwhole genomesequencing
results of dominant clonal clusters lineages. Source data are provided
with this paper.
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Code availability
The code used for data analysis and figures is available at https://
github.com/melisgncl/Intra--and-inter-species-interactions-drive-
phases-of-invasion-in-gut-microbiota-.
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