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Benchmarking metabolic RNA labeling
techniques for high-throughput single-cell
RNA sequencing

Xiaowen Zhang1,2,3,6, Mingjian Peng1,2,3,6, Jianghao Zhu1,2,3, Xue Zhai1,2,3,
Chaoguang Wei1,2,3, He Jiao1,2,3, Zhichao Wu1,2,3, Songqian Huang1,2,3,
Mingli Liu1,2,3, Wenhao Li1,2,3, Wenyi Yang1,2,3, Kai Miao 4, Qiongqiong Xu1,2,3,
Liangbiao Chen 1,2,3 & Peng Hu 1,2,3,5

Metabolic RNA labeling with high-throughput single-cell RNA sequencing
(scRNA-seq) enables precise measurement of gene expression dynamics in
complex biological processes, such as cell state transitions and embryogen-
esis. This technique, which tags newly synthesized RNA for detection through
induced base conversions, relies on conversion efficiency, RNA integrity, and
transcript recovery. These factors are influenced by the chosen chemical
conversion method and platform compatibility. Despite its potential, a com-
prehensive comparison of chemical methods and platform compatibility has
been lacking. Here, we benchmark ten chemical conversionmethods using the
Drop-seq platform, analyzing 52,529 cells. We find that on-beads methods,
particularly the meta-chloroperoxy-benzoic acid/2,2,2-trifluoroethylamine
combination, outperform in-situ approaches. To assess in vivo applications,
we apply these optimized methods to 9883 zebrafish embryonic cells during
the maternal-to-zygotic transition, identifying and experimentally validating
zygotically activated transcripts, which enhanced zygotic gene detection
capabilities. Additionally, we evaluate two commercial platforms with higher
capture efficiency and find that on-beads iodoacetamide chemistry is themost
effective. Our results provide critical guidance for selecting optimal chemical
methods and scRNA-seq platforms, advancing the study of RNA dynamics in
complex biological systems.

Single-cell RNA sequencing (scRNA-seq) has revolutionized our
understanding of cellular heterogeneity and transcriptomic complex-
ity. However, traditional scRNA-seq methods often fail to capture the
temporal dynamics of RNA. Recent advances in time-resolved high-
throughput scRNA-seq usingmetabolic labeling have provided deeper
insights into RNA dynamics in complex biological processes1–8.

In metabolic labeling assays, nucleoside analogs, such as
4-Thiouridine (4sU)9–15, 5-Ethynyluridine (5EU)16–20, and 6-Thioguanosine
(6sG)1,21–25, are rapidly incorporated into newly synthesizedRNA, creating
a chemical tag that can be detected via sequencing by identifying
chemical-induced conversions. This strategy is applicable to a wide
range of model organisms, including humans5,26, mice2,6, zebrafish7,8,27,
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and fruit flies14. Metabolic RNA labeling combined with scRNA-seq has
significantly enhanced our ability to quantitatively analyze RNA synth-
esis and degradation. This approach has enabled key discoveries, such
as understanding cell-cycle dynamics in cultured cells and
organoids3,4,16,26, tracking RNA during embryogenesis7,8,27,28, investigating
transcriptional bursting29, and identifying rapid transcriptional respon-
ses during viral infection1.

Metabolic labeling involves several crucial steps: incorporating
4sU into newly synthesized RNA, performing chemical conversion
reactions, and ensuring compatibilitywith high-throughput scRNA-seq
platforms. Key chemical conversion methods include SLAM-seq1,9,
which uses an iodoacetamide (IAA)-based reaction; TimeLapse-seq2,10,
which utilizes 2,2,2-trifluoroethylamine (TFEA) with meta-
chloroperoxy-benzoic acid (mCPBA)/sodium periodate (NaIO4) and
NH4Cl-based reactions; and TUC-seq30, which involves osmium tetr-
oxide (OsO4) and ammonium chloride (NH4Cl). These steps determine
the assay’s efficiency, including conversion efficiencies as indicated by
T-to-C substitution rates, and RNA recovery rates, indicated by the
number of genes and transcripts detected per cell. Although statistical
methods have been developed to correct some of these
limitations2,10,12, improving 4sU labeling and T-to-C conversion effi-
ciency at the experimental level remains crucial for achieving more
reliable and consistent outcomes, advancing our understanding of
RNA dynamics in various biological processes.

Several methods have been developed to integrate metabolic
labeling with high-throughput scRNA-seq platforms, such as scNT-
seq2, scSLAM-seq1,7, sci-fate3, sci-fate24, 10× Genomics-based method8,
and Well-TEMP-seq5,6. These methods are built upon different scRNA-
seq platforms, each with unique technical adaptations. For example,
scNT-seq2 is based on the Drop-seq platform31 and leverages a micro-
fluidic device, a strategy also implemented in the commercial 10×
Genomics system32. Well-TEMP-seq5,6 employs a microwell-based sys-
tem, while sci-fate and sci-fate2 utilize the sci-RNA-seq approach3,4,33,
which relies on multiple rounds of split-pool barcoding. The key dis-
tinction among these methods is the timing of chemical conversion,
whichoccur either before or after single-cell encapsulation, potentially
affecting conversion rates. scNT-seq2 relies on the home-brew Drop-
seq platform31, while Well-TEMP-seq5,6 relies on the Well-Paired-seq
platform34, both of which use the same barcoded beads fromDrop-seq
and enable chemical conversion on naked capture RNA attached to
barcoded beads after cell lysis. In contrast, sci-fate, sci-fate2 and 10×
Genomics-based methods employ in-situ IAA-based chemical conver-
sion within cells before mRNA releasing from the intact cell (Supple-
mentary Fig. 1). Compared to the relatively low cell capture rate of the
home-brew Drop-seq platform (~5%)31, in-situ IAA chemical conversion
coupled with commercial platforms, such as 10× Genomics32 and MGI
C435, with higher capture rates (~50%)32 can be more effective for
studying unique biological systems, such as early-stage embryos,
where only a limited number of cells are available8. Although these
methods have been demonstrated in different cell lines and biological
systems, they vary in conversion efficiency, RNA recovery rate, and
compatibility with scRNA-seq platforms2,3. Given these differences and
their potential impact on RNA dynamics analysis, a systematic and
unbiased comparison of chemical conversion methods and their
compatibility with different single-cell platforms is needed.

To address this gap, we tested ten chemical conversion methods
with varying reagent components and buffer conditions (Fig. 1a, b),
including comparisons of in-situ and on-beads conditions using the
same cell line. Our work provides direct comparisons and recom-
mendations for time-resolved scRNA-seq methods using metabolic
labeling. We further demonstrated that the recommended method
effectively identifies zygotically activated transcripts in zebrafish
embryogenesis. Additionally, we compared the 10×Genomics andMGI
C4, two commercial single-cell platforms with high cell capture effi-
ciency to the home-brew Drop-seq platform. The results highlight the

strengths and weaknesses of each system, offering guidance for
selecting the most appropriate chemical reaction and single-cell
platform.

Results
Experimental design and computational quality control
assessment
To ensure a comprehensive benchmarking, we summarized currently
available metabolic labeling scRNA-seq methods (Supplementary
Fig. 1). These methods are built upon different scRNA-seq platforms,
each incorporating unique technical adaptations in chemical condi-
tions and the timing of the chemical conversion step. Given this
variability, we focused our direct comparison on the Drop-seq plat-
form, which utilizes barcoded beads specifically designed to capture
polyA-tailed mRNA directly onto the beads. This setup allows for
buffer exchange and enables on-beads chemical conversion reactions
prior to reverse transcription, making the platform widely adopted
and customizable31 (Fig. 1a).We investigated twowidely used chemical
approaches: SLAM-seq1,9, which utilizes an iodoacetamide (IAA)-based
reaction, TimeLapse-seq2,10, which employs 2,2,2-trifluoroethylamine
(TFEA) in combination with oxidizing agents meta-chloroperoxy-
benzoic acid (mCPBA) or sodium periodate (NaIO4). Additionally, we
included NH4Cl-based reactions adapted from TUC-seq30 (Fig. 1b and
Supplementary Fig. 1). To optimize conditions, we varied the pH or
temperature conditions of these reactions based on recent metabolic
labeling bulk RNA-seq studies36. To further explore the impact of
timing in chemical conversion steps, we performed in-situ chemical
conversion using SLAM-seq or 10× Genomics-based method as pre-
viously described3,8. In total, we conducted ten chemical conversion
comparisons using the ZF4 fibroblast cell line derived from zebrafish
embryos (Fig. 1a, b). To ensure consistency in cell processing, ZF4 cells
were fixed with methanol after metabolic labeling (100μM 4sU) for
4 h. Chemical conversion was performed either in situ before single-
cell encapsulation or on beads after encapsulation. Libraries from
different methods were prepared and sequenced.

For data analysis, we used the dynast pipeline37 and developed a
dedicated pipeline for quality control (untreated) and method com-
parison (see “Methods” and Fig. 1c). We evaluated and compared
chemical conversionmethods based on three criteria: (1) RNA integrity
(cDNA size), (2) conversionefficiency (T-to-C substitution rate), and (3)
RNA recovery rate (number of genes and unique molecular identifiers
(UMIs) detected per cell) (Fig. 1d).

After quality filtering, we obtained 22,955 single-cell tran-
scriptomes for ZF4 cells, with amedian of 2472 UMIs corresponding to
transcripts and 1109 genes detected per cell. Analysis of base muta-
tions in eachmapped transcript revealed a significant increase in T-to-
C substitution rates in all chemically treated samples compared to the
control condition without chemical conversion treatment, while other
conversion rates remained below or around background levels (Sup-
plementary Fig. 2a). The top three chemical conversion methods—
mCPBA/TFEA pH 7.4, mCPBA/TFEA pH 5.2, and NaIO4/TFEA pH 5.2—
had average T-to-C substitution rates of 8.40%, 8.11%, and 8.19%,
respectively (Fig. 2a and Supplementary Table 1). Additionally, more
than 40%ofmRNAUMIswere labeled per cell (Supplementary Fig. 2b),
demonstrating the protocols’ efficiency with fixed/cryo-preserved
cells. Notably, one condition, on-beads IAA at 37 °C, exhibited a rela-
tively low T-to-C substitution rate of 3.84% but an unexpectedly high
proportion of labeled mRNA UMIs per cell (45.98%) (Fig. 2a and Sup-
plementary Fig. 2b). Upon analyzing the mutation frequency and dis-
tribution, we found that this condition tends to label a broader range
of RNA molecules rather than introducing multiple substitutions
within the same RNA strand (Supplementary Fig. 2c).

We also compared the same chemistry condition, which is con-
ducted in intact cells (in-situ) to after mRNA release from the cells and
attached to the beads (on-beads). The on-beads method achieved a
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2.32-fold higher substitution rate than the in-situ method (mean of
6.07% versus 2.62%). The T-to-C substitution rate of on-beads IAA
(32 °C) was also comparable to the top three methods, with a median
of 6.57% and a mean of 6.39% (Fig. 2a and Supplementary Table 1),
resulting in an average of 36.87% of total mRNAs being labeled (Sup-
plementary Fig. 2b). The sensitivity of gene detection is crucial for
scRNA-seq performance, and all chemical conversion treatments

compromised library complexity to some extent, consistent with
previous findings2,38. Among the chemical conversion methods, the
mCPBA/TFEA pH 5.2 reaction outperformed the others, minimally
impacting cDNAsize integrity (SupplementaryFig. 2d, e) anddetecting
approximately 2044 genes and 5468 UMIs per cell at a sequencing
depth of 10,000 reads per cell, comparable to untreated samples
(Fig. 2b, c and Supplementary Table 1).
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Collectively, these data provide a direct comparison and bench-
marking of various widely adopted chemical conversion methods.

mRNA control strategy during the cell cycle
Applyingmetabolic RNA labeling to high-throughput single-cell assays
enables the measurement of temporal gene expression dynamics,
distinguishing between newly synthesized and pre-existing RNA dur-
ing processes such as cell state transitions. After quality filtering, we
obtained 52,529 cells, which were classified into two clusters: steady-
state and dividing cells, based on the relatively high expression of well-
knownmitotic cell cycle genes (Fig. 2d andSupplementary Fig. 3a). Cell
type composition varied across chemical conversion conditions, with
OsO4 and IAA (37 °C) treatments depleting dividing cells (Supple-
mentary Fig. 3b, c). This suggests these conditions may impair the
detection of proliferative cells by affecting RNA stability or conversion
efficiency. To ensure that 4sU labeling itself does not alter cell cycle
dynamics, we performed flow cytometry analysis, which confirmed
that the addition of 4sU did not affect cell cycle distribution (Supple-
mentary Fig. 3d). Pearson correlation analysis revealed high con-
cordance between the on-beads methods for labeled and unlabeled
RNAs (Pearson’s r >0.9), whereas the correlation was lower (Pearson’s
r: 0.50–0.88) between in-situ and any of the on-beads methods. This
indicates that performing chemical conversion in intact cells versus
after mRNA release introduces more transcriptomic variation than the
choice of chemical method alone (Supplementary Fig. 4a).

Since marker genes in dividing cluster are enriched in mRNA
processing (Supplementary Fig. 4b), indicating active RNA synthesis,
we benchmarked the chemical conversion methods for their ability to
identify genes involved in the cell cycle. The expression of genes
involved in cell cycles, including tubb4b and ccnd1, showed a higher
proportion of labeled transcripts in single cells, while the house-
keeping genes like rplp0, known for their stability, maintained con-
sistent expression across all conditions (Fig. 2e, Supplementary
Fig. 5a, b, and Supplementary Table 2). These results further indicate
that a higher T-to-C substitution rate correlates with an increased
proportion of newly synthesized, labeled transcripts (Fig. 2e). Among
the labeled transcripts, mCPBA-based chemical conversion methods
demonstrated the highest conversion efficiency, without compromis-
ing library complexity in terms of the number of transcripts identified,
compared to the other chemical conversion methods (Fig. 2e).

To further investigate RNA turnover in steady-state cells, we
estimated the mRNA half-life based on the proportion of labeled
transcripts for eachgene (see “Methods”).We analyzed the half-lives of
17,653detected genes to assessmRNA stability (Supplementary Fig. 6).
As expected, cell cycle genes exhibited a faster turnover rate and
shorter half-lives compared to housekeeping genes (Supplementary
Fig. 6). Additionally, the top 10% most stable and unstable transcripts
were enriched for GO terms similar to those found in mouse
embryonic stem cells2 (Supplementary Fig. 6). Unstable transcripts
were primarily associated with cell cycle and transcription regulation,
while stable transcripts were linked to oxidative phosphorylation,
highlighting the conserved roles of transcription and oxidative phos-
phorylation between mammals and fish.

Identification of zygotically activated transcripts in zebrafish
embryogenesis
To evaluate the performance of optimal chemical conversion
method in vivo, we focused on the maternal-to-zygotic transition in
zebrafish. Zebrafish embryos were injected at the one-cell stage with
4sU, and cells were harvested at specific time points post-fertilization
to identify newly transcribed, zygotically activated transcripts and
distinguish them frommaternally deposited RNAs (Fig. 3a). Since the
proportion of zygotically activated transcripts is low, accounting for
less than 1% before 4 h post-fertilization (hpf), we focused on the
5.5 hpf stage, where zygotic transcripts represent 9.33% of the total
RNA pool27. After quality filtering, we analyzed 9883 embryonic cells,
classifying them into six clusters based on previously reported
markers7,8,39 (Fig. 3b, c).

To quantitatively distinguish the fractions ofmaternal and zygotic
transcripts for each gene, we estimated newly transcribed mRNA by
modeling from labeled transcripts, enabling us to deduce zygotic
mRNA from the total pool. We further partitioned expressed genes
into 10 equally sized bins (quantiles) based on their fraction of newly
transcribed zygotic mRNA, as previously described7 (see “Methods”
and Supplementary Fig. 7a). We benchmarked our ability to identify
zygotic genes based on the proportion of new RNA, comparing our
results to two published studies: one on 5.3 hpf embryos using on-
beads IAA-based method7, and the other on 6 hpf embryos using in-
situ IAA-based method8. For a direct comparison, we identified 14,043
commonly expressed genes across our three datasets and the two
public datasets. We defined zygotic genes based on their higher pro-
portions of newly transcribed RNA, using different new-to-total RNA
ratio (NTR) cut-offs (70%, 75%, 80%, and 85%; see “Methods” and
Supplementary Fig. 7a). This approach allowedus to classify the 14,043
commonly expressed genes into three categories: maternal-only (M),
zygotic-only (Z), and both maternally contributed and zygotically
expressed (MZ).

We compared the number of genes in each category (M, Z, and
MZ) across our datasets and the public datasets, finding that our
mCPBA-based methods identified a higher number and proportion of
zygotically expressed genes (Fig. 3d, e and Supplementary Fig. 7b, c),
likely due to the higher T-to-C substitution rates observed (Supple-
mentary Fig. 7d). Approximately 78% of genes with newly transcribed
RNA were classified as MZ genes (Fig. 3e), indicating that these genes
were maternally provided but also newly transcribed during zygotic
genome activation (ZGA). This proportion is highly consistent with
previous reports from bulk RNA-seq in zebrafish (74%MZgenes)40 and
nascent RNA-seq in Xenopus (78.4% MZ genes)41. Notably, as the NTR
ratio used to define zygotic gene classification increased, the differ-
ence in the number of identified zygotic genes between methods with
higher T-to-C substitution rates and those with lower rates also
increased (Fig. 3d and Supplementary Fig. 7b–d). This highlights the
significant advantage of optimizing the chemical conversion step for
improving zygotic gene identification. For example, using a 70% NTR
cut-off, 452 genes were shared across all five datasets, including tbx16,
marcksl1b, and cited4b, while 458 zygotic genes were identified across
the four on-beads methods (e.g., apoeb), and 131 zygotic genes were

Fig. 1 | Experimental design for benchmarking chemical conversion methods.
a Workflow for high-throughput scRNA-seq using metabolic labeling in ZF4 cells.
ZF4 cells were labeled with 4-thiouridine (4sU, 100μM), followed by cell dissocia-
tion and fixation. Chemical conversionwas performed either before or after single-
cell encapsulation on the Drop-seq platform. Newly synthesized transcripts were
detected via sequencing by identifying chemical-induced T-to-C substitutions.
b Summary of the ten chemical conversion methods evaluated in this study,
including key parameters such as the main reagent, buffer pH, temperature, reac-
tion time, and relevant references. “In-situ” refers to chemical conversionoccurring
within intactly fixed cells, while “on-beads” indicates that the chemical conversion
occurs after mRNA is released from the cells and captured on beads. IAA

iodoacetamide, mCPBA meta-chloroperoxy-benzoic acid, TFEA 2,2,2-tri-
fluoroethylamine, NaIO4 sodium periodate, NH4Cl ammonium chloride,
OsO4 osmium tetroxide. c Computational pipeline for data processing, starting
with fastq file pre-processing using Cutadapt and fastp, followed by read alignment
with Dynast and Dropseq-tools. T-to-C substitutions were identified using Dynast,
with R and Python scripts used for cell quality control, dimension reduction, new
transcript identification, and RNA velocity analysis (see details in “Methods”).
d Benchmarking criteria used to evaluate chemical conversion performance,
focusing on cDNA size, T-to-C substitution rate, and the number of genes and
unique molecular identifiers (UMIs) detected per cell.
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shared between our datasets and the in-situ method (e.g., akap12b)
(Fig. 3f and Supplementary Fig. 8a, b). We additionally identified 380
zygotic genes using mCPBA/TFEA method with a higher T-to-C sub-
stitution rate (pH 7.4), such as pnrc2 (Fig. 3f). Overall, the on-beads
methods consistently demonstrated higher conversion rates than the
in-situ method, resulting in a greater proportion of labeled mRNA per
cell (Supplementary Fig. 7d).

Whole-embryo in situ hybridization confirmed the expression of
selected representative genes at the animal pole at 5.5 hpf, validating
the accuracy of our classification and demonstrating the effectiveness
of our methods in identifying zygotic transcripts during zebrafish
embryogenesis (Fig. 3g). To confirm that these transcripts were newly
synthesized, we designed intronic probes for six genes and addition-
ally included marcksa and setdb1b, which were exclusively identified
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using themCPBA/TFEAmethod. Their unspliced transcript expression
at 5.5 hpf was validated using control probes for comparison (Sup-
plementary Fig. 8c). Additionally, we compared our dataset with a
zygote-specific gene list derived from intron signal capture in bulk
assays40. Our 4sU-labeled zygotic genes showed a strong overlap with
this dataset (odds ratio = 12.13, p < 2.2e-16, Fisher’s exact test, Supple-
mentary Fig. 9a), further supporting the robustness of our approach in
identifying zygotic gene activation. Furthermore, RNAvelocity analysis
based on metabolic labeling accurately captured the temporal
dynamics of gene expression in single cells during development, from
a proliferating progenitor state (primordial germ cell, PGC) to a more
differentiated state, such as enveloping layer (EVL) (Supplementary
Fig. 9b). This result aligns with previous findings2,37, showing that
metabolic labeling methods outperform splicing-based RNA velocity
predictions in accurately predicting cell fate. Moreover, cell cycle
scoring analysis revealed that PGCs had relatively fewer cells in the G1
phase, exhibited lower zygotic transcription, and retained maternal
mRNAs (Supplementary Fig. 9c, d). This aligns with the progressive
addition of the G1 phase during ZGA42.

While cell cycle arrest can enhance zygotic transcription, its
influence on cell-type-specific gene activation and the timing of ZGA
remains under investigation. In frogs, cell cycle lengthening promotes
ZGA41, but in zebrafish, Chk1 overexpression slows cell divisionwithout
affecting ZGA42. Leveraging our dataset, we found that ~38.8% of Chk1
overexpression-induced genes overlapped with zygotic genes, sug-
gesting that while ZGA timing is independent of cell cycle length, an
extended cycle enhances transcriptional competence (Supplementary
Fig. 9e, f). Moreover, Chk1-induced zygotic genes showed cell-type-
specific expression, with grhl3 and cldne enriched in the EVL and lft2
and tbxta in endoderm and mesoderm clusters (Supplementary
Fig. 9g). These findings indicate that cell cycle lengthening primes
lineage-specific gene activation, shaping early developmental tran-
scriptional programs.

Comparison between different high-throughput single-cell
platforms
The cell capture efficiency of the Drop-seq platform is around 5%31,
which is relatively low and may be challenging when working with
samples that have limited cell numbers, particularly during early
embryo development. To address this limitation, we evaluated two
widely used commercial microfluidic droplet-based high-throughput
platforms: 10× Genomics32,43 and MGI C435 platform. Both platforms
offer significantly higher capture efficiencies (~50%) but differ in their
flexibility for chemical conversion steps. TheMGI C4 platform enables
on-beads chemical conversion, similar to Drop-seq, whereas the
commercial 10× Genomics platform completes reverse transcription
with single-cell co-encapsulation, necessitating in-situ chemical con-
version for metabolic labeling (Fig. 4a, b).

We tested various chemical conversion methods on the MGI
C4 platform using hard magnetic barcoded beads and found that
TFEA-based methods were incompatible with these beads, leading
to low sequencing library complexity. Given that on-beads IAA
(32 °C) method showed a comparable T-to-C substitution rate to

the highest mCPBA-based method (Fig. 2a), we focused on this
method.

To comprehensively evaluate chemical conversion strategies, we
included all possible method-platform combinations: in-situ chemical
conversion (in-situ IAA, pH8.0) with 10× Genomics, C4, and Drop-seq,
as well as on-beads conversion (On-beads IAA, 32 °C) with C4 and
Drop-seq. The results showed: (1) For the same in-situ chemistry, C4
exhibited the highest T-to-C substitution rate (5.74%) (Fig. 4c, d). Both
10× Genomics (nGene: 670, nUMI: 1745) and C4 (nGene: 624, nUMI:
1263) showed comparable library complexity at 4000 reads per cell,
with both outperforming the customized Drop-seq platform, as
expected (Fig. 4e, f). Notably, the number of detected genes using in-
situ chemistry with 10× Genomics aligns with previous studies (nGene:
626, nUMI: 923) (Supplementary Fig. 10a, b), further validating the
robustness of our findings; (2) For the same platform, on-beads che-
mical reactions outperformed in-situ reactions in terms of T-to-C
substitution rate (Drop-seq: 6.57% vs. 3.53%; C4: 8.44% vs. 5.74%)
(Fig. 4d); (3) Overall, on-beads chemical conversion with the MGI C4
platform outperformed all other methods, achieving the highest T-to-
C mutation rates and superior library complexity (Fig. 4e, f).

In summary, the MGI C4 platform, which supports on-beads
chemical conversion, offers the highest sensitivity with the highest T-
to-C substitution rate (8.44%) and superior transcript detection,
making it ideal for rare cell populations such as early embryos.
Meanwhile, 10× Genomics, a widely adopted platform, is restricted to
in-situ chemical conversion, which reduces conversion efficiency but
maintains the highest library complexity. In contrast, the home-brew
Drop-seq system, while flexible, suffers from lower cell capture effi-
ciency (~5%) and reduced library complexity, making it optimal for
limited input cell number (Supplementary Fig. 11). Cost is also a key
consideration when choosing ametabolic labeling scRNA-seqmethod,
especially for large-scale studies or rare cell populations where max-
imizing transcript recovery is critical (Supplementary Table 3).

Discussion
Metabolic labeling of artificial nucleosides, such as 4-Thiouridine
(4sU)1,3,9–15,25,44, 5-Ethynyluridine (5EU)16–20, and 6-Thioguanosine
(6sG)1,21–25,43, enables the simultaneous identification of newly synthe-
sized and pre-existing RNAs in single cells by inducing conversions
detectable through sequencing, among which 4sU is the most widely
used. This technique integrates efficiently with high-throughput sin-
gle-cell RNA-seq platforms, enabling accurate, large-scale analysis of
RNA dynamics. While metabolic labeling has been applied to various
cultured cells using different chemical conversion methods, compre-
hensive comparisons of conversion efficiency, reverse transcriptase
read-through potential, gene detection bias, and library complexity
across different 4sU chemical conversion methods have been lacking.
In this study, we directly compared ten widely used methods to
benchmark their performance, using the same cell line, single-cell
platform, and standardized computational preprocessing steps.
Additionally, we developed computational pipelines for rigorous
quality control (Fig. 1). Our benchmarking results provide essential
guidelines for selecting optimal chemical conversion method and

Fig. 2 | Comparison and evaluation of ten chemical conversion methods using
ZF4 cells. a Box plot showing T-to-C substitution rates across control and ten che-
mical conversion methods in 4sU-labeled ZF4 cells. “Ctrl” denotes the untreated
control group (n= 7531 cells). The ten chemically treated groups, from left to right,
contain: n= 1587, 789, 5581, 5267, 4692, 4639, 5360, 6461, 5389, and 5233 cells. Box
plots show the median (center line), interquartile range (box), 1.5× interquartile
range. Source data are provided as a SourceData file.b, c Scatterplots comparing the
number of genes (b) or UMIs (c) detected per cell as a function of aligned reads per
cell across the ten chemical conversion methods. Color indicates treatment meth-
ods. Fitted lines for each method are included, along with the predicted number of
genes or UMIs detected per cell at a sequencing depth of 10,000 reads. In (b), the

curve is smoothed using locally weighted regression (LOESS), while in (c), a linear
model (LM) is applied. The estimated numbers of genes or UMIs at 10,000 reads are
displayed on the right of the figure. Source data are provided as a Source Data file. d
Uniform Manifold Approximation and Projection (UMAP) visualization showing
integrated control and datasets from the ten chemical conversion methods, repre-
senting 52,529 ZF4 cells. Cells are colored by cell type. The numbers of cells in each
group are also indicated. e Visualization of unique transcripts (UMIs) of the cell-cycle
gene tubb4b from individual ZF4 cells in the control group and across the ten che-
mical conversion methods. Grey circles represent uridines without T-to-C substitu-
tion, while crosses (“X“s) indicate uridines with T-to-C substitutions in at least one
read. The read coverage for each T-to-C substitution is displayed with color scaling.
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compatible platforms for studying RNA dynamics in complex biolo-
gical processes in terms of cost, cell type preservation, and sensitivity
(Supplementary Fig. 11).

Previous studies have shown that chemical conversion can sig-
nificantly hinder reverse transcription, potentially reducing library
complexity in scRNA-seqby causing incomplete cDNA synthesis2,38.We
analyzed the cDNA size of libraries generated with and without the ten
chemical conversion methods. Consistent with previous findings2,38,
we observed a negative correlation between conversion efficiency and
library complexity. Specifically, mCPBA/TFEA-based methods (pH 5.2
and pH 7.4) with second-strand synthesis effectively preserved RNA

integrity, resulting in an average cDNA size comparable to untreated
samples while achieving higher conversion efficiency (1091 bp vs.
1103 bp, Supplementary Fig. 2d, e). This method is particularly useful
for analyzing chemical conversion rates beyond the 3′ UTR and for
accurately predicting cell status transitions during cell cycle regula-
tion, as well as other complex biological systems.

In metabolic labeling experiments, T-to-C substitutions are key
indicators of newly synthesized RNA, essential for accurately quanti-
fying RNA dynamics. However, current labeling strategies often result
in incomplete 4sU incorporation into newly transcribed RNAs in
single cells2,38. Although binomial mixture model-based statistical
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corrections, as implemented in the new RNA estimation2,10,12 and the
dynast software used in this study, can partially mitigate this issue,
enhancing conversion efficiency remains critical for achieving higher
T-to-C substitution rates. Our study demonstrated that mCPBA/TFEA-
basedmethods (pH 5.2 and pH 7.4) usedwith the home-brewDrop-seq
platformoutperformedothermethods, achieving aT-to-C substitution
rate of > 8% with ~40% transcripts was labelled in adherent cultured
ZF4 cells. We note that chemical conditions can affect cell type com-
position; specifically, IAA chemistry at 37 °C for 1 h, but not at 32 °C for
15min, introduced a bias by selectively depleting proliferating cell
clusters. Alternatively, the low proportion of dividing cells (~3% in ZF4)
may hinder accurate quantification (Supplementary Fig. 3b, c). To
ensure a direct comparison across different chemical reactions, we
also tested these methods on fixed zebrafish embryonic cells. The
results showed that mCPBA/TFEA-based methods maintained their
efficiency, achieving T-to-C substitution rates comparable to, or
slightly higher than, those observed in published datasets using fresh
cells2. This increased substitution rate allows for the identification of a
greater proportion, achieving ~22% percent of transcriptome, of
zygotic genes with a cutoff of 70% new-to-total ratio, offering
increased flexibility in experimental design by eliminating the depen-
dence on fresh prepared samples. Additionally, the expression of
prnc2 in newly identified zygotic genes was experimentally validated,
further confirming the reliability of this chemical conversion method.

Our previous development of scNT-seq integrated TFEA-based
method with the home-brew Drop-seq platform, enabling on-beads
conversion of captured RNA attached to gel beads before reverse
transcription. However, this method is incompatible with the 10×
Genomics platform32, because reverse transcription is performed
during cell/bead co-encapsulation step. To address this, a recent study
on zygotic genome activation in zebrafish employed an optimized IAA-
based on-beads conversion step using the home-brew Drop-seq
platform7. While effective, the lower capture rate of the Drop-seq
platform (~5%) poses challenges when working with limited input
material, such as during early embryo development, especially in the
critical first wave of zygotic genome activation45,46. To overcome this
limitation, in-situ conversion using the commercial 10× Genomics
platform has been implemented due to its higher capture efficiency8.
However, our direct comparison showed that on-beads conversion is
more efficient than in-situ conversion when using the same method.
Notably, our analysis highlighted that the inefficient in-situ reaction
may lead to an underestimation of zygotic genes (Fig. 3d, e and Sup-
plementary Fig. 7b). To achieve both high capture efficiency and
effective T-to-C substitution, we benchmarked widely used commer-
cial platforms and found that the MGI C4 platform, when paired with
on-beads chemical conversion, offers the highest sensitivity. This
approach requires fewer input cells while providing superior capture
efficiency, higher T-to-C substitution rates, and enhanced detection of

genes and UMIs per cell (Fig. 4). Although the barcoded beads used in
the MGI C4 platform are incompatible with TFEA-based method, they
are fully compatible with IAA-based method without compromising
sensitivity. Our findings provide valuable guidance for selecting the
appropriate scRNA-seq platform and chemical conversion method for
large-scale single-cell RNA labeling. Additionally, our optimized che-
mical conversion methods are compatible with emerging single-cell
platforms like PIP-seq47, which supports on-beads chemical conver-
sion, further extending the applicability of metabolic RNA labeling in
high-throughput single-cell transcriptomics. Furthermore, Well-TEMP-
seq5, which also utilizes barcoded beads similar to Drop-seq and scNT-
seq, could benefit from our optimized on-beads chemical conversion
to enhance sensitivity.

ZGA is temporally and spatially coordinated process essential for
embryonic development8,48. While its timing in zebrafish appears
independent of cell cycle length, studies40,42 and our data suggest that
cell cycle lengthening enhances transcriptional competence, promot-
ing lineage-specific gene activation. By integrating single-cellmetabolic
labeling with a Chk1 overexpression-induced cell cycle arrest model,
we demonstrated that this approach provides a refined perspective on
how cell cycle dynamics shape cell-type-specific gene expression dur-
ing early embryogenesis. These insights highlight the value of our
optimized metabolic RNA labeling-based scRNA-seq for studying ZGA
and cell cycle regulation in vertebrate development. Furthermore, our
optimized chemistry, readily adaptable to spatial transcriptomics,
enables precise mapping of newly synthesized transcripts across
embryonic tissues. With enhanced sensitivity, it offers a powerful tool
for advancing spatial ZGA profiling and uncovering new insights into
lineage-specific gene activation and embryonic patterning.

While our optimized chemical conversion methods enhance the
sensitivity and transcript recovery of 4sU-based metabolic labeling,
our approach is currently limited to poly(A)-tailed mRNAs, excluding
key non-coding RNAs (e.g., microRNAs, lincRNAs, and endogenous
retroviral elements) that play critical roles in early
embryogenesis40,49,50. Integrating poly(A)-independent single-cell RNA-
seq methods, such as Smart-seq-total51 or snRandom-seq52, could
provide a more comprehensive transcriptomic view. Additionally,
direct RNA sequencing approaches53 bypass chemical conversion
entirely, offering an alternative for tracking RNA modifications, which
could complement 4sU-based techniques.

Beyond standard single-cell RNA-seq, our optimized chemical
conversion conditions can be integrated with other platforms and
technologies to expand its utility. scGRO-seq54, a single-cell adapta-
tion of GRO-seq, employs click chemistry to capture actively tran-
scribing RNA polymerases, providing high-resolution insights into
transcriptional burst kinetics and nascent RNA synthesis. Combining
4sU labeling with scGRO-seq could offer a more comprehensive view
of transcriptional dynamics by distinguishing between newly

Fig. 3 | Identification of zygotically activated transcripts in zebrafish embry-
ogenesis using improved chemical conversion methods. a Zebrafish embryos
were injected at the one-cell stagewith 4-thiouridine (4sU, red), which incorporates
into newly transcribed zygotic mRNA, leaving pre-existing maternal mRNA unla-
beled. Embryos were collected at 5.5 h post-fertilization (hpf), dissociated into
single cells, and analyzed using the Drop-seq platform with improved chemical
conversion methods, inducing T-to-C substitutions in newly transcribed (zygotic)
mRNA. b Uniform Manifold Approximation and Projection (UMAP) projection of
9883 single cells fromzebrafish embryos at 5.5 hpf, colored by six cell-type clusters.
The number of cells in each group is indicated. EVL enveloping layer, PGC pri-
mordial germ cell. c Violin plot displaying the marker genes for identified cell
clusters. The expression level of each marker gene is color-coded based on the
median expression in each cluster, with the color gradient ranging from light blue
(low expression) to dark blue (high expression), scaled across all clusters.
d Histogram depicting the number of identified zygotic genes across three che-
mical conversion methods in our study, compared to published data7,8. The x-axis

represents different new-to-total RNA ratio (NTR) thresholds, while the y-axis and
the numberswithin the bars indicate the gene counts. Source data are provided as a
SourceDatafile.e Stackedbar chart showing the proportions of identifiedmaternal
(M), maternal-zygotic (MZ), and zygotic (Z) genes (NTR> 70%) across three che-
mical conversion methods in our study compared to published data7,8. Colors
indicate gene types. f Venn diagram showing the overlap of defined zygotic genes
from (e) among different chemical conversion methods and published studies,
highlighting both unique and shared genes. Tbx16, marcksl1b, and cited4b are
identified in all datasets. Apoeb is uniquely identified in the on-beads methods
across four datasets, excluding the in-situ chemical conversion study by ref. 8.
Akap12b is detected in four datasets, excluding the study by ref. 7. Pnrc2 is exclu-
sively detected in our mCPBA/TFEA method (pH 7.4). g In-situ hybridization
staining validation of 5.5 hpf zebrafish embryos for mRNAs of zygotic genes indi-
cated in (f). Scale bar: 200μm. Each staining pattern was visualized in three inde-
pendent samples and yielded similar results.
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synthesized transcripts and ongoing transcription activity. While the
compatibility of 4sU labeling with click chemistry requires further
validation, a more practical approach would be to apply metabolic
labeling scRNA-seqmethods, such as scNT-seq, alongside scGRO-seq
on the same samples and integrate the data computationally to
capture both newly synthesized transcripts and actively transcribing
RNA polymerases.

In conclusion, our comparison of ten key methods for metabolic
labeling in scRNA-seq demonstrated that the mCPBA/TFEA-based
method is optimal for quantifying transcriptomes from large cell
populations (e.g., > 100,000 cells), especially considering potential
cell loss during handling steps like centrifugation and washing. Con-
versely, the on-beads IAA-based method, compatible with scRNA-seq
platforms utilizing barcoded beads for mRNA capture, allows efficient
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buffer exchange for chemical conversion onbeads, as seen inMGI C435

and Well-Paired-seq34. Leveraging this commercial platform enhances
transcriptome analysis, particularly for low-input cell samples (e.g.,
<10,000 cells). This analysis provides a robust framework for making
informed decisions about the most appropriate methods and sets the
stage for future advancements in time-resolved scRNA-seq meth-
odologies (Supplementary Fig. 11). These insights will deepen our
understanding of RNA dynamics and enhance the interpretation of
RNA regulation in diverse biological systems.

Methods
Ethics
All fish were maintained and experiments conducted in accordance
with protocols reviewed and approved by the Animal Ethics Commit-
tee on Laboratory Animal Care and Use of Shanghai Ocean University,
with approval granted on February 26, 2022.

ZF4 cell cultures and 4sU metabolic labeling
ZF4 cell lines were cultured in DMEM/F12 (Gibco, C11330500BT)
medium supplemented with 10% fetal bovine serum (FBS) (Gibco,
A5669701) and 1% penicillin-streptomycin (Gibco, 15140-122). The cells
were maintained at 28 °C with 5% CO2 and passaged every 3 to 4 days.
For labeling experiments, 4-thiouridine (4sU) (Alfa Aesar, J60679) was
dissolved in dimethylsulfoxide (DMSO) (Sigma-Aldrich, D5879-
500ML) to create a 1M stock solution. Two days before labeling, ZF4
cells were seeded at a density of 2 × 105 cells per mL. The 4sU labeling
was performed by incubating ZF4 cells in freshmedium supplemented
with 4sU at a final concentration of 100 μM, following previously
established protocols55. After 4 h of labeling, the cells were rinsed once
with DPBS (BBI, C14190500BT) and dissociated into single-cell sus-
pensions using 0.25% Trypsin-EDTA (Gibco, 25200056) for 2 to
3min at 28 °C.

Zebrafish maintenance
Fish are maintained at 28 ±0.2 °C on a 14-h light/10-h dark cycle. Ani-
mals up to 5 days post-fertilization (dpf) are maintained in culture
medium (5mM NaCl (BBI, A501218-0001), 0.17mM KCl (BBI, A501159-
0500), 0.33mMCaCl2 (BBI, A100556), 0.33mMMgSO4 (BBI, A601988-
0250), and 0.1% Methylene blue (BBI, A610622-0025)). Embryos were
grown and staged according to standard procedures56. Zebrafish
embryos from wild-type AB and TU strains were used for all experi-
ments. Sex was not considered, as it is difficult to determine and not
relevant at the early embryonic stages analyzed in this study.

Embryo microinjection and single-cell suspension preparation
Fertilized eggs were collected and maintained in culture medium at
28 °C. One-cell stage wild-type zebrafish embryos were microinjected
with 1 nL of 50mM 4sU containing 1 ng/μL non-toxic fluorescent dex-
trandye (Invitrogen, D1821) to visually confirm the successful injection
of 4sU under fluorescencemicroscopy. At 5.5 h post-fertilization (hpf),
200 injected embryos were randomly collected per sample after

visually confirming they had reached the expected developmental
stage. Embryos were dechorionated by treatment with 1mg/mL pro-
tease from Streptomyces griseus (Sigma-Aldrich, P8811-1G) in 60mm
dishes coatedwith 2% agarose (Biowest, BY-R0100; dissolved inwater).
The dechorionated embryos were then placed in 1mL of ice-cold
deyolking buffer (55mMNaCl, 1.8mMKCl, and 1.25mMNaHCO3 (BBI,
A610482-0500)) in an Eppendorf tube and gently pipetted up and
down about 10 times with a P1000 tip until the yolk was dissolved. The
tube was then centrifuged at 500 × g for 1min at 4 °C. The final pellet
was resuspended in 200μL DPBS containing 0.01% bovine serum
albumin (BSA) (Sigma-Aldrich, A8806-5G).

Flow cytometry analysis of cell cycle states in ZF4 cells
After 4sU labeling, ZF4 cells were dissociated into single cell suspen-
sion as described above. The cells were counted, and aliquots of 1
million cells were dispensed into labeled tubes, followed by washing
with DPBS and centrifugation for 5min at 100 × g. For fixation, the cell
pellet was resuspended in 300μL PBS with gentle vortex, followed by
the addition of 700μL ice cold ethanol dropwise while continuously
vortexing. The mixture was then incubated at 4 °C for 30min to
overnight. After fixation, the cells were centrifuged and resuspended
in 250μL of DPBS followed by the addition 5μL of 10mg/mL RNase A
(Sigma-Aldrich, R-6513) to a final concentration of 0.2–0.5mg/mL. The
cellswere then incubated at 37 °C for one hour. Cells were then stained
by adding 10μL of a 1mg/mL propidium iodide (PI) solution (Sigma-
Aldrich, P-4170) to a final concentration of 10μg/mL, and kept in the
dark for at least one hour until analysis. The cell cycle was analysed
using the BD FACSMelody (BD Biosciences). Fractions of cells in each
phase were quantified using FlowJo software V10.8.1 (Supplementary
Fig. 3d). During quantification, lymphocytes were identified by gating
on forward-scatter area (FSC-A) and side-scatter area (SSC-A).Doublets
were excluded using FSC-A versus forward-scatter height (FSC-H).
Cohesive cells were further exclude using PE-A versus PE-H (adjust the
PE coordinates to linear). Using the Cell Cycle plug-in to conduct cell
cycle analysis: select the appropriate channel (PE-A) for the horizontal
coordinate and select the appropriate fitting algorithm Watson
(Pragmatic) in the model.

Cell fixation, cryopreservation, and rehydration for sample
processing
After 4sU labeling, ZF4 cells or zebrafish embryo cellswere dissociated
into single cell suspension as described above. For cell fixation and
cryopreservation, the dissociated cells were then resuspended in
200μL of DPBS containing 0.01% BSA, and 800μL of cold methanol
(Sigma-Aldrich, 34860-4L-R) was added dropwise, resulting in a final
concentration of 80% methanol in DPBS. The cell suspension was
mixed and incubated on ice for one hour, after which the methanol-
fixed cells were stored at −80 °C for up to one month.

For sample rehydration, cells were taken out from −80 °C and
kept on ice throughout the entire procedure. The cells were cen-
trifuged at 1000× g for 5min at 4 °C, and the methanol-DPBS solution

Fig. 4 | Comparison between 10× Genomics, Drop-seq and MGI C4 high-
throughput single-cell platforms. a Overview of metabolic labeling high-
throughput scRNA-sequsing 10×Genomics,Drop-seq, andMGIC4platforms inZF4
cells. Both platforms are capable of performing on-beads chemical conversion
reactions during the librarypreparation steps.b Schematic comparisonof the three
high-throughput scRNA-seq platforms, highlighting differences in input cell
quantity, beads materials, capture efficiency, time consumption, and key steps
involved in library preparation. RT reverse transcription. c Proportion of UMIs
containingT-to-C substitutions under different conditions andplatforms. The color
gradient indicates the number of T-to-C substitutions per read, with darker shades
representing a higher number of substitutions within the UMI. “Ctrl” represents the
control group without chemical treatment; “In-situ” refers to “In-situ IAA, pH8.0”
method, while “on-beads” indicates “On-beads IAA, 32 °C” chemistry in (c–f).

Source data are provided as a Source Data file. d Box plot showing T-to-C sub-
stitution rates across the scRNA-seq platforms. Different colored boxes represent
various platforms and treatment methods. The box edges correspond to the 25th
and 75th percentiles, with the x-axis displaying types of base substitutions. Ctrl
represents the control sample without chemical treatment. Source data are pro-
vided as a Source Data file. e, f Scatterplots showing the number of genes (e) or
UMIs (f) detected per cell as a function of aligned reads per cell across the different
platforms. Different colored dots represent various platforms and treatment
methods. Fitted lines and predicted numbers of genes or UMIs detected per cell at
4000 reads are shown for each platform. The predicted values for 4000 reads are
displayed in the upper left corner of the figure. The curve in (e) is smoothed using
locally weighted regression, while in (f) is smoothed using a linear model.
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was carefully removed. The cells were then resuspended in 1mL of
rehydration buffer (0.01% BSA in DPBS supplemented with 1 U/μL
RNase inhibitor (Lucigen, F83923-1) and 100mM Dithiothreitol (DTT,
Thermo Scientific, R0862)). Following another centrifugation at
1000 × g for 5min at 4 °C, the rehydration bufferwas removed, and the
cells were resuspended in 1mL of DPBS containing 0.01% BSA. The cell
suspension was passed through a cell sieve and counted. The single-
cell suspension was then diluted to a concentration of either 100 cells
per μL for Drop-seq or 800–2000 cells per μL for MGI C4, and
immediately used for downstream processing.

Single cell RNA library preparation and sequencing
For 10× Genomics, the cells underwent chemical conversion using in-
situ IAA-based methods to convert 4sU into a cytidine analog prior to
single cell capture by 10× Genomics (see details in the “Chemical
conversion reactions” section). After chemical conversion, we per-
formed all steps following the 10× protocol. Cellular suspensions and
other reagents were loaded into the chip (10× Genomics). Then we ran
the Chromium Controller for single-cell GEMs generation. Single-cell
RNA-Seq libraries were prepared using Chromium Next GEM Single
Cell 3′ Reagent Kits v3.1 (10× Genomics). GEM-reverse transcription
(RT) was performed in a C1000 Touch Thermal cycler with 96-Deep
Well Reaction Module: 53 °C for 45min, 85 °C for 5min; held at 4 °C.
After RT, GEMs were broken, and the single-strand cDNA was cleaned
upwithDynaBeadsMyOneSILANE. Then cDNAwas amplifiedusing the
C1000 Touch Thermal cycler with 96-Deep Well Reaction Module:
98 °C for 3min; cycled 11×: 98 °C for 15 s, 63 °C for 20 s, and 72 °C for
1min; 72 °C for 1min; held at 4 °C. Amplified cDNA product was
cleaned up with 0.6× SPRIselect Reagent (Beckman Coulter, B23318).
Then cDNA libraries were constructed using the reagents in the
Chromium Next GEM Single Cell 3′ Library Kit v3.1, following these
steps: (1) fragmentation, end repair and A-tailing; (2) post fragmenta-
tion end repair and A-tailing double sided size selection with SPRIse-
lect; (3) adapter ligation; (4) post ligation cleanup with SPRIselect; (5)
sample index PCR and cleanup. After quality control using a Bioana-
lyzer 2100 (Agilent, 5067–4626), libraries were sequenced on an Illu-
mina HiSeq X Ten instrument (Illumina).

For Drop-seq, cell and barcoded bead co-encapsulation, library
preparation, and sequencingwereperformed55. Specifically, the single-
cell suspensionwas counted anddiluted to a concentrationof 100cells
per μL in PBS containing 0.01% BSA. The flow rates for cells and beads
(Chemgenes, MACOSKO-2011-10) were set to 4000μL per hour, while
QX200 droplet generation oil (Bio-rad, 1864006) was run at 15,000μL
per hour. After droplet breakage, the beads underwent chemical
conversion using SLAM-seq or TimeLapse-seqmethods to convert 4sU
into a cytidine analog (see details in the “Chemical conversion reac-
tions” section). Reverse transcription, library preparation, and
sequencing were then performed. In brief, for up to 120,000 beads,
200μL of reverse transcription mix (1× Maxima reverse transcription
buffer, 4% Ficoll PM-400 (Sigma, F4375-25G), 1mM dNTPs (Clontech,
639125), 1 U/μL RNase inhibitor (Lucigen, 30281-2), 2.5μM template
switch oligo (TSO: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG),
and 10U/μL Maxima H Minus reverse transcriptase (Thermo Fisher,
EP0753)) were added. The reverse transcription reaction was carried
out at room temperature for 30min and then at 42 °C for 2 h. After
Exonuclease I treatment (NEB, M0293L), pooled beads were washed
once with TE-SDS buffer (10mM Tris-HCl pH 8.0 (Invitrogen, 15568-
025), 1mM EDTA, and 0.5% SDS) and twice with TE-TW buffer (10mM
Tris-HCl pH 8.0, 1mM EDTA, and 0.01% Tween-20). The beads were
resuspended in 500μL of 0.1MNaOH and incubated for 5min at room
temperature with rotation. To neutralize, 500μL of 0.2M Tris-HCl pH
7.5 (Invitrogen, 15567-027) was added. The beads were washed once
with TE-TW buffer and once with 10mM Tris-HCl pH 8.0. Second-
strand synthesis was performed to increase library recovery. For the
second-strand synthesis reaction, the beads were resuspended in

200μL of reaction mixture (1× Isothermal Amplification Buffer, 4%
Ficoll PM-400, 1.4mM dNTPs, 6mM MgSO4, 10μM TSO-N3G2N4B
(AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNNB; N =A, T, C, G at
a 25:25:25:25 ratio), and 0.4U/μL Bst 3.0 DNA polymerase (NEB,
M0374)). The reaction was incubated at 60 °C for 15min with rotation
and then stopped by washing the beads once with TE-SDS buffer and
twice with TE-TW buffer.

To determine the optimal number of PCR cycles for cDNA
amplification, PCR reactions (~6000 beads per tube) were prepared in
50μL volumes (25μL of 2× KAPA HiFi HotStart ReadyMix (KAPA Bio-
systems, KK2602), 0.4μL of 100μM TSO-PCR primer (AAGCAGTGG-
TATCAACGCAGAGT), and 24.6μL of nuclease-free water). Full-length
cDNA was amplified with the following thermal cycling conditions:
95 °C for 3min; 4 cycles of (98 °C for 20 s, 65 °C for 45 s, 72 °C for
3min); 9–12 cycles of (98 °C for 20 s, 67 °C for 45 s, 72 °C for 3min);
72 °C for 5min; held at 4 °C. cDNA was then tagmented using the
Nextera XT DNA Sample Preparation Kit (Illumina, FC-131-1096),
starting with 550–600pg of pooled cDNA from all PCR reactions. The
library was further amplified with 12 enrichment cycles using Illumina
Nextera XT i7 primers and the P5-TSO hybrid primer (AATGA-
TACGGCGACCACCGAGATCTA-
CACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC). After
quality control using a Bioanalyzer 2100 (Agilent, 5067–4626), librar-
ies were sequenced on an Illumina HiSeq X Ten instrument (Illumina).
Custom Read 1 Primer (GCCTGTCCGCGGAAGCAGTGGTATCAACG-
CAGAGTAC) was added.

ForMGI C4, scRNA-seq libraries were prepared using theDNBelab
C Series Single-Cell Library Prep set (MGI, 940-001818-00, https://
www.mgi-tech.com//Uploads/Temp/file/20240329/66066e0f968cd.
pdf)35. Single-cell suspensions were converted to barcoded scRNA-seq
libraries through droplet encapsulation and emulsion breakage. After
droplet breakage, the beads underwent chemical conversion using the
on-beads IAA reaction (see details in the “Chemical conversion reac-
tions” section). The beads were then washed once with 1× SSC, fol-
lowed by reverse transcription, enzyme digestion, second-strand
synthesis, PCR amplification of the cDNA library, and indexed
sequencing libraries according to themanufacturer’s protocol. Library
concentration was quantified using a Qubit dsDNA Assay Kit (Thermo
Fisher Scientific, Q32854). Final libraries were sequenced on MGI
DNBSEQ-T7 sequencer. The read structure was paired-end with Read 1
(30 bases) covering the 10-bp cell barcode 1, 10-bp cell barcode 2, and
10-bp unique molecular identifier (UMI), and Read 2 (100 bases) con-
taining the transcript sequence.

Chemical conversion reactions
For in-situ IAA, chemical conversion was conducted after cell fixation
and prior to cell rehydration (see details in the “Cell fixation, cryo-
preservation, and rehydration for sample processing” reaction):

1) for the in-situ IAA pH 7.5 method8,9, cells were first removed
from −80 °C on to ice, and 1M iodoacetamide (IAA) (Sigma-Aldrich,
I1149-25G) solution was added in 80% methanol and 20% DPBS
containing 0.01% BSA to a final concentration of 10mM, incubating
the mixture on ice for 15min, followed by incubation at 50 °C
for 15min;

2) for the in-situ IAA pH 8.0 method3,4, cells were first removed
from −80 °C on to ice for 3mins and gently resuspended. Cells were
then spun down at 2000 × g, 4 °C for 5min and resuspended in 1mL
DPBS containing 0.1% DEPC, 3% BSA, and 10mM DTT, spun again and
resuspended in 100μL DPBS containing 3% BSA. To this suspension,
220μL water, then 40μL NaPO4 buffer, then 40μL 100mM IAA were
added. Cells were incubated at 50 °C for 15min, being gently resus-
pended every five minutes;

For on-beads IAA, chemical conversion was conducted after dro-
plet breakage and prior to the reverse transcription (see details in the
“Single cell RNA library preparation and sequencing” section):
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3) for on-beads IAA 32 °C7,9, the beads were washed once with
300μL of 5× IAAbuffer (250mMNaPO4, pH8.0) and then incubated in
300μL of IAA reaction mixture (10mM IAA, 50mM NaPO4, pH 8.0,
20% DMSO and 6% Ficoll PM-400 (Sigma, F4375-25G)) for 15min at
32 °C. The reaction was stopped by adding 6μL of 1M DTT to a final
concentration of 20mM;

4) for on-beads IAA 37 °C5,6, the beads were resuspended in
reaction buffer (50mM DPBS, 10mM IAA, 10% DMSO, pH 8.0) and
incubated at 37 °C for 1 h. Then, 10mM DTT was added to stop the
reaction;

For on-beads TimeLapse10,36,55, following droplet breakage, beads
were washed with 300μL of 6× SSC and then incubated in 250μL of
the respective reaction mixture for 1 h at 45 °C:

5) for the mCPBA/TFEA pH 5.2 method, 600mM 2,2,2-tri-
fluoroethylamine (TFEA) (MREDA, M014297), 1mM EDTA (Invitrogen,
15575-038), and 100mM sodium acetate pH 5.2 (Invitrogen, AM9740),
with 10mM meta-chloroperoxy-benzoic acid (mCPBA) (Alfa Aesar,
AAAL00286-14);

6) for the mCPBA/TFEA pH 7.4 method, 600mM TFEA, 1mM
EDTA, and 100mM Tris-HCl pH 7.4, with 10mM mCPBA;

7) for the NaIO4/TFEA pH 5.2 method, 600mMTFEA, 1mM EDTA,
and 100mM sodium acetate pH 5.2, with 10mM sodium periodate
(NaIO4) (Across Organics, AC419610050);

8) for the NaIO4/TFEA pH 7.4method, 600mMTFEA, 1mMEDTA,
and 100mM Tris-HCl pH 7.4, with 10mM NaIO4;

9) for the NaIO4/NH4Cl pH 8.8 method, 600mM ammonium
chloride (NH4Cl) (Sigma, 09718), 1mMEDTA, and 100mMTris-HCl pH
8.8, with 10mM NaIO4;

After the on-beads TimeLapse-based reaction, beadswerewashed
with 500μL of TE buffer (10mM Tris-HCl pH 8.0, 1mM EDTA pH 7.5)
and incubated in 500μL of reducing buffer (10mM DTT, 10mM Tris-
HCl pH 7.5, 1mM EDTA, 100mM NaCl, and 0.8U/μL RNase Inhibitor)
for 30min at 37 °C.

For on-beads TUC-seq30,36, following droplet breakage, beads
were washed with 300μL of 6× SSC and then incubated in 250μL of
the reaction mixture for 3 h at 50 °C:

10) for the OsO4/NH4Cl pH 8.8 method, 180mM NH4Cl and
0.45mM OsO4.

Whole-mount in situ hybridization of zebrafish embryos
Whole-mount in situ hybridization (WISH) in zebrafish embryos
(Fig. 3g and Supplementary Fig. 8c) was performed according to the
published protocol57. Briefly, DNA templates were amplified from
cDNA obtained from wild-type embryos at 5.5 hpf using the primers
synthesised in Sangon Biotech (Shanghai, China) (see Supplementary
Table 4). Antisense and sense-strand (as negative control) RNA probes
were labeled with digoxigenin-linked nucleotides (Roche,
11277073910) and transcribed in vitro using T7 RNA polymerase
(Thermo Fisher, AM1320). The probes were subsequently purified by
LiCl (Invitrogen, 9480G)/ethanol (Sangon Biotech, A500737-0500)
precipitation. Zebrafish embryos intended for WISH were collected at
5.5 hpf and fixed overnight in 4% paraformaldehyde (BBI, E672002-
0500). After fixation, embryos were washed with PBS containing 0.1%
Tween-20 (Sigma-Aldrich, P7949-500ML), dehydrated in 100%
methanol for 15min at room temperature, and stored at −20 °C for at
least 24 h. After rehydration, embryos were incubated in hybridization
solution (50% Formamide (Thermo Fisher, 17899), 5× SSC (Corning,
46-020-CM), 50 µg/mL heparin (BBI, A603251-0001), 500 µg/mL tRNA
(Sigma, R6750-100G), 0.1% Tween-20) at 70 °C. Following 4 h of pre-
hybridization, 100 ng of RNA probe was added, and hybridization was
conductedovernight at 70 °C. Embryoswere thenwashed andblocked
in a solution of 2mg/mL BSA, 2% sheep serum, and 0.1% Tween-20 for
3 h, then incubated overnight with anti-digoxigenin (DIG) antibody
(1:5000 in blocking solution) (Roche, 11093274910). Finally, embryos
were washed and stained with a solution of 0.321mg/mL Nitro Blue

Tetrazolium (Sigma, N6639) and 0.175mg/mL 5-bromo-4-chloro-3-
indolyl phosphate (Sigma, B-8503) in alkaline Tris buffer (100mMTris-
HCl, pH 9.5, 50mM MgCl2, 100mM NaCl, 0.1% Tween-20). After
staining, embryos were washed and imaged using a ZEISS Axio Zoom
V16 fluorescence microscope.

Read alignment and quantification of metabolically labeled
transcripts
DropSeq datasets. For the raw paired-end sequencing data fromDrop-
seq experiments, eachmRNA read was uniquely identified by combing
a cell barcode (bases 1–12 of Read 1) and a unique molecular identifier
(UMI, bases 13–20 of Read 2). Sequencing adapters and polyA tails
form Read 2 were trimmed using fastp v0.20.1 with the parameters
“–trim_poly_x, --adapter_sequence TCTTTCCCTACACGACGCTCTT
CCGATCT”58, while sequences beyond the initial 20 bases of Read 1
were removed using cutadapt v4.259 (parameters: -u −105). The
remaining sequences from Read 1 were aligned to the zebrafish gen-
ome assembly (GRCz11, Ensemble release 108) using dynast
v1.0.137(https://github.com/aristoteleo/dynast-release/) align com-
mand (parameters: –soloCellFilter CellRanger2.2 “predicted number
of cells in the experiment” 0.99 10). Reads mapped to exonic or
intronic regions of annotated genes on the predicted strand were
retained for downstream analyses.

To quantify labeled and unlabeled RNA, we used the dynast v1.0.1
count command (parameters:–conversionTC,–barcode-tagCB,–umi-
tag UB), generating the rates.csv file for calculating T-to-C substitution
aswell as other base substitution rates (Figs. 2a, 4d and Supplementary
Fig. 2a, 7d). T-to-C substitutions with a Phred quality score > 27 were
retained for quantification. The proportion of labeled RNA was calcu-
lated using the labeled_TC and unlabeled_TC layers from the adata.-
h5adfile in dynast, enabling the identification of labeled and unlabeled
RNA (Supplementary Fig. 2b).

MGIC4datasets. For the rawpaired-end sequencingdata from the
MGI C4 libraries, DNBC4tools (https://pypi.org/project/DNBC4tools/)
and dynast v1.0.1 were used. Each mRNA read was uniquely identified
by a combination of two cell barcodes (located within bases 6–15 and
22–31 of Read 1) and a UMI (bases 37–46 of Read 2). First, DNBC4tools
was employed to generate a barcode whitelist, and the barcode/UMI
positions were defined in the parameter settings of dynast software.
Subsequently, the align and count command were run (align para-
meters: –soloCBmatchWLtype 1MM –soloCBwhitelist whitelist1
whitelist2, count parameters: –conversion TC, –barcode-tag CB, –umi-
tag UB), to calculate T-to-C substitutions (Fig. 4d and Supplementary
Fig. 7d), and generated labeled and unlabeled countmatrices based on
the adata.h5ad file from the dynast output.

For the correlation analysis, we first retrieved the expression
values for both labeled andunlabeledRNA.These valueswere then log-
transformed, and pairwise Pearson correlation coefficients were cal-
culated using cor function in R (Supplementary Fig. 4a), scatter plots
were generated with the pairs function in R (parameters: gap =0,
lower.panel = custom function, pch = 20). The custom function used
for this visualization is detailed in the “Data and code availability”
section.

To calculate the proportion of UMIs containing T-to-C substitu-
tions (Fig. 4c and Supplementary Fig. 2c), we quantified the T-to-C
substitution UMI count for each cell from counts_TC.csv file and cal-
culated the proportion of labeled UMIs per cell, visualizing the data
using ggplot2 v3.4.4 (https://github.com/tidyverse/ggplot2). To
visualize T-to-C substitutions in transcripts with unique UMIs for a
specific gene in a cell, we used the scNT-seq Perl script (https://github.
com/wulabupenn/scNT-seq) to extract the gene, UMI, and read infor-
mation across all cells. For single-gene visualization, a custom R
function was applied to process the sequencing data, calculate base
changes for each UMI, and mark T-to-C substitution events. Scatter
plots were then generated to display these substitutions across
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genomic positions for different UMIs (Fig. 2e and Supplementary
Fig. 5a, b).

Curve fitting and prediction of detected genes and transcripts
based on sequencing depth
To predict the number of detected genes (nGene) and transcripts
(nUMI) across samples, we applied both locally weighted regression
(LOESS) and linear regression (LM)models. For nGene predictions, we
used the loess function from the R stats package with the following
parameters: formula = nGene ~ reads, span=0.75, degree = 2,
method = “loess”.We selected cellswithmore than 100detected genes
from ZF4 cell line samples and more than 200 detected genes from
5.5 hpf zebrafishembryo samples. Basedon thefitted LOESSmodel, we
predicted the number of genes detected at 10,000 reads for
ZF4 samples (Fig. 2b) and at 4000 reads for zebrafish samples (Fig. 4e
and Supplementary Fig. 10a).

For nUMI predictions, we employed the lm function with the
parameters: formula = nUMI ~ reads, method = “qr”, model = TRUE.
Cells with more than 400UMIs were selected from both ZF4 and
zebrafish samples. Linear regression was applied to assess the rela-
tionship between UMI counts and read counts, predicting nUMI
detection at 10,000 reads for ZF4 samples (Fig. 2c) and 4000 reads for
zebrafish samples (Fig. 4f and Supplementary Fig. 10b).

Calling consensus sequences and filtering SNPs
To handle reads from different regions of the same mRNA, consensus
sequences were generated using the dynast consensus procedure with
default parameters. Samples without chemical conversion served as
control to exclude SNPs that could interfere with accurate T-to-C
substitution identification, SNPs were detected using the dynast count
command (parameters: –control, –snp-threshold 0.5, –conversion
TC), and background substitution rates for unlabeled RNA were cal-
culated with the estimate command (parameter: –control), outputting
to p_e.csv. Finally, labeled and unlabeled count matrices were gener-
ated using the dynast count command (parameters: –snp-csv,
–conversion TC), filtering out SNPs.

Estimation of the fraction of newly synthesized transcripts
To estimate newly synthesized transcripts, we modeled the distribu-
tion of unlabeled and labeled RNA counts using a binomial mixture
model10,12. We employed dynast for the statistically estimation of new
and old transcripts based on labeled and unlabeled UMI counts
(parameters: –method alpha, –p-e p_e.csv). The alphamethod, derived
from the detection rate estimation used in scNT-seq2, is particularly
well-suited for handling sparse data. This approach estimates the
substitution rate for both unlabeled and labeled RNA, allowing us to
model the fraction of newly synthesized RNA within the total RNA
pool. As a result, we were able to categorize mRNA counts into five
distinct types: unspliced, spliced, estimated-labeled, estimated-unla-
beled, and total RNA matrices.

Cell-type clustering and dataset integration
For benchmarking the ten chemical conversion methods (Fig. 1a, b)
using ZF4 cell line samples, we combined the raw digital expression
matrices of labeled and unlabeled UMI counts. These matrices were
processed using the R package Seurat v4.3.060. Quality control mea-
sures were applied to filter out low-quality cells, including those with
mitochondrial UMI counts ≥10% or those with fewer than 400 ormore
than 4000detected genes. After these filters were applied, 41,240 cells
remained for downstream analysis.

To integrate the single-cell RNA sequencing data from different
chemical treatments and untreated controls (Fig. 2d and Supple-
mentary Fig. 3b), we employed the Canonical Correlation Analysis
(CCA) method within the Seurat package, using the FindInte-
grationAnchors and IntegrateData functions. Each sample was

normalized independently, and highly variable genes were identified
using the FindVariableFeatures function (parameters: selection.-
method = vst and nfeatures = 2000). CCA was then performed on
these 2000 highly variable genes to reduce dimensionality, selecting
the top 10principal components (PCs) for further analysis. UMAPwas
used for visualization via the RunUMAP function (parameters:
umap.method = umap-learn). Clustering was performed using the
FindCluster function (parameters: resolution = 0.02), and marker
genes for each cluster were identified using the FindAllMarkers
function (parameters: min.pct = 0.25, logfc.threshold = 0.25, tes-
t.use = “wilcox”). Seurat makes available a list of cell cycle marker
genes, and then we performed homologous gene conversion for
thesemarker genes in Ensembl Biomart, extracted the corresponding
gene expression levels from the normalized data using the Aver-
ageExpression function, and visualized the data through a heatmap
using the ComplexHeatmap v2.14.0 package. To assess whether
there were significant differences in the number of dividing cells
identified by different methods, a Wilcoxon rank-sum test was per-
formed. The results were visualized using a box plot, providing a
comparative overview of the distribution of dividing cell counts
across methods (Supplementary Fig. 3c).

For the 5.5 hpf zebrafish embryo samples, raw digital expression
matrices of labeled and unlabeled UMI counts were processed using
Python. Preprocessing was executed with omicverse v1.5.7 (https://
github.com/Starlitnightly/omicverse)61. Quality control wasperformed
using the qc function from the OmicVerse package (parameters:
tresh = {‘mito_perc’: 0.1, ‘nUMIs’: 800, ‘detected_genes’: 400},
mt_startswith = ‘mt-‘). Cells with mitochondrial gene expression ≥ 10%,
UMI counts <800, or fewer than 400 detected genes were excluded.
Potential doublets were identified and removed.

Principal component analysis (PCA), neighborhood graph com-
putation, and neighborhood graph embedding were conducted using
Scanpy v1.9.662. The dataset was normalized using scanpy.pp.norma-
lize_total (parameters: target_sum= 1e4), followed by logarithmic
transformation with scanpy.pp.log1p. Highly variable genes were
identified using scanpy.pp.highly_variable_genes (parameters: min_-
mean=0.0125, max_mean = 3, min_disp = 0.5). Dimensionality reduc-
tion was performed with scanpy.tl.pca (parameter:
svd_solver = ‘arpack’), and principal components were ranked based
on variance using sc.pl.pca_variance_ratio (parameter: log = True),
selecting the top16PCs.Theneighborhoodgraphwas computedusing
sc.pp.neighbors (parameters: n_neighbors = 10, n_pcs = 16,
use_rep = ‘X_pca’).

To correct for batch effects from different experimental condi-
tions, we applied Harmony integration using scanpy.external.p-
p.harmony_integrate with default parameters63. UMAP clustering and
visualization were performed using scanpy.tl.umap (parameters:
n_components = 2, method = ‘umap’) (Fig. 3b). Cluster-specific marker
genes were identified with the rank_genes_groups function in Scanpy
(parameters: Wilcoxon rank-sum test) (Fig. 3c). Genes with an adjusted
P-value < 0.05 (Bonferroni corrected) were considered differentially
expressed.

Gene Ontology and KEGG pathway enrichment analysis
Functional enrichment analysis (Supplementary Fig. 4b) of differen-
tially expressed genes was performed using R package clusterProfiler
v4.6.2, based on hypergeometric distribution64. GO term enrichment
was performed using the enrichGO function (parameters: OrgDb =
org.Dr.eg.db, ont = ‘ALL’, pAdjustMethod = ‘fdr’). For KEGG pathway
enrichment, zebrafish gene symbols were converted to entrezids
using the toTable function (parameters: org.Dr.egSYMBOL), fol-
lowed by pathway enrichment using the enrichKEGG function
(parameters: gene = ENTREZID, organism = ‘dre’, keyType = ‘kegg’,
pAdjustMethod = ‘fdr’). GO terms or KEGG pathways with FDR< 0.05
were considered significantly enriched (Supplementary Fig. 6).
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New-to-total RNA ratio (NTR) partition for identifying zygoti-
cally activated transcripts
Wecalculated thenew-to-totalRNA ratio (NTR) bydividing thenumber
of labeledUMIs detected for eachgeneby the total number ofUMIs for
the same gene in each cell. To benchmark the distribution of maternal
and zygotic genes across three chemical conversion methods, on-
beads IAA, mCPBA/TFEA (pH 5.2 and pH 7.4), we retained 1711, 2953,
and 3654 cells, respectively, from the methods after passing filtering
criteria set by Omicverse. Genes with fewer than 10 UMIs were filtered
out. For each dataset, the retained genes were divided into ten equally
sized bins. The data were visualized using violin plots (Supplementary
Fig. 7a). Following the gene classification criteria based on the pro-
portion of new RNAs from a published study7, genes in the top bins
were classified as zygotic based on defined NTR thresholds (NTR >
70%, 75%, 80%, and 85%), while those in the bottom bins were classi-
fied as maternal (NTR < 5%). For the two published datasets, raw fastq
files were downloaded from NCBI under accession numbers
GSE2249187 andGSE1588498, andprocessedusing the samepipeline as
in this study. This allowed for a direct comparison of maternal (M),
maternal-zygotic (MZ), and zygotic (Z) genes identified by the three
chemical conversion methods (Fig. 3d, e and Supplementary Fig. 7b).
Overlap between gene sets with different NTR thresholds was visua-
lized using Venn diagrams generated by ggVennDiagra v1.5.2 (https://
github.com/gaospecial/ggVennDiagram), highlighting shared zygotic
genes across methods (Fig. 3f and Supplementary Fig. 7c).

Estimation of RNA half-life
WeestimatedRNAhalf-life following themethodology fromaprevious
studybasedonone timepoint 4sU labeling experiment2. For eachgene
in the data sets from ZF4 cell line using mCPBA/TFEA (pH 5.2 and 7.4)
methods, we separately aggregated the labeled and unlabeled UMI
counts in steady-state cells. The fraction of labeled transcripts was
calculated by dividing summed labeled UMI counts by the total UMI
counts. We defined n as the metabolically labeled RNA, r as the total
RNA abundance, t as the labeling time, and h as the RNA half-life for
each gene in each cell. The half-life (h) can be calculated as:

h=
ln 2ð Þt

�ln 1� n
r

� �

Following this,we ranked thehalf-lives of 17,653genes fromshortest to
the longest. The top 10% (unstable) and bottom 10% (stable) of genes
were selected for functional enrichment analysis (Supplemen-
tary Fig. 6).

RNA velocity analysis
To compute RNA velocity based on metabolic labeling, we used
dynamo v1.4.0 (https://github.com/aristoteleo/dynamo-release)37.
The preprocessing steps included gene filtering, normalization,
highly variable genes identification, principal component analysis
(PCA), and neighbor graph construction. RNA velocities were then
estimated using the dynamo.tl.dynamics function with “stochastic”
dynamical model (parameters: experiment_type = “one-shot,”
n_top_genes = 3000, NTR_vel = True, re_smooth=True, and model = “

stochastic”). High-dimensional velocity vectors were projected into
two-dimensional UMAP space using dynamo.tl.reduceDimension
function with default parameters and visualized using dynamo’s
streamline plot. Phase diagrams and randomized streamline plots
were generated using the default settings of dynamo.pl.streamli-
ne_plot function (Supplementary Fig. 9b). For splicing velocity ana-
lysis, we used spliced and unspliced RNA matrices generated by
dynast pipeline. RNA velocities were estimated using a “determinis-
tic” dynamical model with parameters set to calc_rnd_vel = True. The
downstream processing and visualization steps followed the same
procedure as in the metabolic labeling velocity analysis.

Data from Lee et al. processing
Supplementary Data 1 from ref. 40 was downloaded, and genes
expressed in both the 6 hpf dataset from Lee et al. and the 5.5 hpf
dataset analyzed using the mCPBA/TFEA pH 7.4 method were identi-
fied. Genes classified asmaternal, weaklymaternal, and zygotic in the 6
hpf dataset from Lee et al. were compared with genes categorized as
maternal, maternal-zygotic, and zygotic using themCPBA/TFEA pH 7.4
method. A Fisher’s exact test was performed to assess the statistical
significance of gene set overlaps. To further illustrate the shared
zygotic genes between these classifications, a Venn diagram was gen-
erated (Supplementary Fig. 9a).

Chk1 data processing
Raw 4 hpf zebrafish embryo sequencing data corresponding to Chk1
overexpression and Triptolide-treated Chk1 overexpression condi-
tions were obtained from the study by ref. 42 (NCBI Sequence Read
Archive, accession numbers SRR8552566 and SRR8552569). The raw
FASTQ files were subjected to quality control, where low-quality bases
and adapter sequences were trimmed and filtered using fastp with
default parameters.

The processed reads were then mapped to the Danio rerio refer-
ence genome (GRCz11, Ensembl release 108) usingHISAT2 v2.2.165 with
default settings. Properly aligned reads were assigned to genomic
features for gene-level quantificationusing featureCounts v2.0.366with
parameters -p and -t exon, ensuring that only exonic regions were
considered for read aggregation at the gene level. The resulting gene
expression matrix was used for downstream analysis.

Genes with a total count greater than 10 across all samples were
retained for downstream analysis. The filtered count matrix was then
normalized using the reads per kilobase per million mapped reads
(RPKM)method. The log2 fold change (log2FC) values were computed
as the logarithm (base 2) of the ratio between the RPKM-normalized
expression levels in the Chk1 overexpression and Triptolide-treated
Chk1 overexpression conditions. Genes with log2 fold change values
greater than or equal to 2 were selected for further analysis. To assess
the overlap between differentially expressed genes and the target
genes identified using the mCPBA/TFEA pH 7.4 method, a Venn dia-
gram was constructed to visualize the common and unique gene sets
(Supplementary Fig. 9e). Significant cell type marker genes from the
5.5 hpf embryo dataset were selected based on an adjusted p-value
threshold of less than 0.05. Among these, the top 20 overlapping
genes with the differentially expressed gene set were identified. To
visualize their expression patterns, violin plots were generated, illus-
trating the distribution of expression levels across different cell type
(Supplementary Fig. 9g). Then, based on the log2 fold change (log2FC)
values of the commonly detected genes and their NTR values derived
from themCPBA/TFEA pH 7.4 method, a scatter plot was generated to
illustrate the distribution of these genes. This visualization provided
insights into the relationship between differential expression patterns
and transcript stability across conditions, allowing for a comparative
assessment of gene regulation dynamics (Supplementary Fig. 9f).

5.5 hpf embryo dataset cell cycle analysis
For the 5.5 hpf embryo chemical perturbation dataset, cell cycle ana-
lysis was performed using the CellCycleScoring function in Seurat to
classify cells into G1, S, and G2M phases. The scoring genes were
derived from the default cell cycle marker set in Seurat, with homo-
logous zebrafish genes identified using Ensembl Biomart. To explore
the proportion of different cell cycle phases within various cell types,
an alluvial plot was generated using ggalluvial67 and ggplot2 (Supple-
mentary Fig. 9c). Additionally, based on NTR values, maternal genes
(<5%) and zygotic genes (>70%) were identified within each cell cycle
phase. The G1-phase cells in primordial germ cells (PGCs) were too few
in number to accurately determine the distribution of maternal-
zygotic genes. A bar plot was generated to illustrate the proportions of
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maternal, maternal-zygotic, and zygotic genes in different cell types
across cell cycle phases (Supplementary Fig. 9d).

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Data visualization
All plots were generated using the ggplot2 v3.4.4 (https://github.com/
tidyverse/ggplot2), cowplot v1.1.1 (https://github.com/wilkelab/
cowplot), ComplexHeatmap v2.14.068 and matplotlib v3.6.3 (https://
github.com/matplotlib/matplotlib) packages. Box plots display the
median (center line) and interquartile range (25th to 75th percentile),
withwhiskers representing 1.5 times the interquartile range, and circles
indicating outliers. Violin plots include a gray line on each side,
representing a kernel density estimate of the data distribution. Wider
sections indicate higher probability, while thinner sections indicate
lower probability.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data associated with this study are available in the
Genome Sequence Archive at the National Genomics Data Center
under accession no. CRA023644. Source data are provided with this
paper. Published datasets used in this study are available in the NCBI
Gene Expression Omnibus, under accessions GSE158849, GSE224918,
GSE47558, and SRP184786 (for the zygotically expressed genes com-
parison). Source data are provided with this paper.

Code availability
The analysis source code is available on the GitHub repository (https://
github.com/penghu-sc/Benchmarking-Metabolic-RNA-Labeling/) and
source code has been deposited in Zenodo (https://doi.org/10.5281/
zenodo.15567719).
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