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The development of programmable quantum devices can bemeasured by the
complexity ofmany-body states that they are able to prepare. Among themost
significant are topologically ordered states of matter, which enable robust
quantum information storage and processing. While topological orders are
more readily accessible with qudits, experimental realizations have thus far
been limited to lattice models of qubits. Here, we prepare and measure a
ground state of the Z3 toric code state on 24 qutrits (obtained by encoding
one qutrit into two qubits) in a trapped ion quantum processor with fidelity
per qutrit exceeding 96.5(3)%. We manipulate two types of defects which go
beyond the conventional qubit toric code: a parafermion, and its bound state
which is related to charge conjugation symmetry. We further demonstrate
defect fusion and the transfer of entanglement between anyons and defects,
which we use to control topological qutrits. Our work opens up the space of
long-range entangled states with qudit degrees of freedom for use in quantum
simulation and universal error-correcting codes.

The unprecedented tunability of quantum processors has opened up
the on-demand preparation and control of topologically ordered (TO)
quantum states1–9. Creating these states in programmable quantum
computers does not only allow for the simulation of complex many-
body systems, but also provides a code-space for quantum computa-
tion. In particular, the quasiparticle excitations of TO phases of matter
—known as anyons—exhibit exchange statistics beyond those familiar
from bosons or fermions10–13. The robust braiding of such anyons
constitutes the primitive of topological quantumcomputation14,15. This
experimental program is being extended to increasingly complex TOs,
including non-Abelian TO16–18 as well as defects that enrich the com-
putational power of Abelian TO19,20.

While anyons are pointlike deformations of the state, defects are
associated to extended objects, like lattice dislocations or vortices in

superfluids. As such, using defects to process quantum information in
a topologically protected way is subject to more caveats than is the
caseof genuine anyonic excitations, as these rigid objects areharder to
move and their braiding properties are more restrictive. On the other
hand, defects can exist in comparatively less exotic states: A familiar
example is the non-AbelianMajorana defect which can be inserted into
the toric code21, whereas Majorana anyons require a non-Abelian
topologically ordered state22. In fact, defects can be seen as precursors
to anyons. More precisely, defects are often related to global physical
symmetries of the system and gauging these symmetries promotes
defects into genuine anyons of a larger TO23. Thus, gauging introduces
a hierarchy on the space of TOs24.

For the conventional toric code15, the only defects are the afore-
mentioned Majoranas, associated with the e ↔ m duality symmetry of
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the toric code, which exchanges the role of flux and charge and which
is realized by mapping the square lattice to its dual or, equivalently,
applying a Hadamard gate on each qubit and translating by half a
lattice spacing. Here, and throughout this work, we will refer to the
presence of anyons (like e and m) whenever a stabilizer term in the
Hamiltonian is violated, i.e., its expectation value ismaximally different
from the ground state value (+1). The hierarchy accessible through
gauging is thus restricted. A richer class opens up by upgrading qubits
to qutrits: a toric code based on the gauge groupZ3 hosts two kinds of
charges and fluxes; e.g., the electric e-anyon is no longer its own anti-
particle, the latter now denoted as �e, and similarly for the flux anyons
m, �m. Correspondingly, a new charge conjugation symmetry emerges:
e $ �e,m $ m. The resulting symmetry-enriched physics has received
much attention, not least because it forms the backbone of certain
proposals for obtaining universal non-Abelian error correction codes
which can be prepared with constant-depth adaptive circuits24–34.
Despite the theoretical interest, qudit-based TOs such as the Z3 toric
code have so far eluded experimental observation both by devices
with native qutrit degrees of freedom35, as well as qubit-based
platforms.

Here, we report the preparation of high-fidelity ground states of
Z3 toric codes with periodic boundary conditions on up to 6 × 4 = 24
qutrits. We explicitly prepare two types of defects (Fig 1): a paraf-
ermion defect (PF) and its conjugate (PF*)36–40 which, similar to the
Z2-case, are related to dislocations of the lattice. Further, we prepare a
charge conjugation (CC) defect, which has no analog in the qubit toric
code and is related to globally conjugating all charges and fluxes on-
site. We verify their fusion rules by measuring their action on test
anyons. Finally, we use these novel defects to produce a topological
qutrit and initialize it by appropriately injecting long-range entangle-
ment between twoCC defect pairs. Experimentally, these advances are
enabled by recent upgrades to Quantinuum’s H2 ion-trap quantum
computer allowing the use of 56 effectively all-to-all connected qubits,
with two-qubit gate fidelities exceeding 99.8%41,42. These gate fidelities
allow us to encode qutrit degrees of freedom into the native qubits of
the device (cf. Supplementary Methods) and still achieve sufficiently
high fidelities for the resulting one- and two-qutrit gates.

Results
Model & ground state preparation
To initialize our experiments, we first prepare the ground state of the
rotated Z3 toric code. The Hilbert space consists of qutrit degrees of
freedom, namely j0i, j1i, and j2i, on the vertices of a square latticewith
periodic boundary conditions. Similar to the simpler case of the Z2

toric code, we define stabilizers A=XyXX yX and B=ZZZyZy, which

act non-trivially on alternating plaquettes of the lattice (Fig. 2a) 15,43. X
and Z correspond to the qutrit clock matrices:

Zjii=ωijii and X jii= ji+ 1 ðmod3Þi ð1Þ

where ω = e2πi/3. While all A and B stabilizers commute due to the
commutation relationXZ =ωZX , they arenotHermitianoperators. To
probe their expectation values, we consider the following projectors:

Πα
A =

1
3
ð1+α2A+αA2Þ and

Πα
B =

1
3
ð1+α2B+αB2Þ,

ð2Þ

where α 2 f1,ω, �ωg.
The Hamiltonian for the Z3 toric code is defined as:

H = �
X

p 2 type� A

plaquettes

Π1
Ap

�
X

p 2 type� B

plaquettes

Π1
Bp
:

ð3Þ

The ground state subspace of the Hamiltonian is the simultaneous +1-
eigenspace of the Ap and Bp stabilizers. In analogy to the familiar case
of Z2 toric code, stabilizer violations on plaquettes indicate the pre-
sence of anyons. Specifically, a violationΠ1

A =0 (i.e., A ≠ + 1) on a type-A
plaquette signals the presence of a charge anyon (e or �e), while a
violation Π1

B =0 on a type-B plaquette indicates the presence of a flux
anyon (m or �m). The anyon type can be determined by measuring Πω

A
and Π�ω

A : ðΠω
A ,Π

�ω
A Þ= ð1, 0Þ indicates the presence of an e anyon, while

ðΠω
A ,Π

�ω
A Þ= ð0, 1Þ signifies an �e anyon. Similarly, flux anyonsm and �m can

be distinguished bymeasuringΠω
B andΠ�ω

B . On a torus, the ground state
subspace of H is spanned by nine degenerate states. These states can
be distinguished by the logical string operators Zhori and Zvert, which
are products of qutrit Z and Zy operators that wrap around the torus
in the horizontal and vertical directions, and take values 1,ω, �ω.

To prepare the logical j00iL ground state characterized by
Zhori = + 1 =Zvert, we use the protocol described in ref.44 and shown in
Fig. 2b, c): The initial state of the N qutrits in the quantum processor,
j0i�N , already fulfills B = + 1 for all B-type plaquettes. We proceed by (i)
choosing an A-type plaquette and a representative qutrit within it
which is transformed into the state j+ i : = 1ffiffi

3
p ðj0i+ j1i+ j2iÞ, and (ii)

applying a sequence of controlled-X (CX) or CX y gates to the
remaining qutrits within the plaquette, with the choice of gate (CX or
CXy) determined bywhether the target qutrit is acted uponbyX orXy

in the stabilizer A (Fig. 2c). The action of the CX gate on two qutrits is

Fig. 1 | Concept.We start with 56 trapped 171Yb+ ions in a quantum charge-coupled
device and algorithmically encode pairs of qubits into qutrits. This allows us to
prepare ground states of Z3 toric codes on tori of up to 6 × 4 qutrits. We conduct

experiments to study the relationship between the anyons and the topological
defects of this system, namely parafermion (shaded yellow) and charge conjuga-
tion defects (hatch pattern).
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CX ji, ji= ji, i+ j ðmod3 Þi. We repeat steps (i) and (ii) until all but one
A-type plaquettes have been chosen, while carefully avoiding to des-
ignate a qutrit as representative that has previously been acted on by a
CX gate (see Fig. 2d for our chosen ordering). The final plaquette is
implicitly prepared due to the symmetry constraint on the operators
∏p Ap = 1.

At the end of the circuit, wemeasure all qutrits in both theX and
Z bases to compute the expectation value of Π1

� for every plaquette.
A barrier is inserted before performing destructive qutrit measure-
ments which ensures that the entire quantum state is prepared
before the measurements collapse the wavefunction into single
qutrit eigenstates. As our qutrit encoding uses two qubits per qutrit,
the remaining one-dimensional subspace can be used to detect
errors during preparation that cause qutrits to leak outside of the
qutrit subspace. These errors are heralded, and the corresponding
shots are discarded, representing ~11% of the total number of shots.
The values presented in the main text are computed from the
remaining, retained shots (cf. Supplementary Note 2 for the raw data
for different system sizes).

To assess the quality of the prepared state, we show the expec-
tation value ofΠ1

� for each plaquette, as well as the logical operators in
Fig. 2d, e. The logical mean values were computed by averaging across
columns for horizontal operators and across rows for vertical opera-
tors. Measurement of the correlations between stabilizers of a given
type allow us to bound the fidelity per site with the logical j00iL state,
detailed in Supplementary Note 1, as

0:965ð3Þ≤ h00jLρj00iL
� �1=24

≤0:984ð2Þ ð4Þ

and the lower bound further increases to 0.974(3) after accounting for
readout errors, as discussed in Supplementary Note 2.

We observe that the expectation value of Π1
Ap

for the implicitly
prepared plaquette (i.e., the bottom right plaquette in Fig. 2d) is

Fig. 2 | Preparation of qutrit toric code. a Square lattice on a torus with qutrits on
the vertices. b Qutrits are initialized in the j0i state, satisfying B = + 1 (visually
represented by the intense turquoise color of type-B plaquettes, in contrast to the
faded green color of type-A plaquettes, which donot satisfy theA = + 1 condition at
this stage). c Preparation of one of the type-A plaquettes. One of the qutrits is
initialized in the j+ i state. This qutrit is used as a control, and we apply CX or CXy

gates to other qutrits in the plaquette. This leads to satisfyingA = + 1, indicated by a
bright green color on the right-hand side of the arrow. A small square in one corner
of the plaquette indicates the control qutrit. The numberwithin the square denotes
the order in which the corresponding stabilizer is prepared.d Expectation values of
projectors Π1

� obtained by measuring qutrits in the X and Z basis. The maximum
error in estimating the expectation values is 0.022. The mean energy density, 〈H〉/
24≥ − 1, is found to be − 0.945(3). eMean expectation values of projectors for the
logical X and Z operators in two directions on the torus closely match the theo-
retical predictions: hΠ1

Zhori
i= hΠ1

Zvert
i = 1 and hΠ1

Xhori
i= hΠ1

Xvert
i= 1

3. All error bars in this
work denote one standard error on the mean.

Fig. 3 | Creation of and braiding around parafermion defects. Any plaquette
containing an anyon is colored black, with the value of maxðΠω

� ,Π
�ω
� Þ displayed. An

arrowwithin each plaquette indicates the direction specified by the arg 〈stabilizer〉,
where the stabilizer could be Ap, Bp, or any of the defect stabilizers. The arrow’s
direction serves as a visual cue to distinguish anyons from their conjugates. a, b A
pair of defects is inserted into the ground state by measuring the middle qutrit in
the XZ-basis and performing feed-forward based on the measurement outcome.

c A sketch illustrating the braiding experiment in steps (d–g). A pair of charges, e
and �e, is created by applying a Z operator, which toggles the eigenvalues of the
neighboring green ðXÞ-type plaquettes. Charge �e remains fixed, while e is dragged
through the defect pair and emerges as m on the other side of the defect pair,
signaled by the fact a blue (Z-type) plaquette is now excited. The maximum esti-
mation error is 0.022.
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generally slightly lower than the expectation values of the remaining
type-A plaquettes, which are explicitly prepared. This observation can
be attributed to the fact that, if a charge pair (e� �e) is created due to a
Z or Zy error during state preparation, the sequential preparation of
plaquettes will drag one of these spurious anyons all the way to final
plaquette. This is in contrast to non-unitary preparation schemes
where no significant translation symmetrybreaking has been observed
even when subjected to noise4,5.

Parafermion defects
Equipped with a high-fidelity ground state, we turn to the study of
topological defects. One type of defect supported by the Z3 toric
code generalizes the well known em-defect of its Z2 counterpart.
That defect acts on the flux and charge anyons by exchanging their
identities and behaves like a Majorana22,45, which has been used
experimentally to implement logical Clifford gates on aZ2 toric code
background19,20. In contrast, for the Z3 toric code, a generalization
of such a defect has been predicted to have parafermion fusion
rules46

PF ×PF= 1+ �em+ e �m: ð5Þ

By fusion outcome, we mean the resultant stabilizer measurement
when two excitations aremoved to the same location on the lattice. As
wewill see, twodistinct species of parafermions, labeled PF andPF* can
arise in the Z3 case.

To deterministically prepare a pair of PF defects we first initialize
the ground state and then measure one of the qutrits in the basis in
which either the operator XZ or XZy (corresponding to the distinct
parafermion species) is diagonal. We apply a feedforward operation
based on the measurement outcome which ensures that the corre-
sponding defect stabilizers have definite values. Specifically, when the
measurement outcome is 1, we apply aZ � Z � Zy to the left, bottom-
left and bottom-center qutrit in Fig. 3a. If themeasurement outcome is
2, the conjugate is applied instead and no action in case of a 0 mea-
surement outcome. Having created the ground state with an initialized
em-defect pair (cf. Figure 3b), we create a charge-anticharge (e� �e)
pair and subsequently braid e around one of the defects using the
qutrit clock matrices (Fig. 3d–g). Upon passing through the line con-
necting the defects, a change in stabilizer expectation values indicates
that a permutation

e ! m ð6Þ

has occurred. Finally, at the end of the experiment, we are left with a
single dyon �em, i.e., the fusion outcome in (5) has been toggled from
the identity to the dyon channel. This demonstrates the parafermion
behavior predicted for the Z3 toric code.

Charge conjugation defects and relation to parafermions
The richer anyon content of the Z3 toric code allows for another type
of topological defect, which has no analog in theZ2 case: As an anyon

Fig. 4 | Creation and braiding of CC defects and their relation to parafermions.
aGround state of theZ3 toric codewith aCCdefect pair. The endpoints of the thick
line, representing the CC construction circuit U, correspond to high-weight stabi-
lizersA0 and B5 (defined in Supplementary Fig. 9c). These stabilizers aremarked by
a hatching patternwith a ' × ' symbol, and their values are omitted for clarity as they
label the internal state of the defects which is not locally accessible. b A sketch of
the braiding experiment in (c–f). A flux pairm� �m is created. �m is transmuted into
m by commuting it through the CC defect line, and it is then fusedwith the fixedm
anyon at the top right corner through a sequence of four steps (c–f), by applying

X 1,Xy
2,Xy

3, andXy
4. gOutline of the braiding experiment in (h) where the CCdefect

pair is fused. This is achieved by applying the same circuit U used in (a) (see
Supplementary Note 5). The dashed line shows the path (as implemented by U)
taken to fuse the defect pair.The altered state of the CC defect pair is revealed as a
fluxm at one endpoint. i A sketch of the braiding experiment in (j). We prepare the
ground state and create two parafermion defect pairs. The m flux from the pair
m� �m created in the secondplaquette from the top, leftmost corner remains fixed,
while its partner �m anyon is commuted through two parafermion defect pairs. The
resulting m is then fused with the pinned m to give a single �m anyon.
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traverses a line connecting a pair of such charge conjugation (CC)
defects, it is turned into its antiparticle, i.e., e $ �e and m $ �m.
Experimentally demonstrating the action of this novel type of defect is
what we turn to next.

To this end, we apply a circuit U (cf. Supplementary Fig. 9b)
to the ground state of the Z3 toric code. A key ingredient of the
CC defect pair unitary construction is the one-qutrit charge
conjugation gate, which acts as Cjii= j � i ðmod3 Þi. Intuitively, the
circuit construction unzips the Z3 toric code to a trivial para-
magnet, applies C to this trivial state, and then returns to the Z3

toric code—see Supplementary Note 4 as well as47 for a more in-
depth derivation. We then create a pair of m� �m anyons and
move �m through the line connecting the CC defect pair. This
operation transforms

�m ! m, ð7Þ

as evidenced by the change in the direction given by arg 〈stabilizer〉,
which is visually represented by an arrow within each plaquette in
Fig. 4. The arrow direction changes approximately from 120∘ to 240∘ in
the excited plaquettes on two sides of the CC defect line (Fig. 4(c, d)).
The transformed anyon (m) is then transported around the torus and
fused with its partner (another m), resulting in a single �m particle
(Fig. 4(e, f)).

Crucially, as the �m particle traverses the defect line, it alters the
internal state of the CC defect pair which is invisible for local obser-
vables. This altered state manifests itself as anm anyon (cf. Figure 4h)
upon coherently moving and fusing back the CC defect pair by
applying the same unitary U used in Supplementary Fig. 9b (cf. Sup-
plementary note 5 for why applying U again achieves coherent
movement of the endof aCCdefect), demonstrating an instance of the
fusion rules

CC×CC= ð1+ �em+ e �mÞð1+ em+ �e �mÞ: ð8Þ

We will later exploit the ability of the CC defect pair to store infor-
mation in its fusion channel, which allows for the distribution of
entanglement in a non-local way.

Having demonstrated the action of parafermion (6) and CC
defects (7) on the anyons, we are now in a position to demonstrate
their mutual fusion rule, namely,

PF ×PF* =CC, ð9Þ

i.e., the combined action of a parafermion defect and its conjugate is
equivalent to that of a charge conjugation. Note that (9) is compatible
with multiplying (5) with its conjugate and comparing to (8). To illus-
trate this, we generate two pairs of parafermion defects (cf. Figure 4j).
For thefirst pair,wemeasure thequtrita1 in theXZ basis and the qutrit
a2 in the XZy basis, resulting in a pair of PF defects. Similarly, for the
second pair, we measure qutrit b1 in the XZ basis and qutrit b2 in the
XZy basis, producing a pair of PF* defects. Qutrit measurements are
followed by a real-time feedforward operation to deterministically
initialize the parafermion defects. Next, we act with X 1, which creates
anm anyon in a type-A plaquette and simultaneously excites the inner
defect plaquette of the left parafermion defect pair (Fig. 4j). We then
move one of the anyons to the right, wrapping around the torus. The
left parafermion defect pair transmutes �m to �e, while the right
parafermion defect pair changes �e to m. This m anyon is then fused
with its partner, the originalm anyon, leaving us with a single �m anyon.
This is the exact same outcome we obtained for a similar anyon
trajectory and a single pair of CC defects, which would similarly
transform an �m ! m whenmoved across. In addition, Supplementary
Fig. 8 demonstrates the conjugation of (part of) a parafermion defect
line with a CC defect line, effectively resulting in a conjugate
parafermion defect line.

A topological qutrit
Finally, having established control over the anyons and defects of the
Z3 toric code,we use these ingredients to producea topological qutrit.
ref.48 gives the standard definition of a topological qutrit as a collec-
tion of four non-Abelian quasiparticles whose overall fusion outcome
is neutral but individual pairs have three possible fusion outcomes.

The non-Abelian objects we use to create such a qutrit are given
by twopairs of charge conjugationdefects, created from the toric code
vacuum. In principle, a pair of defects can have nine different fusion

Fig. 5 | Entanglement transfer from anyons to CC defects for initializing
topological qutrits. a A sketch of the different steps, with intermediate states,
involved in moving a charge anyon around defects. The braiding followed by
measuring anancilla transfers aBell state of chargeanyons intoanentangled logical
state of CC defects. b Results for the final step as depicted in (a). We create Z3

ground state with two pairs of defects, labeled 1 and 2 (cf. Supplementary Fig. 10).
Defect pair 1, marked with the × -hatch pattern, extends between points B0 and A7.
Defect pair 2, indicated by the /-hatch pattern, has endpoints B1 and A8. The orange
loop represents a braid that stabilizes the prepared topological qutrit state; a black

borderon the solid circle indicates the application ofXy, while its absence indicates
X . The expectation values of the projectorsΠ1

B0
andΠ1

B1
for the non-local stabilizers

are0.931(15) and0.927(15), respectively.Wemeasure the expectation valuesofΠ1
A7
,

Π1
A8
, and Π1

A7A8
for different ancilla outcomes (∣0a

�
, ∣1a

�
, and ∣2a

�
). For Π1

A7
, the

measured values are 0.44(5), 0.40(5), and 0.39(5), respectively. Similarly, for Π1
A8
,

the values are 0.44(5), 0.42(5), and 0.36(5). Finally, Π1
A7A8

yields values of 0.81(4),
0.78(4), and 0.74(4) for the respective ancilla states. This is a manifestation of the
fact that, although the outcomes for each individual defect pair are random, they
are jointly in an entangled state.
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outcomes, according to Eq. (8), representing two qutrits worth of
information. For simplicity, here we will focus on the single-qutrit
subspace spanned by

jϕ1i= j1112i+ je1�e2i+ j�e1e2i
� �

=
ffiffiffi
3

p

jϕωi= j1112i+ωje1�e2i+ �ωj�e1e2i
� �

=
ffiffiffi
3

p

jϕ�ωi= j1112i+ �ωje1�e2i+ωj�e1e2i
� �

=
ffiffiffi
3

p
ð10Þ

where jα1β2i denotes the state in which the left (right) defect pair
fuses to α (β). That is, we restrict to the magnetically neutral sector in
which no m or �m anyons appear in any of the intermediate fusion
outcomes.

The logical ZL and XL operators on this topological qutrit can be
realized on the physical level as follows: Creating a charge-anti-charge
pair and moving the charge through both defect lines (e.g., using the
path given by the gray line in Fig. 5b) implements a logical
ZL = j1112ihe1�e2j+ je1�e2ih�e1e2j+ j�e1e2ih1112j. Similarly, braiding a flux
around one of the defect pairs picks up a phase depending on the
internal state of that defect and thus this operators realizes a logi-
cal XL = jϕ1ihϕωj+ jϕωihϕ�ωj+ jϕ�ωihϕ1j.

However, XL or ZL cannot initialize the topological qutrit states
(10) starting from j1112i. To do this, we demonstrate the application of
a logical Fourier transform H (cf. Supplementary Methods): A super-
position of states with physical anyons pairs e�e, and �ee injected at a
fixedposition and the vacuum is producedusing a control-Z operation
conditioned on an ancilla qutrit ‘a’ initialized in the state
ðj0ia + j1ia + j2iaÞ=

ffiffiffi
3

p
. One of the anyons is then coherently moved to

braid aroundone half of each defect pair before being annihilatedwith
its partner. The intermediate states of the ancilla, charge anyons, and
defect pairs aredepicted inFig. 5a. After applying anadditionalHy gate
(cf. Supplementary Methods) on the ancilla, the resulting state of
defect pairs and ancilla is proportional to:

j0iajϕ1i+ j1iajϕωi+ j2iajϕ�ωi: ð11Þ

After measuring the ancilla and recording the measurement outcome,
we have prepared the logical state jϕωj i where j is the measurement
outcome of the ancilla. A logical XL operation can be used to complete
the state preparation protocol if deterministic state preparation is
desired.

Crucially, the entanglement between the system and the ancilla
has been transferred froma local to a non-local information carrier and
is now robust: As long as the distance between both the endpoints of
each of the defects as well as between the defect lines themselves is
sufficiently large, any anyons created by a local noise process can
maximally encircle a single endpoint. However, any process in which
there is an odd number of anyons crossings the defect lines will result
in an odd number of charge or flux anyons. By fusing the spurious
anyon back into the closest defect, we can return to the original logi-
cal state.

To certify thenon-local entanglement of thedefectpairs,we focus
on the shots where the ancilla has been measured in the j0i state and
make use of the fact that jϕ1i is uniquely specified by being a +1
eigenstate of two commuting anyon braids: The first braids a flux
around both defect pairs (denoted by the orange line in Fig. 5b) and is
microscopically implemented by a string of physical X and X y. The
second anyon braid is simply the logical ZL-operator defined above.
Measuring the expectation values of these operators leads to fidelity
bounds

0:72ð5Þ≤Tr½hϕ1jρjϕ1i�≤0:80ð4Þ, ð12Þ

and we report the results for the different states jϕωj i as well as SPAM-
corrected values in Supplementary Note 1. All states are prepared with

fidelities that far exceed those that can be reached with a classical
mixture, which certifies that the two fusion channels of the defect pairs
have been successfully entangled. For comparative analysis, Supple-
mentary Note 3 presents results for a 6 × 2 lattice geometry, providing
a more detailed description of the entire procedure. We note that
other logical states, like jϕ0i+ jϕωi+ jϕ�ωi / j1112i are easier to achieve
than what we have presented since they do not require the ancilla-
assisted logical Fourier transform gate we have executed.

Discussion
Wehave created high-fidelity ground states of theZ3 toric codeon tori
of sizes up to 6 × 4 = 24 qutrits using Quantinuum’s H2 trapped ion
quantum computer. We found that the unitary state preparation
scheme employed in this work shows a much higher degree of
translation-symmetry breaking than measurement-based preparation
schemes, which could be used in heralded encoding protocols in
future work. We have created parafermion and charge conjugation
defect pairs on top of this vacuum and verified their action on the
anyons of the model; some of these operations were facilitated by
using adaptive quantum circuits. Finally, we have initialized a topolo-
gical qutrit from two charge conjugation defect pairs. An appealing
direction for future work is to explore syndrome measurements and
repeat-until-success protocols, which have thus far led to a break-even
for state preparation and measurement errors for simpler code
states6,7,49–51.

Ourfindings show that digital quantumprocessorshave advanced
to the point where they can throw off the shackles of the underlying
qubit architecture and explore the much larger class of systems that is
naturally formulated with local Hilbert space dimensions greater than
two, which includes lattice gauge theories52–55 and models with spin
greater than one-half56,57. While our results show that qutrit quantum
simulations are now generally possible using qubit-based devices, the
question of whether fault-tolerance thresholds for qutrit-based codes
can be achieved in such devices remains an open question. Tantaliz-
ingly, that class includes models with universal quantum computa-
tional power, someofwhich are closely related to themodel presented
here25.

Data availability
The data generated in this study have been deposited in the Zenodo
repository https://doi.org/10.5281/zenodo.1400759358. database
under open access.

Code availability
The code used for numerical simulations is available from from
Zenodo repository https://doi.org/10.5281/zenodo.1400759358.
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