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% Check for updates Variation in malaria infection risk, a product of disease exposure and immu-

nity, is poorly understood. We genotypically profiled over 13,000 blood
samples from a six-year longitudinal cohort in Mali to characterize malaria
infection dynamics with detail. We generated Plasmodium falciparum ampli-
con sequencing data from 464 participants (aged 3 months — 25 years) across
the six-month 2011 transmission season and profiled a subset of 120 partici-
pants across the subsequent five annual transmission seasons. We measured
infection rate as the molecular force of infection (molFOI, number of geneti-
cally distinct parasites acquired over time). We found that molFOI varied
extensively among individuals (0-55 in 2011) but was independent of age and
consistent within individuals over multiple seasons. Reported bednet usage
was nearly universal. The HbS allele was associated with lower molFOI, and
functional antibody signatures for the CSP C-term and RH5 antigens were
correlated with low molFOI participants, identifying candidate immune cor-
relates of protection. The large inter-individual variability in molFOI and
consistency of intra-individual infection rate over time exhibits much greater
dynamic range than malaria case incidence, and is most likely due to hetero-
geneous exposure to infectious mosquito bites. This and other factors con-
tributing to variable infection risk should be considered in future clinical trials
and implementation of malaria interventions.

Disease risk varies widely among hosts for many communicable
diseases' . Risk of disease is a function of both the risk of infection by
the pathogen and individual susceptibility to the development of
symptomatic disease once infected. For pathogens that can cause
asymptomatic infections, characterization of both symptomatic
disease and asymptomatic infection is necessary to characterize the
infectious reservoir, disease risk among the infected, and transmis-
sion dynamics®. Understanding variability in infection risk is

important for designing and interpreting clinical trial data and eva-
luations of other potential interventions; if not accounted for, host
variability in disease exposure and/or immunity could confound
interpretations of intervention efficacy">°. More importantly, a bet-
ter understanding of what contributes to the heterogeneity in risk of
infection could allow interventions to be targeted towards those at
highest risk, or towards those with less naturally acquired immu-
nity (NAI)’.
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Despite the importance of heterogeneous infection risk, it can be
difficult to study for diseases like malaria, where the gradual devel-
opment of NAI through successive infections reduces risk of sympto-
matic disease without affecting infection risk, masking heterogeneity
in infection incidence’. Consequently, an area of high transmission is a
favorable setting in which to study infection risk, as low infection
incidence may be interpreted as a consequence of low risk, rather than
random chance. However, a disadvantage to high-transmission set-
tings is that polyclonal infections resulting from newly incident
infections in already-infected people will be more common®, pre-
venting estimates of infection incidence through binary infection
detection methods such as blood smear microscopy or polymerase
chain reaction (PCR)’. To better understand complex infection
dynamics, a high-resolution methodology is required to detect new
infections among already-infected individuals.

In this study, we used Illumina-based amplicon sequencing of four
highly polymorphic malaria parasite antigens to provide an unpar-
alleled portrait of polyclonal infection dynamics in a high transmission
setting over 6 years for a large cohort of participants. We sequenced
Plasmodium falciparum DNA from 13,152 dried blood spot samples
from a longitudinal cohort in Kalifabougou, Mali (Fig. 1)°. Kalifabougou
is a small, rural community with strong, seasonal malaria transmission
during approximately half the year from July to December®.
Approximately half (n =6432) of the samples we genotyped are from
the 2011 season, and represent 464 participants, ages 3 months—25
years, each of whom provided a finger prick blood sample every
2 weeks during the 6-month transmission season. The remaining
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samples (n=6720) represent a subset of 120 participants (ages
3 months—8 years at enrollment), studied over the subsequent five
annual transmission seasons, during which participants provided a
blood sample every month. Participants also provided blood samples
at any self-referred clinic visits when malaria was suspected by study
clinicians. Prior studies of this cohort, using PCR to detect the first
infection of the 2011 transmission season in all participants irrespec-
tive of symptoms, found that the majority of participants became
infected with P. falciparum during a single transmission season,
establishing Kalifabougou as an appropriately high transmission set-
ting for evaluating infection rate heterogeneity’.

We performed genotyping of participant specimens to char-
acterize infection rate heterogeneity and to look for associations
between infection rate and features that might drive its variation. We
estimated the molecular force of infection (molFOI, the number of
genetically distinct strains that infect a participant over a set period of
time—Supplemental Fig. 1)"*'%. molFOl, originally estimated for malaria
with capillary electrophoresis genotyping data'?, has recently been
extended to a variety of molecular data types™". Alternative metrics
for estimating variation in infection rate, such as time to measuring the
time to first infection via microscopy or PCR detection of parasitemia,
provide information on a single infection event per person, and they
cannot distinguish new infections in individuals who are infected at the
start of a study. In comparison, molFOI represents new infection
incidence at the level of strain over the full duration of a longitudinal
study, with the potential to include many more infection events in the
infection rate estimate™'°. We use molFOI to summarize infection
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Fig. 1| Study participants and timing of sampling within the two sequencing datasets. As described in Tran et al., the Kalifabougou cohort began in May 2011. We
sequenced samples from 464 participants from the 2011 transmission season, as well as 120 participants who continued in the study from 2012 to 2016.

Nature Communications | (2025)16:6512


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61462-1

90
60
o
LL 30
o N
0
2 3 5 9 10

4 £ 6 7 8 1 12 13
(n=23) (n=32) (n=A1) (n=52) (n=64) (n=51) (n=74) (n=79) (n=68) (n=56) (n=46) (n=14)

Participant age

ity

2 3 4 1" 12 13
(n=23) (n=32) (n=41) (n= :>2 (n= 54) (n=! :>1 (n= 74 (n= 79 (n= 68 (n=56) (n=46) (n=14)

Participant age

(o2

N w IS

Number of treatments

Fig. 2 | Molecular force of infection and number of malaria treatments in par-
ticipants of all ages in 2011. a Each point represents a molFOI value for each of the
464 participants over the 2011 season. The x-axis groups participants by age, aiming
for similar sized age groups for comparisons. We found no significant association
between age and molFOI (quasi-Poisson regression, two-sided ¢ test; t(462)=1.78,
P=0.077, $=0.014 [95% CI: —0.0014 to 0.029]). b Each point represents the
number of treatments a participant received for symptomatic disease over the
2011 season for each of the 464 participants. The x-axis matches that in part a. We
found a significant negative association between age and number of treatments
(quasi-Poisson regression, two-sided ¢ test; t(462) =-3.40, P=0.00073, =-0.02
[95% CI: -0.036 to —0.0096]). In both plots, violin plots represent the density
distributions, with horizontal lines at the 25th, 50th, and 75th percentiles. CI con-
fidence interval, molFOI molecular force of infection.

history in 464 participants across one or more transmission seasons.
We explored diverse factors that may contribute to the consistent
patterns of heterogeneous infection rate that we observe among par-
ticipants, including hemoglobin types, demography, geospatial data”,
and immunological features™.

Results

molFOI is not associated with age

We define the molFOI as the number of genetically distinct strains that
infected a given participant over a period of time?, where a newly
incident infection by a genetically distinct strain was defined as
observation of a novel amplicon haplotype (not seen in the previous
two samples from the participant) at one or more of the four geno-
typed loci (Supplemental Fig. 1)". We calculated the molFOI for each
participant over the entirety of the 2011 season (Fig. 2a). The molFOI
range was 0-55 (mean: 11, median: 10, standard deviation: 9). We found
no overall correlation between participant age and molFOI (quasi-
Poisson regression, age coded as a continuous variable, P=0.077),
though infection rate may be lower in the youngest and oldest parti-
cipants We also examined the number of clinical disease episodes per
participant in the same 2011 cohort, using the number of malaria
treatments as a proxy for clinical disease diagnoses (Fig. 2b). The range
in number of treatments per participant is smaller than molFOI, ran-
ging from O to 6 (mean: 2, median: 2, standard deviation: 1). We found a

negative correlation between participant age and number of treat-
ments (quasi-Poisson regression, P=0.00073, f=-0.02). We directly
compared molFOI and number of treatments per participant (Sup-
plemental Fig. 3a). The number of treatments was significantly asso-
ciated with molFOI (quasi-Poisson model, ¢(462) =3.07, P=0.0023),
with inclusion of treatments accounting for 2.02% of deviance in 2011
molFOI values when compared to the base model, implying that dis-
ease rate explains only a small fraction of the observed variation in
infection rate (deviance explained calculated as the difference
between the deviance observed by this model and the intercept-only
model, divided by the intercept-only model deviance). These obser-
vations suggest that the NAI that accumulates with age in this
population’ reduces the risk of clinical disease but does not provide
measurable protection against infection.

Intra-individual molFOl is consistent across seasons
We next compared individual molFOI across transmission seasons to
determine whether molFOI variation in 2011 was driven by stochastic
factors, or whether differences in infection rate among participants are
consistent over time. We hypothesized that while heterogeneity in
infection rate might obscure age-associated differences when com-
paring age bins cross-sectionally, these differences might be evident
when profiling individuals longitudinally. We estimated the cumulative
molFOI over the subsequent five seasons (2012-2016) and compared
that value to the value from 2011 for individual participants (Fig. 3a).
We rejected the null hypothesis that variation in 2011 molFOI is sto-
chastic; participants with high molFOI in 2011 generally had high
molFOIl in 2012-2016 as well (Spearman’s rank correlation, p(111) = 0.53
(95% CI=[0.38, 0.66]), P=151e’ linear regression, P=3.4e"
=0.38). We performed the same analysis using symptomatic disease
incidence (as estimated by number of malaria treatments) in place of
molFOI in Fig. 3b. In contrast to molFOI, while the linear regression
(adjusted R*=0.03, P=0.041) between number of treatments in 2011
and 2012-2016 was significant, Spearman’s rank correlation
(p(111) = 0.17 (95% Cl=[-0.02, 0.35]), P=0.073) did not indicate the
presence a significant correlation in symptomatic disease incidence
across time periods. This contrast between infection and treatment
rates suggests that molFOI may be a more durable estimator of indi-
vidual infection risk, as it does not appear to be modified by age-
dependent NAL

We also stratified molFOI and treatment data for each participant
by season, resulting in five molFOI values per participant (Supple-
mental Fig. 2). The individual molFOI-per-season values ranged from O
to 106 (mean: 10, median: 6, standard deviation: 12). We found no
significant differences in the overall distribution of molFOI values
stratified by season, suggesting no major temporal or weather factors
impacted any one season (Kruskal-Wallis test, x*(4) =4.36, P=0.36).
We visualized the patterns of average molFOI per age in each season
(Fig. 3c). We found that a specific sub-cohort of participants that were
age nine in 2012 consistently exhibited high average molFOI values
over time, despite their increasing age and cumulative parasite expo-
sure. We similarly visualized average treatment counts per age
(Fig. 3d), but did not observe the same sub-cohort trend as with
molFOL.

We further explored consistency in individual infection rate over
time by fitting a linear mixed-effects model (Table 1) to these data, with
participant age as a fixed effect and participant identity as a random
effect, aiming to capture intra-individual changes in molFOL. In this
model, fixed effects (participant age) had a pseudo-R?* value of 0.00,
while the pseudo-R? value for all effects was 0.50, further demonstrating
the lack of relationship between age and infection rate. The mixed-
effects model fit the data better than an age-only linear model (linear
regression, adjusted R*=0.076, P=4.4e"'% models compared via like-
lihood rank test, ¥*(1) =170.69, P=5.24e"®), suggesting that participant
identity is a more significant driver of variation in infection rate than age.
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Fig. 3 | molFOl varies by participant, not by age. a Each point represents a single
participant, showing molFOI from the 2011 season (x-axis) and cumulative molFOI
across the 2012-2016 seasons (y-axis). The axis scales vary due to the difference in
time periods and sampling strategy between the two datasets (see Fig. 1). The line
represents a linear regression (adjusted R*=0.38, P=3.4e™). We also computed
the two-sided Spearman’s rank correlation between molFOI in 2011 and 2012-2016;
we found a highly significant, positive correlation (p(111) = 0.53 (95% CI=[0.38,
0.66]), P=1.51e"). b Replicates the figure in (a), but with number of treatments for
symptomatic disease in 2011 on the x-axis and number of treatments for sympto-
matic disease in 2012-2016 on the y-axis. The line represents a linear regression
(adjusted R*=0.03, P=0.04), but a two-sided Spearman’s rank correlation did not
identify a significant association between number of treatments in 2011 and
2012-2016 (p(111) = 0.17 (95% Cl =[-0.02, 0.35]), P=0.073). ¢ Average molFOI of all

Infection status in May 2011

participants of a given age (on the x-axis) during a given season (on the y-axis).

d Average number of treatments of all participants of a given age (on the x-axis)
during a given season (on the y-axis). e molFOI from the 2011 season, stratified by
infection status at enrollment in May 2011. molFOI for participants who were
infected at enrollment is significantly higher than for those not infected at enroll-
ment (Kruskal-Wallis test, x*(1) = 78.42, P=8.33e™™). f Replicates the analysis in (c),
but with number of treatments for symptomatic disease in 2011 on the y-axis.
Participants who were infected at enrollment had significantly more treatments
than those who were not infected at enrollment (Kruskal-Wallis test, x*(1) =7.85,
P=0.0051). Violin plots in (e, f) represent the density of the distributions, with
horizontal lines at the 25th, 50th, and 75th percentiles. CI confidence interval,
molFOI molecular force of infection.

We also fit linear mixed-effects models to subsets of this cohort by age
(Table 1). In all of these models, age is not significantly associated with
molFOI, and the pseudo-R? value for all effects is notably larger than the
pseudo-R? value for age alone (models for participants of all ages, 04
years, 4-7 years, and 8+ years, respectively; pseudo-R? for age as a fixed

effect: 0.00, 0.00, 0.01, 0.00 in each model, respectively, and pseudo-R?
for all effects, including participant identity as a random effect: 0.50,
0.71, 0.37, 0.52, respectively).

We also examined infection status in May 2011 (at study enroll-
ment) as a predictor of infection rate; 44% of participants (n=202)
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Table 1 | Mixed-effects models for molFOI show the con-
sistency of intra-individual molFOI

Participant Fixed p value Pseudo-R?
LRl effect Fixed All effects
effects
All ages Age 0.20 0.00 0.50
0-4 years Age 0.62 0.00 0.7
4-7 years Age 0.14 0.01 0.37
8+ years Age 0.17 0.00 0.52
All ages Age 0.26 0.03 0.52
Roof type 0.47
HBB: HbAC  0.60
HBB: HbAS  0.09
Sex 0.41

Wefit linear mixed-effect models to the molFOI data from 2012 to 2016, using participant identity
as a random effect, under the assumption that each seasonal value of molFOI for a given indi-
vidual are not independent observations. The first four rows refer to four separate models, with
participants of different age ranges included and age as the only fixed effect. The remainder of
the table describes a model that included participant age, roof type, HBB genotype, and parti-
cipant sex as fixed effects.

were asymptomatically infected at enrollment. We found that molFOI
from the 2011 season was significantly greater for participants who
were infected at enrollment (Fig. 3e, mean molFOI for infected =15.9;
uninfected = 7.6; Kruskal-Wallis test, x*(1) =78.42, P=8.33e™%). Again,
we replicated this analysis with symptomatic disease incidence (as
estimated by treatment counts) in place of molFOI (Fig. 3f). We found a
significant difference for disease incidence as well (mean number of
treatments for infected = 2.2, for uninfected = 1.9; Kruskal-Wallis test,
x2(1) =7.85, P=0.0051), though the range of this metric (0-6) is nar-
rower than that of molFOI (0-55).

We compared infection rate to rates of symptomatic disease by
evaluating molFOI with respect to the number of treatments per
participant within a transmission season or the parasitemia of indi-
vidual samples (Supplemental Fig. 3). We also hypothesized that
lower density infections would correlate with lower molFOI, if par-
ticipants had parasitemia near the level of detection of the geno-
typing assay. However, participants grouped by low, middle, or high
molFOI in 2011 exhibited no significant differences in parasite den-
sities (Kruskal-Wallis test, x*(2) =4.68, P=0.096). In fact, partici-
pants with high molFOI in 2012-2016 had slightly lower densities
(mean densities: 2.5e* (low molFOI), 2.1e* (mid molFOI), 2.4e* (high
molFOI); Kruskal-Wallis test, x(2) =10.52, P=0.0052; Dunn test with
Holm correction, P=0.0037 (low vs. high)), rejecting our null
hypothesis. We speculate that individuals with more NAI may have
lower parasite densities, and may be more likely to exhibit high
molFOI due to reduced incidence of symptomatic disease and anti-
malarial treatment.

Host factors explain some heterogeneity in molFOI

We next hypothesized that host-specific factors could affect infection
rate. We found that participant sex was not associated with molFOI in
2011 (Supplemental Fig. 4a, mean molFOI for females=11.6, males =
1L.1; Kruskal-Wallis test, x*(1) =2.47, P=0.12) or 2012-2016 (Supple-
mental Fig. 4c, mean cumulative molFOI for females =47.7, males =
54.0; Kruskal-Wallis test, y*(1) = 0.77, P=0.38). Similarly, we stratified
symptomatic disease incidence by participant sex, finding that parti-
cipant sex was also not associated with symptomatic disease counts in
either 2011 (Supplemental Fig. 4b, mean cumulative number of treat-
ments for females=2.1, males=1.9; Kruskal-Wallis test, x*(1) =117,
P=0.28) or 2012-2016 (Supplemental Fig. 4d, mean cumulative
number of treatments for females=4.4, males =4.7; Kruskal-Wallis
test, x*(1) = 0.15, P=0.70).

We also considered participant ethnicity, bednet usage, and
socioeconomic factors” as potential explanations for molFOI het-
erogeneity and temporal consistency®®. However, neither ethnicity
nor bednet usage varied significantly among participants. The
majority of participants in both the 2011 and 2012-2016 cohorts are
of the Bambara ethnic group (418/464 participants or 90% in 2011
and 105/120 participants in 2012-2016, or 87.5%). Participants nearly
universally reported daily bednet usage when surveyed in 2013 (561/
563 households owned bednets and 559/563 households reported
daily usage). We used roof type as a proxy for socioeconomic status,
as in prior studies of this cohort”, where metal roofs are a proxy for
relative wealth. In the 2011 cohort, we found a significant difference
in molFOI between participants living in homes with flat roofs
(n=143, mean molFOI=14.1) vs. those from homes with metal roofs
(n=269, mean molFOI=10.5; Kruskal-Wallis test, x*1)=8.12,
P=0.004). We observed a similar trend in the 2012-2016 data
between participants from homes with flat roofs (n =37, mean mol-
FOI=58.6) vs. participants from homes with metal roofs (n=76,
mean molFOI=49.8), but the difference was not statistically sig-
nificant (Kruskal-Wallis test, x*(1) =1.64, P=0.20).

Given that many individuals in this population carry malaria-
protective variant alleles at the hemoglobin subunit beta (HBB) locus",
we examined molFOl stratified by HBB genotype (Fig. 4, stratifications
of cohorts by HBB genotype and age or sex in Supplemental Table 1).
Of the 464 participants in our 2011 cohort, 372 were homozygous for
the ancestral allele, A (HbAA genotype). A total of 43 participants were
heterozygous for the S allele (HbAS genotype), which confers the
sickle cell trait and has been associated with lower risk of both
uncomplicated and severe malaria disease’ *. A total of 47 partici-
pants were heterozygous for the C allele (HbAC), a genotype that has
not been as clearly associated with protection from uncomplicated
malaria as the HbAS genotype” Due to the low sample size, we
excluded two participants with HbCC and HbSC genotypes from the
analysis in Fig. 4a only. We found significant differences in the molFOI
in 2011 for participants with HbAS compared to both HbAA and HbAC
genotypes (Fig. 4a, mean molFOI for HbAA (11.8), for HbAC (13.1), for
HbAS (5.3). Kruskal-Wallis test, x*(2) =23.53, P=7.8e%, £ =0.05. Dunn
test with Holm adjustment, P=7.6e ® (HbAA vs. HbAS), 9.1e¢™> (HbAC vs.
HbAS), 0.51 (HbAA vs. HbAC)). In the 2012-2016 cohort, which had
fewer participants (n =120) and thus lower statistical power compared
to the 2011 cohort, fewer participants had variant genotypes (6 HbAC
and 17 HbAS); molFOI values were lower in HbAC (mean molFOI: 45.5)
and HbAS (mean molFOI: 34.3) participants than in HbAA participants
(mean molFOI: 54.3), but they did not reach the threshold of significant
difference (Fig. 4c; Kruskal-Wallis test, x*(2) = 0.96, P=0.62). We also
examined symptomatic disease stratified by HBB genotype (Fig. 4). We
found significant differences in the number of treatments for indivi-
duals with HbAS genotype compared to HbAA in both the 2011 cohort
(Fig. 4b, Kruskal-Wallis test, *(2) = 6.55, P=0.038, £ = 0.014. Dunn test
with Holm adjustment, P=0.032 (HbAA vs. HbAS), 0.12 (HbAC vs.
HbAS), 0.93 (HbAA vs. HbAC) and the 2012-2016 cohort (Fig. 4d,
(Kruskal-Wallis test, *(2) =12.58, P=0.0019, £2=0.11. Dunn test with
Holm adjustment, P=0.0016 (HbAA vs. HbAS), 0.36 (HbAC vs. HbAS),
0.53 (HbAA vs. HbAQ)).

Additionally, we considered other potential effects that could be
associated with HBB genotype (Supplemental Fig. 5). Heterozygous
HBB genotypes did not cluster into a particular region of Kalifabougou
(Supplemental Fig. 5a), nor did they have a different range in partici-
pant ages than HbAA (Supplemental Fig. 5b, Kruskal-Wallis test,
X(2)=1.84, P=0.40). We also did not find a difference in parasite
density for HbAS individuals, which could have potentially biased our
ability to detect molFOI (Supplemental Fig. 5c, Kruskal-Wallis test,
X2(2)=2.45, P=0.29), though the sample size of available parasitemia
data after stratification by HBB genotype is small.
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genotype. No significant differences between groups (Kruskal-Wallis test,
X2(2)=0.96, p value = 0.62). d Number of treatments for symptomatic disease in
2012-2016 stratified by participant HBB genotype. Number of treatments is sig-
nificantly different between some groups (Kruskal-Wallis test, x*(2) =12.58, p
value = 0.0019, £ = 0.11. Dunn test with Holm adjustment, p values = 0.0016 (HbAA
vs. HbAS), 0.36 (HbAC vs. HbAS), 0.53 (HbAA vs. HbAC)). In all panels, horizontal
lines represent significant differences between groups, and colors represent the
same categories as the x-axis. Violin plots represent the density of the distribution,
with horizontal lines representing the 25th, 50th, and 75th percentiles. HBB
hemoglobin subunit beta locus, molFOI molecular force of infection.

We fit an additional linear mixed-effects model to the 2012-2016
molFOI data incorporating these additional host factors in addition to
age, with participant identity as a fixed effect (Table 1). In this model,
none of the fixed effects have a significant effect on molFOI on their
own (P=0.26, 0.47, 0.60, 0.09, 0.41 for age, roof type, HbAC geno-
type, HbAS genotype, and sex, respectively). As a whole, the fixed
effects contributed a small amount to the model’s total explanatory
power; pseudo-R* for fixed effects alone was 0.03, and pseudo-R? for all
effects was 0.52.

Geographic features may explain some heterogeneity in molFOI
We next considered whether geographic factors could affect infection
rate. First, we analyzed the spatial autocorrelation of the 2011 molFOI
values (Fig. 5a), to look for general associations between household
location and molFOI. We found a very small negative dispersion of
molFOI (Moran’s /=-0.023, pseudo-P=0.002, two-sided hypothesis,
compared to a Monte-Carlo simulation of permutations of the data),
suggesting that micro-geographic features do not drive locally similar
molFOI values. We found a positive correlation between the distance
from participants’ homes to the Kalifabougou study clinic and their
molFOl in 2011 (Fig. 5b, linear regression, adjusted R?>=0.089,
P=4.3¢%; quasi-Poisson regression, t(312) =5.71, P=2.68¢®). We also

found a positive correlation between participants’ distance to the
closest part of the river system and their 2011 molFOI (Fig. 5c, linear
regression, adjusted R?=0.025, P=0.0031; quasi-Poisson regression,
t(312) =3.00, P=0.003). Taken together, these spatial analyses sug-
gest that geographic differences may have a slight effect, but they do
not explain the majority of the observed heterogeneity in infection
rate in this cohort (2.45% and 8.30% of deviance explained by distance
to clinic and rivers, respectively).

Several serological features distinguish between low and high
infection rate participants

Systems serological profiling was previously performed on serum from
201 participants included in our sequencing study’. These data were
generated using samples from May 2011, at enrollment into the study
and before the transmission season began that year, with the objective
of defining potential correlates of protection. Antigen-specific IgGl,
IgG2, 1gG3, IgG4, IgAl, and IgM to AMAL, full-length CSP, MSP1, RH5
and the N- and C-terminal domains of CSP were quantified. The func-
tional potential of these antigen-specific antibodies was also captured,
including the ability of the antigen-specific antibodies to bind to Fc
receptors (FcRn, FcyRIIAH, FcyRIIAR, FcyRIIB, FcyRINIAF, FcyRIIIAV,
and FcyRIIB) and recruit antibody-dependent complement
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Fig. 5 | molFOI does not concentrate in geographic hotspots. a Visualization of
homes and molFOI in Kalifabougou, Mali. Each dot represents the geographic
coordinates of one participant’s home, colored by their molFOI in 2011. Points are
slightly jittered, for visibility. Black lines represent local rivers, geospatial data from
Global Map of Mali © ISCGM/IGM. b Scatter plot of each participant’s molFOI in
2011 (x-axis) vs. the distance from their home to the Kalifabougou clinic (y-axis,
labeled in kilometers) (quasi-Poisson regression, two-sided ¢ test; £(312) =5.71,

1 2 3
Distance between home and river (km)

P=2.68¢, =0.00021 [95% CI: 0.00014-0.00028]). The line shows the linear
regression (adjusted R?=0.089, P=4.3¢®). ¢ A similar scatter plot to (b), except
that the y-axis shows the distance from each participant’s home to the nearest river
(quasi-Poisson regression, two-sided ¢ test; £(312) =3.00, P=0.003, = 0.19 [95% CI:
0.066-0.32]). Linear regression shown as described above (adjusted R*=0.025,
P=0.0031). CI confidence interval, molFOI molecular force of infection.

deposition, antibody-dependent cellular phagocytosis, and antibody-
dependent neutrophil phagocytosis. While the evolution of antigen-
specific neutrophil activation was previously found to be correlated
with rates of disease severity in this cohort™®, here we aimed to define
whether malaria-specific serological markers were positively or nega-
tively associated with infection rate, as estimated by molFOI.

We set thresholds for molFOI in 2011 to create “low molFOI” (<4)
and “high molFOI” (>13) groups, which correspond to the lowest and
highest 12% of the molFOI distribution (Fig. 6a). To explore the sensi-
tivity of the analysis to threshold used, we defined two additional
different sets of thresholds, to consider the upper and lower 33% and
25% of the molFOI distribution (Supplemental Table 2). We primarily
discuss results from the most stringent set of thresholds here; the
others are highly concordant and are described in Supplemental Figs. 6
and 7. For each set of molFOI cutoffs, we compared each serological
feature between low and high molFOI groups using Mann-Whitney
tests with Benjamini-Hochberg corrections. In all three approaches to
molFOl stratification, Fcy receptor binding to the highly polymorphic
c-terminal region of CSP (specifically, Fcy receptor IIIAV, or
FcyRIINIAV), as well as Fcy receptor binding to RH5 (FcyRIIIAV), were
enriched in participants with low molFOI (Mann-Whitney test with
Benjamini-Hochberg correction, P=0.015 and 0.030, respectively;

Fig. 6¢, d), suggesting that these may be protective against infection.
While only these two features were significant in all three molFOI
stratifications, 13 additional features were enriched in individuals with
high molFOI in two of the three stratifications, including IgG1 specific
to AMAL, similar to previous studies suggesting that it may be a marker
of infection history**-,

Discussion

In this study, we identified an unexpectedly large degree of malaria
infection rate heterogeneity among individuals in a small community.
This heterogeneity in infection rate was consistent over time, and was
only partially explained by measured geographic, demographic,
behavioral, and host genetic factors. Heterogeneity in infection risk
has likely been previously under characterized in most studies using
microscopy or PCR positivity to detect infection””*%, and was mea-
sured with precision in this study through multiplexed amplicon
genotyping of a very densely sampled longitudinal sample collection
from 464 participants.

Our data indicate that host genotype may be one modulator of
infection rate. Participants from this cohort were previously geno-
typed at the HBB locus, given the known protective effects of the sickle
(HbS) and HbC alleles against severe disease”. Similar to a previous
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dashed line were significant. Significant features are labeled. ¢ Raw data from
FcyRINAV binding to the c-terminal of CSP, one of the features that was significant
in this analysis (two-sided Mann-Whitney test with Benjamini-Hochberg correc-
tion for multiple comparisons; W =112, uncorrected P=0.00018, corrected
P=0.015; confidence interval not applicable). d Raw data from FcyRIIIAV binding to
RHS, the other significant feature in this analysis (two-sided Mann-Whitney test
with Benjamini-Hochberg correction for multiple comparisons; W =127, uncor-
rected P=0.00068, corrected P=0.030; confidence interval not applicable). In
(c, d), each point represents a single participant. Violin plots represent the density
of the distribution, with horizontal lines representing the 25th, 50th, and 75th
percentiles. CSP circumsporozoite protein, molFOI molecular force of infection,
RHS5 reticulocyte-binding protein homolog 5.

study that estimated force of infection via capillary electrophoresis
genotyping'®, our finding of lower molFOI in HbAS participants than
HbAA or HbAC participants (Fig. 4) may indicate that HbAS partici-
pants are protected against blood-stage infection, and/or that blood
stage infection duration was shorter and less likely to be detected.
Recent studies have identified four genomic loci within P. falciparum
associated with individuals with HbS alleles?**°, and three of these four
loci are found at >10% frequency in genomes from Mali in the Malar-
iaGEN Pf7 data resource®”. This association suggests that the pool of
parasites commonly infecting HbAS individuals may be a subset of the
larger parasite population, which could lead to lower molFOI. How-
ever, HbAS participants only represent 10% of the cohort participants,
and the effect size of this association was small (€2 = 0.05). Despite the
role of HBB as the most important locus conferring protection against
clinical malaria”, it only explains a small portion of variation in

infection rate in this cohort. Other unmeasured host genetic factors
may also influence infection rate, but are likely to exhibit smaller effect
sizes than HbS and HbC.

Previous studies have linked infection risk heterogeneity with
geographic factors®***. We found significant but small associations
between molFOI heterogeneity and distance to the central clinic in
Kalifabougou, as well as distance to the nearest river (Fig. 5), sug-
gesting that geographic factors may contribute a small amount to the
heterogeneity of infection rate we observed. Studies with a wider
range in geographic and ecological factors* than this one may benefit
from considering geographic factors. Behavioral factors, including
bednet usage, have also been indicated in previous studies of disease
rate heterogeneity'?; however, participants in this cohort almost uni-
versally reported daily bednet usage. Despite the reported consistency
of bednet usage among participants, the most likely explanation for
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heterogeneous infection rate in this study remains variable exposure
to infectious mosquito bites, a parameter for which validated markers
are lacking for measurement at an individual level®.

We conducted a systems serology analysis to identify candidate
immune correlates of infection rate vs. infection protection, using
molFOIl as a composite measure of disease risk/protection. Analysis of
systems serology data from a subset of participants profiled in this
study identifies several potential correlates of infection rate or pro-
tective immunity'®. We found that participants with low molFOI in 2011
(low rate, and/or high protection; the majority of participants in this
group were also uninfected at study enrollment) had enriched Fcy
receptor IlIA binding antibody responses to both the C-terminus of
CSP (Fig. 6¢) and RHS (Fig. 6d). While previous studies have found low
antibody titers for RHS in individuals in malaria-endemic regions®*~,
RH5 antibodies have been associated with protection against
malaria®****°, Because RHS is expressed in the blood stages of the
parasite life cycle*’, protective antibodies cannot prevent blood-stage
infection, but may contribute to reduced molFOI estimates by short-
ening the duration of infections and/or lowering parasitemia below the
limit of detection of the genotyping assay used in this study. However,
given that CSP is expressed in sporozoites, an immune response to CSP
could potentially prevent progression to blood-stage infection and
reduce molFOLl. This finding accords with recent studies of serological
responses to the CSP-based RTS,S/ASO1 vaccine that suggested a
protective role for Fc-effector functions, particularly those specific to
CSP**2, as well as previous work with this cohort that found an asso-
ciation between functional CSP-specific IgG and protection from clin-
ical disease and decreased parasite density'®. Further work examining
responses to different vaccine dose regimens found an increased
response to CSP c-terminal-specific responses in participants who
received the dose regimen that had higher vaccine efficacy®. Finally, a
recent study examining responses to the radiation-attenuated whole
sporozoite PfSPZ vaccine found increased expression of genes related
to Fcy receptor-mediated phagocytosis correlated with protective
outcomes, regardless of vaccination status*’. Taken together, these
results suggest that increased response to CSP with antibodies able to
bind FcyRIIIA and activate peripheral or liver-resident NK cells, pha-
gocytic cells, and memory CD8+ T cells may be an important
mechanism of immune protection for both natural and vaccine-
induced immunity to infection, even if the implicated regions of CSP
differ (C-terminus and NANP central repeat*?, respectively).

This work has some limitations. Amplicon sequencing data
recovery was variable across samples, with dropout of one or more
amplicons in 35% (n=1540) of 4383 parasite-positive samples. We
mitigated this by requiring conservative approaches to define new
infections. The age of some of the dried blood spots from which we
extracted DNA may have impacted our sensitivity to detect new
infections in a systematic manner, but we observed consistent dis-
tributions of molFOI from samples from 2012 to 2016, despite a 5-year
difference in original sample age. Additionally, heterogeneity in the
number of treatments a participant received over a period of time and
the density of parasites present within samples have the potential to
bias these analyses, by creating variable periods of time during which
participants were refractory to new infections. We did find expected
correlations between both parasite density and number of treatments
with participant age (Supplemental Fig. 3); older participants tended
to have fewer treatments and lower density infections. However, if
these factors were to bias our analyses, we expect that molFOI would
decrease in participants with lower density infections and/or fewer
treatments. Instead, we found slightly positive correlations—partici-
pants who were treated more often tended to have higher molFOI than
those treated less. We found no difference in parasite density data for
high vs low molFOI participants in 2011, though we did find a slightly
lower density for participants with high molFOI in 2012-2016 than
those with low molFOI. Overall, these differences trend in the opposite

direction than what we hypothesized could bias our analysis, though
the differences are small.

We were also unable to measure exposure to infectious mosquito
bites among the participants in this study. While we examined distance
to the main river, we were unable to capture other ecological variables
that could play an important role in the observed heterogeneous
infection rate. Although smaller mosquito breeding sites (ponds,
puddles) were not captured by these analyses, the overall negative
geographic dispersion of molFOI suggests that microgeographic fac-
tors are not significant in this setting. We were able to include
household roof type as a proxy for socioeconomic status, but further
details on housing variability could serve as better surrogates for
mosquito exposure.

In summary, the significant inter-individual variation in infection
rate we observed in this cohort study is only partially explained by the
diverse measured variables we studied, motivating future studies to
identify these factors. In particular, factors associated with risk of
symptomatic disease in previous studies could play a role, particularly
variability in mosquito biting rates among people®®* ™, or intrinsic
immune factors like HLA genotype that may not be dependent on age
and previous exposure®. Serological markers of exposure to mosquito
bites have been developed for the population level but are thus far not
accurate at the individual level®. Heterogeneity in infection rate could
be informative in clinical trials for selective enrollment of high-risk
individuals in small clinical trials, or where intervention efficacy may be
affected by individual infection status or risk, as has been hypothesized
for several malaria vaccine trials****2 Individuals with a higher infection
risk may exhibit a distinct pre-existing natural immunity profile, and/or a
distinct response to new immune stimuli, which could help or hinder an
intervention. For example, RTS,S/ASO1 exhibits significant enhanced
protection in individuals who are infected at first vaccination and/or
experience high infection rate®. While it would be impractical to mea-
sure molFOI directly for trial participants before treatment group
assignment, it can be assessed retrospectively, and this study as well as a
recent phase 2b trial of RTS,S/ASO1 observed a strong association
between molFOI and infection status as enrollment™, which we suggest
may serve as a useful proxy for conducting analyses of efficacy stratified
by infection risk. Finally, an enhanced understanding of the drivers of
infection risk heterogeneity could inform measures to alleviate risk and
assist in targeting interventions to better protect those most vulnerable
to infection, especially when deployment of interventions is constrained
due to manufacturing limitations® or shortfalls in local public health
resources.

Methods

Samples from cohort

We processed samples from the Kalifabougou longitudinal cohort
study previously described’ (Fig. 1). The Kalifabougou cohort study
was approved by the Ethics Committee of the Faculty of Medicine,
Pharmacy and Dentistry at the University of Sciences, Technique and
Technology of Bamako, and the Institutional Review Board of the
National Institute of Allergy and Infectious Diseases, National Institutes
of Health (NIH IRB protocol number: 11IN126; https://clinicaltrials.gov/;
trial number NCT01322581). The original approvals authorized ancil-
lary genetic and epidemiological investigations, which covered the
current study. The original study authors obtained written informed
consent from parents or guardians of participating children before
inclusion in the study, and they collected these samples between 2011
and 2016. The original study randomly sampled 20% of the population
of Kalifabougou by age and invited them to enroll in the study
(n=857). Six hundred and ninety-five participants were enrolled in
May 2011. We selected a subset of the participants from 2011-we
excluded any individuals who did not have a PCR-positive result for P.
falciparum at any point in the 2011 season in the original study’, and we
required at least 10 samples per person over the 2011 season. For
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participants ages 7-10 years, we performed a random selection stra-
tified by sex and age, and for other ages, we included all individuals.
These stratifications resulted in 464 participants from 2011. For par-
ticipants who continued in the study through the end of the
2016 season, we required at least 10 samples per person per season
and restricted participant age to 10 years or younger at enrollment in
May 2011. We included all participants ages 6 years and under meeting
those criteria, and we again randomly selected participants ages 7-10
at enrollment meeting those criteria by age and sex.

DNA extraction and sequencing

We physically randomized all samples prior to DNA extraction, to
minimize the impact of any batch effects. We extracted DNA from the
clinical samples and sequenced them using the 4CAST amplicon panel,
as previously described®. This multiplexed amplicon sequencing panel
targets highly polymorphic regions within the csp (c-terminus), amal,
sera2, and trap genes of P. falciparum. The csp and trap genes are
expressed during the mosquito and liver stages of the malaria parasite
life cycle, whereas sera2 and amal are expressed during the blood
stage. The high haplotypic diversity exhibited by these antigens
enables detection of superinfections on top of polyclonal infections, a
requirement for accurate molFOI estimation in this transmission set-
ting. The primer sequences used to amplify these four loci are pro-
vided in Supplemental Table 3; the full protocol is unchanged from the
original publication®.

We sequenced samples from 2011 on Illumina MiSeq instruments,
with 96-384 samples within each run. We sequenced samples from
2012 to 2016 on Illumina NovaSeq instruments, with 768 samples per
lane. Data from these samples were submitted to the NCBI Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession
PRJNA1129562.

Data processing

We processed the paired-end sequencing data through a custom
pipeline™, based on the Divisive Amplicon Denoising Algorithm
(DADA2)*, which produces pseudo-CIGAR strings summarizing the
observed polymorphisms in each haplotype. In the 2011 dataset, where
the number of samples varied per sequencing batch, we divided the
read-pairs at this stage by 2 or 4, for batches of 192 or 96 samples,
respectively. Next, we required a haplotype to have a minimum of 10
reads per sample, as well as a minimum of 1% of the within-sample
reads per locus. In these data after filtering, we observed a median of
631 total reads per sample, and a mean of 7947 reads per sample. In the
2012-2016 dataset (sequenced on NovaSeq instruments), we required
a haplotype to have a minimum of 200 reads per sample, with the same
within-sample frequency minimum as before. In these data, we
observed a median of 27,600 reads per sample and a mean of 169,886
reads per sample.

Additionally, for each dataset, we assessed the number of samples
in which each haplotype appeared (Supplemental Fig. 8). Despite the
difference in read depth between the two datasets, we found similar
numbers of haplotypes present in more than one sample within each
dataset; we found 552 haplotypes present in at least two samples in the
2011 dataset, and 597 in the 2012-2016 dataset. We did find more
“singleton” or unique haplotypes (found in only one sample) in the
2012-2016 dataset (381) than in the 2011 dataset (299). Unique hap-
lotypes were distributed among samples from many different partici-
pants and we found 7 or fewer unique haplotypes per participant
across all samples in 2011 (13 or fewer unique haplotypes per partici-
pant in 2012-2016). The increased sequencing depth in the 2012-2016
dataset may partially explain the increase in singleton haplotypes
detected—unique haplotypes made up a small portion of the reads in
their respective samples than shared haplotypes did. (interquartile
range (IQR) for the percentage of reads per unique haplotypes within a
sample in 2011: 0.4-2.0%; IQR for the percentage of reads per shared

haplotypes within a sample in 2011: 2.0-18.6%; IQR for percentage of
reads per unique haplotype in 2012-2016: 0.3-1.3%, IQR for percen-
tage of reads per shared haplotype in 2012-2016: 1.4-16.4%). We
removed all unique (singleton) haplotypes from further analysis.

Defining molFOI

We defined individual clones (individual haplotypes at any locus) and
infection events (all haplotypes within a sample). To allow for imper-
fect data, stochastic dropout of loci, and sequestration of parasites, we
tested different conditions to allow for clones to disappear for short
periods of time and still be considered part of an ongoing infection. We
also required at least ten samples per participant per season to include
in our sequencing, to minimize uneven numbers of samples between
participants. In the 2011 dataset, we tested both the number of “skip-
ped visits,” the number of samples without a given clone before it
reappears (0—4), the number of days between appearances of a given
clone (15, 30, 60—to correct for longer periods of time between visits,
if a participant had fewer samples from a given period of time), and
combinations of the two metrics. Although the number of new clones
changed with this sensitivity testing, the overall conclusions of our
analyses did not; thus, we defined clones as new if they are not
detected for more than two visits in a row or more than 30 days. We
also tested the sensitivity of our definitions of new infection events,
requiring 1, 2, or 3 new clones present within a sample, or requiring
new clones at 2 different loci present within a sample. We defined new
infection events by the presence of 2 new clones within a sample. We
also repeated a subset of the above combinations with a higher mini-
mum read-threshold (50 read-pairs, instead of 10). Finally, we repeated
all sensitivity tests with a higher threshold to retain haplotypes in the
analyses: 50 read-pairs per haplotype per sample. We retained the 10
read-pair minimum threshold, and all analyses include data from all
four loci, unless otherwise stated.

We repeated these sensitivity analyses on the 2012-2016 dataset,
with only a few changes. Due to the change in sampling frequency in
these years (biweekly to monthly), we increased the number of days
between clone appearances in our tests (30, 60, or 90 days), and we
defined clones as new if they are not detected for more than two visits
in a row or more than 60 days. We also tested a higher read threshold
here (500 read-pairs per haplotype per sample) and retained the 200
read-pair threshold.

We defined the molFOlI as the total number of new clones present
within a participant over a given period of time (generally one trans-
mission season). To do this, we looked at all new infection events for a
participant and filtered to only new clones present then, as opposed to
clones carried over from the previous visit. We then counted the
maximum number of new clones present at any one of our four
sequenced loci. Finally, we summed these maximum numbers of new
clones present from each new infection event over the time period of
interest.

Spatial analysis

We used latitude and longitude coordinates of participant households,
as well as the metrics of distance to clinic or water from these house-
holds, from earlier studies of this cohort”. We used the latitude and
longitude coordinates for visualization purposes (Fig. 5a), along with
coordinates of local water (Global Map of Mali © ISCGM/IGM). We
performed the analyses in Fig. 5b, c using the distance data from the
previous cohort study. We used the R packages “sf” and “tidyverse” for
the visualization in Fig. 5a°°. We used the “mat2listw” and “mor-
an.mc” functions from the “spdep” R package for the Moran’s |
analysis™,

Systems serology analysis
These analyses included the 201 participants that overlapped between
the serological data and the genetic data. The distribution of
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participant ages in this subset of participants does not significantly
differ from that of the full cohort (Kruskal-Wallis test, x*(1) = 0.60,
P=0.44). We centered and scaled all data (Z-scored), using the “scale”
function in R. For each feature, we removed any outlier points, defined
as having a raw value outside of 1.5 times the interquartile range. We
then created three different thresholds for selecting high and low
molFOI participants (see Supplemental Table 2). We performed the
same analyses on each subset of data. We identified features that were
significantly different between the two groups, using Mann-Whitney
tests with a Benjamini-Hochberg correction for multiple hypothesis
testing'®.

Statistical analysis

We used R 4.1.2°° for all analyses, unless otherwise stated, with the
packages “tidyverse,” “here,” and “RColorBrewer™*" All statistical
tests were two-sided, when applicable. We tested for significance using
“glm” or “kruskal.test,” as described in figure legends. We used the
“dunn.test” R package to perform Dunn tests with Holm post hoc
corrections for all analyses with multiple hypothesis testing, unless
otherwise stated®. We used “cor_test” and “cor_to_ci” from the “cor-
relation” package for the Spearman’s ranked correlation analysis in
Fig. 4a, b®. We used the “Imer” function from the “lme4” R package® to
fit linear mixed-effects models; we then used the “anova” function and
the pseudo-R? procedure as previously described®® to compare mod-
els. We used “geom_quasirandom” from “ggbeeswarm” for all jittered
beeswarm plots®’. We used Adobe lllustrator 2024 to create Fig. 1 and
Supplemental Fig. 1, to arrange panels in all figures, and add lines to
denote significant comparisons between groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Supplementary Data 1 file contains a data dictionary and seven tables
(three each for the 2011 cohort and 2012-2016 cohort). One table per
cohort contains relevant metadata on the participants, including age
(in years) and HBB genotype, among others. A second table lists all
the samples that we sequenced per cohort, and each sample is
identified by a unique ID, as well as the participant ID, visit date, and
whether it generated sequencing data passing filters. A third table
contains all the haplotypes called in our pipeline at each of the four
loci per sample, with sample IDs that can be joined with the other
tables to link to relevant metadata. The seventh table contains the
raw systems serology dataset. Consent was obtained to publish these
data, including multiple indirect identifiers. All raw sequencing data
were submitted to the NCBI Sequence Read Archive under accession
PRJNA1129562. Source data are provided with this paper.

Code availability
The code used to process sequencing data is available at https://
github.com/broadinstitute/malaria-amplicon-pipeline.
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