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Explosive neural networks via higher-order
interactions in curved statistical manifolds

Miguel Aguilera 1,2 , Pablo A. Morales3,4, Fernando E. Rosas 5,6,7,8 &
Hideaki Shimazaki 9,10

Higher-order interactions underlie complex phenomena in systems such as
biological and artificial neural networks, but their study is challenging due to
the scarcity of tractablemodels. By leveraging a generalisation of themaximum
entropy principle, we introduce curved neural networks as a class of models
with a limited number of parameters that are particularly well-suited for
studying higher-order phenomena. Through exact mean-field descriptions, we
show that these curved neural networks implement a self-regulating annealing
process that can accelerate memory retrieval, leading to explosive order-
disorder phase transitions with multi-stability and hysteresis effects. Moreover,
by analytically exploring their memory-retrieval capacity using the replica trick,
we demonstrate that these networks can enhance memory capacity and
robustness of retrieval over classical associative-memory networks. Overall, the
proposed framework provides parsimonious models amenable to analytical
study, revealing higher-order phenomena in complex networks.

Complex physical, biological, and social systems often exhibit higher-
order interdependencies that cannot be reduced to pairwise interac-
tions between their components1,2. Recent studies suggest that higher-
order organisation is not the exception but the norm, providing var-
iousmechanisms for its emergence3–6.Modelling studies have revealed
that higher-order interactions (HOIs) underlie collective activities such
as bistability, hysteresis, and ‘explosive’ phase transitions associated
with abrupt discontinuities in order parameters4,7–11.

HOIs are particularly important for the functioning of biological
and artificial neural systems. For instance, they shape the collective
activity of biological neurons12,13, being directly responsible for their
inherent sparsity5,13–15 and possibly underlying critical dynamics16,17.
HOIs have also been shown to enhance the computational capacity of
artificial recurrent neural networks18,19. More specifically, ‘dense asso-
ciative memories’ with extended memory capacity20–23 are realised by
specific non-linear activation functions, which effectively incorporate
HOIs. These non-linear functions are related to attention mechanisms

of transformer neural networks24 and the energy landscapeof diffusion
models25,26, leading to the conjecture that HOIs underlie the success of
these state-of-the-art deep learning models.

Despite their importance, existent studies of HOIs face significant
computational challenges. Analytically tractable models that incor-
porate HOIs typically limit interactions to a single order (e.g., p-spin
models22,27,28). Otherwise, attempting to represent diverse HOIs
exhaustively results in a combinatorial explosion29. This issue is per-
vasive, restricting investigations of high-order interaction models—
such as contagion9, Ising19, or Kuramoto30 models—to highly homo-
geneous scenarios3,16 or to models of relatively low-order9,11,31. While
attempts have been made to model all orders of HOIs and perform
theoretical analyses20–23,32–37, it is currently unclear how to construct
parsimonious models to address the diverse effects of HOIs in a
principled manner.

To address this challenge, here we employ an extension of the
maximum entropy principle to capture HOIs through the deformation
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of the space of statistical models. When applied to neural networks,
our approach generalises classical neural network models to yield a
familyof curved neural networks that effectively incorporateHOIs of all
orders. The resulting models have rich connections with the literature
on the statistical physics of neural networks21,22,27,34. These features
enable the exploration of various aspects of HOIs using techniques
including mean-field approximations, quenched disorder analyses,
and path integrals.

Our analyses reveal how relatively simple curved neural networks
exhibit some of the hallmark characteristics of higher-order phenom-
ena, such as explosive phase transitions, arising both in mean-field
models and in more complex transitions to spin-glass states. These
phenomena are driven by a self-regulated annealing process, which
accelerates memory retrieval through positive feedback between
energy and an ‘effective’ temperature—a perspective that can also
explain memory-retrieval dynamics in other modern artificial net-
works. Furthermore, we show—both analytically and experimentally—
that this mechanism can lead to an increase in thememory capacity or
robustness of memory retrieval in these neural networks. Overall, the
core contributions of this work are (i) the development of a parsimo-
nious neural networkmodel based on themaximum entropy principle
that captures interactions of all orders, (ii) the discovery of a self-
regulated annealing mechanism that can drive explosive phase tran-
sitions, and (iii) the demonstration of enhanced memory capacity
resulting from this mechanism.

Results
High-order interactions in curved manifolds
The maximum entropy principle (MEP) is a general modelling frame-
work based on the principle of adopting the model with maximal
entropy compatible with a given set of observations, under the ratio-
nale that one should not assume any structure beyond what is speci-
fied by the assumptions or features selected from the data38,39. The
traditional formulation of the MEP is based on Shannon’s entropy40,
and the resultingmodels correspond toBoltzmanndistributions of the
form pðxÞ= exp

P
aθaf aðxÞ � φ

� �
, where x = (x1, …, xn), φ is a nor-

malising potential, and θa are parameters constraining the average
value of observables h f aðxÞi. While observables are often set to low
orders (e.g. fi(x) = xi, fij(x) = xixj, corresponding to first and second
order statistics), higher-order interdependencies can be included by
considering observables of the type fI(x) = ∏i∈Ixi, where I is a set of
indices of order k = ∣I∣. Unfortunately, an exhaustive description of
interactions up to order k≫ 1 becomes unfeasible in practice due to an
exponential number of terms (for more details on the MEP, see Sup-
plementary Note 1).

The MEP can be expanded to include other entropy functionals
such as Tsallis’41 and Rényi’s42. Concretely, maximising the Rényi
entropy (with the scaling parameter γ ≥ −1)43

HγðpÞ= � 1
γ
ln
X
x

pðxÞ1 + γ ð1Þ

while constraining h f aðxÞi (i.e., the expectation of features by p(x))
results in models of the form (see Supplementary Note 1):

pγðxÞ= expð�φγÞ 1 + γβ
X
a

θaf aðxÞ
" #1=γ

+

, ð2Þ

where φγ is a normalising constant given by

φγ = ln
X
x

1 + γβ
X
a

θaf aðxÞ
" #1=γ

+

: ð3Þ

Above, the square bracket operator sets negative values to zero,
x½ �+ = maxf0, xg. We refer to distributions following (2) as the
deformed exponential family, which maximises both Rényi and Tsallis
entropies44,45. When γ → 0, Rényi’s entropy tends to Shannon’s and (2)
to the standard exponential family42.

A fundamental insight explored in this study is that higher-order
interdependencies can be efficiently captured by deformed exponen-
tial family distributions46,47. Starting from a standard Shannon’s MEP
model with low-order interactions, it can be shown that varying γ in (2)
results in a deformation of the statistical manifold which, in turn,
enhances the capability of pγ(x) to account for higher-order inter-
dependencies. In effect, the consequence of deformation can be
investigated by rewriting (2) via Taylor expansion of the exponent

pγðxÞ= exp
X1
k = 1

�1
kγ

�γβ
X
a

θaf aðxÞ
 !k

� φγ

0
@

1
A, ð4Þ

which is valid for the case 1 + γ∑aθafa(x) > 0, and otherwise pγ(x) = 0.
This shows that the deformed manifold contains interactions of all
orders even if fa(x) is restricted to lower orders while establishing a
specific dependency structure across the orders, thereby avoiding a
combinatorial explosion of the number of required parameters. The
deformation resulting from the maximisation of a non-Shannon
entropy has been shown to reflect a curvature of the space of possible
models in information geometry42,45,48,49. This leads to a particular
foliation of the space of possible models50 (an ‘onion-like’ manifold
structure, Fig. 1), which has properties that allow to re-derive the MEP
from fundamental geometric properties—for technical details, see
Supplementary Note 1.

Curved neural networks
Several well-known neural networkmodels adhere to theMEP, such as
Ising-like models51 and Boltzmann machines52. Interestingly, these
models can encode patterns in their weights in the form of ‘associative
memories’ as in Nakano-Amari-Hopfield networks53–55, being amenable
for investigations using tools from equilibrium and nonequilibrium
statistical physics literature56–59. Following the principles laid down in
the previous section, we now introduce a family of recurrent neural
networks that we call curved neural networks.

For this purpose, let us considerN binary variables x1,…, xN taking
values in {1, −1} following a joint probability distribution

pγðxÞ= expð�φγÞ 1� γβEðxÞ½ �1=γ+ , ð5Þ

where φγ is a normalising constant. Above, we call E(x) and β the
(stochastic) energy function (i.e., Hamiltonian) and the inverse tem-
perature, due to their similaritywith theGibbs distribution in statistical
physics when γ → 0. Note that, unlike exponential families, these
models do not exhibit energy invariance under constant shifts. How-
ever, as demonstrated in Ref. 41, deformed exponentialmodels can be
related to energy-invariant models by rescaling their temperature,
which can be seen as maximising entropy with respect to escort
statistics rather than the original natural statistics.

Neural network models are typically defined by considering pγ(x)
as defined in (5) with an energy function of the form

EðxÞ= �
XN
i= 1

Hixi �
1
N

X
i < j

Jijxixj , ð6Þ

where Jij is the coupling strength between neurons xi and xj, and Hi are
bias terms. In the limit γ→0, p0(x) recovers the Isingmodel. Emulating
classical associativememories, the weights Jij can bemade to encode a
collection ofM neural patterns ξa = fξa1 , . . . ξaNg, ξa1 = ±1 and a = 1,…,M
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by using the well-known Hebbian rule55,56

Jij = J
XM
a= 1

ξai ξ
a
j , ð7Þ

where J is a scaling parameter.
Before proceeding with our main analysis, one can gain insights

into the effect of the curvature γ from the dynamics of a recurrent
neural network that behaves as a sampler of the equilibrium distribu-
tion described by (5). For this, we adapt the classic Glauber dynamics
to curved neural networks (see Supplementary Note 2) to obtain

pðxijxniÞ= 1 + 1� γβ0ðxÞΔEðxÞ� �1=γ
+

� ��1
, ð8Þ

where x\i denotes the state of all neurons except xi,
ΔEðxÞ=2xiðHi +

1
N

P
j JijxjÞ is the energy difference associated with

detailed balance, and β0ðxÞ is an effective inverse temperature given
by

β0ðxÞ= β
1� γβEðxÞ½ � +

: ð9Þ

Again, γ → 0 recovers the classic Glauber dynamics and β0ðxÞ=β. Thus,
the curvature affects the dynamics through the deformed nonlinear
activation function (8) and the state-dependent effective temperature
β0ðxÞ (9), with higher β0ðxÞ inducing lower degrees of randomness in
the transitions. The effect of E(x) on β0ðxÞ depends then on the sign of
γ. A negative γ increases β0ðxÞ during relaxation, reducing the
stochasticity of the dynamics and accelerating convergence to a low-
energy state. This, in turn, raises β0, creating a positive feedback loop
between energy and effective temperature. The effect is similar to
simulated annealing, but the coupling of the energy and effective
inverse temperature lets the annealing scheduling self-regulate to
accelerate convergence. In contrast, positive γ decelerates the
dynamics through negative feedback. Such accelerating or decelerat-
ing dynamics underlie non-trivial complex collective behaviours of the
curved neural networks, which will be examined in the subsequent
sections.

Mean-field behaviour of curved associative-memory networks
As with regular associative memories58, one can solve the behaviour of
curved associative-memory networks through mean-field methods in
the thermodynamic limit N → ∞ (Supplementary Note 3). Here the
energy is extensive, meaning that it scales with the system’s size N. To
ensure the deformation parameter remains independent of system
properties such as size or temperature, we scale it as follows:

γ =
γ0

Nβ
: ð10Þ

Under this condition, we calculate the normalising potentialφγ by
introducing a delta integral and calculating a saddle-node solution,
resulting in a set of order parametersm = {m1,…,mM},ma =

1
N

P
iξ

a
i hxii

in the limit of sizeN→∞. This calculation assumes 1 − γβE(x) > 0 so that
½�+ operators can be omitted and φγ is differentiable. The solution
results in (for Hi = 0):

φγ =N
β
γ0
ln

β0

β
�
XM
a= 1

β0NJm2
a

+
XN
i = 1

ln 2 cosh β0J
XM
a= 1

ξai ma

 ! !
,

ð11Þ

where β0 is given by

β0 =
β

1 + γ0 12 J
P

am2
a

, ð12Þ

and the values of the mean-field variables ma are found from the
following self-consistent equations:

ma =
XN
i = 1

ξai
N

tanh β0J
XM
b= 1

ξbi mb

 !
: ð13Þ

Similarly, using a generating functional approach59, we use the
Glauber rule in (8) to derive a dynamical mean-field given by path
integral methods (see Supplementary Note 4). This yields

_ma = �ma +
XN
i = 1

ξai
N

tanh β0J
XM
b= 1

ξbi mb

 !
, ð14Þ

where β0 is defined as in (12) for eachm. Note that in large systems, we
recover the classical nonlinear activation function, and the deforma-
tion affects the dynamics only through the effective temperature β0.

Explosive phase transitions
To illustrate these findings, let us focus on a neural network with a
single associative pattern (M = 1), which is similar to theMattismodel60

and equivalent to a homogeneous mean-field Ising model61 (with
energy EðxÞ= � 1

N J
P

i< jxixj) by changing a variable xi ← ξixi. Rewriting
(13), we find that a one-pattern curved neural network follows a mean-
field model given by

m= tanh β0Jm
� �

, ð15Þ

β0 =
β

1 + γ0 12 Jm
2
: ð16Þ

This result generalises the well-known Ising mean-field solution
m= tanh βJmð Þ, which is recovered for γ = 0.

By evaluating these equations, one finds that the model exhibits
the usual order-disorder phase transition for positive and small

Fig. 1 | Higher-order decomposition resulting from the foliation of a statistical
manifold. Illustration of a family of standard MEP models (right) and its deformed
counterpart (bottom left). The space of MEP distributions with constraints of dif-
ferent orders constitute nested sub-manifolds29, giving rise to a hierarchy of sub-
families of models of the form Eγ

k = fp
ðkÞ
γ ðxÞ= e�φγ 1� γβEk ðxÞ

� �1=γ
+ g such that

Eγ
1 � Eγ

2 � � � � � Eγ
n
42. The foliation depends on the curvature γ, and in general

Eγ
k≠E0

k but rather Eγ
k \ E0

r ≠ ∅ for k < r. For small values of ∣γ∣, it is possible to neglect
higher-order terms in (4), and therefore certain subsets of Eγ

k effectively approx-
imate E0

r .
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negative values of γ0 (Fig. 2a top). However, for large negative values of
γ0, a different behaviour emerges: an explosive phase transition8 that
displays hysteresis due to HOIs (Fig. 2a bottom). The resulting phase
diagram (Fig. 2b) closely resembles phase transitions in higher-order
contagion models9,11 and higher-order synchronisation observed in
Kuramoto models30.

One can intuitively interpret the effect of the deformation para-
meter γ0 bynoticing that, for afixedβ0,m is the solutionof a functionof
β0. For γ0 =0, this results in the mean-field behaviour of the regular
exponential model, which assigns a value of m to each inverse tem-
perature β =β0. In the caseof the deformedmodel, the possible pairs of
solutions ðm,β0Þ are the same, but their mapping to the inverse tem-
peratures β changes. Namely, this deformation can be interpreted as a
stretching (or contraction) of the effective temperature, which maps
each pair ðm,β0Þ to an inverse temperature β= β0ð1 + 1

2 γ
0Jm2Þ according

to (16). Thus, one can obtain the mean-field solutions of the deformed
patterns as mappings of the solutions of the original model. This is
illustrated in Fig. 2c, where the solution of β0,m,β is projected to the
planes β = 0 and β0 =0, obtaining the solutions for the flat (γ0 =0) and
the deformed (γ0 = � 1:2) models respectively.

In order to gain a deeper understanding of the explosive nature of
this phase transition, we study the dynamics of the single-pattern
neural network. By rewriting (14) for M = 1, and under the change of
variables mentioned above to remove ξ, the dynamical mean-field
equation of the system reduces to

_m= �m+ tanh β0Jm
� �

, ð17Þ

where β0 is calculated as in (16). Simulations of the dynamical mean-
field equations for values of β just above the critical point are depicted
in Fig. 2d. Trajectories with strongly negative γ0 saturate earlier than
smaller negative γ0, confirming accelerated convergence. During this
process, the effective inverse temperature β0 rapidly increases until it

saturates, creating a positive feedback loop between β0 and m that
gives rise to the explosive nature of the phase transition. This positive
loop occurs only if γ0 is negative; otherwise, negative feedback simply
makes the convergence of m slower.

Overlaps between memory basins of attraction
A key property of associative-memory networks is their ability to
retrieve patterns in different contexts. In the case of one-pattern asso-
ciative-memory networks, the energy function EðxÞ= � J

N

P
i < jxiξ iξ jxj is

a quadratic function with two minima at x = ± ξ, which configure global
attractors. Instead, a two-pattern associative-memory network has an
energy function with four minima (if sufficiently separated), but their
attraction basins can overlap when the patterns are correlated.

To study the degree of the overlap between pairs of patterns, we
analyse solutions of (13) for a network with two patterns with corre-
lation hξ1i ξ2i i=C (see Supplementary Note 3.3 for details). In this sce-
nario, the system is described by two mean-field patterns:

ma =
1
2
ð1 +CÞ tanh β0Jðm1 +m2Þ

� �

+w
1
2
ð1� CÞ tanh β0Jðm1 �m2Þ

� � ð18Þ

with w = 3 − 2a = ± 1 for a = 1, 2, and

β0 =
β

1 + γ 1
2 Jðm2

1 +m
2
2Þ
: ð19Þ

Figure 3 shows how the hysteresis effect and explosive phase
transitions persist in the case of two patterns for C = 0.2 with negative
γ0. This example shows two consecutive, overlapping explosive bifur-
cations (going from 1 to 2, and then to 4 fixed points), creating a
hysteresis involving 7 fixed points within a more compressed

Fig. 2 | Explosive phase transitions in curved neural networks. a Phase transi-
tions of the curved neural networkwith one associativememory, for J = 1 and values
of γ0 = �0:5 (top, displaying a second-order phase transition) and γ0 = �1:5 (bot-
tom, displaying an explosive phase transition). Solid lines represent the stable fixed
points, and dotted lines correspond to unstable fixed points. b Phase diagram of
the system. The areas indicated by P and M refer to the usual paramagnetic (dis-
ordered) and magnetic (ordered) phases, respectively. The area indicated by Exp
represents a phase where ordered and disordered states coexist in an explosive

phase transition characterised by a hysteresis loop. (c) Solutions of (15)-(16) for
β0,m,β (black line) for γ0 = �1:2, andprojections to the planem=0,β =0 andβ0 =0,
obtaining respectively the relation between β,β0 and solutions of the flat and the
deformed models respectively (grey lines). (d) Mean-field dynamics of the single-
pattern neural network for β = 1.001 (near criticality from the ordered phase) for
some values of γ0 in [ −1.5, 0]. For large negative γ0 the dynamics ‘explodes’, withm
(top) and β0 (bottom) converging abruptly.
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parameter range of β than the classical case. Consequently, the
memory-retrieval region for the four embedded memories expands.
These results illustrate complex hysteresis cycles as well as an
increased memory capacity for finite temperatures by negative values
of γ0. This enhanced capability for memory retrieval is further inves-
tigated through the replica analyses in the next section.

Memory retrieval with an extensive number of patterns
Next, we investigate how the deformation related to γ impacts the
memory-storage capacity of associative memories. In classical asso-
ciative networks of N neurons, the energy function is defined as
EðxÞ= � J

N

PM
a= 1

P
i< jxiξ

a
i ξ

a
j xj withM = αN. As the number of patterns

learned by the network increases, the system transitions to a dis-
ordered spin-glass state in the thermodynamic limit. Furthermore, one
can analytically solve this model62–65. For example, using the replica-
trick method can determine the memory capacity of the system62, and
theoretically identify the critical value of α at which memory retrieval
becomes impossible—leading to a disordered spin-glass phase. Here,
we apply a similar approach to reveal how deformed associative
memory networks afford an enhanced memory capacity.

Applying the replica trick in conjunction with the methods out-
lined in previous sections allows us to solve the system (see Supple-
mentary Note 5). This method entails computing a mean-field variable
m corresponding to one of the patterns ξ a and averaging over the
others. For simplicity, a pattern with all positive unity values
ξ a = (1, 1, …, 1) is considered, which is equivalent to any other single
pattern just by a series of sign flip variable changes. The degree of
similarity or overlap of this pattern with other patterns in the system
introduces a new order parameter q, which contributes to measuring
disorder in the system. After introducing the relevant order para-
meters and solving under a replica-symmetry assumption, the nor-
malising potential is derived as

φγ =N
β
γ0
ln

β

β0 � Nβ0Jm2 � N
1
2
αðβ0JÞ2ðr +R� 2qrÞ

� N
1
2
α ln 1� β0Jð1� qÞ� �� β0J

ffiffiffiffiffi
rq

p� �

+N
Z

Dz ln 2 cosh β0Jm+β0J
ffiffiffiffiffiffi
αr

p
z

� �� �
,

ð20Þ

where J is a scaling factor, and the order parameters are defined as

m=
Z

Dz tanh β0Jm+β0J
ffiffiffiffiffiffi
αr

p
z

� �
, ð21Þ

q=
Z

Dz tanh2 β0Jm+β0J
ffiffiffiffiffiffi
αr

p
z

� �
, ð22Þ

with

r =
q

ð1� β0Jð1� qÞÞ2
, R=

ðβ0JÞ�1 � ð1� 2qÞ
ð1� β0Jð1� qÞÞ2

: ð23Þ

As in previous cases, the model is governed by an effective tempera-
ture

β0 =
β

1 + γ0 12 Jm2 +αJðβ0ðR� qrÞ � 1Þ� � : ð24Þ

This solution differs from the models in previous sections by the self-
dependence of β0.

To obtain a phase diagram, we solved (21)-(22) numerically for
given α,β0 at γ0 =0, and rescaled the inverse temperature as in the
previous section to obtain the corresponding values of β for each γ0.
Using the resulting order parameters and calculating the free energy
for each α,β, γ0, we constructed the phase diagram of the system
(similarly to regular associative memories58,62) characterised by the
following distinct phases (Fig. 4):

• A paramagnetic phase (P), corresponding to disordered solutions
withm = q =0,wherememory-retrieval fails due to the dominance
of fluctuations.

• A ferromagnetic phase (F), corresponding to stable memory-
retrieval solutions with m > 0 and q > 0.

• A spin-glass phase (SG), exhibiting spurious-retrieval solutions
with m = 0 and q > 0.

• A mixed phase (M), where F and SG types of solutions coexist,
being the spin-glass solutions a global minimum of the normal-
ising potential φγ.

Fig. 3 | Interaction between two encodedmemories. a Values of φγ for different
mean-field values m1, m2, indicating the attractor structure of the network for
different values of β with J = 1, C = 0.2 for γ0 =0 (top row) and γ0 = � 1:2 (bottom
row). b Bifurcations of the order parametersm1, m2. For γ0 =0 we observe an

attractor bifurcating into two and then into four. For γ0 = � 1:2, we observe the
same sequence, but with a coexistence hysteresis regime in which 7 attractors are
possible.
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For γ0 =0 (black dashed lines), the phase transition reflects the
behaviour of associativememories near saturation58,62.With negative γ0

(red lines), we observe an expansion of the ferromagnetic and mixed
phases, indicating an enhanced memory-storage capacity by the
deformation. Conversely, a positive value of γ0 (yellow lines) decreases
thememory capacity but reduces the extent of themixed phase. In the
mixed phase, retrieved memories (m > 0) are represented at a local—
but not global—minimum of the normalising potential φγ in (20),
indicating a larger probability of observing spurious patterns. Thus,we
expect positive values of γ0 to result in more robust memory retrieval.

The stability of the replica symmetry solution is given by the
condition

1 + β0ð1� qÞ� �2
>αβ02

Z
Dz cosh�4β0 Jm+ J

ffiffiffiffiffiffi
αr

p
z

� �
, ð25Þ

which is captured by the dotted lines near zero temperature in Fig. 4a.
Note that all solutions in Fig. 4b are stable under the replica symmetry
assumption.

We complement the analysis from the previous section with an
experimental study of a system encoding patterns from an image
classification benchmark. The patterns are sourced from the CIFAR-

100 dataset, which comprises 60,000 32 × 32 colour images66. To
adapt the dataset to binary patterns suitable for storage in an asso-
ciative memory, we processed each RGB channel by assigning a value
of 1 to pixels with values greater than the channel’s median value and
−1 otherwise (Fig. 5a). The resulting array ofN = 32 ⋅ 32 ⋅ 3 binary values
for each image was assigned to patterns ξ a. Note that associative
memories (as well as our theory above) usually assume that patterns
are relatively uncorrelated, and specificmethods are required to adapt
them to correlated patterns67,68. To simplify the problem, we con-
ducted experiments using a selection of 100 images with covariance
values smaller than 10=

ffiffiffiffi
N

p
(the standard deviation of the covariance

values for uncorrelated patterns is 1=
ffiffiffiffi
N

p
). We used a random search to

select patterns with low correlations: we randomly picked an image
and replaced it if its correlation exceeded the threshold, repeating
until all correlations were below it.

We evaluated the memory retrieval capacity of networks with
various degrees of curvature γ by encoding different numbers of
memories, as described in (7). As a measure of performance, we eval-
uated the stability of the network by assigning an initial state x = ξ a and
calculating the overlap o =

P
ixiξ

a
i after T = 30N Glauber updates for

β=2, J= 1. Theprocesswas repeatedR= 500 times fromdifferent initial
conditions (different encoded patterns and different initial states) to
estimate the value of m in (21). Experimental outcomes confirm our
theoretical results, revealing that memory capacity increases with
negative values of γ0, while positive values reduce thememory capacity
(Fig. 5b), but reduce the extent and magnitude of the high variability
region in pattern retrieval (Fig. 5c), which is consistent with the
reduction of themixedphase. Note that the resultingmemory capacity
of the system observed in our experiments (i.e., the value of α at which
the transition happens) is diminished due to the presence of correla-
tions among some of the memorised patterns.

Finally, we investigated transitions near the spin-glass phase
boundaries. First, we note that, for J → 0 and α = J−2, the model in (21)-
(22) converges to (see Supplementary Note 5)

q=
Z

Dz tanh2 β0 ffiffiffi
q

p
z

� �
, ð26Þ

β0 =
β

1 + 1
2 γ

0β0ð1� q2Þ , ð27Þ

which at γ = 0 recovers the well-known Sherrington-Kirkpatric model69

(see Supplementary Note 6). While in the classical case, a phase
transition occurs from a paramagnetic to a spin-glass phase, the
curvature effect of γ0≠0modifies the natureof this transition. For small
values of γ0, the system exhibits a continuous phase transition akin to
the Sherrington–Kirkpatrick spin-glass,where dq

dβ shows a cusp (Fig. 6a).
However, for γ0 = �1 the phase transition becomes second-order,
displaying a divergence of dq

dβ at the critical point (Fig. 6b). Moreover,
increasing the magnitude of negative γ0 leads to a first-order phase
transition with hysteresis (Fig. 6c), resembling the explosive phase
transition observed in the single-pattern associative-memory network.
This hybrid phase transition combines the typical critical divergenceof
a second-order phase transition with a genuine discontinuity, similar
to ‘type V’ explosive phase transitions8.

We analytically calculated the properties of these phase transi-
tions (see Supplementary Note 6). By computing the solution at γ0 =0
and rescaling β0, we determined that the critical point is located at
βc = 1 +

1
2 γ

0 (consistent with Fig. 6a–c). The slope of the order para-
meter around the critical point is, for γ0 ≤ �1, equal to ð1 + γ0Þ�1, indi-
cating the onset of a second-order phase transition as depicted in
Fig. 6b. The resulting phase diagram of the curved Sherrington-
Kirkpatrick model is shown in Fig. 6d.

Fig. 4 |Memory capacity is enhancedby geometric deformation. Phase diagram
of a curved associative memory with an extensive number of encoded patterns
M = αN and J = 1 for (a) different T = 1/β at γ0 =0 (blackdashed lines), 0.8,−0.8 (solid
lines), and for (b) different γ0 at β = 2. F indicates the ferromagnetic (i.e., memory
retrieval) phase, SG the spin-glass phase (where saturationmakesmemory retrieval
inviable), M a mixed phase, and P the paramagnetic region. Both in F and M,
ferromagnetic and spin-glass solutions coexist, but we differentiate these by cal-
culating respectively whether memory-retrieval or spin-glass solutions are the
global minimum of the normalising potential φγ. The dotted lines in (a) near T = 0
indicate the AT lines, below which the replica-symmetric solution is not valid.
Increasing γ0 to larger negative values extends the retrieval phase into larger values
of α, indicating an increased memory capacity, while larger positive values reduce
the extension of the mixed phase, increasing robustness of memory retrieval.
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Comparison with other dense associative memory models
Although our primary objective is to develop a parsimoniousmodel of
HOIs to explain higher-order phenomena, our framework can also be
used to explain the behaviour of modern networks with HOIs,
including the recently proposed relativistic Hopfield model32–34 and
dense associative memories20,21. For this, let us consider the energy
F ½E� of the exponential family distribution pðxÞ � e�βF ½E� given by the
nonlinear transformation (denoted by F ) of the classical energy E(x).
The deformed exponential models in this study correspond to
F ½E�= � N

γ0 lnð1� γ0E=NÞ, while the relativistic model corresponds to
F ½E�= � N

γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ0E=N

p
. For the deformed exponential, the term F ½E�

can be expanded as

F ½E�= E +
γ0

2N
E2 +

γ02

3N2 E
3 + . . . ð28Þ

When E depends on the quadratic Mattis magnetisation (i.e.,
E = �Pa

1
N

P
iξ

a
i xi

� �2
), thenF ½E� expands in terms of even-order HOIs

of
P

iξ
a
i xi. For γ0 <0, all coefficients of

P
iξ

a
i xi in the expansion are

negative, indicating that embedded memories have deeper energy
minima than in the classical case. The same signs appear for each order
in the relativistic energy with γ0 <0. We also note that β in the free
energy of both the deformed exponential and relativisticmodels in the
limit of large N appears scaled according to an effective temperature
given by β0 = β∂EF ½E� (e.g., (11) and Eq. (6.2) in Ref. 34). Moreover, the
input in the Glauber dynamics is approximated for large sizes as

βΔF ½E� � β∂EF ½E�ΔEðxÞ=β0ΔEðxÞ: ð29Þ

The effective inverse temperatures β0 =βð1� γ0E=NÞ�1 for the
deformed exponential and β0 =2�1ð1� γ0E=NÞ�1=2 for the relativistic
models are decreasing functions of E when γ0 <0, resulting in an
acceleration of memory retrieval—with lower energy E resulting in
higher β0 (lower temperature). While the relativistic model has been
studied for γ0 >032–34, we conjecture it may exhibit explosive phase
transitions if γ0 <0. Conversely, a positive γ0 introduces alternating
signs in even-order terms of

P
iξ

a
i xi, and a shallower energy landscape

due to a reduction in β0. This shallower energy landscape reduces the
memory capacity of the deformed exponential networks by expanding
the spin-glass phases (Fig. 4), but also enlarges the recall (ferromag-
netic) region by mitigating the formation of spurious memories given

Fig. 6 | Explosive spin glasses. Phase transitions for order parameter q for replica-
symmetric disordered spin models displaying (a) a cusp phase transition for
γ0 = �0:5, (b) a second-order phase transition for γ0 = �1:0 and (c) an explosive
phase transition for γ0 = �1:2. d Phase diagram of the explosive spin glass, dis-
playing a paramagnetic (P), spin-glass (SG) and an explosive phase (Exp).

Fig. 5 | Simulation study for the effect of deformation on image encoding.
a Examples of CIFAR-100 images (top) and their RGB binarised versions (bottom).
Every 32 × 32 × 3 binary RGB pixel value for each image a is assigned to the value of
one position of pattern ξai . b, c Mean and variance of pattern retrieval values
obtained in experiments, measured by the overlap between the final state of the
network and the encoded pattern.
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by overlapping patterns in the mixed phase (in alignment with
previous work32 on mitigation of spurious memories in the relativistic
model).

This perspective on accelerated memory retrieval by nonlinearity
extends to dense associative memories20,21, which achieve supralinear
memory capacities through nonlinear pattern encoding. Specifically,
their energy function is given by F = �PaFð

P
iξ

a
i xiÞ with F being e.g.,

a thresholded power function20, FðzÞ= z½ �p+ or an exponential
nonlinearity21 F(z) = ez at zero temperature. Thesenonlinearities narrow
basins of attraction, reducing memory overlap and preventing transi-
tions to the spin-glass phase. The jumps in the Glauber dynamics of
such systems are weighed by an accelerating function. Namely, from
our perspective, the dynamics of such systems can be described via
positive feedback on weights linked to a specific memory, which
increase during memory retrieval. This follows from the fact that,
relating the linear difference in Mattis terms Δϵak � 2ξakxk with the
nonlinear difference ΔFa

k � F
P

iξ
a
i xi

� �� F
P

iξ
a
i xi � Δϵak

� �
, the update

of the kth neuron is determined by the sign of

ΔF ðxÞ=
X
a

ΔFa
k

Δϵak
Δϵak =

X
a

wa
kΔϵ

a
k : ð30Þ

Here, we show that the effective weight wa
k � ΔFa

k
Δϵa

k
becomes an

increasing function of
P

iξ
a
i xi when F is the power, exponential, or

more generally, a convex function (See Supplementary Note 7). Thus,
increasing

P
iξ

a
i xi as pattern ξ a is retrieved strengthens its basin of

attraction and ensures positive feedback. Meanwhile, retrieval of ξ a

reduces
P

iξ
b
i xi for orthogonal patterns ξ b, lowering their weights,

suppressing their recall to minimise interference. This competitive
mechanism highlights the higher memory capacity of these models
compared to curved neural networks with uniform temperature scal-
ing. Unlike the effective inverse temperature in curved networks,
which depends only on the system’s state or energy, the effective
weight in updating the k-th neuron additionally depends on the neu-
ron’s state xk, thus no longer representing a global modulation of the
energy.

Discussion
HOIs play a critical role in enabling emergent collective phenomena in
natural and artificial systems. Modelling HOIs is, however, highly non-
trivial, often requiring advanced analytic tools (such as simplicial
complexes or hypergraphs) that entail an exponential increase in
parameters for large systems. In this paper, we addressed this issue by
leveraging themaximum entropy principle to effectively capture HOIs
in models via a deformation parameter γ, which is associated with the
Rényi entropy. Given their close connection with statistical physics,
this family ofmodels provides a useful setup to investigate the effect of
HOIs on spin systems, including explosive ferromagnetic and spin-
glass phase transitions, extending studies on anomalous phase tran-
sitions found in other systems2,7–9,11, and the capability of networks to
store memories.

The observed effects in curved neural networks can be explained
via an effective temperature, inducing a positive or negative feedback
effect inmemory retrieval. Aswediscussed above, this effect is present
in different forms across other dense associative memories20,21,34. A
similar argument may apply to diffusion models framed within dense
associative memories25,26, where the energy follows a log-sum-exp
nonlinearity. Thus, the accelerated mechanism found in this study
clarifiesmemory retrieval in advanced associative networks, providing
an important step toward designing extended memory capacities and
improved noise scheduling.

Curved neural networks also provide insights into biological
neural systems, where evidence suggests the presence of alternating
positive and negative HOIs for even and odd orders, respectively. This
alternation leads to sparse neuronal activity, which has been shown to

be instrumental for enabling extended periods of total silence5,13–15,35.
Interestingly, such sparse activity patterns may coexist with the
acceleratedmemory retrieval dynamics, as both involve positive even-
order HOIs. The attainment of enhanced memory, combined with
sparse activity, presents a promising direction for understanding
energy-efficient biological neuronal networks35,36. Future work may
investigate how curved neural networks might support both energy
efficiency and high memory capacities, potentially by adopting a
thresholded, supralinear neuronal activation function20,35. Addition-
ally, developing statistical methods for fitting these models to
experimental data (i.e., theories for learning) represents an important,
yet largely unexplored, research avenue. Together, these research
directions offer a compelling path to uncover the principles of efficient
information coding in biological neural systems.

Overall, our results demonstrate the benefits of considering the
maximum entropy principle, emergent HOIs, and nonlinear network
dynamics as theoretically intertwined notions. As showcased here,
such an integrated framework reveals how information encoding,
retrieval dynamics, and memory capacity in neural networks are
mediated by HOIs, providing principled, analytically tractable tools
and insights from statistical mechanics and nonlinear dynamics. More
generally, the framework presented in this work extends beyond
neural networks and contributes to a general theory of HOIs, paving
the road toward a principled study of higher-order phenomena in
complex networks.

Data availability
TheCIFAR-100 dataset used in this study is available at https://www.cs.
toronto.edu/~kriz/cifar.html.

Code availability
The code generated in this study is available in the GitHub repository,
https://github.com/MiguelAguilera/explosive-neural-networks.
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