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The rapid advancement of generative artificial intelligence (Al) in recent years
has profoundly reshaped modern lifestyles, necessitating a revolutionary
architecture to support the growing demands for computational power. Cloud
computing has become the driving force behind this transformation. However,
it consumes significant power and faces computation security risks due to the
reliance on extensive data centers and servers in the cloud. Reducing power
consumption while enhancing computational scale remains persistent chal-
lenges in cloud computing. Here, we propose and experimentally demonstrate
an optical cloud computing system that can be seamlessly deployed across
edge-metro network. By modulating inputs and models into light, a wide range
of edge nodes can directly access the optical computing center via the edge-
metro network. The experimental validations show an energy efficiency of
118.6 mW/TOPs (tera operations per second), reducing energy consumption
by two orders of magnitude compared to traditional electronic-based cloud
computing solutions. Furthermore, it is experimentally validated that this
architecture can perform various complex generative Al models through
parallel computing to achieve image generation tasks.

Recent advancements in generative artificial intelligence (Al) have
spotlighted its remarkable capabilities in tackling complex tasks" such
as advanced computer vision**, natural language processing>®, and the
generation of multimodal content’. The backbone of these neural
networks’ capabilities heavily relies on extensive cloud computational
resources® ™, underpinned by numerous processing units such as
graphic processing units (GPUs)”?. To meet the ever-increasing
demand driven by generative Al, significant computational power
and storage capacity are called for. Moreover, this growth is at the
expense of a substantial energy consumption, with generative Al

reported to consume 9.5x102Wh of ectricity” in 2022. According to
projections by the international energy agency, data centers could
consume a total of 1x10Wh annually by 2026". As the market for
generative Al continues to expand, it necessitates reducing opera-
tional costs and increasing computational capacity to accommodate
both the high computational demands and cost-sensitive user base.
However, the continued advancement of this technology is hindered
as electronic technology approaches its physical and technical
limits™ %, making further improvements in the speed and efficiency of
electronic computing units increasingly challenging?®*. Additionally,
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computation security and privacy continue to be major concerns’?,

given that much of the models involved may contain sensitive or
confidential information.

To tackle the power and speed limitations of traditional electronic
processing units, generative Al and other complex tasks have sparked
wide interest in optical computing??* as a promising solution. This
advantage stems from the unique capability of optical systems where
forward propagation of computation tasks and light occurs con-
currently, embodying the concept of ‘propagation’ across both com-
putational and physical forms. Recent advancements in optical
processing units (OPUs) have showcased their capability to perform a
wide range of high-speed, energy-efficient computing tasks, such as data
processing®® across complex tasks such as signal processing”*°, neural
network®*, and mathematical operations® . These works primarily
focus on localized computation within single optical computing chips,
striving to increase computational capacity”**** on a single chip. How-
ever, few studies have leveraged the low-loss and low-latency properties
of light*** transmission in the optical computing system, which permit
the deployment of optical computing units remotely from edge nodes.

This illustrates a new paradigm in the development of cloud com-
puting: optical cloud computing. Equipped with OPUs instead of GPUs,
the optical cloud computing system offers a promising solution to
address the challenges associated with storage space, security, and
energy consumption that are prevalent in conventional electrical cloud
computing systems. Building on previous research® demonstrating the
feasibility of separating optical computing nodes from model storage
nodes, optical cloud computing is expected to conserve cloud storage
space while ensuring computing security. Considering the commercial
value of the model, optical cloud computing can ensure the privacy of
weights. As the weights exist only locally on the edge, the model becomes
physically inaccessible to others when the edge nodes go offline, thus
eliminating any possibility of unauthorized access. Simultaneously, the
energy-saving characteristics of optical computing can significantly
reduce the energy consumption of computing centers, thereby reducing
the operational costs of cloud computing and further facilitating the
development of generative Al. Due to the advancement of optical com-
munication systems, optical network architectures have become widely
deployed in metropolitan areas, which enables the optical computing
center to provide services to various edge nodes. With the advent of
optical cloud computing, the optical network possess the potential to
simultaneously support both the communication and computational
requirements of various edge nodes across the network in the future.

Here, we propose and demonstrate a seamless optical cloud
computing system across edge-metro network by deploying optical
computing nodes in the cloud, enabling direct access to OPUs through
the existing optical network infrastructure from the edge, as depicted
in Fig. 1. The edge-metro network spans metropolitan and edge area,
facilitating connections between various edge nodes and the cloud.
Enabled by a frequency comb, Mach-Zehnder modulators (MZMs),
arrayed waveguide gratings (AWGR), photodetectors (PD) and
microrings, the system facilitates task assignment by aggregated edge
node from clients and parallel processing by OPUs, while data and
weights are simultaneously carried by the frequency tones and trans-
mitted bidirectionally between the optical computing center and edge
node. This architecture integrates communication and cloud com-
puting, efficiently utilizing existing network resources to deliver
secure optical cloud computing services. By simultaneously transmit-
ting both the model and data via light from the edge to the cloud, this
approach not only reduces computational overhead by eliminating the
need for deploying additional light sources and data storage, but also
significantly enhances computation security. Additionally, since all the
required components are commercially available, they provide assur-
ance for the overall stability of the system. It is experimentally vali-
dated that each OPU can process data at a rate of up to 3.6 TOPS (tera
operations per second), with an estimated power consumption of only

118.6 mW/TOPS. By employing this method, we have implemented
handwritten digit recognition and image generation tasks. Further-
more, experimental results indicate that the system can maintain a
computational accuracy of 7 bits at an operational rate of 10 GHz.

Results

Operating principle of the OPU

Figure 2 illustrates the principle and the structure of the OPU, which
consists of the MZMs, microrings, AWGR and PDs. It is based on the
cyclic wavelength routing properties of the AWGR*™*, where the
transparent wavelength between the input port p and output port g
obey the rule that

Ap () =Ag+(p—q)- Al +n- Mg @

Here, p and g represent the input and output port numbers, respec-
tively. For an AWGR, the total number of input and output ports is
always the same. The terms Ay, A1, and AAgsz denote the center
wavelength, the channel spacing, and the Free spectral range (FSR) of
the AWGR, respectively. Specifically for the AWGR, AAgz is the product
of the number of ports and the channel spacing AA. For detailed
derivations, please refer to Supplementary Note 1. Simplifying the fil-
tering characteristics of the AWGR to an impulse function (with an
extremely narrow input linewidth), the total optical intensity at the
output ports can be expressed as:

I,= § Z | /A 1) - 8(A— Ay g(m))dA @

Here, [,(1) is the intensity of wavelength in the input port p, which can
be decomposed into x(p)-Io(A). x is the signal to be convolved. /5(1)
represents the relationship between the comb tooth intensity and the
wavelength for an optical frequency comb with a spacing of A1 and a
center wavelength of Ao. The comb teeth at wavelength A, ,(n) are
loaded with the intensity signal w,(p—q), where w, represents the
convolution kernel. Therefore, the relationship between the output
optical intensity and the wavelength can be simplified to:

Ig=3 > _X(p)- 0P~ q) 3)

p

When considering a single FSR, this represents the output of the
convolution operation between x and w,. When taking into account
two FSRs, denoted as 1 and 0, where w; and wq represent the positive
and negative parts of the convolution kernel w, respectively, the sig-
nals from the two FSRs are separated by microring filters and then
subtracted using a Balanced Photodetector (BPD) to obtain:

Eg=) X(p) (@(p~ @)~ wo(p @)= D _x(p)-w(p-q) (4
p p

How the frequencies are processed and the corresponding
structures are illustrated in Fig. 2a, b. Figure 2a depicts the step-by-step
process of performing optical convolution, where the weights (w1, -w2,
and w3) are loaded onto the comb via the waveshaper. The light are
then modulated using MZMs. The input light is equally divided into
four parts and modulated with input data (x1, x2, x3, x4) by four MZMs.
At this stage, each x is multiplied by the corresponding weights,
resulting in a new vector. The modulated signals are routed through
the AWGR, where they are directed to specific output channels based
on their wavelengths. Next, at the output end, the signals from two
wavelength groups spaced by one FSR are separated by microrings and
detected by the balanced photodetector (BPD). Figure 2b shows the
device architecture required to implement this operation in our
experiment. The left side illustrates the scheme for loading the
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Fig. 1| Optical cloud computing architecture. a Structural layout of an optical
computing unit within the cloud-based optical computing center. Comprising an
AWGR, MZM array, microring array, and PD array, it performs high-speed optical
convolution operations and can transmits the results back to the user. b The cloud-
based optical computing center is composed of numerous optical computing
nodes, enabling parallel processing of extensive image data. ¢ The cloud contains
optical switching nodes and optical computing centers capable of handling a high
volume of tasks from edge nodes and supporting diverse requirements, including

computer vision, natural language processing, and multimodal content generation,
which require massive convolution operations. d The smart optical transceiver
deployed at the edge node end supports both access to the optical computing unit
and optical communication services. Input, weight, and data are multiplexed onto
the optical frequency comb via wavelength division multiplexing. The final output
received through a PD. e, Information loading process: data, input, and weight are
loaded sequentially onto different frequencies.

weights, where a waveshaper is used to load the weights onto the
optical frequency lines.

Proposed optical cloud computing method

The development of cloud computing and the increasing scale of deep
neural networks exhibit a synchronous upward trend™. As the com-
putational demands of neural networks exceed the capabilities of
home computing units, offloading computing tasks to the cloud has

become an inevitable solution. This study leverages the computational
properties of light to achieve an optical cloud computing system. This
architecture is designed to be deployed within general communication
networks, with the computing center positioned in the cloud. The
computing data is modulated onto light at the edge node and directly
processed by the OPU in the cloud. Since the computing data is only
stored at the edge node, computing security is ensured at the physical
layer. Leveraging wavelength division multiplexing technology and
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Fig. 2 | Data loading method and calculation principles of the OPU. a The
principle of convolution process with both positive and negative aspects by uti-
lizing the unique the cyclic wavelength routing properties of an AWGR. It shows
how the wavelengths changed in the whole processes. b Schematic diagram of the
OPU. The orange area represents the weight loading part. The devices used for
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optical convolution are shown in blue area, including MZMs, an AWGR, microrings,
and PDs. ¢ Single OPU module packaged on-chip. d Micrograph of the AWGR and
microring, along with the wavelength transmission graph of two adjacent output
ports of the AWGR and the transmission spectrum of the microring.

optical frequency combs, transceivers at edge nodes can be updated
to support optical cloud computing while maintaining communication
functions. This capability is enabled by the AWGR-based OPU deployed
in the cloud, which supports remote weight loading—a valuable feature
that sets it apart from many other optical computing architectures.
The user transmits both data and computational tasks through an
intelligent transceiver, and upon receiving the tasks, the cloud-based
optical computing center distributes them across multiple OPUs for
simultaneous processing. Since the computing nodes directly use the
light transmitted from the users for calculations, this significantly
reduces the power consumption associated with lasers. This reduction
facilitates the dense deployment of numerous chips, potentially
enhancing the computational capacity of the computing centers.
Figure 3 shows how the architecture achieves the image transfer
task across the edge node and optical computing center with multiple
OPUs. The figure exemplifies a generative residual convolutional
neural network, which consists of 15 convolutional layers, including 9
residual blocks. The first step of the approach is to send the inputs and
weights from edge to the optical computing center. The input signals
are loaded onto the comb through an array of MRMs. And the weights

are loaded through the waveshaper. In one frequency cycle, the system
employs specific frequencies to transmit the signal, while others load
the weights. Within each frequency cycle, the system employs specific
frequencies to transmit the signal, while others load the weights.
Concurrent computation tasks are mapped to separate wavelengths,
enabling parallelism through spectral resource partitioning. As illu-
strated in the figure, different convolutions within the same network
layer are assigned to independent OPUs for parallel execution. The
detailed parallelization methodology, including wavelength assign-
ment protocols and OPU synchronization mechanisms, is compre-
hensively described in Supplementary Note 4. Convolutional neural
network operations are then performed at the OPU, where a wave-
shaper distinctly separates signals and weights. Signals are directly
captured by a PD, and weights are fed into the optical computing
module. The final step involves returning the convolutional layer’s
output to the edge, with the encoded output signals loaded via MRMs.
This structure allows multiple OPUs work together to support one
complex task.

In this research, an optical frequency comb with a spacing of
21 GHz was utilized, and its spacing was adjusted to 84 GHz using a
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Fig. 3 | System architecture of optical cloud computing supporting
generative Al. The system comprises two primary components: edge nodes and
the optical cloud computing center with multiple OPUs. The transceiver is upgra-
ded to handle both communication and optical computing tasks, consisting of an
optical frequency comb laser source, an array of Microring Modulators, a wave-
shaper, an optical amplifier, and a receiver, which collectively enable upstream

data, input and weight loading onto light and reception of downstream signals.
Each OPU selectively receives required wavelengths and performs optical con-
volution computations, structured with two functional sections: computation and
communication. The computation section contains a power splitter, MZM array,
AWGR, microring array, and PD array, while the communication section includes a
receiver and a MRM-based transmitter.

waveshaper to align with the channel spacing of an 8-input, 8-output
AWGR. We defined two FSRs of the AWGR as a single cycle for mana-
ging weights. In this setup, specific comb teeth were allocated for
modulating signals, while others were used for loading weights. For
instance, with weight length of 3, the first and last three channels of
each FSR were tasked with managing two distinct sets of weights.
Positive weights are loaded in one FSR in this cycle, and negative
weights in another. The channels not involved in weight loading were
used for transmitting signals. When the scale of convolutional opera-
tions exceeds the processing capacity of a single OPU, the computa-
tion can be partitioned into smaller sub-convolutions and processed in

parallel by multiple OPUs. For example, an image convolution task may
be divided into multiple one-dimensional convolutions, each assigned
to a dedicated OPU for simultaneous execution. A method to
decompose image convolution into one-dimensional convolutions is
proposed as shown in Supplementary Note 4, allowing the image
convolution operation to be distributed across three OPUs for simul-
taneous computation.

Integration of optical computing and communication
As a cloud computing system to be deployed across edge-metro net-
works, it integrates both communication and cloud computing
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functionalities. To evaluate the system’s performance, both the com-
munication capability and the computing performance of the OPU
were tested. Figure 4b displays a frequency comb with an 84 GHz
spacing, where regions I and Il are used for loading weights, and region
Illis used for loading input and signals. As experiment setup shown in
Supplementary Note 7, a total of 120 images were transmitted, which
was transmitted over an 80 km fiber at a rate of 50 Gbps. The com-
munication performance is shown in Fig. 4c, where the maximum
received optical power was —15dB, with the corresponding eye diagram
shown in Fig. 4d. The maximum supportable power budget was 6 dB,
as shown in inset (I), which is still allowed for lossless transmission.
When the attenuation reached 7 dB, the signal-to-noise ratio was
insufficient to support image transmission, as shown in inset (II).

During the optical convolution process in the OPU, the weights
are first multiplied with the signal loaded by the MZM, followed by the
summation of results at different wavelengths detected by the PD. The
signals separated by the microring are then subtracted. This process
encompasses four basic operations: multiplication, addition, subtrac-
tion, and multiply-accumulate (MAC). The computational accuracy of
these operations at various baud rates was experimentally validated, as
shown in Fig. 4e. The precision curves for these operations follow a
similar trend, achieving approximately 7 bits of accuracy at a baud rate
of 10-Gbaud. As the baud rate increases to 50-Gbaud, the precision
decreases, maintaining only about 5.5 bits. At a transmission speed of
10-Gbaud, the error distribution for addition operations under differ-
ent weights is shown in Fig. 4f. In the experiment, two sets of data, each
with eight different levels, were added together, and the theoretical
values were compared with the experimental results. The data within
the 25-75% range of the experimental results are concentrated in a
very narrow interval, where we obtain a standard deviation of 0.0984
in Gaussian error distribution from 4096 addition operations. At this
point, the bit precision is 7.12 bits. The successful validation of com-
putational accuracy in four different modes helps determine the range
of computational applications possible with this device. This is further
confirmed in Fig. 5. At high speeds such as 50-Gbaud, a precision of 5.5
bits can preliminarily support simple applications, such as handwriting
digits recognition. However, applications involving more complex
models require higher computational accuracy, often needing a pre-
cision of 7 bits to be feasible. Given that this optical computing node
employs a parallel convolution computation model, it adapts more
effectively to higher computational rates compared to methods that
use delays in convolution, offering the flexibility to adjust computa-
tional precision according to the task. The results of image convolu-
tion were further verified under ten different convolution kernels with
the Baud rate of 10-Gbuad, in Fig. 4g.

Experimentally demonstration of image-generation tasks
Generative Al, spearheaded by models like Chatgpt*®, has garnered
significant attention recently, leading to numerous companies offering
cloud-based model services. These models, due to their extensive
computational power demands, cannot be deployed locally and
require cloud computing support. High-speed, energy-efficiency and
secure optical cloud computing is poised to be a future solution to
these challenges. Our experiments have validated the accuracy and
feasibility of this approach.

The impact of the limited precision of the OPU on the accuracy of
MNIST handwritten digital image classification is investigated in
Fig. 5a. To verify the experimental performance of processing all
convolutional layers optically, the network was simplified to include
only one convolutional layer, as shown in the Supplementary Notes
Fig. S16. When the bit precision is less than 5, the accuracy of the
network dramatically improves as precision increases, rising from 11%
to 90%. Once the bit precision exceeds 5 bits, the accuracy stabilizes
around 92%. These trends are confirmed by experimental results in
which 100 images from the MNIST dataset are processed through the

optical cloud computing system. In the experiment, the convolution
layer was executed optically, while the remaining operations were
conducted on a computer, maintaining the same bit precision as the
photonic devices. An accuracy of 88% was achieved, as confusion
matrix shown in Fig. 5b. This demonstrates that a single OPU can
support handwritten digit recognition of An accuracy of 88% with
computation speeds**** reaching 6x6x2x50 GHz=3.6 TOPS.

Complex tasks often require more complex network structures.
For generative Al network, tasks need to be parallelized and seg-
mented, as shown in Fig. 5c. Numerous OPUs could simultaneously
process computational tasks from the edge node and send the results
back, with each OPU handling a specific convolution task within a layer
of the network. In the experiment, a convolutional neural network was
trained to handle various tasks including season transfer (winter to
summer; summer to winter) and semantic segmentation, as shown in
Fig. 5f. Additionally, three other tasks are demonstrated in Supple-
mentary Note 8: object generation, mapping aerial photos, and depth
estimation. Subsequently, OPUs were used to validate the processing
results for these tasks. During the experiment, one OPU handled the
computations for the network’s first layer, while the computations for
other layers were conducted on a computer according to the precision
capabilities of the photonic devices. More detailed results are provided
in Supplementary Note 8 to further validate the rationale of this
approach. With the first layer comprising 64 nodes, the resulting
waveforms produced 64 feature convolutional matrix outputs, each
containing the extracted hierarchical features of the input image. The
output from the first node, corresponding to the red channel of a map
image, is illustrated in Fig. 5d. The comparison between the predicted
and the measured waveforms reveals a root mean square error of
0.0304. To fully validate the computing performance, images were
processed through the first computational layer. This layer consists of
64 nodes, each performing 64 convolutions across the three color
dimensions of the images (for grayscale images, only one dimension is
involved). The performance comparison between the experiment and
simulation results is presented in Fig. 5e, demonstrating that the
optical computing system achieves performance comparable to 7-bit
precision electronic computing. Also, a selection of the generative Al
results is displayed in Fig. 5f, with additional results available in the
Supplementary Note 8. In this experiment, to ensure data precision,
calculations were conducted at a rate of 10-Gbaud, with each OPU
achieving a computational speed of 6x6x6x10 GHz = 0.72TOPS.

Due to experimental limitations, only the calculations for the first
convolutional layer were conducted in the optical domain during the
experiment, while all other operations were performed on a computer.
Although only some operations were carried out experimentally, each
OPU in optical computing center is indeed only responsible for a
portion of the computational tasks within the network. The strict
adherence to the same computational precision for the other layers
allows this setup to accurately reflect the practical application sce-
narios of an optical computing center.

Discussion

Computing precision analysis

The precision of the processing unit remains a critical parameter,
regardless of the processing speed. Sufficient precision is essential for
neural networks to function effectively. These results in optical cloud
computing exhibiting lower performance compared to electronic
computing, particularly in terms of accuracy, generated image quality,
and stability. For relatively simple tasks such as handwritten digit
recognition, the accuracy of optical cloud computing reaches 88%,
which is lower than the 92% achieved by electronic cloud computing.
For image generation tasks, compared to full-precision computing,
optical cloud computing achieves SSIM, FID, and LPIPS values of 0.92,
39.8, and 0.23, respectively. These results indicate that while optical
cloud computing demonstrates a reasonable level of similarity to state-
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Fig. 4 | Experimental results of the communication and optical computing.

a Schematic diagram from a single edge node to the cloud computing center. b The
frequency comb with weight and signal loaded. ¢ The curve of the bit error rate
(BER) as a function of received optical power (ROP) is presented. The image
received under the maximum power budget is depicted in Inset I. When the

Prewitt right

Scharr top

Scharr bottom

attenuation increases further, the incorrectly received image is shown in Inset xII.
d The eye diagrams with different ROPs from -15 dBm to -19-dBm. e The accuracy
curves of four basic operations as a function of baud rate. f The error distribution
for addition operations at a baud rate of 10-GHz. g Ten convolution kernels and the
images after convolution.
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Fig. 5 | Experimental result of classification and generative Al tasks. a The
accuracy of MNIST handwritten digital image classification with different precision.
b Confusion matrix for MNIST handwritten digital image classification.

¢ Architecture of optical cloud computing system adapted for various tasks.

d Convolved waveforms from the first layer of the map edge detection task, with

mes (us)

Exp. result

Sim. w/ noise

Ex. result

the red and blue lines representing the ideal and experimentally generated wave-
forms, respectively. e Performance comparison between simulation and experi-
ment with 6 different generative Al tasks (edges2handbags, edges2portrait,
edges2shoes, map2edges, pix2pix-depth and segmentation). f Image generation
results for season transfer task (winter to summer; summer to winter).

of-the-art electronic computing, its performance is approximately
equivalent to that of electronic computing at 7-bit precision. Addi-
tionally, the variance of the SSIM parameter for the seasonal transfer
task was calculated to be 5.1x10~*, which is higher than the 3.4 x10™*
observed in 7-bit precision electronic computing. This difference can
be attributed to factors such as channel fluctuations in the optical
system.

The performance of the optical cloud computing observed in
this study is constrained by various factors inherent to the experi-
mental setup, each of which impacts the precision of the final out-
comes. Key among these are the resolutions of the primary electrical
devices used to generate and receive electrical signals: the arbitrary
waveform generator (AWG, Keysight 8194 A with 8 bits) and the
oscilloscope (UXRO134A with 12 bits). The lack of an available AWG
that offer both high speed and precision represents a significant
limitation in the experiment. This ultimately limits our achievable
precision to within 8-bit. If a higher-performance AWG, such as one
supporting 12-bit precision, is used, the computational accuracy can
be further improved. Additionally, the overall bandwidth limitation

of the system, primarily attributed to the modulator and PDs, plays a
crucial role. The relationship between precision and baud rate is
depicted in Fig. 4c, while the frequency response of the entire
computing system is elaborated upon in Supplementary Note 8.
Specifically, four Mach-Zehnder Modulator (MZM, T.MXHL1.5) and a
100G photodetector (XPDV4121R-WF-FP) were utilized in this
experiment, with the bandwidth of the MZM identified as the pre-
dominant factor affecting precision. The packaging process also
affects precision by influencing the overall system bandwidth. This
is closely related to the spacing and arrangement of high-frequency
interconnections. The performance of the packaged device is pre-
sented in Supplementary Note 8. Moreover, the nonlinearity inher-
ent in the electrical-to-optical and optical-to-electrical conversions
significantly influences the accuracy of computations. This non-
linearity is an unavoidable characteristic of the devices involved. To
ameliorate this issue and enhance precision, compensations have
been implemented within the system, effectively mitigating the
impact of nonlinearity on precision, as demonstrated in Supple-
mentary Note 8.
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Computing speed

Enhancing the computing speed of the processing unit represents a
pivotal challenge in deploying generative Al. This challenge is influ-
enced by two principal factors: the frequency of computation and the
number of computations per slot. Compared to electronic computing
chips, optical computing units have been proven to perform calcula-
tions more rapidly and efficiently. In this study, the computation fre-
quency reaches up to 50 GHz, significantly surpassing that of
traditional electronic computing units. The bandwidth of optical
devices continues to improve. On-chip modulators have already
achieved rates exceeding 110 GHz"’, while photodetectors are capable
of supporting signals up to 180 GHz*®. Owing to the utilization of high-
bandwidth devices, optical computing benefits from inherently higher
frequency, which has the potential to exceed 100GHz-double the
current computation frequency. The number of computations per slot
is dictated by the inherent characteristics of the computing devices.
And the AWGR-based OPU can execute the entire convolution com-
putation within a single clock slot, significantly enhancing the com-
putation speed per unit compared to other convolution units. As
AWGR-based OPUs utilize both wavelength and port number for par-
allel convolutional computations, the peak computation speed can
increase quadratically with the number of AWGR ports. However,
computing performance will inevitably decline as the scale of the
device increases. Considering the accumulation of noise, the SNR of
the output signal is primarily influenced by the number of wavelengths
received. Therefore, using the same number of wavelengths can be
considered to support the computational functions implemented in
this paper. With the doubling of computation frequency and con-
volution kernels of the same size 3, a 64-ports AWGR can reach a peak
computing rate of 62x6x2x2x100 GHz=148.8TOPS, which is more
than 40 times the 3.6TOPS achieved in this experiment.

Power efficiency

High power consumption in optical computing centers often hinders
their large-scale expansion. Various efforts to mitigate this include
specific cooling liquids or situating data centers in lakes. Although
advanced fabrication technology is enhancing the energy efficiency of
electronic chips, they still consume substantial energy—for instance,
Nvidia’s H200 chip operates at 20.6 W/TOPS*. By contrast, consider-
ing only the power consumption of the computing units, an AWGR-
based OPU exhibits a power efficiency of just 118.6 mW/TOPS, which is
significantly lower than that of electronic chips. Since the light sources
are positioned at the user end, OPUs in the optical computing center
consume even less power. It is noteworthy that as the computational
scale of OPUs increases, power consumption scales linearly with
component size, while the maximum computational rate scales
quadratically****, Therefore, computational efficiency can be further
enhanced with increased component scale, which is further discussed
in the Supplementary Note 3. This architecture supports the integra-
tion of denser computing chips, paving the way for potentially more
compact, large-scale optical computing centers in the future.

The work in this paper centers around a seamless optical cloud
computing system across the edge-metro network, where the user’s
confidential data is modulated into light, then transmitted and directly
processed by remote optical computing nodes. This structure allows
deployment of optical Al clusters in the cloud, with intelligent trans-
ceivers at edge nodes. A single OPU can support a computational rate
of 3.6 TOPS with an energy efficiency of 118.6 mW/TOPs, significantly
lower than that of electronic computing chips. By employing the
delocalized computing scheme, we have implemented multiple dif-
ferent generative Al tasks. Furthermore, this computational capacity
can be further enhanced by scaling up the individual OPUs, for
instance, by utilizing larger AWGRs. Moreover, the distributed nodes
are not limited to AWGR-based computing method. Any approach that
supports remote computing can be integrated into the distributed

computing architecture, such as the work based on MZM arrays®,
enabling it to perform various matrix and convolutional operations.

Methods

Comb generation and control

In this experiment, a Continuous Wave (CW) wavelength-tunable laser
(TSP-400-E0018) with an output power of 16 dBm is utilized to gen-
erate the optical comb. The laser’s center frequency is tuned to align
with the center frequency of the AWGR. Subsequently, the light
undergoes modulation using two phase modulators (PM-DV5-40-PFA-
PFA-LV) and one intensity modulator (MXAN-LN-40), which are driven
by a 21 GHz RF signal produced by a low-noise RF synthesizer (Agilent,
83630B). The RF signals are then amplified to 30 dBm by electrical
amplifiers (AT-PA-1840-3330GN) to create a 21 GHz channel spacing
comb spanning a bandwidth of 800 GHz (comprising 40 tones with a
5 dB difference between each tone). The power of the comb is further
increased to 26 dBm using a gain-flattened EDFA (EDFA, OVLINK,
EDFA-C-BA-GF) before being passed through a programmable optical
filter (Finisar, WaveShaper 4000S) to achieve a comb with 84 GHz
channel spacing, matching the channel spacing of the AWGR. An
additional gain-flattened erbium-doped fiber amplifier is then used to
elevate the output power of the comb to 24 dBm. A detailed setup of
the comb generation is provided in Supplementary Note 7. A 21 GHz RF
signal is divided into four paths, with phase control required for three
of the signals. After phase matching of the four signals, the RF signal is
amplified by an electronic amplifier. All devices used are commercial
components, which, compared to integrated optical frequency combs,
have the advantage of controllable frequency comb spacing. In the
experiment, adjusting the three phase shifters increases the number of
output comb lines. The bias voltage of the intensity modulator can
control the flatness of the optical frequency comb.

Details of optical communication experiment

The transmitted images are first compressed to 80 percent of their
original size and converted into a series of binary data. This data is then
encoded using a Forward Error Correction (FEC) encoder with a code
rate of 3/4 and mapped onto PAM signal. The signals are shaped using
a Root Raised-Cosine filter and up-sampled to match the sample rate of
the AWG (Keysight M8194A with a 120 G sample rate) before being
loaded. Following this, the signals are amplified by a RF amplifier and
modulated onto a specific frequency of the comb using a fabricated
MRM with a bandwidth of up to 110GHz>’*". After traveling through
80 km of single-mode fiber, the modulated frequency is filtered by a
manually tunable filter (XTM-50-scl-u). The signals are then detected
by a high-speed 100 GHz photodetector (XPDV412xR) after amplifi-
cation by an EDFA to 5dBm. The output from the photodetector is
further amplified by an RF amplifier and sampled by a 59-GHz oscil-
loscope (Keysight UXR0594BP) with a 256-GSa/s sample rate. On the
receiver side, the PAM signal is de-mapped back into a bit sequence.
Following FEC and figure decoding, the transmitted image is success-
fully reconstructed and received.

Details of optical cloud computing experiment

During the generation of the optical frequency comb, weights are
loaded via a waveshaper positioned between two EDFAs (EDFA,
OVLINK, EDFA-C-BA-GF), as shown in Supplementary Note 8. Due to
experimental constraints with only one waveshaper available, the
waveshaper in the edge is also used to filter out the three wavelengths
necessary for the computation during the experiment, which is the
function of the waveshaper in the OPU. The kernel is loaded onto the
wavelengths through the waveshaper, with the intensity of the wave-
lengths representing the strength of the kernel. Before loading the
kernel, the output power of all wavelengths from the optical frequency
comb is recorded and mapped into an attenuation lookup table. This
attenuation lookup table is then reloaded onto the waveshaper to
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equalize the intensity of all wavelengths. Subsequent kernel loading is
based on this standardized reference. After passing through a Polar-
ization Controller (PC), the light is equally split into four parts by a
1:4 splitter. During this computational experiment, only three ports of
the AWGR are used. The optical power entering each MZM is 18 dBm,
where the figures are loaded. The output signal from each MZM,
controlled by PCs to match the polarization entering the AWGR. The
signal to be processed is generated by an AWG (Keysight M8194A) and
then amplified by electronic amplifiers (SHF-S807C) before being
modulated onto light using the array of MZM. At the output of the
AWGR, the optical signal is amplified to 5 dBm by an EDFA (Amonics
AEDFA-23-B-FA) and then converted back into an electrical signal by a
photodiode (Finisar XPDV4121R). Finally, the signal is captured by an
oscilloscope (Keysight UXR0594BP).

Since the actual central wavelength and wavelength spacing of
the AWGR are typically affected by fabrication accuracy and labora-
tory temperature variations, calibration is required during the
experiment to ensure proper operation. Here are the calibration
processes we implemented to enhance computational accuracy
during the experiment. The first step involves testing the transmis-
sion spectrum of the AWGR. Next, the optical frequency comb is
adjusted based on the AWGR’s transmission spectrum to ensure that
the range of the optical frequency comb matches the AWGR’s
transmission spectrum. It is important to note that in an actual sys-
tem, this step should be reversed. The optical frequency comb needs
to support multiple computation nodes simultaneously, so its fre-
quency should be fixed, while the AWGR should include a tempera-
ture control module to align its transmission peaks with the optical
frequency comb’s frequency domain. To achieve this capability,
specially designed tunable AWGs should be applied. By adjusting the
refractive index of the rectangular arrayed waveguides or certain
sections of the waveguides, the central wavelength and wavelength
spacing of the AWGR can be flexibly tuned.

Following this, the bias points of the MZMs need to be adjusted to
minimize the nonlinearity of the loaded transmission signal. The
adjustment of the bias points is carried out in two steps. In the
experiment, the signal is first modulated at the -3dB point, and then
fine-tuned to ensure that the bias and modulation depth of each MZM
are the same. The first MZM is used as a reference, and the subsequent
MZMs are adjusted to transmit signals opposite to the first MZM until
the output signal observed on the oscilloscope is zero. The variables
that need adjustment include:

Bias points of the MZM. Any misalignment in the bias points will result
in different nonlinearities in the signals, preventing complete cancel-
lation. Thus, the bias point of each MZM should be finely tuned to
make sure the signal is asymmetrical.

Vpp of the input signal to the MZM. This affects the modulation depth
of the signal, leading to different amplitudes at the receiving end.
Precise control is required to ensure consistent modulation depth
across all MZMs. This can be verified by observing and checking if the
two output waveforms completely cancel each other.

Time delay of the input signal to the MZM. Due to different lengths of
RF cables, the electrical signals have varying delays when reaching the
MZM. These delays cause signal misalignment and errors in the final
computation results. Time delay calibration is necessary; a time delay
less than the symbol rate will appear as peaks in the time domain on
the oscilloscope, which can be eliminated by adjusting the delay.
After compensating for power loss differences between MZMs,
polarization calibration is required to ensure that the optical signal
entering the chip has the correct polarization, maximizing the coupled
optical signal. To mitigate the impact of the bandwidth limitations of
MZMs and PDs on high-speed signals, the next step is to transmit a set

of test signals to characterize the transmission properties of the link
and perform MZM bandwidth compensation. The compensation is
implemented using a pre-distortion method, directly loaded through
the AWG.

The architecture of the large-scale model used in this paper

To explore the potential of the optical computing center into gen-
erative Als, the experiment focuses on two image generation archi-
tectures: pix2pix*> and CycleGAN®, both serving as convolutional
neural network test cases. The structures of pix2pix and CycleGAN are
shown in Supplementary Note 8. The pix2pix network has been
employed for transfer learning, effectively handling four distinct tasks:
object generation from sketches, map edge generation, road image
segmentation, and image depth detection. Additionally, we utilized
CycleGAN to achieve image-to-image translation, specifically for
transforming images between winter and summer scenes.

The network architectures and parameters used in both models
are identical with those described in the work by Zhu Jun-Yan et al. %,
with code modified from their open-source implementations. To
simulate the quantization precision of the optical chip, Gaussian white
noise with a specified bit quantization level is added after each con-
volutional and normalization layer in the models. The testing process
consists of three steps: first, training the noise-injected model offline;
second, deploying the first convolutional layer onto the optical chip
while completing the remaining computations offline; and third, fine-
tuning the model using a portion of the data due to differences
between the actual and simulated noise. The final experimental results
are obtained after the fine-tuning process.

Power consumption

The power consumption of the OPU consists of two parts: the power
of the transceiver, the power of the computing part and the power of
the electrical control devices. They are mainly derived from the
tunable optical filter, modulators, lasers, photodetectors, EDFAs and
other electrical devices, as detailed in the Supplementary Note 8. To
ensure the long-term operation and stability of the system, addi-
tional temperature controllers are required to maintain the func-
tionality of the chip. This aspect has been considered in both our
experiments and manuscript, with detailed records provided in
the Supplementary Information. Here, P, indicates the emission
power of the laser at 16 dBm, while P refers to the power of the
thermoelectric cooler, approximately 1.3 mW. The wall-plug effi-
ciency n~ 0.3 is defined as the energy conversion efficiency from
electrical power to optical power, leading to a calculated power
consumption for a single laser of approximately 137.7 mW. The
power consumption Pz, of a MZM is calculated from the product of
the bias voltage and current. As each MZM operates at a different
bias voltage, the average power consumption per MZM is about
5 mW. Epry represents the power consumption of MRMs, composed
of the power from biasing and heaters. With a bias current of 9uA and
voltage of 2V, the power consumption is dominated by the heaters.
In the experiment, with a heater voltage of 2V and a current of
2.9 mA, the power consumption of a single MRM is 5.8 mW. Pp, is the
energy consumption of the photodetector, estimated from
Ppa =RV piasPrec, Where R ~ 0.654/W is the responsivity of the pho-
todetector, Vy;,s=2V, andP,,.=3mW. Thus, Pp, is approximately
3.9 mW. EDFAs, placed before the PDs to boost the received optical
power, use a broadband light source for pumping, with a central
frequency A, close to the frequency of signal light A; around 1550 nm.
The input optical power P;, is 0.1 mW, and the output power P, is
3.1mW, with an energy conversion efficiency n ~ 0.3. Integrated
multi-functional optical filters based on MZIs have been widely
reported, which typically consume about 20 mW and are sufficient
for this system. To ensure a fair comparison, the power consumption
of the electrical control module is also considered. This is mainly
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influenced by the DAC power, which is 40-mW. In the optical com-
puting module, a total of 8 DACs and 6 ADCs are needed, consuming
a combined power of 320.12-mW. In the communication module, 1
DAC and 1 ADC are required, occupying 20.04 mW of power. After
accounting for the number of each component, the total power
consumption is calculated to be 614.36-mW. However, when only
considering the power consumption of the computation
part, excluding the transceivers, the total energy consumption
amounts to 426.92-mW. The energy efficiency can be calculated as
426.92mW /3.6TOPS=118.6mW /TOPS. For the long-term operation,
the thermal stabilizer for the AWGR is also essential beyond the
experimental setup. However, its power consumption is minimal,
requiring only 600 uW**,

Chip fabrication

All the photonic chips tested in the study are fabricated in Chongqing
United Microelectronics Center. It is based on a 200 mm SOl substrate
with 2 um BOX and 220 nm top silicon, with the 450-nm-wide nano-
photonic waveguides with a loss of less than 1.5dB cm-1. The chip
packaging was carried out by national optoelectronics innovation
center.

Data availability
Source Data file has been deposited in Figshare under accession code
DOI link®.

Code availability
The open-source code of the seamless cloud computing system is
available at https://github.com/szxing21/SCOC.
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