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Plasma proteomics for biomarker discovery
in childhood tuberculosis
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Failure to rapidly diagnose tuberculosis disease (TB) and initiate treatment is a
driving factor of TB as a leading cause of death in children. Current TB diag-
nostic assays have poor performance in children, thus a global priority is the
identification of novel non-sputum-based TB biomarkers. Here we use high-
throughput proteomics tomeasure the plasmaproteome for 511 children, with
and without HIV, and across 4 countries, to distinguish TB status using stan-
dardized definitions. By employing a machine learning approach, we derive
four parsimonious biosignatures encompassing 3 to 6 proteins that achieve
AUCs of 0.87–0.88 and which all reach the minimum WHO target product
profile accuracy thresholds for a TB screening test. This work provides insights
into the unique host response in pediatric TB disease, as well as a non-sputum
biosignature that could reduce delays in TB diagnosis and improve the
detection and management of TB in children worldwide.

Tuberculosis (TB) is the leading cause of mortality from an infectious
disease worldwide, with 10.8 million cases and 1.3 million deaths each
year1. Children suffer a disproportionate burden: 12% of TB disease
occurs in children, but children account for 15% of TB deaths1. This
disparity is largely due to delays in diagnosis and proper treatment
initiation, as 96% of deaths are in children for whom treatment had not
been initiated2. While sputum-based diagnostic testing is routinely
performed in adults, children are unable to reliably expectorate spu-
tum, and sputum induction is typically required. Moreover, micro-
biological testing has sub-optimal sensitivity due to paucibacillary
diseasewith low bacterial burden in children3. As a consequence, there
is a large case detection gap where an estimated half of the children
with TB disease, and two-thirds of those less than 5 years old, are not
reported to public health programs1. Consequently, the development
of non-sputum biomarker TB tests is a global priority to improve TB
diagnosis in children.

The majority of TB biomarker discovery studies have been done
in adults4. In particular, host plasma protein biosignatures have
shown promise for TB screening in adults, and have the potential to
be translated into a simple point-of-care test5–8. Unfortunately, these
adult biomarkers have not been validated in children6 and translate
poorly to pediatric TB disease due to different immune responses
and disease manifestations in children9. A systematic review found
that while there were pediatric-specific blood-based host markers
that could meet the WHO target product profile for a TB screening
test (≥ 90% sensitivity and ≥ 70% specificity)10, there was wide het-
erogeneity, with the majority being from lower quality case-control
studies with unclear reference standards11, and overall requiring
further validation. Thus, limited biomarker candidates for childhood
TB currently exist and the development of robust pediatric-specific
host biosignatures is a global priority for early detection of pediatric
TB cases12.
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Whilemass spectrometry (MS) based proteomic analysis enables
a broad untargeted approach to biomarker discovery, previous
plasma proteomics efforts to identify plasma biosignatures of TB
disease have been limited by small sample size, variable reference
standards, and exclusive use of healthy controls that overestimate
performance by selection of general inflammation markers rather
than TB-specific markers7,13. Past studies also frequently utilized
samples from a single region, leading to the discovery of candidate
biomarkers that may reflect the co-morbidities and environment
specific to the setting, and that fail to validate elsewhere. In this work,
we utilize high-throughput plasma proteomics and well-
characterized pediatric TB cohorts across four countries to derive
a host-based biomarker signature that differentiates childhood TB
disease from other causes of respiratory disease.

Results
Clinical characteristics of the cohort
We included plasma samples from 511 children with presumptive
pulmonary TB from The Gambia (n = 120), Peru (n = 100), South Africa
(n = 111), and Uganda (n = 180), of which 133 (26%) had micro-
biologically Confirmed TB, 120 (23.4%) had Unconfirmed TB (clinically
diagnosed), and 231 (45.2%) were Unlikely TB cases (non-TB LRTI)
based on NIH consensus definitions. To prioritize the detection of
biomarkers that distinguish TB disease from other non-TB respiratory
diseases, rather than non-specific inflammatory markers, our primary
focus was on the comparison of Confirmed vs. Unlikely TB. We further
confirmed the specificity for TB diseasewith a small number (n = 27) of
asymptomatic healthy children from Uganda, of whom 8 (30%) had
evidence of Latent TB infection basedon apositiveQuantiFERON-Gold
test. Demographic and clinical characteristics are summarized in
Table 1 and provided for each patient in Supplementary Data 1; the
median agewas 4 years (IQR 2–7), 46.4%were female, 11.2%were living
with HIV, and 52.6% were underweight. Children with confirmed TB
were significantly more likely to be living with HIV or be underweight
than children with Unconfirmed or Unlikely TB.

DIA-PASEF enabled high-throughput plasma proteomics
For all children, we started from 1μL of undepleted plasma and per-
formedhigh-throughput proteomics sample preparation14 followedby
data-independent acquisition (DIA-PASEF)mass spectrometry analysis
(Fig. 1a)15. In total, we quantified7102peptides and859proteins using a
high-throughput (~35min sample-to-sample) DIA-PASEF acquisition
(Fig. 1b), with an average detection of 2628 peptides and 498 proteins
per sample (Fig. 1c, d and Supplementary Data 2). From this analysis,
we removed 7 outlier samples showing low numbers of peptides and
proteins, resulting in 504 samples in total. We achieved an average
data completeness of 60.4%, with 241 proteins detected in all
504 samples and411 detected inmore than75%of the samples (Fig. 1e).
The concentration of proteins in plasma exists over a wide dynamic
range exceeding 10 orders of magnitude, with a subset of proteins
having very high concentrations (e.g., albumin) that can preclude the
detection of lower abundance proteins. As we did not use immuno-
depletion to removeproteins of high concentration16, we evaluated the
dynamic range in proteins detected in our proteomics experiments
using concentration values reported from antibody and MS based-
assays (HumanProteinAtlas17). Based on this analysis, we were able to
quantify proteins spanning more than 4 orders of magnitude. While
those detections were biased towards proteins of higher concentra-
tion, we were able to reproducibly detect proteins down to a level of
12.1 ng/L concentration (SERPINF2), with a median concentration of
40 ng/L (Fig. 1f).

We next evaluated our data across samples from the four clinical
sites (Fig. 2a), and observed a consistent signal distribution of MS
protein abundances, devoid of upper-end skewing, across 5 orders of
magnitude (Fig. 2b). This resulted in highly consistent protein

detections across countries, in which 88.7% of all proteins were
detected across all sites, with less than 1% of all proteins displaying
country-specific identification patterns (Fig. 2c). To normalize any
variation between the various clinical sites, batches of sample pre-
paration, or MS acquisition batches, we utilized COMBAT18, a para-
metric approach commonly used in proteomics to mitigate batch
effects19. We used as batches the various clinical sites, with added
covariates of the MS acquisition and sample preparation batches.
After normalization and COMBAT correction, we reduced our data to
two dimensions using single-value decomposition to visualize the
sample distribution after PCA and positively reduced batch effects
for most samples as exemplified by the majority of the samples not
being separated by first or second component (Fig. 2d). Lastly, from a
quantitative standpoint, we achieved a low coefficient of variation
(CV) both within each country (average = 7.9%) and across all coun-
tries (~8%) (Fig. 2e). Importantly, this analysis was performed using
only proteins identified across more than 75% of the samples (n = 411)
to avoid artificially decreasing the CV due to the imputation process
(see Methods). Overall, this suggests the absence of substantial
country-specific protein abundance differences and the possibility of
using the combined data from all clinical sites for analysis of TB-
specific differences.

Identification of TB disease candidate biomarkers
We first evaluated the ability of plasma proteomics to separate healthy
children from symptomatic children undergoing evaluation for pul-
monary TB by comparing the protein levels of known inflammatory
markers. As expected, serum amyloid protein 1, 2, 4 (SAA1, SAA2,
SAA4) and C-reactive protein (CRP) were all significantly upregulated
among symptomatic children, with SAA2 displaying the greatest dif-
ference amongst the acute phase proteins (Fig. 3a). However, these
inflammatory markers were not able to significantly distinguish
between the different groups of symptomatic children (i.e., Con-
firmed, Unconfirmed, or Unlikely TB) (Fig. 3a).

We next focused on comparing plasma protein levels in chil-
dren with Confirmed TB (n = 112) and Unlikely TB (n = 235) to iden-
tify biomarkers that could distinguish TB disease from other non-TB
respiratory diseases. From this comparison between Confirmed and
Unlikely TB, we identified 47 proteins displaying significantly dif-
ferent abundances, of which 30 displayed downregulation and 17
displayed upregulation (Fig. 3b and Supplementary Data 3). Inter-
estingly, one of the proteins displaying the most statistically sig-
nificant regulation was the tryptophanyl t-RNA synthetase WARS1,
which was increased in children with Confirmed TB vs. Unlikely TB
(log2FC = 0.39, BH adjusted p = 3.3 × 10–5) (Fig. 3b), and is linked to
TB infection via multiple mechanisms20–22. Overall, the majority of
these are known plasma proteins with previous classifications as
secreted or extracellular proteins (38/48), minimizing the possibility
of random variation in tissue leakage driving the distinction
between groups. For the remaining 10 (WARS1, DBH, TUBA1A,
ICAM1, GSN, LTA4H, SDC1, CSF1R, THBS4, CDH13), literature eva-
luation of their localization demonstrated the majority being
potentially secreted (9/10) with only one (TUB1A1) not having
reported extracellular localization.

We further identified upregulation of multiple specific immu-
noglobulin heavy (IGHV1-18, IGHV1-3, IGHV2-26, IGHV3-23, IGHV3-30)
and light chain variable domains (IGKV1-16, IGKV1D-33, and IGKV3-20)
across several countries (Fig. 3c and Supplementary Fig. 1), potentially
suggesting an oligoclonal humoral response to TB disease. Addition-
ally, we observed significantly different levels of several proteins
(APOM, PON1, CPB2) (Fig. 3b),whichhave been previously identified in
plasma proteomic studies of severe vs non severe COVID-1923 and an
adult TB study7, potentially pointing towards those proteins as general
markers of lung inflammation rather than specificmarkers of pediatric
TB disease.
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Lastly, to more broadly identify pathways with dysregulated pat-
terns betweenConfirmedTBandUnlikely TB, weperformed apathway
enrichment analysis on each pathway included in the KEGG and
REACTOME databases, using only gene sets with more than 50% of
overlap with our plasma proteomic datasets. In total, 14 pathways
showed significant differential means with Benjamini–Hochberg
adjusted p-value < 0.05 (Fig. 3d). Amongst the pathways showing sig-
nificant regulation, we identified several related to complement acti-
vation, which have also been identified in studies of whole blood
transcriptomics in TB24,25. Complement upregulation in the context of
TB may reflect activation of the classical pathway by antigen-antibody
complexes, activation of the alternative pathway or mannose-binding
lectin pathway by components of the Mtb cell envelope or cell wall,
and/or through increased synthesis as acute phase proteins.

Machine learning based identification of a TB biosignature
To identify the smallest subset of features achieving the required tar-
get product profile (TPP) for a screening test (70% specificity at 90%

sensitivity), we first utilized LASSO to reduce the number of features to
a subset thatwould allow exhaustive brute-force approaches. It should
be noted that prior to this analysis, proteins with more than 50%
missing values between Confirmed and Unlikely TB were removed to
limit the impact of the data imputation on the final biosignature. The
choice of LASSO over other feature selection approaches like Tree-
based or recursive feature elimination (forward or reverse) was due to
the inherent sparsity of the resulting solutions and the computational
performance. We utilized LASSO using 20-fold cross-validation, which
led to removal of a large portion of features, resulting in 50with non-0
LASSO coefficients (Fig. 4a and SourceData). Notably, simply selecting
the top Nmost important proteins by their LASSO feature importance
did not reach the WHO TPP for any of the N utilized (Supplementary
Fig. 2), which supports the use of deep combinatorial analysis to
evaluate the performance of a small subset of features.

Thus, we decided to investigate the best combination of a small
subset of features using the WHO TPP as an objective function. Spe-
cifically, we calculated all possible combinations of N features (from 1

Table. 1 | Cohort demographic and clinical characteristics (N = 511)

Age in years
(median, IQR)

<5 years
n (%)

5–14 years
n (%)

Female
n (%)

HIV infected
n (%)a

Underweightc

n (%)b

Confirmed TB (n = 133, 26%) 3 (1–7) 77 (57.9%) 56 (42.1%) 64 (48.1%) 23 (17.3%) 83 (62.4%)

Unconfirmed TB (n = 120, 23.4%) 3 (2–7) 82 (68.3%) 38 (31.7%) 53 (44.2%) 16 (13.3%) 69 (57.5%)

Unlikely TB (n = 231, 45.2%) 4 (2–8) 129 (55.8%) 102 (44.2%) 109 (47.2%) 18 (7.8%) 117 (50.6%)

Healthy Control no TB infection (n = 19, 3.7%) 5 (3.5–6.5) 7 (36.8%) 12 (63.2%) 7 (36.8%) 0 0

Healthy Control with Latent TB infection (n = 8, 1.6%) 4 (3–6.3) 5 (62.5%) 3 (37.5%) 4 (50%) 0 0

All (N = 511) 4 (2–7) 300 (58.7%) 211 (41.3%) 237 (46.4%) 57 (11.2%) 269 (52.6%)
aP-value = 0.03 for difference among Confirmed, Unconfirmed, and Unlikely TB by two-sided chi-squared testing.
bP-value = 0.01 for difference among Confirmed, Unconfirmed, and Unlikely TB by two-sided chi-squared testing.
cUnderweight defined as weight-for-age Z score < −2 if less than 5 years old, or body mass index <18.5 if 5–14 years.
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are provided as a Source Data file.
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to 6) and selected the combinations maximizing the sensitivity at 70%
specificity. For combinations achieving the same sensitivity, we
selected the one with the greater AUC. We derived six logistic
regression models (trained on a 75% balanced subset of the data and
tested on 25% of the remaining samples), of which four met or
exceeded the WHO TPP for a screening test (Fig. 4b). The 5 protein
models achieved 93% sensitivity at 70% specificity (95%CI for 5 protein
model 0.73–0.99), and the 6 proteinmodels achieved 96.7% sensitivity
at 70% specificity (95% CI 0.83–0.99) on our test data (Fig. 4c, n = 83,
30 positive, 53 negative). The derived features for the 4 to 6 protein
models were mostly shared, with APOM, TNC, and CD44 being shared
across the 4, 5, and 6 protein models (Fig. 4d). The selected proteins
for most models showed small variance and significantly different
means across all TB classes (Fig. 4e), potentially suggesting their
relevance in TB disease. Two proteins further showed regulationwhen
comparing Confirmed TB and Unlikely TB: WARS1 (log2FC 0.38,
q = 10 × −5) and APOM (log2FC −0.45, q = 10 × −5) (Figs. 3b and 4e). Each
individual protein showed a low AUC ranging from 0.577 (HEG1) to
0.745 (APOM), suggesting the lack of a single indicative feature driving
the AUC and the need for at least 3 proteins to achieve the WHO TPP
(Supplementary Fig. 3).

Detection of unconfirmed TB
We tested the derived biosignatures on 115 Unconfirmed TB cases
that passed our proteomics quality control filtering to assess if we
could further identify TB cases in symptomatic children with
culture-negative disease. Although the lack of microbiological con-
firmation raises the possibility that these cases did not represent
true TB disease, all children in the Unconfirmed TB group had
clinical signs and symptoms of TB and improved on anti-TB treat-
ment. In this comparison, we only used biosignatures meeting or
exceeding the WHO TPP for a screening test (3, 4, 5, and 6 protein
models) and utilized as a probability threshold for classification the
AUC point that achieved the WHO TPP. The various models

supported the diagnosis of TB in Unconfirmed TB (negative by
sputum-based testing) in ~79% of the cases, with different models
predicting between 85 and 98 positive cases among the 115 children
(Fig. 5a). We observed good agreement between predictions, with
73/115 samples (63%) positively predicted by all models (Fig. 5b).
Importantly, we did not observe separation between healthy and
latent TB when utilizing any of these three biosignatures, suggesting
that these are specific for active TB disease (Supplementary Fig. 4).
When evaluating the separation between the various Unconfirmed
TB samples and the Confirmed TB group using all identified pro-
teins, we observed a trend where samples positively predicted by
the all four models (n = 70), clusteredmore closely to the Confirmed
TB group in latent space derived by PCA, and showed separation on
the first component from the negatively predicted unconfirmed
samples (n = 11) (Fig. 5c). This suggests that we robustly extra-
polated a valid biosignature as the individual contribution of these 8
proteins on the total number of proteins identified (850) is small
with only TNC ranking amongst the top 20% features driving the
separation on the first component (Supplementary Fig. 5).

Discussion
This study represents the largest TB plasma proteomics study in chil-
dren to date, and encompasses a diverse pediatric cohort of >500
samples across clinical sites in four LMIC and twocontinents. The scale
of this analysis was made possible by the use of data-independent
acquisition to provide high-throughput, accurate, and precise quanti-
fication of hundreds of proteins within only ~30min ofMS acquisition.
This is in contrast to previous work for the development of host-based
biomarker for TB using plasma proteomics, which have revolved
around the use of proteomic multiplexing for quantification (e.g.,
ITRAQ) and long acquisition times, both of which are detrimental for
acquisition of large clinical cohorts13,26,27. Furthermore, the power of
this study is amplified by our cohort design, which includes both
healthy controls and >200 controls with non-TB respiratory diseases.
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The inclusion of a non-TB respiratory disease control group addresses
a key clinical diagnostic challenge to distinguish children with pul-
monary TB disease from those with symptoms due to other causes.
Inclusion of this control group avoids the detection of candidate TB
biomarkers that are non-specific inflammatory markers that cannot
differentiate among symptomatic states, as observed with CRP, SAA1,
SAA2, SAA3, and SAA4, and which were included in previous plasma
proteomic biosignatures7,13.

An important milestone of this work is the application of machine
learning to develop a minimal host-based biosignature consisting of
3–6 proteins that separate children with Confirmed TB vs. Unlikely TB
at a level of specificity and sensitivity that meets or exceeds the WHO
criteria for a TB screening test10. We foundWARS1 to be a part of the 4
protein biosignature, and has been identified in adult proteomic stu-
dies as a promising TB biomarker6,28. WARS1 (also known as TrpRS or

SYWC) has previously been linked to TB infection by multiple
mechanisms. First, upon Mycobacterium tuberculosis infection, a mul-
titude of lymphocytes, including CD4 and CD8 T cells, noncanonical
T cells, natural killer cells, and type 1 innate lymphoid cells upregulate10

interferon gamma (IFNγ) as part of the host immune response, which
in turn induces WARS1 expression29. WARS1 is also induced by tryp-
tophan depletion30. Tryptophan depletion by the kynurenine pathway
has been detected in multiple metabolomic studies in active TB
disease31–33, hence our data further supports previous reports on the
importance of Tryptophan metabolism in active TB diseases versus
other respiratory illnesses.

Several of the other proteins have either not been associated with
TB or only described in adult biosignatures, which further highlights
the need for pediatric-specific analyses. For example, TNC (Tenascin-
C) is associatedwith lungdiseasebut not specificallywithTB34. Inmice,
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Fig. 3 | Abundance proteomics analysis of pediatric TB cohorts. a Benchmark of
data between patients with respiratory burden and healthy controls, excluding
Latent TB Infection.X-axis shows the TBclassification status, while y-axis represents
the protein-level intensity. Box shows the protein intensities for individual samples
(dots), the median value (center line) IQR range (box limits), and 1.5 times the IQR
(whiskers). P-values are calculated from a two-sided Kruskal–Wallis test. N-values
represent the number of patients within each group. b Volcano plot between
Confirmed (n = 133) and Unlikely TB (n = 231). The x-axis shows the Log2 fold
change at the protein level, while the y-axis represents the significance as −log10 of
theBenjamini–Hochberg (BH)correctedp-valuesderived froma two-sidedWelch t-
test. Significant proteins (BH-adjusted p < 5%) are shown in red (upregulated) and

blue (downregulated). Yellow dots indicate inflammatorymarker proteins from (a).
Barplot showing the number of differentially expressed proteins (DEPs) that were
either upregulated (red, n = 17) or downregulated (blue, n = 30). c Density plot
showing the z-scored intensity for the most significantly regulated protein (IGHV3-
30), divided by TB status in confirmed TB (pink), unconfirmed TB (green), and
unlikely TB (blue).dGene set enrichment analysis for identificationof dysregulated
pathways between Confirmed TB and Unlikely TB. Dot size represents the BH
adjusted p from a two-sided mean difference (MD) test of protein abundances.
Colors indicate the overlap between each signaling pathway and the protein
dataset. Only pathways with over 60% overlap are represented. Source data are
provided as a Source Data file.
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it has been shown that CD44 is a macrophage binding site for M.
Tuberculosis that can provide protective immunity35. Further studies in
adult TB patients have identified CD44 as a serum biomarker for
multidrug-resistant TB in adult patients36. In the case of MMP-2, this
protein has been studied in the context of adult TB and found to be
elevated in respiratory specimens as compared to healthy controls37,38

and correlates with markers of disease severity, such as cavitation.
However, less is known about the role of this protein in biofluids such
as plasma, or in pediatric patients.

APOM was also found across the signatures, and was significantly
downregulated in Confirmed versus Unlikely TB. M. tuberculosis
infection alters lipidmetabolism7,39,40, and a variety of apolipoproteins
have been identified in adult proteomic studies as candidate bio-
markers that are also downregulated. While APOM has not been pre-
viously reported, it is associatedwith HDL, which has been found to be
lower in individuals with TB and correlated with radiologic extent of
disease41. At the same time, comorbidities suchasmalnutrition andHIV
infection increase the risk of TB and can also alter metabolism, and
may have contributed to these differential markers42. We found that
the proportion of HIV and malnutrition were higher in children with
Confirmed TB, but we were limited in the sample size of our test set to
perform further subgroup analyses. Prospective validation of these
markers is thus needed, overall, by setting, and among key risk groups
including infants, children with HIV, and malnutrition.

Importantly, our protein biosignatures did not separate between
healthy children and children with latent TB infection for any of the
tested models, suggesting that these protein biosignatures are spe-
cific for active TB disease. Moreover, application of these host-
biosignatures to children with Unconfirmed TB was able to further
support a potential diagnosis of TB in ~63% of cases that were
negative by sputum-based testing. Although the lack of micro-
biological confirmation raises the possibility that these cases did not
represent true TB disease, all children had clinical signs and symp-
toms of TB and improved with anti-TB treatment. However, it is
important to note that we cannot know with certainty whether our
biosignatures are correct in these classifications of TB among the
Unconfirmed TB group. Future clinical trials in which anti-TB treat-
ment is provided based on biosignature results would be required to
fully address this question.

While the biosignatures derived for childhood TB in his study are
the result of a large-scale untargeted discovery-proteomics approach,
there have been several targeted cytokine-based signatures identified
for TB in children11,43,44, which are proteins that are often below the
limit of detection by mass spectrometry45. Furthermore, in several
cases, these targeted analyses were completed at a single center with a
small sample size. For example, prior work identified a 3-cytokine
signature to distinguish children with TB disease from other respira-
tory diseases in the Gambia, but they achieved a lower AUCof0.74 and
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72.2% sensitivity44. Our study benefited from a large sample size,
representation from four countries, with a high proportion who were
under five years old, living with HIV, and were undernourished. While
further prospective validation and subgroup analyses are needed to
evaluate robustness and reproducibility, our findings suggest that a
simple host-based proteomic signature could be a valuable non-
sputum TB screening test for children. To further enable translation,
there is also a need for greater development of technologies to sup-
port multiplex testing at the point-of-care46.

It is important to note that there are limitations to our study. As
noted above, the power of our derived biosignatures will require fur-
ther validation through, for example, prospective clinical trials in
which anti-TB treatment is based on patient biosignature classifica-
tions. Our biosignatures also include immunoglobulin G proteins.
While we observe highly consistent detection of these proteins across
our cohort, the high degree of polymorphism in these proteins across
the human population may limit their broad utility in a biosignature.
Additionally, the accuracy of these biosignatures in subgroups of our
cohorts was limited by sample sizes. From a technical perspective,
plasma sampling, sample preparation, and data collection, may each
have introduced a bias in our results. This includes our prioritizationof
throughput and reproducibility by not utilizing protein depletion
strategies such as antibody or protein coronas. In general, we
attempted to mitigate these biases by randomization across the
workflow, including specimen collection and data acquisition, and
post-analysis computational batch correction. Finally, our bio-
signatures were evaluated on the test set and not a fully independent
hold-out set, hence, the reported performance may be optimistic due
to multiple testing, and should be interpreted as exploratory rather
than confirmatory.

In conclusion, untargeted proteomics was able to broadly evalu-
ate theplasmaof children across four countries, and identify candidate
host protein biomarkers that could distinguish pediatric TB disease
from other respiratory diseases. Moreover, from these candidate
markers, we identified a plasma protein biosignatures of only 3–6
proteins for childhood TB disease that achieved the minimum accu-
racy for a TB screening tool. These efforts have provided greater
characterization of the unique immune response in pediatric TB dis-
ease, while providing a non-sputum biosignature that could reduce
delays in TB diagnosis and improve detection and management of TB
in children worldwide.

Methods
Ethical considerations
This study complies with all relevant ethical regulations. All caregivers
completed a written informed consent, including for storage of sam-
ples for future studies, and children completed an assent as applicable.
The studies were approved by the Mulago Hospital Ethics Research
Committee, Gambian Government, and MRC joint ethics committee,
London School of Hygiene and Tropical Medicine, Institutional Ethics
Committee for Research of National Institute of Health—Peru, Uni-
versity of Cape Town, and the University of California, San Francisco
(UCSF) IRB.

Pediatric TB cohort
We analyzed plasma samples that were collected from children less
than 15 years old evaluated for pulmonary TB who were previously
enrolled as part of prospective diagnostic cohort studies in the Gam-
bia, Peru, South Africa, andUganda. Childrenwere included if they had
signs and symptoms of pulmonary TB, and excluded if they were
already taking treatment for TB infection or disease formore than 72 h.
All children completed a standard TB evaluation, including clinical
exam, chest X-ray, and respiratory sample collection for Xpert MTB/
RIF molecular testing and mycobacterial culture. All children had
follow-up after 2–3 months, and were assessed for clinical response to
any treatment. They were classified according to NIH consensus defi-
nitions as Confirmed, Unconfirmed, or Unlikely TB. Confirmed TB was
defined as havingmicrobiological evidence of TB disease by a positive
Xpert MTB/RIF Ultra or mycobacterial culture positive for M. tuber-
culosis. Unconfirmed TB cases did not have microbiological evidence
of TB, but had signs and symptoms of TB disease with other clinical
signs or risk factors suggestive of TB, including abnormal chest X-ray
and/or knownTB contact. Theywere started on anti-TB treatmentwith
improvement at the follow-up visit. Unlikely TB cases were sympto-
matic, but did not have microbiological evidence of TB disease nor
other signs or risk factors. In addition, asymptomatic healthy children
from Uganda were enrolled, who had interferon-gamma release assay
(IGRA) testing with Quantiferon-Gold (Qiagen, Hilden, Germany) test-
ing for TB infection. Healthy controls were defined as asymptomatic
and IGRA negative, while Latent TB infection cases were defined as
asymptomatic with positive IGRA results. The gender of participants
was self-reported in the baseline questionnaire, and was not con-
sidered in the study design.
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Sample collection and selection
Trained staff performed venipuncture and collected blood samples in
all children at baseline and within 72 h of any TB treatment. Blood
samples were centrifuged and plasma samples aliquoted and placed in
−80 °C freezers. For this analysis, each study site randomly selected
plasma samples from Confirmed, Unconfirmed, and Unlikely TB cases
in a 1:1:2 ratio, respectively. In addition, a convenience sample of
plasma specimens was selected of asymptomatic children from
Uganda.

Sample preparation for plasma proteomics
We analyzed a total of 511 plasma samples, with each sample repre-
senting an individual patient (n = 1). From each sample, 1μL of unde-
pleted plasma was transferred in a 96-well plate with 200μL of
inactivation buffer (8M urea, 100mM ammonium bicarbonate,
150mM NaCl), and 0.75μL/mL of RNAse (NEB) was added. The pro-
teins were transferred to a 96-well filter plate and processed similarly
to what we previously described14. Briefly, the plates were dried by
centrifugation (1800× g at 25 °C for 30min) and 50μL of TUA buffer
(8M urea, 20mM ammonium bicarbonate, 5mM TCEP) were added.
Following incubation at RT on a shaker (500 rpm, 25 °C), chlor-
oacetamide (CAA) was added to 10mM final concentration and the
plates were incubated in the dark for 1 h at room temperature. TCEP/
CAA were removed by centrifugation (2000× g, 30min, RT) and the
plates werewashed thricewith 200μL of ddH20. Trypsin was added in
a 1:50 ratio and the samples were digested overnight at 37 °C on a
shaker (800 rpm). Peptides were collected by centrifugation
(2000× g, 30min at RT) and the plate waswashed once with 100μL of
ddH20. Resulting peptides were dried under vacuum and were resus-
pended at approximately 200ng/μL prior to MS injection and DIA-
PASEF analysis. Additionally, from these samples, a representative pool
of HIV positive and TB-positive cases were further high-pH fractio-
nated on C18 tips and measured by DDA-PASEF to generate a spectral
library47. Briefly, this high-pH fractionation was performed using
C18 spin columns. These columns were first activated by treatment
with one column volume of acetonitrile, followed by equilibration by
two column volumes of 0.1% TFA. Peptides were subsequently loaded
onto the C18 columns and washed twice with 0.1% TFA. A stepwise
elution of bound peptides was performed using increasing con-
centrations of acetonitrile (5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 50%) in
0.1% triethylamine (pH 10), and lastlywith 2washes of 50% acetonitrile.
The resulting fractions were dried by vacuum centrifugation and
resuspended on 0.1% formic acid prior to MS analysis by DDA-PASEF.

DIA-PASEF data acquisition for abundance proteomics
Approx 200ng per sample were analyzed on a Bruker TimsTOF Pro
interfaced with a Ultimate 3000 UHPLC. Peptides were separated
using a 15 cm PepSep column (Bruker, 150 cm length, 1.7μm Reprosil
Saphir C18 beads) and sprayed into the Captive source kept at 1700V
and 200 °C. The peptides were separated from 2 to 33% of buffer B
(0.1% formic acid in acetonitrile) for 26min, then B was increased to
90% buffer B for 5min, and then the column was re-equilibrated at 5%
buffer B for 2min, reaching a total gradient time of 33min. Buffer A of
this separation was 0.1% formic acid. The samples were acquired in
DIA-PASEFmode using nine 32m/z DIA-PASEF windows (500–966mz)
and ion mobility between 0.85 and 1.3 Vs/cm2. Data for selected sam-
ples was re-acquired when significant mass shifts were observed or
when consecutive injections had reduced signal.

DDA-PASEF and DIA-PASEF data analysis
To generate a spectral library for the analysis of DIA-PASEF data files,
DDA-PASEF files were searched using MSfragger48 within the FragPipe
toolkit (v1.8) using the library generation workflow (“DIA-Speclib-
quant”) using a human FASTA downloaded in January 2022 (20408
entries). This search was performed using tryptic cleavage specificity,

with 2 missed cleavages, fixed modification of carbamidomethylation
on cysteine residues, variable modification of methionine oxidation
and protein n-terminal acetylation, a precursor mass tolerance of
optimized per sample ranging from −20 to +20ppm (default in Frag-
Pipe), as product ion mass tolerance of 20ppm, and a minimum
peptide length of 8. Resulting peptide identifications were filtered to a
1% FDR at the peptide and protein level. The generated library and our
previously reported plasma library47 were merged using easypqp
(https://github.com/grosenberger/easypqp). All DIA-PASEF samples
were searched with DIA-NN (v1.8)49 using a library-based strategy. MS1
and MS2 tolerances were set to 10 ppm. Protein grouping was per-
formed based on the library ids and cross run-normalization was dis-
abled. Following search, the global report file was filtered to <= 1%
protein group Q-values (‘Lib.PG.Q.Value’). Samples were excluded if
the number of peptideswas below 3 standard deviations of themedian
number ofpeptides (2591),which removes sampleswith less than 1700
peptides. The peptide-level data was normalized using median-
centering of the peptides identified in all samples.

Following normalization, the missing values were imputed utiliz-
ing an heuristic strategy based on their identification frequency to
leverage the large number of samples analyzed in this study.

The following rules were applied:
• Peptides identified in > 50% of the samples (at least 250 inde-
pendent identifications) were imputed with the mean
identification value,

• Peptides identified in <50% but > 10% of the samples were impu-
ted utilizing a random value extracted from a generated gaussian
distribution with mu and sigma of the data downshifted
1.8 × sigma

• Peptides identified in <10% of the samples were removed.

Following imputation, the peptide-level data was batch corrected
using COMBAT18 to normalize any variation between the clinical sites,
batches of sample preparation, or MS acquisition batches. We used as
batches the various clinical sites, with added covariates of the MS
acquisition and sample preparation batches (i.e., the different plates).
Peptides were rolled into proteins utilizing only proteotypic peptides
and a topN strategy (max 3 proteotypic peptides per protein), using
the mean intensity to represent a protein intensity. For gene set
enrichment analysis, we used the MDtest function (nperm= 1000)
from the GSAR R package using the protein intensity values from
Confirmed and Unlikely TB samples as input50. Protein sets corre-
sponding to known biological pathways were used as the input gene
sets. For each signaling pathway, this function performed a two-sided
mean difference test of the null hypothesis that there is no difference
in the mean of a set of features (i.e., proteins) between two conditions
(confirmed TB vs. unlikely TB). Resulting p-values were then adjusted
by the Benjamini–Hochberg (BH) approach.

Machine learning based identification of a TB biosignature
Protein-level intensities after normalization across all clinical sites
and HIV status for Confirmed TB (n = 120) and Unlikely TB (n = 211)
were selected and z-scored. For increased stringency in our proteins
for biosignature development, we restricted it to only proteins with
50% or less missing values among the combined collection of patient
samples from the Confirmed and Unlikely TB groups. We then
selected from the remaining proteins, combinations exceeding the
requiredWHO target product profile for a diagnostic test. Confirmed
TB and Unlikely TB cases were included, given clear reference stan-
dards for TB and not TB. First, a random 75% of the data was selected
for training a LASSO model using scikit-learn LASSOCv function (20
folds stratified by TB class, max_iter = 10000, tol = 0.0001). The fea-
ture importance was calculated and the proteins with non 0 coeffi-
cients were used for combinational analysis (n = 50 proteins). In this
analysis, we generated all possible combinations of features ranging
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from 1 (50 combinations) to 6 (n = 15,890,700 combinations) and
trained a logistic regression model based on the z-scored abundance
for each specific combination. The remaining 25% of data was then
used as a test set for model evaluation for all models and was not
utilized for training at any step in this initial analysis. Models for
every N were ranked based on the sensitivity achieved at 90% spe-
cificity (on our 25% test split) and the top scoring models for every N
were kept for subsequent analysis. Confidence intervals were calcu-
lated using the Clopper-Pearson (exact binomial) method. We then
applied models achieving the required WHO TPP (3, 4, 5, and 6
protein models) to the Unconfirmed TB cases to determine what
proportion could be diagnosed using this model.

Computational packages utilized
Raw proteomics data was analyzed with either MSFragger48 (DDA
data) or with DIA-NN (DIA data)49, and the generated DDA library
and our previous reported plasma library47 were merged using
easypqp (https://github.com/grosenberger/easypqp). For data pro-
cessing, model training, and figure generation, we used the follow-
ing packages in Python (v3.8.2): scikit-learn (v1.5.1), pandas (v2.2.2),
numpy (v.1.26.4), pyCombat (v), https://github.com/epigenelabs/
pyComBat, joblib (v.1.4.2), seaborn (0.13.2), matplotlib (v.3.9.2),
matplotlib-base (v3.9.2), scipy (v1.13.1), statsmodel (v0.14.2). The
following packages in R (v.4.3.1, release ‘Beagle Scouts’) were used
for figure generation: ggplot2 (v.3.5.1), RcolorBrewer (v1.1.3), viridis
(v0.6.5), ggpubr (v0.6.0), ggsci (v3.2.0). Additionally, the GSAR R
package (v.1.40.0) was used for analysis of the log2FC between
Confirmed and Unlikely TB. All code for data analysis, imputation,
and figure plots is available here: https://github.com/anfoss/
COMBO_code.git.

Statistics and reproducibility
We randomly selected plasma samples in a 1:1:2 ratio of Con-
firmed:Unconfirmed:Unlikely TB, and sample size was determined by
availability of specimens and to ensure adequate precision in the test
set.With a sample size of 500and25%held for the test set,wewouldbe
powered tomeasure a sensitivity of 90% +/− 12% and specificity of 70%
+/− 10% when comparing Confirmed to Unlikely TB. Samples were
batched by country, and randomized within a given sample prepara-
tion plate and data acquisition for each country and staff were blinded
to TB status during data acquisition. All samples were analyzed once
with the exception of selected samples where there was evidence of
instrument performance deviation, including the observation of sig-
nificantmass shifts or consecutive injections with reduced signal. Data
for these samples was re-collected, and this re-collected data is pre-
sented in this study. Samples not passing QCs defined in the section
“DIA-PASEF enabled high-throughput plasma proteomics” were
removed (n = 7). In the machine learning analysis, data were excluded
for greater than 50% missingness.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed MS data generated in this study has been
deposited in the MassIVE repository with the following dataset Iden-
tifier:MSV000096394 and in the ProteomeXchangewith the following
dataset identifier: PXD057814 with the https://doi.org/10.25345/
C5F18SS6N. Source data are provided with this paper.

Code availability
All code for data analysis, imputation, and figureplots is available here:
https://github.com/anfoss/COMBO_code.git and at https://doi.org/10.
5281/zenodo.15591003.
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