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Preserving and restoring terrestrial ecosystems is essential to preventing the
decline of life on Earth. To guide global conservation efforts, we present a
detailed counterfactual map showing Earth’s natural tree, short vegetation,
and bare ground cover. This map accounts for environmental filtering along
with realistic scenarios of fire frequency andwildlife herbivory. Themost likely
scenario suggests 43% (5669 ± 74 Mha) of land could support trees, 39%
(5183 ± 86 Mha) shrubs and grasses, and 18% (2352 ± 59 Mha) bare ground.
Adjustments in fire and herbivory could shift a minimum of 675 Mha of land,
stressing the importance of considering alternative outcomes when restoring
a landscape. Our findings also suggest that adjustments in fire frequency and
wildlife herbivory could have a greater impact on natural vegetation than
expected climate changes by 2050, highlighting decision-makers’ responsi-
bility to guide conservation and restoration toward a sustainable and biodi-
verse future.

During the last decades, several planetary boundaries have been
crossed, including those related to biosphere integrity and climate
change1. These highlight the urgent need to halt and reverse the loss of
biodiversity in order to achieve safe living conditions on Earth2–6.
International organizations have recognized this urgency, as reflected
by the adoption by the General Assembly of the United Nations, on the
1st of March 2019, of a resolution to establish the 2021-2030 period as
the “Decade of Ecosystem Restoration”. This resolution is also backed
by the latest reports of the 6th Assessment Report of the Inter-
governmental Panel on Climate Change2, the adoption of global
quantitative restoration targets under the Global Biodiversity Frame-
work by the parties of the Convention on Biological Diversity in

Montréal in December 2022, and the adoption of the European Nature
Restoration law in June 2024. However, among the key scientific
challenges to responsible ecosystem conservation and restoration is
understanding the natural baseline conditions of any region, and the
natural states that are possible for any plot of land.

While ecosystem restoration is largely supported by govern-
ments, NGOs and stakeholders in ecosystems across the globe,
restoration actions on the ground have often focused dis-
proportionately on planting trees through reforestation or afforesta-
tion, even in areas that were not naturally forested7,8. Such bias
toward tree planting could lead to unintended consequences for
the mitigation of climate change, the conservation of other life

Received: 9 September 2024

Accepted: 25 June 2025

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: jfbastin@uliege.be

Nature Communications |         (2025) 16:6484 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2602-7247
http://orcid.org/0000-0003-2602-7247
http://orcid.org/0000-0003-2602-7247
http://orcid.org/0000-0003-2602-7247
http://orcid.org/0000-0003-2602-7247
http://orcid.org/0000-0002-3822-315X
http://orcid.org/0000-0002-3822-315X
http://orcid.org/0000-0002-3822-315X
http://orcid.org/0000-0002-3822-315X
http://orcid.org/0000-0002-3822-315X
http://orcid.org/0000-0002-7351-0226
http://orcid.org/0000-0002-7351-0226
http://orcid.org/0000-0002-7351-0226
http://orcid.org/0000-0002-7351-0226
http://orcid.org/0000-0002-7351-0226
http://orcid.org/0000-0002-7434-4856
http://orcid.org/0000-0002-7434-4856
http://orcid.org/0000-0002-7434-4856
http://orcid.org/0000-0002-7434-4856
http://orcid.org/0000-0002-7434-4856
http://orcid.org/0000-0002-3415-0862
http://orcid.org/0000-0002-3415-0862
http://orcid.org/0000-0002-3415-0862
http://orcid.org/0000-0002-3415-0862
http://orcid.org/0000-0002-3415-0862
http://orcid.org/0000-0001-5674-8913
http://orcid.org/0000-0001-5674-8913
http://orcid.org/0000-0001-5674-8913
http://orcid.org/0000-0001-5674-8913
http://orcid.org/0000-0001-5674-8913
http://orcid.org/0000-0003-0354-8517
http://orcid.org/0000-0003-0354-8517
http://orcid.org/0000-0003-0354-8517
http://orcid.org/0000-0003-0354-8517
http://orcid.org/0000-0003-0354-8517
http://orcid.org/0000-0001-7237-3867
http://orcid.org/0000-0001-7237-3867
http://orcid.org/0000-0001-7237-3867
http://orcid.org/0000-0001-7237-3867
http://orcid.org/0000-0001-7237-3867
http://orcid.org/0000-0002-8728-5533
http://orcid.org/0000-0002-8728-5533
http://orcid.org/0000-0002-8728-5533
http://orcid.org/0000-0002-8728-5533
http://orcid.org/0000-0002-8728-5533
http://orcid.org/0000-0003-1487-4027
http://orcid.org/0000-0003-1487-4027
http://orcid.org/0000-0003-1487-4027
http://orcid.org/0000-0003-1487-4027
http://orcid.org/0000-0003-1487-4027
http://orcid.org/0000-0003-0324-4628
http://orcid.org/0000-0003-0324-4628
http://orcid.org/0000-0003-0324-4628
http://orcid.org/0000-0003-0324-4628
http://orcid.org/0000-0003-0324-4628
http://orcid.org/0000-0002-3767-0353
http://orcid.org/0000-0002-3767-0353
http://orcid.org/0000-0002-3767-0353
http://orcid.org/0000-0002-3767-0353
http://orcid.org/0000-0002-3767-0353
http://orcid.org/0009-0009-8752-7406
http://orcid.org/0009-0009-8752-7406
http://orcid.org/0009-0009-8752-7406
http://orcid.org/0009-0009-8752-7406
http://orcid.org/0009-0009-8752-7406
http://orcid.org/0000-0003-2566-1895
http://orcid.org/0000-0003-2566-1895
http://orcid.org/0000-0003-2566-1895
http://orcid.org/0000-0003-2566-1895
http://orcid.org/0000-0003-2566-1895
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61520-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61520-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61520-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61520-8&domain=pdf
mailto:jfbastin@uliege.be
www.nature.com/naturecommunications


forms (including vegetation, animals, fungi, and microbes), and the
rights and livelihoods of local communities9. Examples of negative
unwanted impacts include, but are not limited to, warming in
boreal regions due to tree cover-induced changes in albedo10,
increased evapotranspiration leading to a loss of water availability11,
lower carbon storage in soils when replacing old-growth
grasslands with tree plantations12, or a collapse in native biodiversity
with the replacement of native savannahs by exotic plantations7.
To minimize these risks of damaging land conversion, socially and
ecologically responsible land management strategies require a fun-
damental understanding of the natural state of ecosystems across
the globe.

A growing body of research highlights the potential for natural
restoration (i.e. ecosystem restoration practices that involve minimal
human intervention) to maximize healthy biodiversity outcomes13,14.
But successful natural restoration requires a basic understanding of
the diversity of natural ecosystem states that can be found within a
given landscape, so that different habitat types and maximum biodi-
versity can be preserved15. In this context, grasslands and shrubland
ecosystems must not only be considered as degraded or temporary
alternatives to forests (as has occurred in several mass plantation
examples), but, where appropriate, as climax ecosystems in their own
right16,17, with the necessary consideration of the various mechanisms
(including fire and herbivory) shaping the formation of open
ecosystems18,19. It is crucial to move beyond a narrow focus on “forest
vs. non-forest” possibilities and to explore a wider range of potential
natural land cover diversity accounting for the risks and benefits that
may arise from various natural restoration targets20. While recognizing
the importance of considering diverse ecosystems for restoration is
not new in restoration ecology14,21,22, (Materials and methods are
available as supplementary materials) we still lack a comprehensive
assessment of the different possible natural states of ecosystems
across the globe that would be critical for guiding national and inter-
national landmanagement policies, as well as their implementation on
the ground7–9.

Results and discussion
Here, we generate, to our knowledge, the first map of the potential
natural states of broad vegetation types, showing the most probable
natural land cover in every pixel across the globe. These broad eco-
system categories include tree cover (tall woody vegetation), short
vegetation (shrubs and grasses), and bare ground (areas devoid of
perennial vegetation but which might harbor biocrusts and annual
plants) at a resolution of 0.25° (Fig. 1). This map, referred to as the
global natural vegetation cover, is generated using data collected over
40,000 0.5-hectare plots systematically distributed within all pro-
tected areas (Fig. S1; “Methods”). To predict the different natural
vegetation cover, we trained models using photo-interpreted vegeta-
tion cover data from protected areas and predicted natural variation
using climate variables, soil properties, fire frequency, and wildlife
herbivory within a neural network modeling framework (“Environ-
mental determinants of land cover” in “Methods”). Using possible
scenarios of fire and herbivory at the ecoregion or biome level
(“Environmental determinants of land cover” in “Methods”), we aimed
to explore the possible mechanisms that might have the greatest
potential for establishing natural vegetation states in different regions
across the globe. We then generated the final counterfactual map by
extrapolating themodel beyond protected areas. We refer to this map
as “counterfactual” as it illustrates the natural vegetation cover carry-
ing capacity of the planet, i.e. a different situation of current actual
vegetation cover that can be mapped directly from satellites23.

The central challenge in our analysis is identifying “natural”
reference state of any ecosystem.We chose protected areas as the best
representation of the most natural state of our ecosystems. Many
protected areas experience some level of human degradation that
might ultimately lead our model to the misrepresentation of the
reference state. Degradation can relate to historical and current
anthropogenic activities like legal and illegal logging, past defaunation
and local extinctions, ongoing poaching or excessive hunting, or
increased abundance of exotic pests and diseases24–26. To limit the
potential resulting bias, we further extrapolate ourmap considering as
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Fig. 1 | The global natural vegetation cover. The map displays the global
natural vegetation cover per pixel as for 2015 according to a median scenario
of fire and herbivory, based on the observed fire regime and herbivory per
ecoregion within protected areas of IUCN class I, II, and III. The sum of
potential tree (T), short vegetation (SV), and bareground (BG) cover (top left)

equals 100% for each pixel. The remaining subfigures display each potential
land cover separately for enhanced clarity. The color gradient highlights
large contrasts and should be interpreted with caution detailed information
for visualization at the pixel level is available here: https://bastinjf-climate.
users.earthengine.app/view/gavcglobalfractionalvegetationmedian.
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a reference state solely thoseprotected areas under conservative IUCN
categories I, II, and III (i.e. over 17,000 plots; “Augmented Visual
Interpretation” in “Methods”). The spatial distribution of the remaining
protected areasmight also lead to the misrepresentation of the global
alternatives of natural vegetation cover, due to spatial aggregation and
misrepresentation of global environmental conditions. To this end, we
control for the spatial structure using spatial blocks for cross
validation27 (“model training and control of spatial structure” in
“Methods”), and validate their environmental representativity using
spatial features approach28,29 (“The representativity of the training
dataset” in “Methods”). All the models yielded good results (observed
vs.predictedR²≥0.8; average intercept of0.04 ranging from0 to0.07
and average slope =0.97 ranging from 0.92 to 1), showing a very lim-
ited impact (<1%) of the modelling framework and of the choice of
climate dataset and a rather limited (~5%) impact of the spatial struc-
ture of the training dataset (“The neural network model” in “Meth-
ods”). We then generated the final counterfactual map by
extrapolating the model beyond protected areas for each climate data
source and calculating the mean natural vegetation cover for each
pixel, using the most probable (i.e., median) scenario of fire and her-
bivory (“Environmental determinant of land cover” in “Methods”). We
employed various climate databases to account for the model's sen-
sitivity to the choice of climatic data and accounted for potential
model overfitting. The control of spatial feature distributions shows
that our calibration dataset is well representative of the global dataset
(“The representativity of the training dataset” in “Methods”).

The global natural vegetation cover
Our study reveals that the most probable global natural vegetation
cover of the planet (Fig. 1) is comprised of 5669 (±74) Mha of trees
(43%), 5183 (±86)Mhaof short vegetation (39%), and 2352 (±59)Mhaof
bare ground (18%). Our counterfactual map reveals two distinct pat-
terns at the global level (Fig. 1). From tropical to desert regions, each
biome tends to be dominated by a single type of vegetation cover.
Tropical biomes are dominated by trees, subtropical biomes by short
vegetation, and desert biomes by bare ground (Table S1). From tem-
perate to boreal regions, each biome tends to present amorebalanced
distribution of the natural vegetation cover offering more opportu-
nities in terms of landmanagement. This finding is in line with a recent
assessment of the state of European land cover during the last inter-
glacial period, which showed that Europe was covered by

heterogeneous and complex landscapes in the youngest period with a
similar climate as today and absence of Homo sapiens30. Tropical and
subtropical moist forests have the largest area naturally covered by
trees (on average 1616Mha), but also present 312Mha of land naturally
covered by short vegetation. Similarly, tropical and subtropical
grasslands have the largest area naturally covered by short vegetation
(1127Mha), but alsopresent 722Mhaof landnaturally coveredby trees.
Desert biomes, while dominated by bare ground (1300 Mha) might
also shelter a significant area of natural short vegetation and tree
cover, with 1053 Mha and 419 Mha respectively. The carrying capacity
for natural vegetation in desert biomes is expected to decline over the
coming decades due to forecasted climate and land use changes4,31.
Boreal and temperate biomes exhibit high carrying capacities for both
short vegetation and tree cover, with temperate biomes supporting
1095 Mha of short vegetation and 1341 Mha of tree cover, and boreal
biomes supporting 656 Mha of short vegetation and 717 Mha of
tree cover.

These results highlight that landscape restoration cannot afford
to overlook any type of land cover. Whether in arid, boreal, temperate,
or tropical biomes, a restoration project should always consider the
opportunity, costs, and benefits of restoring different ecosystems, and
the possibility of letting restored natural processes determine the
outcome. This underscores the remarkable heterogeneity of vegeta-
tion on Earth and the intricate challenges associated with their con-
servation and restoration.

Global alternatives of natural vegetation cover
Usingmultiple realistic fire frequency andwildlife herbivory scenarios,
i.e. from percentile 5th to 95th in the observed range of fire frequency
and herbivore biomass in each ecoregion of the world, we map all the
potential alternatives of natural land cover on Earth (Fig. 2). Each pixel
of the map represents the standard deviation of the predictions
obtained from the different scenarios for tree, short vegetation, and
bare ground cover in green, blue, and red respectively (Fig. 2). The
resulting additive color rendering corresponds to landscapes where
diverse natural vegetation cover can be found. In total, the map illus-
trates that at least 675 Mha of the Earth's surface can support alter-
native vegetation covers, an area equivalent to the size of the
Amazonian bassin32 (“Map of the global alternative natural vegetation
cover and sensitivity to fire and herbivory scenarios” in “Methods”).
The most substantial hotspots where alternative natural vegetation

100
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TBG SV
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SVBG

Cover (%)

Fig. 2 | Global alternatives of natural vegetation cover. This map depicts the
natural alternatives of vegetation cover on a global scale as for 2015, based on the
changes in fire regime (prescribed or excluded) and herbivore intensity scenarios.
Each pixel of themap represents the standard deviation (SD) of the predictions for
bare ground (BG), tree (T), and short vegetation (SV) cover. The resulting additive
color rendering corresponds to pixels where alternatives are found between two

dominant land cover types (cyan for trees and short vegetation, magenta for short
vegetation and bare ground, and in yellow for trees and bare ground). A Venn
diagram summarizes this color legend. The color gradient highlights large con-
trasts and should be interpretedwith caution detailed information for visualization
at the pixel level is available here: https://bastinjf-climate.users.earthengine.app/
view/gavcglobalalternativescenarios.
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occur in subtropical and temperate biomes, where fire and herbivory
scenarios promote the transition fromdense forests to grassy systems
and eventually from grassy systems to deserts (Fig. 2). These hotspots
result mostly from an asymptotic relationship between land cover and
fire regime, as an increase of fire will substantially favor short vegeta-
tion over trees beyond a certain threshold of fire frequency (“The
neural network model” in “Methods”). The effect of wildlife herbivory
appears more complex, as an increase of herbivory biomass is not
systematically related to a decrease of tree cover. Indeed, high herbi-
vore densities can be found both within dense forests (e.g., forest
elephants, great apes, etc.) and herbaceous savannas33. High herbivore
densities can also increase vegetation heterogeneity and consequently
their overall resilience vs. external forcing34. Further development of
the method at finer scales might benefit from a focus on the potential
effect of trait-specific herbivores to better identify the effect of her-
bivores on the landscape35. Also, wetlands are not included in the
modeling process, even though they may contain trees, short vegeta-
tion, and barren land. Since conservation or restoration choices could
significantly impact wetland ecosystems, we emphasize that they
should be carefully considered when assessing alternative options for
natural vegetation cover. Here, we estimate that less than 5% of wet-
lands could be affected by these alternatives, warranting a thorough
evaluation of potential outcomes using existing wetland maps for
guidance36.

Our counterfactual maps provide valuable insights to help guide
ecosystem restoration efforts, accounting for a full range of natural
options in terms of vegetation cover that together shape complex and
heterogeneous landscapes37. The maps and the model we built can
assist decision-makers, policy makers, and local stakeholders in
assessing how climate change, prescribed fire intensity, fire exclusion,
and wildlife herbivory may affect the tree, short vegetation, and bare
ground cover of a given landscape. This could help guiding existing
restoration initiatives such as natural grazing projects in Europe's
rewilding landscapes, where we can evaluate the scenario needed to
promote more heterogeneous landscapes15 and address the effects of,
for instance, land abandonment38, trophic rewilding experiments in
Siberia (e.g. “the Pleistocene park”) where grassy ecosystems might
stabilize soil temperatures and limit permafrost melting39, trophic
rewilding experiments in African savannah where elephants help pro-
mote semi-open ecosystems40, or reforestation initiatives in Africa
aiming to slow down land degradation and desertification (e.g., the
Great Green Wall41).

The role of fire and herbivory in shaping vegetation
Using our model considering various fire frequency and herbivory
scenarios, together with the average expected climate change by
205042, we found that an increase of herbivore biomass up to
30,000 kg perkm²—i.e. close to the upper limit observed in Europe
latest interglacial age43 or about 30 bisons or six elephants per km2—

candecrease the tree cover from55% to 11% in theDinaricmountains of
Europe, and from 44% to 8% in the Northeast Siberian Taiga (Fig. 3).
Fire prescription or exclusion in West Sudanian savannah might
change the potential tree cover by 23%, shifting between 33% and 56%
when passing from 0.5 to 0 fire yr−1 (Fig. 3). Interestingly, results show
that the choice of management action appears to have a much stron-
ger impact on the final land cover than average climate change alone.
In this regard, the effects of the average expected climate change by
2050 only changed the resulting land cover of the previous examples
by less than 3%. While the maps and model presented here are robust
and informative and provide a global picture of the different potential
natural alternatives, further refinement and validation of our models
would enhance their accuracy and usefulness for specific restoration
or rewilding initiatives on the ground. Future refinements should
notably consider incorporating additional biogeographical variables,
such as more detailed climate-derived indices and improved spatial

data on soil properties and hydrology44–46, while also refining dis-
turbance modeling—particularly fire and herbivory—by integrating
finer-scale dynamics of herbivore biomass, functional diversity, intake
rates, and fire regimes across different ecological contexts24,47,48. The
inclusion of punctual but extreme climatic events such as extreme
drought49 or tropical cyclones50might also improve our understanding
of the effect of climate change vs. the effect of management action on
the resulting land cover.

In conclusion, our model reveals the considerable potential
for diverse natural vegetation states across the globe. Given the critical
differences in ecosystemstates that are possible, ourfindings highlight
that land management actions might outweigh the average effect
of climate change on the restoration outcome. As such, we believe
that our results can help guide the design of ecologically and
socially responsible landscape conservation and restoration initiatives
that are required to combat the ongoing climate and biodiversity
crises.

Methods
The raw data and the complete annotated code (including data pre-
paration, model training, validation, and evaluation, and mapping)
used in the present study are available on GitHub (https://github.com/
Nicolas-Latte/GANVC).

Set-up of the study
We set-up a data-driven neural network model to map the Earth´s
natural fractional vegetation cover. The model is trained on climatic,
topographic, edaphic, herbivory, and fire data in combination with a
dataset of land-cover in protected areas of the globe. We used this
model to predict the natural fractional vegetation cover beyond pro-
tected areas.

Assessment of land cover
The training dataset corresponds to the augmented photo-
interpretation of three types of land cover: trees, short vegetation
(including grasses and shrubs), and bare ground. We used data from
40,520 0.5-hectare plots distributed across the protected areas of the
globe (Fig. S1) and following a systematic sampling grid design (20 by
20 km). This dataset results from previous studies on the global
assessment of dryland forests and the global tree restoration potential
and corresponds to the land cover of 20154,51.

Augmented visual interpretation of the three land covers
The assessment of land cover in each plot was conducted using the
Augmented Visual Interpretation approach with the assistance of
Collect Earth52. Collect Earth, an open-access software developed by
the Open Foris initiative of the Food and Agriculture Organization of
the United Nations (FAO), utilizes Google Earth and Google Earth
Engine to providemulti-source andmulti-level information to facilitate
the photo-interpretation of land cover. This software enables the
operator to perform photo-interpretation of a 70 × 70m square plot,
combining land cover information derived from satellite images with
very high spatial (pixel size ≤ 1m) and temporal (daily data acquisition)
resolution.

To interpret the land cover, the operator utilizes freely accessible,
very high spatial resolution satellite images which can be visualized on
Google Earth. Simultaneously, the operator cross-references the
interpretations with spectral information obtained from medium-to-
high resolution satellite images, including MODIS, Landsat 7/8 from
USGS mission, and Sentinel 2 from Copernicus mission, which have
been automatically compiled over the past 20 years. In our case, each
plot consists of a systematic grid of 7-by-7 points (49 points), allowing
convenient and direct estimations of tree cover, short vegetation
cover, and bare ground cover. Each point on the grid represents 2% of
the plot area.
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The three land covers range from 0 to 100% and sum up to 100%
for each plot. Distinguishing trees from short vegetation was based on
visual assessment of crown size, where crowns width below 2 meters
considered as non-tree woody cover. This dataset and approach have
been validated on multiple occasions with ground control points51,53.
More details on the photo-interpreted methodology and inventories
we use are provided in previous studies4,51,53,54.

Environmental determinants of land cover
To build the global distribution of the three land covers and the sub-
sequent global alternatives of natural vegetation covermap,we further
develop an empirical model based on neural network approaches55 to
predict the relationship between environmental determinants (cli-
mate, topography, soil, fire regime, and wildlife herbivory) and land
cover within protected areas. We detail hereafter the preprocessing of
each of the datasets used and the selected predictive variables.

Protected areas. We identified regions of the world with limited
human activity using the World Database on Protected Areas56

(WDPA), developed by the United Nations Environmental Program
(UNEP) and the International Union for Conservationof Nature (IUCN).
These regions are nonetheless not entirely exempt from human
activity26. Therefore, we distinguish conservative protected areas from

the rest. Among the 40,520 plots, two categories were defined. Cate-
gory0: 17,638plots falling under conservative IUCNcategories I, II, and
Ill. Category 1: 22,882 plots falling under IUCN categories IV, V, and VI.
Model trainingwasdonewithboth categorieswith a specificpredictive
variable expressing the category butmaps were produced considering
only the restrictive IUCN categories I, II, and III (thus category 0) to
estimate the natural vegetation cover of the planet with limited human
activity.

Climate data. In the present study, we consider that global climate
databases, whether derived from meteorological station records or
satellite mission predictions, are prone to uncertainties and biases57.
To address this potential issue,wehave incorporated sixglobal climate
reference datasets, namely CHELSA, CRU (TS4), ERA5, MODIS, NEX
historical, and Worldclim58–62.

For each climate dataset, we computed four predictive climate
variables: the mean and standard deviation of monthly average tem-
peratures, and the mean and standard deviation of monthly total
precipitation. Monthly temperatures and precipitations were com-
puted over a significant time span of 10 to 30 years, between 1980 and
2010, depending on the availability of the data in each specific dataset.
The selected climate variables capture both the annual average con-
ditions and the seasonal patterns.
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Fig. 3 | Examples of natural vegetation cover distribution variations resulting
from different fire, herbivore, and climate change scenarios at the
ecoregion level. The effect of fire, herbivory, and climate change SSP5 [CC] is
illustrated on the potential tree cover of four ecoregions, i.e., the Northeast
Siberian Taiga, the Dinaric Mountains Mixed Forests, the West Sudanian Savanna,

and the Cerrado. The two panels on the left compare the potential natural tree
cover in current situation vs. low/high herbivory (30 tons.ha−1) and expected cli-
mate changeby2050.The twopanels on the right compare the current situation vs.
fire prescription (+0.25 fire.yr−1)/ exclusion (0 fire.yr-1) and expected climate
change by 2050.
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Soil and topography. As in Bastin et al., 20194, we selected five pre-
dictive variables derived from soilgrids63 and GMTED201064: soil
organic carbon stock from0-to-15 cm, depth to bedrock, sand content
from 0-to-15 cm, elevation, and hillshade.

Fire frequency. We computed fire frequency using the Terra and Aqua
combinedMCD64A1 Version 6BurnedAreaMODIS data product65. It is
amonthly, global gridded 500mproduct containing per-pixel burned-
area and quality information. The MCD64A1 burned-area mapping
approach employs 500mMODISSurfaceReflectance imagery coupled
with 1 kmMODIS active fire observations. Here, we converted the map
into binary yearly information, countingwhether a fire wasdetected or
not each year of the period 2001–2020. We then computed a single
map to assess the yearly fire frequency over the 2000–2020 period.

Herbivory. The herbivory dataset is compiled from the study of Ber-
zaghi et al., of 202466, where the authors studied the globaldistribution
of wild mammal herbivore biomass using dynamic vegetation models
calibrated on observed datasets gathered over protected areas. To
account for the general trends of herbivore biomass and daily intake in
natural systems, we merged the data, that was originally structured in
24 functional groups, into three levels of information, i.e. the esti-
mated dry biomass in kilogram of wet weight per km2 (i.e., the bio-
mass), the estimated total biomass intake in kg of dry mass· per km2

(i.e., the intake) and, finally, the estimated daily litter intake in kg of dry
mass per square kilometer. Accounting for the litter intake allows
focusing on the impact of herbivores being very dependent on the
seasonal source of intake (i.e. the litter).

The herbivore data being the result of a model, it presents some
potential shortcomings, in particular regarding the definition of nat-
ural vs. domestic mammals that might differ depending on the per-
spective of the stake holder67. Therefore, the risk of considering non-
native herbivore biomass in protected areas is non-null in our model.
Yet, as functional type of herbivore—not nativeness—is whatmatters in
terms of impact on the land cover35, we assume that such bias has little
impact on the result of our model which only considers the impact of
herbivore intensity on the potential state of vegetation.

List of all the predictive variables. Based on aforementioned steps,
we select a total of 14 variables (Fig. S2): protected area category (0: I,
II, III and 1: IV, V and Vl), mean of precipitation, mean of temperature,
standard deviation of precipitation, standard deviation of tempera-
ture, bedrock depth, elevation, hillshade, soil organic carbon content,
sand content, fire frequency, herbivore total biomass, herbivore total
intake, and herbivore litter intake.

The representativity of the training dataset
To assess the representativity of the training dataset, we first analyze
the ranges of the environmental variables within and outside pro-
tected areas per biomes (Fig. S3). The protected areas cover well the
global variation of environmental data. Additionally, to assess statis-
tically the representativity of the training dataset, we performed a
nearest neighbor distance analysis in feature spaces following
recommendations of Meyer and Pebesma28. The results in Fig. S4
illustrate the good representativity of the training dataset.

As a final test of data representativity, we compare results
obtained using the full range of available data in protected areas with
those derived from data restricted to Categories I, II, and III protected
areas (Supplementary Note 1, Figs. S5, S6).

The neural network model
Neural network architecture. Our model is a simple neural network,
i.e., a MultiLayer Perceptron (MLP). The model is composed of a first
linear transformation (14 predictive variables -> 64 features) followed
by a “tanh” activation function and a dropout of 0.75, then a second

linear transformation (64 features -> 3 proportions). At the end of the
MLP, we applied a “softmax” activation function to reconstruct pro-
portions of the three land covers: trees, short vegetation, and bare
ground (sum of proportions = 1). The total number of parameters is
1155. Input and output data are tabular with one line per photo-
interpreted plot for training and one line per pixel of 0.25° (world) for
prediction.

Model training and control of spatial structure. As well as the MLP,
we configurated the training to avoid model overfitting and ensure
prediction robustness. We set the training parameters (number of
epochs = 3000, learning rate = 0.001, weight decay= 0.001, etc.)
through trial and error. In total, we trained 66 MLPs: 10 (spatial
folds) +1 (all folds) for each of the six climate datasets. We used the
weighted mean square error (MSE) as loss function (Fig. S7). We
weighted the loss for balancing the number of samples between
continents, IUCN categories (0/1), and vegetation cover classes
(highest proportion). The 10 folds correspond to spatially and envir-
onmentally separated areas (Fig. S8), generated using the blockCV
package in R27.

Model evaluation. We validated the model progressively by analyzing
the residuals and the variable importance of the predictive variables
and their model profiles. The comparison of predicted and observed
values (Fig. S9) revealed that the models generally present a good and
unbiased prediction (R² ≥0.8; average intercept of 0.04 ranging from
0 to 0.07 and average slope = 0.97 ranging from 0.92 to 1), yet with a
small systematic underestimation of the prediction of high bare
ground values.

The predictive power of the 14 selected variables is high. We
performed a first assessment through the averages and ranges of the
model profiles (Fig. S10). This figure shows how, at the global level,
each land cover responds to the variation of standardized model
parameters. Interestingly, and despite being an empirical machine-
learning model, the figure presents biologically meaningful relation-
ships between the predictive and the response variables, providing
confidence in the quality of the model. We also performed a second
assessment through a variable importance analysis (Fig. S11).

Fire regime and herbivory
Tomodel the natural vegetation cover beyond the geographic limits of
the world's protected areas, it was necessary to consider potential
scenarios of fire regime and herbivory that are currently not present
outside protected areas, i.e., counterfactuals. To consider realistic
situations, we propose scenarios based on the observed frequency
distributions of fire and herbivory within protected areas, calculated
for each ecoregion and each biome. For each distribution, we identi-
fied 5 intensities: very low (5th percentile), low (25th percentile),
median (50th percentile), high (75th percentile), and very high (95th
percentile).

The scenarios of fire regime and wildlife herbivory are built from
observationswithin protected areas and are considered per biomeand
terrestrial ecoregion—as defined by Olson and colleagues68-, as these
consist of large units of land containing distinct natural communities
and species. We therefore assume that the fire regime and the wildlife
herbivory observed within the protected areas of these biomes/ecor-
egions are realistic scenarios of fire and herbivory that could be
implemented for a restoration project at the scale of the biomes/
ecoregions.

Maps, uncertainties, and confidence intervals of the global nat-
ural vegetation cover
Model uncertainties. To capture four sources of mapping uncertain-
ties, we produced 720 maps by combining the 66 models with differ-
ent prediction configurations:
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• The model uncertainty: we estimated the inherent uncertainty of
the models by predicting 10 times each of the 6 climate dataset
models (all folds) with the dropout activated. Number ofmaps: 10
repetitions × 6 climates = 60.

• The spatial uncertainty: we estimated the effect of spatial struc-
ture of the training dataset by predicting 10 times each of the 6
climate dataset models (10 different folds, deactivated dropout).
Number of maps: 10 folds × 6 climates = 60.

• The climate uncertainty: we estimated the effect of the climate
dataset on the land cover proportions by predicting one map per
climate dataset model (all folds and deactivated dropout). Num-
ber of maps: 6 climates = 6.

• We estimated the overall uncertainty by considering 600 combi-
nations: 10 repetitions (activated dropout) × 10 folds × 6 climates
(Fig. S12).

All the 720maps were produced by considering themedian (50th
percentile) fire and herbivory intensities. Uncertainty values were
finally computed as the standard deviation per source and per land
cover (Fig. S13). For model and spatial uncertainties, we computed the
mean of climate maps before standard deviation (mean: 60 - > 10, sd:
10 - > 1). All maps produced in this study have 3 bands, one per cover.

The global natural vegetation cover map. We computed the global
natural vegetation cover as the mean of 6 maps. One map per climate
dataset model (deactivated dropout, all folds, and median fire and
herbivory scenarios) (Fig. S14).

This map represents the most probable distribution of the three
natural vegetation covers: bare ground (red), tree (green), and short
vegetation (blue) (Fig. 1). In this study, we did not consider water
bodies as potential land for vegetation cover. Antarctica and perma-
nently ice-covered regions of Greenland were excluded from the nat-
ural vegetation cover map.

Confidence Intervals. We first estimate the variance for the area
covered by each vegetation type bymultiplying the standarddeviation
value of each pixel by the pixel area and summing all pixels at global
level. The confidence interval is then calculated by considering the
following equation:

CIi = z*
σi
ffiffiffi

n
p

Considering a confidence interval of 95%, z equals 1.96; σ corresponds
to the area concerned by the uncertainty of the vegetation cover i, and
n (the number of land cover maps) equals 600.

The resulting confidence interval equals 59Mha for the prediction
of the natural bare ground cover, 74 Mha for the prediction of the
natural tree cover, and 86 Mha for the prediction of the natural short
vegetation.

Map of the global alternative natural vegetation cover and
sensitivity to fire and herbivory scenarios
Fire and herbivory scenarios sensitivity. The effects of fire and her-
bivory scenarios can be tested by predicting maps with different
configurations of fire and herbivory intensities (no dropout, all folds).
In total we produced 150maps: 5 fire scenarios x 5 herbivory scenarios
x 6 climates.

Global alternatives of natural vegetation cover. We produced the
global alternatives of natural vegetation cover map (Fig. 2) from the
150maps by computing themean of climatemaps (150 - > 25) followed
by the standard deviation (25 - > 1) (Fig. S15). To estimate the area of
land that can shift from one vegetation cover to another from shifts in
herbivory and fire intensity, we sum the pixels area concerned by

alternative cover multiplied by the highest standard deviation
observed per pixel (one of the three land cover type). This resulted in
the estimation of a minimum of 675 Mha of land where vegetation
cover can be adjusted from herbivory and fire intensity.

Uncertainty vs. scenarios
To compare the effect of uncertainties (model, spatial and climate) to
the effect of fire and herbivory scenarios on the natural vegetation
cover, we computed the absolute difference between the global map
and the other average maps (10 for model uncertainty, 10 for spatial
uncertainty, 6 for climate uncertainty and 25 for scenarios). The box-
plot of these differences is available in Fig. S16. The variability of areas
affected by the scenarios appears much more important than varia-
tions due to uncertainties. Yet, the variability associated with the
spatial structure should not be neglected.

Other datasets
Focus on wetlands. We assessed global alternatives of natural vege-
tation cover in wetland by extracting the results of Fig. 2 over global
wetland cover as estimated for 2022 by Zhang and colleagues and
scaled at 1 km36.

Climate change. To consider climate change (CC), supplementary
predictions were done using “NEX historical” model69 but with “NEX
2050” data. The climate data for 2050 were computed by averaging
values of all models in the NEX CMIP6 product (i.e. ACCESS-CM2”,
“ACCESS-ESM1-5”, “BCC-CSM2-MR”, “CESM2”, “CESM2-WACCM”,
“CMCC-CM2-SR5”, “CMCC-ESM2”, “CNRM-CM6-1”, “CNRM-ESM2-1”,
“CanESM5”, “EC-Earth3”, “EC-Earth3-Veg-LR”, “FGOALS-g3”, “GFDL-
CM4”, “GFDL-ESM4”, “GISS-E2-1-G”, “HadGEM3-GC31-LL”, “HadGEM3-
GC31-MM”, “IITM-ESM”, “INM-CM4-8”, “INM-CM5-0”, “IPSL-CM6A-LR”,
“KACE-1-0-G”, “KIOST-ESM”, “MIROC-ES2L”, “MIROC6”, “MPI-ESM1-2-
HR”, “MPI-ESM1-2-LR”, “MRI-ESM2-0”, “NESM3”, “NorESM2-LM”, “Nor-
ESM2-MM”, “TaiESM1”, “UKESM1-0-LL”) under the scenario
ssp5 (Fig. 3).

Statistical analysis synthesis, and reproducibility
We implemented a data-driven modeling approach using a fully con-
nected neural network (multi-layer perceptron, MLP) to predict nat-
ural fractional vegetation cover across the globe, divided into three
classes: tree cover, short vegetation (shrubs and grasses), and bare
ground. The model was trained on 40,520 systematically sampled
plots located in protected areas, where vegetation cover was photo-
interpreted using high-resolution satellite imagery and the Collect
Earth platform. Each plot's cover was annotated as three proportional
values summing to 1.

The model utilized 14 predictor variables representing climate,
soil, topography, fire frequency, and herbivore biomass and intake. To
account for uncertainties in climatic inputs, we trained the model on
six global climate datasets (e.g., CHELSA, CRU, ERA5), eachwith 11MLP
configurations (10 spatial folds and one full training run), totaling 66
models. Spatial structure was addressed using environmentally stra-
tified blocks during training and cross-validation. Training employed a
weighted mean squared error loss to correct for imbalances across
continents, IUCN categories, and dominant vegetation types. To
mitigate overfitting, dropout regularization (rate = 0.75) was applied,
and training hyperparameters (e.g., learning rate, epochs) were opti-
mized iteratively.

Model performance was evaluated through predicted–observed
comparisons (R² ≥ 0.8) and analyses of variable importance and
response profiles. We derived the final global map of natural vegeta-
tion cover as the mean prediction across six climate-specific models
(all folds, no dropout) under a median scenario of fire and herbivory
intensities (i.e., the most probable value of fire intensity), defined per
biome and ecoregion from observed percentiles in protected areas.
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To quantify prediction uncertainty, we produced 720 model
outputs varying climate datasets, dropout settings, and spatial folds,
and computed pixel-wise standard deviations per vegetation type.
Confidence intervals for area estimates were computed by propagat-
ing pixel-level uncertainties and applying a 95% confidence threshold
(z = 1.96, n = 600). We further evaluated sensitivity to fire and herbiv-
ory intensities by producing 150 additional maps combining five fire
and five herbivory scenarios (5th, 25th, 50th, 75th, 95th percentiles)
across six climate datasets. A map of alternative vegetation states was
generated from these scenarios using the standard deviation across
predictions, and the spatial extent of areas with high variability was
calculated. Finally, we compared the magnitude of vegetation shifts
driven by fire and herbivory to expected changes under 2050 climate
scenarios and assessed impacts on global wetlands using spatial
overlays with recent wetland distribution datasets.

All the raw data and the statistical processing can be reproduced
from the shared GitHub folder70.

All analysis were performed using Google Earth Engine and R
version 4.4.3; all maps were produced on R version 4.4.3 or on QGIS
version 3.40.

Inclusion and ethics statement
The study involved scientists from different parts of the globe (North
and South), the contribution of everyone was recognized through co-
authorship.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data and the maps are available on a dedicated Github
repository: https://github.com/Nicolas-Latte/GANVC (https://doi.
org/10.5281/zenodo.1548010170) or upon request to the corre-
sponding author, without restriction.

Code availability
The codes are available on a dedicated the Github repository:
https://github.com/Nicolas-Latte/GANVC (https://doi.org/10.5281/
zenodo.1548010170) or upon request to the corresponding author,
without restriction.
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