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Combining phenomics with transcriptomics
reveals cell-type-specific morphological and
molecular signatures of the 22q11.2 deletion
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Neuropsychiatric disorders remain difficult to treat due to complex and poorly
understood mechanisms. NeuroPainting is a high-content morphological
profiling assay based on Cell Painting and optimized for human stem
cell-derived neural cell types, including neurons, progenitors, and astrocytes.
The assay quantifies over 4000 features of cell structure and organelle orga-
nization, generating a dataset suitable for phenotypic screening in neural
models. Here, we show that, in studies of the 22q11.2 deletion—a strong genetic
risk factor for schizophrenia—we observe cell-type-specific effects, particularly
in astrocytes, including mitochondrial disruption, altered endoplasmic reti-
culum organization, and cytoskeletal changes. Transcriptomic analysis shows
reduced expression of cell adhesion genes in deletion astrocytes, consistent
with post-mortem brain data. Integration of RNA and morphology data sug-
gests a link between adhesion gene dysregulation and mitochondrial
abnormalities. These results illustrate how combining image-based profiling
with gene expression analysis can reveal cellular mechanisms associated with
genetic risk in neuropsychiatric disease.

Severe mental illnesses represent a significant global health crisis.
Individuals suffering from mental illness face debilitating symptoms,
including dramatic mood swings, persistent hallucinations, and
increased risk of substance abuse and suicidality, contributing to
severe personal and societal consequences such as unemployment,
homelessness, and incarceration'?. Current therapeutic approaches,
largely unchanged for decades, rely on a combination of psychother-
apy and pharmacotherapy. However, these treatments do not ade-
quately address the needs of all patients, with more than half of people
with schizophrenia and bipolar disorder continuing to experience
debilitating functional impairments® . This inadequacy underscores a

critical gap in our understanding of the biological mechanisms of these
conditions, hindered further by the slow pace of innovation in psy-
chiatric therapeutic development. The stalled advancement in ther-
apeutic options is partly due to the complex nature of these disorders,
which are influenced by a myriad of genetic and environmental
factors’. There is a need for robust phenotyping approaches to
increase our ability to extract meaningful biological insights associated
with these conditions.

Chromosome 22q harbors the recurrent 22qll.2 microdeletion
(22q11.2del), a well-studied copy number variant (CNV) that leads to
the 22q11.2 deletion syndrome (also known as DiGeorge Syndrome), a
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multisystem disorder characterized by a range of neuropsychiatric,
cardiac, and immune phenotypes®. Notably, 22ql1.2del is the genetic
factor most strongly associated with schizophrenia at the population
level’. The cardiac effects of this deletion have been linked to the TBX1
gene within the canonical deletion interval®. However, the neu-
ropsychiatric impacts remain largely unexplained by candidate genes
within the deleted region, suggesting the possibility of non-canonical
mechanisms underlying these phenotypes'’ ™. Additionally, like all
other chromosomes, 22q contains thousands of common SNPs that
contribute additively to human complex trait variation, including traits
associated with the 22q11.2 deletion. Given the immense clinical
heterogeneity of 22q11.2del”, robust, multimodal phenotyping is cru-
cial to uncover the molecular mechanisms driving this disorder. Such
an approach will help identify affected pathways and assess the
mutation’s impact across different cellular contexts, offering insights
into its diverse clinical manifestations, with potential implications for
schizophrenia more broadly.

Phenotypic assays such as Cell Painting'® that capture high-
throughput, unbiased cellular morphological measurements are
appealing because they do not require selecting a specific target or
even a specific phenotype in advance, both of which can be flawed if
based on incomplete mechanistic understanding. Cell Painting, and its
adaptations, have been used in various applications to understand
gene function, uncover cell-type-specific biology, and build large
reference datasets for the scientific community” >, Cell morphology
profiling offers a significant advantage for functional genomics studies
over methods like gene expression, as it is more cost-effective and
easily scalable for both bulk and single-cell level analyses of mRNA. Cell
morphology profiling also has the advantage of capturing downstream
phenotypic outcomes, whereas mRNA levels reflect the potential for
protein expression and may show only partial correlation with protein
levels?. Cell morphology profiling, therefore, allows for a more direct
assessment of functional cellular changes in response to genetic or
environmental perturbations.

Recent studies indicate that disease-associated cellular pheno-
types can be identified directly from patient samples in an unbiased
manner, rather than relying on hypothesized phenotypes. Specifically,
morphology phenotypes have been discovered for neurological and
neuropsychiatric conditions by image-based profiling of primary skin
fibroblasts. For example, mitochondrial morphology was disrupted in
a study of 41 patients with mid-stage idiopathic Parkinson’s disease
compared to controls®. Similarly, a deep learning-based analysis
identified distinct morphological phenotypes in 46 Parkinson’s
patients—32 sporadic and 14 with specific mutations—compared to
healthy controls?*. Machine learning also differentiated images of
12 spinal muscular atrophy patients from 12 healthy controls, though
technical confounders could not be ruled out. Wali et al. successfully
used morphological profiling, including DNA, mitochondria, and
acetylated o-tubulin stains, to distinguish 15 patients with hereditary
spastic paraplegia and matched controls?. While associating a cell
phenotype with a condition does not prove causation, using patient-
derived cellular phenotypes provides a strong link to therapeutic
hypotheses: reversing an unhealthy cellular phenotype through che-
mical modulation in vivo may be effective at reversing behavioral
deficits.

A strength of studying primary cells, such as skin fibroblasts, is
their ease of collection, allowing studies to reach sufficient power to
elucidate cellular phenotypes. The use of primary somatic cells also
presents a limitation. For some conditions, including psychiatric dis-
orders, it is important to consider phenotypes in the appropriate
tissues, as disease-associated genetic variation is often enriched in
tissue-specific genes”*%. Wali et al. recognized this and extended their
initial work on fibroblasts to patient-derived induced pluripotent stem
cells (iPSCs) to validate phenotypes in neural cells®. While this shift to
iPSCs allowed for the examination of more disease-relevant cell types,

it also significantly reduced the study’s scale, limiting phenotyping to
only six cell lines (three healthy/three cases) and focusing on a few
cellular characteristics like mitochondria and neurite length. Although
this approach was useful for identifying strong phenotypes from
highly pathogenic mutations, it underscores the need for methods
capable of detecting more subtle phenotypes associated with milder
genetic mutations that may present with significant clinical
heterogeneity®®*, To achieve this, it will be necessary to extend these
studies to a larger number of cell lines and capture a broader range of
cellular features. State-of-the-art microscopy approaches like Cell
Painting, which can measure thousands of morphological features'®",
offer a promising solution.

Here, we established NeuroPainting, a high-dimensional pheno-
typing assay adapted from Cell Painting, for morphological discovery
in neural cell types derived from human iPSCs. This robust and scalable
system enabled us to examine cells from many donors simultaneously,
increasing the likelihood of capturing individual variation known to
exist at the genetic and clinical levels in psychiatric conditions. We
discuss the optimization and development of the NeuroPainting assay
and analytical pipelines and quantify cellular structure and organelles
across different neuropsychiatric-relevant iPSC-based neural cell
types, including neurons and astrocytes. We further use NeuroPainting
to discover morphological phenotypes associated with the 22ql1.2
deletion. We show that NeuroPainting can quantify differences among
diverse cell types and demonstrate cell-type-specific morphological
phenotypes linked to the 22q11.2 deletion, highlighting the utility of
NeuroPainting for uncovering biology linked to genetic variants
implicated in psychiatric disease. Lastly, we integrated RNA sequen-
cing data with our NeuroPainting morphological data, pinpointing
specific cell adhesion genes that may underlie morphological changes
in astrocytes with 22q11.2 deletion and suggesting avenues for biolo-
gical characterization and potential therapeutic strategies.

Results

NeuroPainting for high-dimensional morphological phenotyp-
ing of neural cell types at scale

We developed “NeuroPainting” by adapting the six original dyes of the
Cell Painting assay to permit robust and scalable analyses of iPSC-
derived neural cell types (Figs. 1a and Sla). We generated Neuro-
Painting profiles from stem cells, neuronal progenitor cells, neurons,
and astrocytes from 44 cell lines, 22 of which harbor a 22q11.2 deletion
and 22 neuro-typical controls with matched age and ancestry, which
we previously characterized” (Fig. 1b and Table S1). For each cell type,
all lines were differentiated in concert using methods we previously
described®*** before being plated in 384-well microplates for staining
and imaging. To reduce technical variation known to impact
microscopy-based assays**, we randomized plate maps to ensure equal
distribution of genotypes and cell lines across the plates. We plated
cells at predetermined densities and matured them to a desired time
point determined by preliminary experiments (Methods) before fixing
and staining. Cells were then imaged at 20x using a Perkin Elmer
Phenix high-content imaging system. We tested several densities for
each of the cell types in our study to identify the optimal parameters.
Our goal was to identify conditions where cells are dense enough to
grow in a healthy, robust manner but not so crowded as to interfere
with their typical morphology. By examining brightfield images from
the 384-well plates, we settled on specific densities and fixation con-
ditions for each individual cell type (iPSCs—10 k cells/well, fixation 24 h
post plating; NPCs—15 k cells/well, fixation 24 h post plating; neurons—
2.5k cells/well, fixation 25 days post plating, astrocytes—3 k cells/well,
fixation 48 h post plating, Fig. S1b).

We created an image analysis and feature extraction pipeline
specific to neural cell types in the freely available software, CellProfiler.
We chose standard methods for feature extraction (as opposed to
deep learning based methods) to improve the interpretation of
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Fig. 1| Study overview. a Representative images of astrocytes stained with the Cell
Painting dyes. Scale bar = 50 pm. b Schematic of strategy for capturing Neuro-
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then plated in 384-well microplates in a randomized orientation for downstream
image acquisition. CellProfiler was used to process images and extract morpholo-
gical features. We imaged one batch for each cell type.

morphological phenotypes - well-understood features of morphology
include size, shape, intensity, and texture of various stains, which
resulted in 4104 different cellular traits®. We grouped these traits
based on each cellular compartment: Cells, Nuclei, Cytoplasm (“Cells”
refers to the entire cell, which is segmented based on the outer
membranes; “Nuclei” are segmented based on the Hoescht stain;
“Cytoplasm” is the region of the “Cell” minus the "Nuclei”) and seven
measurement categories: AreaShape, Granularity, Intensity, Radial
Distribution, Correlation, ObjectSkeleton, and Texture (Table S2).
Measurements in an additional “Other” category were excluded from
analysis, because it includes some non-biological features such as
location within the well. All analytical pipelines are freely available via
our GitHub repository (see Methods). We refer to the collection of
single-cell features measured by these pipelines as NeuroPainting
profiles. We then mean-averaged single-cell profiles to create a profile
for each well. These well-level average profiles underwent a four-step
preprocessing pipeline described in ref. 36, yielding 723 unique fea-
tures (Table S3): (1) removal of low-variance features (coefficient of
variation <1e-3), (2) robust standardization using median absolute
deviation, (3) rank-based inverse normal transformation (INT), and (4)
correlation-based feature selection to eliminate redundant features
with correlation > 0.9. All downstream analyses were performed on the
resulting data matrix, and morphology traits were Gaussianized using
the INT method to generate feature values.

Morphology-based classification of neural cell types

By eye, the NeuroPainted cell types displayed markedly different
morphology (Fig. 2a). While, using our approach, each cell type is
generated separately, the ability to classify cell types based on mor-
phological profiles would be valuable for examining cultures or tissues

with mixed cell types, and for studying the effect of mutations, or
genetic or pharmacological perturbations on cell states and differ-
entiation potential and trajectories. To explore whether we could use
NeuroPainting to classify cell types, we compared profiles across stem
cells, neuronal progenitors, neurons, and astrocytes from the neuro-
typical controls. Although the differentiation protocol for each cell
type was distinct, each imaging batch contained all donors of a given
cell type. This setup facilitated robust cross-donor comparisons—our
primary goal-but we acknowledge that it could introduce batch
effects across cell types.

We trained a Random Forest classifier to distinguish among the
four cell types based on 723 features across 788 samples. The model
achieved 97.41% overall accuracy (95% Cl: 92.63-99.46%) with a Kappa
of 0.962, indicating strong agreement between predicted and true cell
types. Neurons were classified perfectly (sensitivity=1.00), while
astrocytes (0.92), progenitors (0.96), and stem cells (0.96) had slightly
lower sensitivities. Positive predictive values (PPV) were similarly high,
though neurons had a slightly lower PPV (0.95), while the other cell
types achieved perfect values. Balanced accuracy ranged from 95.83%
to 98.08%, confirming the model’s robust performance (Fig. 2b). Thus,
the classifier confirmed that NeuroPainting accurately captures
meaningful, biologically relevant differences in cell morphology.

To identify the most important features, we ranked their con-
tributions to the model’s performance. Correlation and Radial Dis-
tribution features dominated the top 100, comprising 80% of the most
informative features for classifying cell types (Fig. 2c). Correlation
features capture the spatial relationship between pixel intensities
across different channels, providing insights into colocalization of
cellular components (CCs) such as organelles and cytoskeletal struc-
tures. This can indicate differences in organelle organization or
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Fig. 2 | Cell-type-specific morphological signatures. a Representative image of
cell types included in this study. Scale bar =50 um. b Accuracy of Random Forest
classifiers in predicting cell type from image-based features. Each point represents
the mean classification accuracy from 5-fold cross-validation using all features,
grouped by cell type. Error bars represent 95% confidence intervals obtained from
n=1000 bootstrap replicates. ¢ Barplot of feature categories for the 100 most
important features based on our Random Forest classifier. The fractions of the
features marked as important are indicated for each category. d Classification
accuracy for each feature category, calculated as in (b). e Violin plot for Nuclei R-
adialDistribution MeanFrac Mito 1of4 across cell types (p =1.37e-35, ANOVA, n=176
per cell type, two-sided). Feature values are INT scores for each morphology trait.
f Violin plot for Cytoplasm_Correlation RWC AGP ER across cell types (p =1.64e-15,
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ANOVA, n =176 per cell type, two-sided), presented like Fig. 2e. In both panels (e, f),
boxplots within violins show the median (line), first and third quartiles (box limits),
and whiskers extend to the most extreme data point within 1.5 times the inter-
quartile range (IQR) from the box. g Schematic representation of two distin-
guishing cell morphology characteristics across the four cell types. (top)
Nuclei_RadialDistribution_MeanFrac_Mito_lof4 is related to the intensity of the
mitochondrial dye near the inner-most region of the cell. A greater value for this
feature indicates more of a cell’s mitochondria are present near the nucleus.
(bottom) Cytoplasm_Correlation_RWC_AGP_ER refers to the co-presence of the
AGP and ER dyes for a given location in the cytoplasm of the cell. A greater feature
value indicates that there is stronger overlap for the AGP and ER stains when
compared to lower values.
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intracellular signaling pathways between cell types. Radial Distribution
features, on the other hand, describe how specific stains or structures
are distributed relative to the cell center, offering information on
nuclear positioning, cytoplasmic compartmentalization, and organelle
organization. This result was unexpected, as we had anticipated a more
prominent role for AreaShape features, given the observable differ-
ences in cell shape.

To further assess the contribution of each feature category, we
retrained our classifier using only one of the six feature types at a time
(AreaShape, Correlation, Granularity, Intensity, RadialDistribution, and
Texture). The Correlation category achieved the highest performance
(accuracy =95.31%, Kappa=0.93), followed by Texture (accuracy =
92.90%, Kappa=0.89) and RadialDistribution (accuracy=92.76%,
Kappa=0.89). AreaShape had the lowest accuracy (85.34%, Kappa=
0.78), while Granularity and Intensity both showed moderate perfor-
mance, with accuracies around 91% and Kappa values of 0.87. These
findings underscore the importance of Correlation and Texture fea-
tures, while AreaShape features, although less powerful individually,
still contribute meaningfully to distinguishing cell types (Fig. 2d).

From the top of our feature importance analysis, we highlighted
two key features: Nuclei_RadialDistribution MeanFrac_Mito_lof4,
which relates to mitochondrial distribution around the nucleus, and
Cytoplasm_correlation RWC_AGP_ER, which measures the relative
weighted correlation between actin/Golgi/plasma membrane and the
endoplasmic  reticulum (ER) in the cytoplasm. Nuclei_
RadialDistribution MeanFrac_Mito_lof4 specifically reflects the inten-
sity of mitochondrial staining near the innermost region of the cell,
where higher values indicate a greater concentration of mitochondria
near the nucleus. In contrast, Cytoplasm_correlation.RWC_AGP_ER
captures the co-localization of AGP and ER staining in the cytoplasm,
with greater values indicating a stronger overlap between these two
compartments. Both features exhibited statistically significant differ-
ences across cell types (Fig. 2e, f; ANOVA, p=1.37e-35, p =1.64e-15). To
illustrate these morphological differences, we have included sche-
matics that depict how mitochondrial distribution and AGP-ER corre-
lation vary across different cellular contexts, highlighting the
structural distinctions between cell types (Fig. 2g).

In conclusion, our results suggest that NeuroPainting provides a
robust and biologically meaningful approach to classifying neural cell
types. Beyond classification, it offers a nuanced understanding of how
cell morphology diverges across lineages, complementing gene
expression data. This capability opens the door to using NeuroPainting
as a powerful readout in studies exploring functional consequences of
genetic variation and treatment responses in neurobiology.

Cell-type-specific morphological signatures in neural cell types
from individuals with 22q11.2 deletion syndrome

The 22ql1.2 deletion is the most common chromosomal deletion,
associated with various diseases including congenital heart defects,
autoimmune disorders, and neuropsychiatric conditions such as
schizophrenia®. While prior research has shown that this deletion alters
gene expression and synaptic function in specific cell types®, the
underlying mechanisms driving its broad phenotypic effects remain
poorly understood. This highlights the need for high-throughput
phenotyping to uncover insights. To address this, we employed Neu-
roPainting to investigate whether morphological signatures could
differentiate control and deletion samples across neural cell types,
potentially offering avenues for drug screening.

We generated NeuroPainting profiles from neuronal progenitor
cells, neurons, and astrocytes derived from iPSCs of individuals with
22q11.2 deletion syndrome and matched controls. Correlation matri-
ces revealed distinct clustering of control and deletion samples, indi-
cating clear morphological differences among these groups across cell
types (Fig. 3a). Pairwise Pearson correlations within and between
conditions were calculated for each cell type. The mean correlation for

control-control pairs was r=0.17, 0.03, 0.007, and 0.14 for stem cells,
progenitors, neurons, and astrocytes, respectively. These values
dropped substantially in control-deletion comparisons, with r=-0.11,
-0.02, —0.003, and -0.10. A two-sample T-test confirmed that these
distributions were significantly different for stem cells, progenitors,
and astrocytes, but not for neurons (¢-statistic=96.09, p =4.68e-53;
t-statistic =14.70, p = 9.279608e-49; t-statistic = 7.28, p = 3.165349e-13;
t-statistic = 33.86, p = 3.948375e-232) (Fig. S2a). This demonstrates that
the 22q11.2 deletion induces distinct morphological changes in these
cell types.

Next, we performed a Wilcoxon Rank-Sum test to identify specific
morphological features significantly impacted by the deletion. We
identified 567, 387, 224, and 536 significant features in stem cells,
progenitors, neurons, and astrocytes, respectively, that passed multi-
ple hypothesis correction (Fig. 3b and Tables S4-S7, Wilcoxon,
FDR < 0.05). Among these, 72 significant features overlapped across
each cell type, suggesting some shared effects of the 22q11.2 deletion
in different cellular contexts (Fig. 3c). Many feature categories,
including texture, radial distribution, and correlation across several
organelles were altered by the mutation in all cell types (Fig. 3d). The
most prominent impact of the 22q11.2 deletion across cell types was
associated with the AreaShape of the Nuclei (Fig. 3d).

The effect of the 22qll.2 deletion on Cytoplasm_Correla-
tion_RWC_ER_Mito showed an interesting response: higher values for
the deletion in stem cells and progenitors, roughly equivalent values
for neurons, and lower values for astrocytes (Fig. 3e). This cell type-
specific behavior parallels previous findings from gene expression
analyses'. Cytoplasm_Correlation RWC_ER Mito describes the spatial
relationship between the ER and mitochondria in the cytoplasm, with
higher values indicating a stronger co-localization of these two com-
partments, whereas lower values suggest a more spatially distinct
organization. To further illustrate these differences, representative
images of astrocytes with the highest and lowest feature values per
well were selected for both control and 22ql1.2 deletion carriers
(Fig. 3f). These images highlight how changes in ER-mitochondria
interactions manifest in the most extreme cases, where maximum
values correspond to cells with the greatest ER-mitochondria overlap,
while minimum values reflect cells with the least spatial correlation
between these structures.

Most significant features did not overlap, pointing to cell-type-
specific effects of the 22ql11.2 deletion on cell morphology. These
mirrored earlier observations by our group when examining gene
expression patterns in these same cell lines”. While many of the sig-
nificant features were not shared across all cell types, we observed
similar effects on feature compartments, categories, and channels
from the 22q11.2 deletion (Fig. S2b). In stem cells, numerous texture-
based features for AGP, RNA, and mitochondria across all cellular
compartments were identified, indicating potential organelle dys-
function (Fig. S2c, p =2.69e-08). Neuronal progenitor cells carrying a
22q11.2 deletion showed altered cell size (Fig. S2d, p=0.000268),
consistent with neuroimaging studies linking the mutation to changes
in brain size’”*®. Neurons with the 22ql1.2 deletion exhibited asym-
metry of their cell bodies when compared to control cells (Fig. S2e,
p=0.0239). In astrocytes, the deletion resulted in altered radial dis-
tributions of the ER, AGP, and mitochondria, potentially impacting cell
shape, motility, and mitochondrial dynamics (Fig. S2f, p = 5.9e-6).

We next sought to determine whether the observed differences in
NeuroPainting signatures could be leveraged to classify samples by
genotype. For each donor and cell type, we averaged individual mor-
phological features and applied a Random Forest classifier. The clas-
sifier achieved high accuracy across most cell types, with balanced
accuracies of 0.95 for stem cells (p<0.0001), 0.96 for astrocytes
(p<0.0001), and 0.84 for progenitors (p =0.04). However, classifica-
tion accuracy was notably lower in neurons (0.56, p = 0.30), consistent
with fewer differentially significant features in this cell type. The area
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purple notation on the left of the plot indicates control versus deletion genotype.
The rainbow notation corresponds to individual cell line aliases. b Barplot for sig-
nificantly different features as measured by the Wilcoxon rank sum-test between
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bar is 50 pm.

Nature Communications | (2025)16:6332


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61547-x

under the curve (AUC) scores further supported these findings, indi-
cating strong discriminatory power in stem cells (AUC=0.95) and
astrocytes (AUC=0.96), moderate performance in progenitors
(AUC=0.84), and poor performance in neurons (AUC=0.54)
(Fig. S2g). These results suggest that NeuroPainting signatures reliably
capture genotype-specific morphological differences, with limited
retrievability in neurons.

These findings highlighted widespread disruptions in cellular
organization across cell types associated with the 22q11.2 deletion.

22q11.2 deletion regulates expression of cell-adhesion molecules
in astrocytes

We further investigated the impact of the 22q11.2 deletion in astro-
cytes, which displayed nearly 408 significantly altered morphological
features. Given increasing evidence of the critical role that glial cells,
particularly astrocytes, play in psychiatric conditions through
astrocyte-neuron interactions*****, we aimed to understand how this
deletion affects astrocyte function.

We generated genome-wide gene expression data from a subset
of our cell lines (n=12, control = 6/deletion = 6) using a pooled (cell
village) approach®*% This approach allowed us to culture and profile
cells from multiple donors within the same experimental batch,
reducing technical variability and enabling direct comparisons across
genotypes (Fig. S3a). Uniform Manifold Approximation and Projection
(UMAP) showed high homogeneity across individual cell lines, with no
cell line clustering distinctly from others using Louvain unsupervised
clustering (Fig. 4a). Nor did we observe dramatic clustering based on
genotype, indicating that the presence of the deletion did not impair
differentiation capacity broadly (Fig. 4b). The fact that overall
expression profiles were not dramatically different suggested that a
consistent change in expression of individual genes might be infor-
mative. As expected, we observed a consistent decrease in the
expression of genes located in the Chr22q11.2 interval (Fig. S3b).

We measured differentially expressed genes (DEGS) using DESeq2
by generating pseudo-bulked expression profiles for each donor across
sequencing replicates (Methods). We identified 1358 DEGS based on our
threshold (Fig. 4c, Table S8, Log2FC > 0.5, padj < 0.05). Of these, 450
were upregulated and 908 were downregulated. We next performed a
gene-set enrichment analysis (GSEA) on both upregulated and down-
regulated genes in 22q11.2 deletion astrocytes. GSEA of upregulated
genes revealed significant enrichment in just two pathways related to
epithelial and branching morphogenesis (padj.<0.01). However, we
observed downregulation of 10 pathways in our data (padj.<0.01).
Among these, several pathways related to neuronal development as well
as axon generation and guidance were identified (Fig. 4d). We observed
a strong decrease in the expression of genes in these pathways by
applying a metagene approach (Fig. 4e, Two-sample T-test, t=6.5022,
df=23.712, p=1.065e-06). Notably, many of the genes that comprise the
leading edge for our significant pathways (ALCAM, CDH2, FNI, NCAM1,
PTPRM, RELN, SEMA3E) behave as cell-adhesion molecules and have been
linked to schizophrenia and other psychiatric conditions (Fig. 4f)**.
Recent studies have shown that disruption of cell-adhesion gene
expression in astrocytes is associated with schizophrenia, and these
genes harbor a high degree of genetic risk for psychiatric outcomes®~°.
To assess whether the impact of the 22q11.2 deletion on astrocyte gene
expression was consistent with emerging evidence from findings in brain
tissue from persons with idiopathic schizophrenia, we generated a
metagene score based on the top gene loadings in astrocytes from the
synaptic-neuron astrocyte program (SNAP) identified in Ling et al.*’. We
observed a significant decrease in the expression of these genes in
22q11.2 astrocytes compared to control cells (Fig. 4g, two-sample T-test,
t=2.6843, df=33.663, p=0.01119).

These results suggested that the 22qll1.2 deletion significantly
impacts astrocyte gene expression patterns relevant to psychiatric
conditions.

Gene-morphology correlations in 22q11.2 deletion highlight
changes in mitochondrial features

We next sought to explore the relationship between these changes in
gene expression and changes in cell morphology to nominate genes
that may play a role in our 22q11.2 NeuroPainting signatures. To do
this, we generated donor-level (n=12, control = 6/deletion = 6) Gaus-
sianized profiles for both RNA-seq and our morphological profiles in
astrocytes. For our analyses, we focused on all DEGs (1358) and all
significant morphological features (536) from our earlier results.

A Canonical correlation analysis (CCA) identified strong associa-
tions between gene expression patterns and morphological features.
The first canonical variable (CV1) represents a weighted linear combi-
nation of morphological features that maximally correlates with a
corresponding gene expression variable. CV1 effectively separated
samples by condition, highlighting systematic differences in how gene
expression relates to morphology in deletion versus control samples
(Fig. 5a). Importantly, this axis does not measure a single morpholo-
gical feature but rather captures an aggregate pattern of morpholo-
gical variation that is most strongly linked to gene expression
differences. To further understand these relationships, we examined
the top 100 genes and top 100 morphological features based on their
loadings in the first canonical variable (CV1). These features and genes
contribute most strongly to the latent structure captured by CCA,
meaning they are key drivers of the observed variation in gene
expression-morphology associations rather than direct measures of
morphological change.

Then we more thoroughly examined the specific relationships
between these 100 genes and 100 features to identify relationships
between these pairs that were altered by the presence of the 22q11.2
deletion. We computed pairwise correlations for each gene-feature
pair, separately for control and deletion conditions, and identified 530
gene-feature pairs with significantly different correlations (R*) between
control and deletion samples (Fig. 5b, p-value < 0.05).

We were particularly interested in gene-feature pairs whose corre-
lations displayed dramatic changes. For example, whether there were
pairs with strong positive correlations in control samples, but in the
presence of the deletion, showed strong negative correlations. Changes
in correlation were quantified as the absolute difference in correlation
coefficients between conditions. We observed many gene-feature cor-
relations that were dramatically different between the control and
22q11.2 deletion astrocytes. Notably, features related to RadialDistribu-
tion and Granularity were disproportionately affected (chi-square test,
X2=23.669, df=5, p=0.00025). This suggested that many of our gene
expression changes were associated with these feature categories.

To investigate whether these changes in gene-morphology cor-
relations were driven by underlying alterations in gene expression, we
examined the relationship between log2 fold change (log2FC) in gene
expression and the observed differences in correlation coefficients
using Spearman’s rank correlation test. We found a significant negative
correlation (rho =-0.364, p-value < 1e-05), suggesting that genes with
larger changes in expression (either upregulated or downregulated)
tended to exhibit greater changes in their correlations with morpho-
logical features in the deletion samples (Fig. 5c).

Next, we wanted to explore the biological context of these rela-
tionships. To do so, we conducted a pre-ranked GSEA including the
genes from our significant gene-feature pairings. We identified two
pathways that were significantly enriched in our list (FDR-adjusted
p <0.05). The pathway glial cell apoptotic process (GO:0034349) was
enriched, driven by three key genes: PRKCH, AKAP12, and TNFRSF21.
Enrichment of this pathway suggests the 22qll.2 deletion may be
rendering astrocytes more vulnerable to apoptosis. Additionally, the
collagen-containing extracellular matrix pathway (G0:0062023)
included nine genes (LTBP2, LAMA4, SBSPON, NAV2, COLEC12, NTN4,
MMP23B, MEGF9, and SFRP2), many of which are implicated in cell
adhesion processes™ ™. This finding corroborates our earlier results
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Fig. 4 | Dysregulation of cell-adhesion mRNA in 22q11.2 astrocytes. a UMAP
projection of single-cell RNA-sequencing (scRNAseq) data from astrocytes colored
by donor. b UMAP projection of astrocytes scRNAseq data colored by genotype.
¢ Volcano plot for DEGS (Wald test with Benjamini-Hochberg correction, Log2FC
cutoff=0.05, padj > 0.05). d Gene set enrichment for downregulated genes
(Enrichment significance was assessed using a hypergeometric test with
Benjamini-Hochberg correction.). e. Metagene score analysis for genes in down-
regulated pathways (Two-sample T-test, p =1.065e-6, n = 48, 24 control/24 22q11.2).

Control 22q11.2

f Heatmap of logCPM expression for cell-adhesion genes. g Metagene score ana-
lysis for top 25 SNAP-a genes (NRXN1, SLCIA2, RNF219-AS1, NTM, ZNF98, GPCS,
GRM3, HPSE2, NKAIN3, SLC4A4, CTNND2, NCKAPS, SGCD, LSAMP, GPM6A, LRRC4C,
LRRTMA4, EPHBI, PREX2, RORA, TMEMI10S, ARHGAP24, SYNEI, TENM2, AC091826.2)
(Two-sample T- test-test, p = 0.0111, n =48, 24 control/24 22q11.2). In both panels
(e, g), boxplots within violins show the median (line), first and third quartiles (box
limits), and whiskers extend to the most extreme data point within 1.5 times the IQR
from the box.

that 22q11.2 deletion may alter genes associated with cell adhesion and
membrane structure.

Then we sought to identify specific morphological changes that
might be linked to the genes in our GSEA. When we examined the
features associated with the extracellular matrix pathway, we observed

a strong enrichment of mitochondrial-associated features. (Fig. 5d, chi-
square test, x2=28.655, df=6, p-value =7.069¢-05), suggesting that
changes in the expression of these nine genes elicited a specific dis-
ruption of mitochondrial function and organization relative to all other
feature types. When examining individual gene-feature pairs, we found
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Fig. 5 | Integration of RNA-seq and NeuroPainting data links cell adhesion gene
expression to mitochondrial morphology. a Scatter plot of first CCA variables
(CV1) for RNA-seq and NeuroPainting profiles, colored by condition (control =
green, 22q11.2 = purple). b Heatmap of correlation coefficients between gene
expression and morphology feature values for the top 100 genes and the top 100
features from CCA loadings. Correlation difference is measured as the absolute
value between the control and deletion coefficients. ¢ Scatter plot of absolute

Correlation difference

differences in correlation coefficients against fold change coefficients between
control and 22q11.2 deletion astrocytes for gene-feature pairs. d Barplot for mor-
phology feature categories for cell adhesion gene-feature pairs (chi-square test,
Two-sided, x2=28.655, df = 6, p-value = 7.069e-05). e The Dotplot highlights the
absolute difference in correlation coefficients between control and 22q11.2 astro-
cytes for cell adhesion gene-mitochondrial feature pairs.

pronounced differences in correlation coefficients between control
and 22q11.2 deletion samples for cell adhesion genes and mitochon-
drial features (Fig. Se).

Discussion

Abnormal cell morphology is widely recognized as a hallmark of var-
ious pathological conditions, often reflecting underlying disruptions in
fundamental cellular processes such as cytoskeletal organization,
adhesion, intracellular trafficking, and signaling pathways®. In the
context of neurological disorders, changes in neuronal and glial mor-
phology can directly impact cellular function, connectivity, and net-
work activity, contributing to deficits in neurodevelopment and
synaptic plasticity*®. For example, alterations in astrocyte morphology
can disrupt their roles in neurotransmitter regulation and metabolic
support, leading to imbalances that exacerbate neuronal
dysfunction”. Similarly, changes in neuronal shape and dendritic
complexity have been linked to cognitive dysfunction in disorders
such as schizophrenia and autism spectrum disorder, where glial and
neuronal deficits play a crucial role in disease pathology™.

Beyond neurological disorders, morphological changes are also
widely used as diagnostic markers in other pathological contexts. For
instance, alterations in red blood cell morphology are routinely
assessed in hematological disorders, where shape and size variations
serve as indicators of underlying disease states*. The generalizability
of morphology-based diagnostics across multiple disease types high-
lights the broader significance of structural changes as both bio-
markers and potential contributors to disease progression®.

This study presents the development and application of Neuro-
Painting, a high-dimensional phenotyping assay adapted from Cell
Painting, to identify morphological phenotypes in iPSC-derived neural
cell types, including stem cells, astrocytes, neural progenitors, and
neurons. Our results demonstrate the assay’s robustness and utility to
uncover insights into neuropsychiatric disorders, particularly those
linked to the 22q11.2 deletion syndrome, a major genetic risk factor for
schizophrenia. Through this work, we sought to address several key
challenges in cellular and molecular psychiatric research, including the
need for disease-relevant cellular models and the ability to capture
complex, cell-type-specific phenotypes.

NeuroPainting facilitates the implementation of scalable genetic
and chemical screening assays, helping to catalyze target and ther-
apeutic discovery in neuropsychiatric research. The classification of
over 4000 cellular traits into well-defined categories such as size,
shape, and texture across different cellular compartments allows for
high-resolution analysis of neural cell morphology. Moreover, the
extensive public dataset we created serves as a gold standard for the
research community, enabling others to compare and validate their
results, thus setting a benchmark for phenotypic screening in neu-
ropsychiatric research.

We showed that NeuroPainting can successfully distinguish cell
types based on morphological profiles. It can thus be leveraged to
explore possible alterations in cell state (for instance, following
genetic or pharmacological perturbations), and whether genetic
mutations or drug treatments impact differentiation potential. In
approaches where multiple cell types are present in the population
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that is being screened, this tool could also reveal shifts in cell type
composition based on cellular morphology. It will be important to
expand our platform to other neural cell types, which have been
implicated in brain disorders, such as microglia, oligodendrocytes,
medium spiny neurons, interneurons, and many others. Future studies
should explore whether our parameters are sufficient to capture these
cell types effectively, as we focused our analyses on more common,
easy-to-generate cellular models.

The application of NeuroPainting to iPSC-derived neural cells
from individuals with the 22q11.2 deletion syndrome revealed diverse,
cell-type-specific morphological signatures associated with this
genetic mutation. Notably, the deletion’s effects were most pro-
nounced in stem cells and astrocytes, with many morphological fea-
tures significantly altered in these cell types. The morphological
signatures identified in astrocytes, particularly those related to the
radial distribution and localization of mitochondria, ER, and AGP,
point to biological mechanisms that may underlie the neuropsychiatric
symptoms associated with the 22q11.2 deletion. The altered relation-
ship between the ER and mitochondria, as indicated by the significant
differences in Cytoplasm_Correlation RWC_ER_Mito, could represent
altered mitochondria-associated ER membranes (MAMs), which play a
crucial role in diverse cellular functions, including metabolic regula-
tion, signal transduction, autophagy, and apoptosis®’.

We provided an investigation of transcriptional dysregulation in
iPSC-derived astrocytes with a 22ql11.2 deletion, building on our past
findings of 22q11.2 deletion-associated transcriptional changes in iPSC-
derived neural progenitor cells and excitatory neurons®. Our findings
suggest that the deletion reduces the expression of many neurode-
velopmental gene sets, including many genes that play a role in cell
adhesion and migration. This result was interesting as recent studies
have implicated altered expression of astrocytic cell adhesion genes in
schizophrenia*®®’. This indicates that the Synaptic Neuron Astrocyte
Program (SNAP) is reduced in (living) human astrocytes with 22q11.2
deletion. Previously, decreased SNAP expression had only been
observed in astrocytes from post-mortem brains of individuals with
idiopathic schizophrenia®. Additionally, the integration of Neuro-
Painting and transcriptomic data identifies cell morphological phe-
notypes downstream of these changes in gene expression that are
associated with mitochondrial morphology. These results validate
many previous reports of mitochondrial dysfunction in 22ql11.2 syn-
drome and neuropsychiatric disorders more broadly®>®*. Our hope is
that the broader context of linking gene expression to these mito-
chondrial phenotypes may provide an inroad into understanding these
pathological mechanisms. In this instance, we defined a relationship
between what is emerging as a robust cellular program altered in
persons with schizophrenia, with a morphological trait that is screen-
able in vitro.

Our study has limitations that should be addressed in future
research. While we reliably identified morphological signatures in stem
cells, progenitors, and astrocytes, we encountered greater difficulty
with neurons. This could be due to the complex morphology of neu-
rons, resulting in perhaps noisier data with higher variability between
samples. Larger sample sizes may help mitigate this challenge. It is also
possible that the effects of the 22q11.2 deletion may produce more
subtle phenotypes in neurons compared to the other cell types stu-
died. Our results suggest that the 22q11.2 deletion alters the behavior
of cell adhesion molecules in astrocytes. Given that adhesion signaling
often involves interactions between neighboring cells, the use of the
cell village approach may introduce cell non-autonomous effects, such
as differential adhesion dynamics between control and deletion
astrocytes. Future studies using isolated cultures or co-culture systems
may help clarify whether these differences arise intrinsically within
deletion astrocytes or as a consequence of interactions with control
cells. Additionally, although our approach captures thousands of
morphological features, it does not include specific phenotypes

commonly analyzed in neuroscience, such as synaptic phenotypes.
Integrating NeuroPainting with synapse-specific markers could enable
more targeted analysis, combining broad-scale morphological profil-
ing with traditional, well-established measurements familiar to the
neuroscience field.

This study demonstrates the power of NeuroPainting to uncover
morphological phenotypes associated with neuropsychiatric condi-
tions. The cell-type-specificity of these phenotypes, coupled with the
integration of gene expression data, provides a deeper understanding
of the underlying mechanisms of 22ql11.2 deletion syndrome. This
study showed that the 22q11.2 deletion reduces the expression of cell
adhesion genes, which mirrors recent findings from post-mortem
brain studies of schizophrenia. Excitingly, we link these changes to
specific morphological traits, including altered mitochondrial pheno-
types. These relationships may provide insights into ways that tran-
scriptional changes in the human brain may impact cell function.
Future studies could expand the application of NeuroPainting to
additional neural cell types and could explore phenotypes associated
with other genetic mutations or chemical perturbations. Ultimately,
this approach holds promise for the development of therapeutic
strategies targeting the cellular and molecular bases of neu-
ropsychiatric disorders.

Methods

Human pluripotent stem cell (hPSC) lines cohort and derivation
We used a cohort of cell lines we previously described in ref. 39. Briefly,
we assembled a scaled discovery sample set through highly colla-
borative, multi-institutional efforts with the Stanley Center Stem Cell
Resource (Broad Institute), the Swedish Schizophrenia Cohort (Kar-
olinska Institute), the Northern Finnish Intellectual Disability Cohort
(NFID), Umea University, Massachusetts General Hospital (MGH),
McLean Hospital, and GTEx. These cell lines represented a mix of male
(n=23) and female (n=21) as indicated from self-reported surveys at
the time of sample collection.

iPSC culture

Human iPSCs were maintained on plates coated with Geltrex (Life
Technologies, A1413301) in StemFlex media (Gibco, A3349401) and
passaged with Accutase (Gibco, A11105). All cell cultures were main-
tained at 37 °C, 5% CO,.

Neuronal progenitor and excitatory neuron differentiation

On DO iPSCs were passaged and replated at a density of 1 M cells per
well in a 6-well plate. On D1 iPSCs were differentiated in Neural
Induction Medium (NIM) [SO0 mL DMEM/F12 (1:1) (Gibco, Cat # 11320-
033), 5 mL Glutamax (Gibco, Cat # 35050-061), 7.5 mL Dextrose (20%,
SIGMA, Cat # 1181302), SmL N2 supplement (Invitrogen, Cat #
17502048)] supplemented with SB431542 (10 uM, Stemcell Technolo-
gies, Cat # 72234), XAV939 (2 pM, Stemcell Technologies, Cat # 72672)
and LDN-193189 (100 nM, Stemcell Technologies, Cat # 72147) along
with doxycycline hyclate (2 pg.mL-1, Sigma, Cat # D9891). Media was
replaced on D2 and D3 with the same media used for D1, with the
addition of Zeocin (1 pg.mL). On D4, cells are co-cultured with mouse
glia to promote neuronal maturation and synaptic connectivity
(TransnetYX, Cat # C57EASTWB). From D4 onward, cells are main-
tained in Neurobasal media (500 mL Neurobasal [Gibco, 21103-049],
5 mL Glutamax [Gibco, 35050-061], 7.5 mL Dextrose [20%, SIGMA, Cat
# 1181302], 2.5 mL MEM-NEAA [Invitrogen, Cat # 11140050]) supple-
mented with B27 (50X, Gibco, 17504-044), BDNF, CTNF, GDNF
(10 ng.mL-1, R&D Systems 248-BD/CF, 257-NT/CF, and 212-GD/CF) and
doxycycline hyclate (2 uyg.mL-1, Sigma, D9891). From day 4-5, Neuro-
basal media was complemented with the antiproliferative agent flox-
uridine (10 pg.mL-1, Sigma-Aldrich, Cat # FO503-100MG). To capture
neuronal progenitor cells, we harvest D4 samples prior to adding them
to the mouse glia.
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Astrocyte differentiation

On DO iPSCs were passaged and replated at a density of 1 M cells per well
in a 6-well plate. On day 1, iPSCs were differentiated in N2 medium
[SO0 mL DMEM/F12 (1:1) (Gibco, Cat # 11320-033), SmL Glutamax
(Gibco, Cat # 35050-061), 7.5 mL Dextrose (20%, SIGMA, Cat # 1181302),
5mL N2 supplement B (StemCell Technologies, Cat # 07156)] supple-
mented with SB431542 (10 uM, Stemcell Technologies, Cat # 72234),
XAV939 (2 uM, Stemcell Technologies, Cat # 72672) and LDN-193189
(100 nM, Stemcell Technologies, Cat # 72147) along with doxycycline
hyclate (2 pg.mL-1, Sigma, Cat # D9891). Media was replaced on D2 with
the same media used for D1, with the addition of Zeocin (1ug/mL).
Starting on day 3, human induced neural progenitor-like cells were
harvested with Accutase (Innovative Cell Technology, Inc., Cat # AT104-
500) and re-plated at 15,000 cells cm™ in Astrocyte Medium (ScienCell,
Cat # 1801) with Y27632 (5mM) on geltrex-coated plates. Cells were
maintained for 30 days in Astrocyte Medium (ScienCell, Cat # 1801).

Cell-type-specific assay conditions: cell seeding, fixation, and
staining

For each batch of imaging, cells were detached from 6-well NUNC plates
using Accutase (StemcellTech; cat#07920) for generating single-cell
suspensions. Following detachment, cells were centrifuged at 300xg for
5:00 and re-suspended in the appropriate medium for each individual
cell type. After each cell line was counted to determine cell solution
concentration and viability, the desired cell solution volume was ali-
quoted into a 96-deep well low attachment plate following a specific
plate map to ensure that wells from any given cell line were not pre-
dominantly on the edge wells or too close together. To disperse a high
number of cell lines across a 384-well plate in a semi-random fashion, we
optimized the use of an Agilent Bravo liquid handling device. Here, using
an 8-channel head, cell solutions were transferred from the 96-well low
attachment plate and distributed into a geltrex-coated Perkin Elmer Cell
Carrier 384-well plate at the determined density per well. Each cell line
was plated into 8 distinct wells on the final screening plate in four-well
quadrants. The ideal seeding densities were determined through pilot
experiments and evaluated based on visual assessment of the cells. The
final densities and staining conditions used in this study are as follows
iPSCs—10 k cells/well, fixation 24 h post plating; NPCs—15k cells/well,
fixation 24 h post plating; astrocytes—3 k cells/well, fixation 48 h post
plating; neurons—2.5 k cells/well, fixation 25 days post plating.

NeuroPainting and imaging

Once cells were seeded in 384-well plates, cells were treated for 30 min
with 0.5 uM MitoTracker Deep Red FM—Special Packaging (Thermo
Fisher cat#: M22426) dye at 37 °C. Following the MitoTracker treat-
ment, cells were fixed with 16% paraformaldehyde diluted to a final
concentration of 4% (Thermo Fisher cat#: 043368.9 M) for 20 min in
the dark at RT. After three washes with 1x HBSS cells were permeabi-
lized and stained using a solution of 1x HBSS (Thermo Fisher cat#:
14175095), 0.1% Triton-X-100 (Sigma Aldrich cat#: X100-5ML), 1%
Bovine Serum Albumin, 8.25nM Alexa Fluor 568 Phalloidin (Thermo
Fisher cat#: A12380), 0.005 mg/mL Concanavalin A, Alexa Fluor 488
Conjugate (Thermo Fisher cat#: C11252), lug/mL Hoechst 33342, Tri-
hydrochloride, Trihydrate (Thermo Fisher cat#: H3570), 6uM SYTO 14
Green Fluorescent Nucleic Acid Stain (Thermo Fisher cat#: S7576), and
1.5 ug/mL Wheat Germ Agglutinin, Alexa Fluor 555 Conjugate (Thermo
Fisher cat#: W32464) for 1h at RT in the dark. Following the staining,
plates were washed 3x with 1x HBSS and sealed until imaging. Cell
Painted plates were imaged on a Perkin Elmer Phenix Automated
Microscope under a standardized protocol.

Quantification of cellular morphology traits and their quality
control

The segmentation of individual cells in the image into their cellular
compartments (whole cell, cytoplasm, and nuclei) and subsequent

quantification of morphology traits for each cellular compartment was
done using CellProfiler 4.2.4 (Stirling et al. 2021; pipelines are available
at https://github.com/broadinstitute/NeuroPainting). Subsequently,
cells missing measurements for more than 5% of traits were removed.
Morphology traits a priori known to be problematic, not measured
across all cells or non-variable across cells, were removed using the
Caret v6.0-86 package. QC-ed cells were then segregated into two
groups based on the number of neighbors: isolated cells having no
neighbors and colony cells having one or more neighbors. Individual
morphology traits were then summarized to well-level measurement
by averaging them across all cells per well, resulting in a well-by-trait
matrix. Following this, each morphology trait was Gaussianized across
all four plates using the INT method.

Cell village creation, scRNA-sequencing, and donor assignment
IPSCs from each donor were mixed in equal proportions (1 M cells per
donor) and differentiated as a pool following the Ngn2 astrocyte
differentiation method described earlier. At D30 of the differentia-
tion, astrocyte village cells were harvested, and 60,000 cells were
prepared using 10x Chromium Single Cell 3’ Reagents v3 and
sequenced on an Illumina NovaSeq 6000 with an S2 flow cell, gen-
erating paired-end reads of 2 x100 bp. Raw sequencing data were
aligned and processed following the Drop-seq workflow. Human
reads were aligned to the GRCh38 reference genome and filtered for
high-quality mapped reads (mapping quality >10). To determine the
donor identity of each droplet, variants were filtered through mul-
tiple quality controls, ensuring only high-confidence A/T or G/C sites
were included in the VCF files. Once the single-cell libraries and VCF
reference files were filtered and quality-checked, the Dropulation
algorithm was applied. This algorithm analyzes each droplet (or cell)
independently, assigning a probability score to each variant site
based on the observed versus expected allele. Donor identity is
determined by computing the diploid likelihood at each UMI, sum-
med across all sites, to identify the most likely donor for each dro-
plet. To ensure consistency in differential expression testing
downstream, we remove any cells that are clustered separately by
individual donors.

Random forest classification for cell types

A random forest classifier was used to classify cell types based on
morphological profiles from control samples. The data was split into
70% training and 30% testing sets, and a 5-fold cross-validation was
employed to optimize hyperparameters. The number of features
considered at each split (mtry) was tuned using a grid search with
values ranging from 2 to 721. The final model was built using the best-
performing mtry, with 500 trees, a maximum of 60 terminal nodes,
and a minimum node size of 5. Model performance was evaluated on
the test set using a confusion matrix, accuracy, sensitivity, specificity,
and Kappa statistics. Receiver operating characteristic-area under
the curve (ROC-AUC) scores were computed for each cell type, and
predicted probabilities were visualized using boxplots. All analyses
were performed in R (version 4.0.2) with the randomForest, caret,
and pROC packages, and a random seed of 42 to ensure
reproducibility.

Differential feature analysis

To identify differential features between control and deletion condi-
tions across various cell types, we conducted a Wilcoxon rank-sum test
using the well-level NeuroPainting profiles. The dataset was grouped
by cell type to ensure comparisons were made within each cell type.
For each group, a pairwise Wilcoxon rank-sum test was performed to
compare control and deletion conditions for each numeric feature,
with p-values recorded. To address multiple comparisons, we applied a
false discovery rate (FDR) correction to the p-values within each cell
type using the Benjamini-Hochberg (BH) method.
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Differential gene expression

Differential gene expression analysis was conducted using DESeq2
(v1.34.0), a statistical package designed for analyzing count data from
RNA sequencing experiments. Pseudo-bulk RNA expression profiles
for each cell line were generated by summing the individual cell counts
across each sequencing reaction, and these counts were used as input
for DESeq2. The data were pre-processed to ensure quality control,
including filtering out lowly expressed genes that had fewer than 10
reads in at least 50% of the samples. Normalization of the count data
was performed using the DESeq2 default method, which estimates size
factors for each sample to account for differences in sequencing
depth. These size factors were used to normalize the read counts
across samples, ensuring comparability. The DESeq2 model was fitted
to the data using the negative binomial distribution to estimate the
dispersion for each gene. Differential expression was determined by
comparing the expression levels between the conditions of interest.
For this study, the primary comparison was between 22q11.2 deletion
and control, with the design formula in DESeq2 specified as ~condition,
where condition represents the categorical variable of interest.
DESeq2 calculates the log2FC for each gene, representing the ratio of
gene expression between the two conditions. Statistical significance
was assessed using the Wald test, and p-values were adjusted for
multiple testing using the BH procedure to control the FDR. Genes with
an adjusted p-value (padj) of less than 0.05 were considered sig-
nificantly differentially expressed. A total of 835 genes were identified
as differentially expressed between the conditions, with thresholds of
log2FC > 1] and padj < 0.05.

Metagene score calculation

To derive the metagene score, we first selected a set of genes based on
their ranking from a predefined gene list and extracted their corre-
sponding log-transformed counts per million (logCPM) values from
the gene expression matrix. The metagene score for each sample was
then calculated as the sum of the logCPM values for these selected
genes, normalized by the total logCPM sum across all expressed genes
in that sample. This approach ensures that the score reflects the rela-
tive expression of the selected genes while accounting for sample-wide
differences in expression levels. Finally, the computed metagene
scores were combined with sample metadata, including condition
labels (control or deletion), for downstream analysis and visualization.

CCA

We performed CCA to investigate the relationship between RNA
sequencing (RNA-seq) gene expression data and morphological fea-
tures (NeuroPainting). We used inverse normalized transformed data,
including the DEGs (1358) and significant features (536). To reduce
noise and multicollinearity, we first applied principal component
analysis (PCA) to both datasets, retaining the top 5 principal compo-
nents (PCs) from each. For RNA-seq data, PCA was performed on z-
score expression values, while for morphological features, PCA was
applied to z-scored feature values. The CCA was then conducted using
the cancor() function in R, with the top five PCs from each dataset
serving as input. We extracted the loadings from the first canonical
variable (CVI) to identify the top contributing genes and morpholo-
gical features for subsequent analysis, providing insight into the
shared variance between the two datasets.

Morphology and gene expression correlation analysis

We performed a fixed-effects linear regression analysis to investigate
the relationship between gene expression and morphological features
in astrocytes with and without the 22q11.2 deletion. The model inclu-
ded gene expression as the predictor and various morphological traits
as the response variable, with genotype as an interaction term to test
for differential effects between control and deletion groups.

Specifically, we fit the following model for each gene-feature pair:
Morphology ~ Expression*Group

The interaction term was used to assess whether the correlation
between gene expression and morphology varied between the control
and deletion groups. p-values for the interaction term were calculated,
and significant gene-feature pairs were identified. Coefficients for
expression and the interaction term were extracted to assess the
strength and direction of the gene-morphology relationships across
groups.

Gene set enrichment analysis (GSEA)

We performed a pre-ranked GSEA using the clusterProfiler package
in R (v4.6.0). We employed the gseGO() function with the Gene
Ontology (GO) database, querying both the biological process (BP)
and CC ontologies. Gene symbols were mapped to Entrez IDs using
the bitr() function and the org.Hs.eg.db annotation package
(v3.16.0). To ensure accurate mapping, we filtered out genes with-
out valid Entrez identifiers, resulting in a final gene list for enrich-
ment analysis. The GSEA was performed using default parameters,
with the following settings: minimum gene set size of 10, maximum
gene set size of 500, and permutation type set to gene labels. Sig-
nificance thresholds were determined using the BH procedure to
control the FDR. Pathways with an adjusted p-value (FDR) < 0.05
were considered statistically significant. Enrichment scores (ES) and
normalized enrichment scores (NES) were used to rank the sig-
nificance of enriched pathways, and results were visualized using
the enrichplot package.

Identification of significant gene-feature pairs

We calculated Pearson correlation coefficients for gene expression and
morphology for both control and deletion groups, deriving the abso-
lute difference between these two correlation coefficients for each
pair. Significant gene-feature pairs were defined as those with an
interaction p-value < 0.01 and a correlation difference >1.0. Fisher’s Z-
test was applied to evaluate whether the correlation differences were
statistically significant.

Enrichment analysis for feature categories and cellular
compartments

To assess whether certain morphological features or cellular com-
partments were overrepresented among the significant gene-feature
pairs, we conducted a Chi-squared independence test. We grouped
features by their respective categories (e.g., granularity, texture, and
correlation) and compartments (e.g., nuclei, cytoplasm, and cells) and
compared their distribution in our set of gene-pairs to their overall
distribution amongst the full feature set.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw image data has been deposited in the Cell Painting Gallery on
the Registry of Open Data on AWS as dataset cpg0038-tegtmeyer-
neuropainting at no cost and no need for registration. Sequencing
data, including gene expression matrices, have been deposited in the
Broad Institute Single-cell Portal under accession SCP2865. Source
data are provided with this paper.

Code availability
Source code to reproduce and build upon the presented results is
available at https://github.com/broadinstitute/NeuroPainting.
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