
Article https://doi.org/10.1038/s41467-025-61555-x

The mutational landscape of SARS-CoV-2
provides new insight into viral evolution and
fitness

Jori Symons 1, Claire Chung2, Bert M. Verheijen2,5, Sarah J. Shemtov2,
Dorien de Jong1, Gimano Amatngalim 3, Monique Nijhuis 1,
Marc Vermulst 2 & Jean-Francois Gout 4

Although vaccines and treatments have strengthenedour ability to combat the
COVID-19 pandemic, new variants of SARS-CoV-2 continue to emerge in
human populations. Because the evolution of SARS-CoV-2 is driven by muta-
tion, a better understanding of its mutation rate and spectrum could improve
our ability to forecast the trajectory of the pandemic. Here, we use circular
RNA consensus sequencing (CirSeq) to determine the mutation rate of six
SARS-CoV-2 variants and perform a short-term evolution experiment to
determine the impact of thesemutations on viral fitness. Our analyses indicate
that the SARS-CoV-2 genome mutates at a rate of ∼1.5 × 10−6/base per viral
passage and that the spectrum is dominated by C→U transitions. Moreover,
we find that the mutation rate is significantly reduced in regions that form
base-pairing interactions and that mutations that affect these secondary
structures are especially harmful to viral fitness. In this work, we show that the
biasedmutation spectrum of SARS-CoV-2 is likely a result of frequent cytidine
deamination and that the secondary structure of the virus plays an important
role in this process, providing new insight into the parameters that guide viral
evolution and highlighting fundamental weaknesses of the virus that may be
exploited for therapeutic purposes.

COVID-19 is a highly contagious respiratory disease that is caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Although multiple vaccines and treatments have been developed to
combat the COVID-19 pandemic, new variants of SARS-CoV-2 continue
to emerge in human populations. These variants renew the threat of
COVID-19 to public health, extend the socio-economic impact of the
pandemic, and highlight a growing need to understand the evolution
of SARS-CoV-2. Two parameters that are key to viral evolution are the
mutation rate and mutation spectrum. Together, these parameters
dictate how many variants will emerge in the future and what type of

mutations they are likely to carry. Their impact on the overall fitness of
the virus will then decide whether these mutations are selected for or
against. To understand the parameters that guide the evolution of
SARS-CoV-2, we cultured 6 viral strains and used CirSeq to determine
their mutation rate and spectrum. In addition, we used these mea-
surements to determine the impact of the 3603 most common
mutations on SARS-CoV-2 fitness. These experiments showed that in
addition to nonsense and non-synonymous mutations, synonymous
mutations have a substantial impact on viral fitness, especially if they
disrupt secondary structures present in the viral genome. Remarkably,
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these structures also display reduced mutation rates, suggesting that
the bases that are most essential to viral fitness are protected from
mutation. These observations highlight a strong evolutionary link
between the structure of the SARS-CoV-2 genome, its mutation rate,
and viral fitness, and suggest that this relationshipmay be exploited to
combat both existing and future variants of SARS-CoV-2.

Results
Overall strategy
Themutation rates and spectra of RNA viruses (including SARS-CoV-2)
are notoriously difficult to measure. For example, even though more
than 8million SARS-CoV-2 genomes have beendocumented across the
globe (GISAID, https://gisaid.org/), this dataset only contains muta-
tions that were successful enough to become major variants in
patients. Accordingly, most studies of within-host genetic diversity are
limited to variants with an allele frequency that exceeds 0.5%, while
mutations that are detrimental to the virus aremissed1. In contrast, the
negative correlation betweenmutation rate andgenome sizeobserved
in viruses suggests that the spontaneous mutation rate of the >30 kb
SARS-CoV-2 genome is <1 × 10−5 per base2, which is significantly lower
than the detection threshold of the sequencing methods used on
patients3. As a result, RNA-sequencing methods with improved sensi-
tivity are required to determine themutation rate of SARS-CoV-2.With
these considerations in mind, we used an ultra-sensitive and highly
accurate rolling-circle RNA consensus sequencing method termed
CirSeq4 to determine themutation rate and spectrum of 6 SARS-CoV-2
variants. This method was previously used to determine the muta-
tional landscape of other RNA viruses, including the polio virus5, the
Ebola virus6, the Dengue virus7, and the Zika virus8. The improved
accuracy of CirSeq relies on the circularization of short RNA fragments
to synthesize long cDNA molecules that carry tandem repeats of the
original RNA template. These tandem repeats can then be analyzed to
generate a consensus sequence, which eliminates sequencing and
reverse-transcription errors from the final sequencing results (Sup-
plementary Fig. 1). Mutation frequencies are then obtained by dividing
the number of mutations observed at a given position by the number
of molecules that covered this position.

To explore the mutational landscape of SARS-CoV-2, we cultured
the virus in VeroE6 cells, a preferred cell line for COVID-19 research
because of its susceptibility to infection, efficient viral replication, and
permissiveness tomutations9. Accordingly, VeroE6 cells can support a
higher degree of viral genetic diversity than other cell lines, which is
useful for studies that examine viral evolution during prolonged cul-
ture conditions. In total, we cultured 6major strains of the SARS-CoV-2
virus, including the USA-WA1/2020, Alpha and Delta strains (corre-
sponding to clades 19B, 20I and 21J, respectively), as well as the Beta,
Gamma and Omicron strains. Although each strain was cultured in
duplicate, the majority of our experiments were performed on the
USA-WA1/2020, Alpha, andDelta strains,whichwe cultured over seven
serial passages, while the Beta, Gamma, and Omicron strains were
profiled for a single passage (Table 1). For the strains we cultured over
seven passages, we initiated each passage at a low multiplicity of
infection (MOI = 0.1) to minimize potential complementation effects.
This strategy ensures that most cells are infected by a single virion
during the initial phase of each passage, significantly reducing the
likelihoodof co-infections. Co-infections,wheremultiple viral particles
infect the same cell, could allow defective viral genomes to be rescued
by functional ones, distorting the mutation spectrum and artificially
lowering the observed fitness cost of deleterious mutations. Thus, by
maintaining a lowMOI across passages, we consistently and repeatedly
limit the propagation of defective genomes that may have been res-
cued transiently during the expansion phase of the prior cycle. Iden-
tical approaches were previously used to limit the impact of co-
infections on fitness measurements of other viruses5. Finally, because
the VeroE6 cells were derived from the kidney of an African greenTa
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monkey, we wanted to make sure that our measurements were not
skewed by this unique biological environment. To do so, we also cul-
tured the Delta strain for 1 passage in Calu-3 cells (a human lung ade-
nocarcinomacell line) andprimary humannasal epithelial cells (HNEC)
that were grown in an air–liquid interface (ALI), which more closely
mimics human SARS-CoV-2 infections (Table 1). After each passage, we
monitored the sequence of the SARS-CoV-2 genome by CirSeq to take
a snapshot of its mutational landscape. A schematic of our cell culture
and sequencing approach is depicted in Fig. 1. Across all strains and
conditions, we sequenced over ~200 billion bases and identified more
than three million mutations. Finally, we assigned the most common
mutations a fitness value to determine if they are selected for or
against by the SARS-CoV-2 virus andmapped thesemutations onto the
viral genome and proteome to determine the biological basis for
selection.

The mutation rate and spectrum of the SARS-CoV-2 genome
After we profiled the mutational landscape of the SARS-CoV-2 strains
across the length of its genome (Fig. 2A), we used lethal and highly
detrimental mutations to estimate their mutation rate. Because these
mutations cannot be carried over between passages, they must be
produced anew each generation, so that their frequency is equal to the
mutation rate5.Weused two complementarymethods to identify these
mutations. First, we considered mutations to be lethal or highly dele-
terious if they introduce premature stop codons (PTC) in the open
reading frame of the RNA-dependent RNA polymerase (RdRP), an
essential viral protein required for replication10. This strategy provides
themost reliable way to identify lethal mutations and, by extension, to
calculate themutation rate. However, one limitationof this approach is
that it cannot capture A→C, U→C, G→C, and A→Gmutations, which

cannot produce stop codons. To ensure a comprehensive assessment
of the mutation rate across all base substitutions, we therefore
employed a second, complementary strategy.

For this strategy, we analyzed over eight million SARS-CoV-2
genomes previously aligned by UShER11,12 and Ensembl13 and identified
mutations that are absent from these databases. These genomes
represent the consensus sequences of themost common viral variants
in individual patients, meaning that mutations with severe fitness
consequences, including lethal or highly detrimental mutations, are
unlikely to be present. Consistent with this idea, we found that the
mutations identified through this method were significantly depleted
in our experimental dataset (Supplementary Fig. 2), supporting their
classification as highly detrimental or lethal. However, we noticed that
68 of these mutations were present in our own dataset at frequencies
exceeding 1 × 10⁻⁴ (>10-fold higher than the average mutation fre-
quency), strongly suggesting that they are neither lethal nor highly
deleterious. Thus,we excluded them from the list ofmutations used to
determine mutation rates.

By combining these strategies, we created a comprehensive list of
lethal and highly detrimental mutations and used it to calculate the
mutation rate across the length of the SARS-CoV-2 genome. This
analysis revealed that ~1.5 × 10⁻⁶ mutations occur per nucleotide per
viral passage (Fig. 2B), whether the virus was grown in VeroE6 cells,
Calu-3 cells, or primary HNEC grown in an ALI (Table 1). To ensure that
our “combination strategy” was an appropriate tool to determine
mutation rates, we also calculated separate mutation rates, based on
either the PTC or ‘absent mutations’ method and found that they
yielded nearly identical mutation rate estimates, strongly supporting
the idea that these approaches provide appropriate, complementary
datasets for determining themutation rate of the SARS-CoV-2 genome

Fig. 1 | Overall strategy for data collection. Nasal swabs of SARS-CoV-2 patients
were collected, and the virus was cultured in Vero-E6 cells. Positive culture
supernatant was serially diluted to an extinction endpoint, and dilutions with less
than 33% positive wells were cultured further in Vero E-6 to attain unique cultures.
Two of these cultures were propagated per variant. The TCiD50 was determined,
and the virus was passed at an MOI of 0.1 for all subsequent passages. Viral
supernatant was concentrated, and RNA was extracted from 15mL of viral culture.
After extraction, viral RNA was cleaved into 60–80bp fragments, which were

ligated to themselves to form circular RNA molecules. These circular RNA mole-
cules were then reverse transcribed to generate linear concatemers of the RNA
template. If a mutation were present in the template (yellow line), this mutation
would be present in every copy of the concatemer. In contrast, sequencing errors
(green line) or reverse transcription errors (red line) would be present in only one,
thereby allowing true mutations to be discriminated from technical artifacts. This
figure was created in BioRender. Nijhuis (2025) https://BioRender.com/mftt8y6.
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(Supplementary Fig. 3). Interestingly, we found that the Delta strain
displayed the highest mutation rate of the three strains that we mon-
itored over seven passages, potentially contributing to the increased
virulence it displayed compared to the USA and Alpha strain. For each
strainwe found that themutation rate varied greatly between different
base substitutions, ranging from ~2 × 10⁻5 for C→U mutations to
~1 × 10⁻6 for G→C mutations, with C→U substitutions being ~4 times
more common than any other base substitution (Fig. 2C and Supple-
mentary Fig. 4). The rate with which C→U substitutions arose
depended to a significant degree upon the upstream (i.e., 5′ adjacent)
and downstream (i.e., 3′ adjacent) nucleotides. For example, we found
that C→U mutations occur most commonly in a 5′-UCG-3′ context
(Fig. 3A–D), consistent with analyses based on SARS-CoV-2
phylogeny14. When taken together, these observations demonstrate
that C→U substitutions add the greatest amount of genetic variation
to the SARS-CoV-2 genome and provide the largest substrate for
evolution to act upon, a conclusion that is also supported by more
indirectobservations15. Becauseourmeasurements are independent of
positive or negative selection, though (which play a key role in pub-
lished SARS-CoV-2 genome sequences), our analyses provide an
unfiltered view of the impact of genetic context on viral mutagenesis.

It’s notable that the mutation rate of SARS-CoV-2 is ~10-fold lower
compared to the poliovirus5 and ~5-fold lower than the Dengue virus7,
two other RNA-based viruses previously examined by CirSeq. The
decreased mutation rate of the SARS-CoV-2 genome is most likely due
to the proofreading ability of its RdRp10,16, which is absent in the polio
and Dengue virus. In this context, it is important to note that G→A and
U→C mutations displayed the largest reduction in mutation rate com-
pared to the polio virus (48-fold and 28-fold, respectively, Fig. S5).When
the proofreading activity of eukaryotic RNA polymerases II is
compromised17–19, these base substitutions increase the most, suggest-
ing the existence of a universal set of rules that govern the proofreading
capabilities of RNA polymerases in eukaryotes and viruses.

Selection for nucleotide composition
It is likely that the mutation rate and spectrum of the SARS-CoV-2
genome affect the evolution of the virus in various ways. One of the
most fundamental attributes of a genome is its nucleotide composi-
tion, which depends on the balance between the mutation spectrum
and the intensity of selection for each of the four nucleotides. Using

the mutation rate for each of the 12 possible base substitutions, we
estimate the equilibrium frequencies for all four nucleotides as:
U = 0.42, A =0.29, G = 0.21, and C = 0.07 (Table 2). This analysis trans-
lates into an equilibrium GC content of 28%, which is substantially
higher than the 17% previously reported15. However, this previous
estimate is based on indirect estimations of mutation rates at 4-fold
degenerate sites across lineages sequenced in GISAID, whichmight be
impacted by selection. Regardless, both estimates are significantly
lower than the observed 38% GC content of the SARS-CoV-2 genome,
indicating that the GC content in the SARS-CoV-2 genome is actively
preserved by natural selection, particularly in the case of cytidines.
Cytidines were even preserved at 4-fold degenerate sites (Table 2),
suggesting that natural selection also preserves cytidines at sites
wheremutationswould not alter amino acid composition. This pattern
indicates a broader, possibly structural or regulatory, role for cytidines
in the SARS-CoV-2 genome. To gain more insight into the molecular
mechanisms that suppress cytidine depletion at 4-fold degenerate
sites, and examine the impact of C→U mutations on viral fitness, we
calculated fitness values for 3603C→Umutations that were scattered
across the SARS-CoV-2 genome.

Fitness landscape of SARS-CoV-2
Because fitness analyses require large amounts of data gathered
from a single strain over an extended period of time, we selected one
replicate of the SARS-CoV-2 Delta variant and tracked it over the
course of seven passages. After each passage, we monitored its
genome by Cirseq, ultimately sequencing 155 billion bases and
covering each base 1.7 million times on average. This sequencing
effort allowed us to identify 64,967 unique mutations across all
passages, with each mutation being observed 42 times on average,
for a total of 2.7 million mutation observations. Because the SARS-
CoV-2 genome is ∼30,000 bases in length, and each base can be
mutated into 3 different nucleotides, a total of ∼90 K base sub-
stitutions is theoretically possible,meaning that we identified 66% of
all possible mutations in the SARS-CoV-2 genome. We then used this
dataset to determine the consequences of C→U mutations on viral
evolution by characterizing their impact on the fitness of the SARS-
CoV-2 virus with a strategy previously employed for the polio virus5.
Due to technical considerations, we did not determine fitness values
for other base substitutions (see “Methods” section). Briefly, the
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fitness of a mutation is related to its change in frequency between
consecutive passages as described in the following equation:

f n = f n�1 ×w+μn�1 ð1Þ

With fn and fn−1 being the observed frequency of the mutation at
passages n and n − 1, w the relative fitness, and µ the rate of C→U
substitutions. (Fig. 4A and Supplementary Data 1). These fitness values
were calculated as a weighted average of the fitness values derived at
each of the seven passages, so that values with higher coverage (and
thus higher precision) contribute more to the final estimates. We
performed three tests to determine the veracity of these fitness values.
First, we separated the C→U mutations into three groups and found
that, as expected, synonymous C→U mutations were less deleterious
than non-synonymous C→U mutations (0.78 vs 0.70, P = 2.0 × 10-6,
Mann–Whitney U-test), and non-synonymous mutations were less
deleterious than non-sense mutations (0.70 vs 0.62, P = 0.006,
Mann–WhitneyU-test). In a second test,weexamined thefitness values
of mutations that were predicted to be either lethal or highly detri-
mental because they produce a PTC, or because theywere absent from
the 8 million genomes alignment. We found that these mutations

displayed significantly lower fitness values compared to all the other
mutations we detected (mean fitness: 0.38 vs 0.73, P = 3.4 × 10-4,
Mann–WhitneyU-test).Moreover,mutationswith similarfitness values
frequently clustered together, as expected of mutations that affect
similar regions of the genome or the proteome (Fig. 4B). Finally, we
compared our fitness estimates to studies that used changes in
mutation frequency throughout the SARS-CoV-2 phylogeny to infer
fitness values20,21. When we compared our values to the only other
study to provide fitness estimates for both synonymous and non-
synonymous mutations21, we found a moderate but significant corre-
lation between our data and this independent dataset (r =0.47,
P < 2 × 10−16, Fig. S6). Together, these analyses strongly support the
idea that our algorithms provide predictive information about the
impact of mutations on viral fitness.

Paired bases contribute disproportionately to SARS-CoV-2
fitness
Next, we used our fitness values to investigate why synonymous C→U
mutations are selected against in the SARS-CoV-2 genome, even if they
occur at 4-fold degenerate sites. Potentially, this phenomenon could
be explained by stronger, more frequent purifying selection against
synonymous mutations in SARS-CoV-2 compared to other viruses,
such as the polio virus5. It was recently shown that the SARS-CoV-2
genome adopts a highly specific secondary structure22 and that bases
that pair with each other to form these structures tend to display lower
nucleotide diversity23. Interestingly, we observed a similar specificity
for secondary structures in our CirSeq dataset. The enzyme used to
fragment viral RNA (RNAse III) prefers to cleaveRNAat specific double-
stranded structures, causing strong peaks and valleys in genome
coverage that reflect the secondary structure of the SARS-CoV-2 gen-
ome.We found that these coverage peaks are identical between all the
variants we tested, indicating that the secondary structure of the
genome is highly conserved across the SARS-CoV-2 phylogeny

Table 2 | The base composition of the SARS-CoV-2 genome

Location A C G U

Whole genome 0.30 0.18 0.20 0.32

4-fold degen-
erate sites

0.29 0.14 0.06 0.51

Predicted equilibrium 0.29 0.07 0.21 0.42

Depicted in row 1 is the base composition of the SARS-CoV-2 genome, while the composition at
4-folddegenerate sites is depicted in row2. Rows3 and4depict thepredictedequilibriumof the
SARS-CoV-2 genome based on our measurements of the mutation rate (see “Methods” section).

Fig. 3 | The mutation rate of the SARS-CoV-2 genome is altered by genetic
context. A–D The mutation rate of the SARS-CoV-2 genome differs depending on
the bases that directly flank the focal base. The focal base (the mutated base at the
center of a triplet) is listedunderneath the graph,while the bases that are on its 5’or
3’ side are located above and below the focal base. The type of mutation that is
analyzed is depicted above the bars. So, for example, the first 4 bars on the left-
hand side of (A) correspond to an adenine base that is at the center of the triplet
(the focal base), and is flanked on its 5’ base by adenine, and on its 3’ side by one of

four possible bases. Each bar then corresponds to the impact of these flanking
bases on the mutation of adenine (the focal base) to uracil. For example, the
mutation rate of A→C is highest when adenine is flanked by guanine on its 5’ side
and 3’ side. In contrast, the mutation rate of A→C substitutions is lowest when
adenine is flanked on its 5’ side with uracil, and adenine, cytosine, or guanine on its
3’ side. Note that the y-axes for each panel differ for increased visibility. Average of
all passages generated (n = 47), error bars represent standard deviation of
the mean.
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(Fig. S7). Based on these observations, we hypothesized that the need
to preserve this secondary structure could be a significant factor
driving purifying selection against synonymousmutations. To test this
hypothesis, we split synonymous C→U mutations into two groups:
those that form base-pair interactions (henceforth referred to as
“paired” sites) and those that do not (henceforth referred to as
“unpaired” sites). This classification is based on a study that used DMS
MapSeq to determine whether nucleotides are paired or not22.

Consistent with the idea that there is strong purifying selection
against synonymous mutations that affect secondary structures in the

SARS-CoV-2 genome, we found that the average fitness value of
synonymous C→U mutations was lower at paired sites compared to
unpaired sites (0.60 vs 0.93, P < 2 × 10−16, Mann–Whitney U-test,
Fig. 4C, D). We observed a similar pattern for nonsynonymous muta-
tions (average fitness: 0.50 vs 0.81 for paired and unpaired sites,
respectively, P < 2 × 10−16, Mann–Whitney U-test, Fig. 4E, F) and non-
sense mutations (average fitness 0.29 vs 0.71 for paired and unpaired
sites, respectively, P < 2 × 10−16, Mann–Whitney U-test, Fig. 4G, H). To
support this idea further, we re-examined our fitness values with the
help of an independent assessment of secondary structures based on
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Fig. 4 | Fitness analysis of SARS-CoV-2 mutations. A Fitness distribution of the
3603C→U mutations which we calculated fitness values. BMutations with similar
fitness values tend to cluster together. Blue bases indicate locations where C→U
mutations are positively selected for, and orange bases indicate locations where
C→U mutations are selected against. The intensity of the color indicates the
intensity of selection. Five clusters are highlighted. C, D Fitness distribution of all
synonymous C→U mutations for which we calculated fitness values, split up into
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bases.G,H Fitness distribution of all non-sense C→Umutations that we calculated
fitness values for, split up into paired or unpaired bases I. Mutation rate of all
mutations, split up into paired or unpaired bases (P =0.0006 for C-to-U,
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SHAPE scores24 and found a weak but significant positive correlation
between the shape reactivity score and our fitness estimates for
synonymous C→U mutations (r =0.28, P < 2 × 10−16, Fig. S8). Taken
together, these results suggest that mutations that disrupt base-
pairing interactions are more likely to be deleterious to SARS-CoV-2
fitness than those that don’t.

Because our fitness estimates are limited to C→U mutations, we
used the fitness estimates previously published by Bloom and Neher21

to investigate if purifying selection for synonymous mutations at
paired sites was present for all types of base-substitutions. Restricting
our analysis to base-substitutions with enough observations in both
paired and unpaired categories, we found that synonymousmutations
are significantly more deleterious at paired vs unpaired sites for U→C,
G→U, G→C, C→U, C→A, and A→Ubase substitutions (P < 0.01 for all,
Mann–Whitney U-test, Fig. S9). U→A, U→G, C→G, and A→C sub-
stitutions did not yield enough observations to calculate fitness values,
while two types of base-substitutions (G→A and A→G) showed no
significant difference. Interestingly, though, it was previously shown
that A:C and G:U base pairs (which would arise from G→A and A→G
mutations, respectively) allowwobble basepairing in RNAmolecules25.
Therefore, it is possible that these mutations do not significantly alter
the secondary structure of the SARS-CoV-2 genome, even when they
occur at paired sites, allowing them to escape purifying selection.

Paired bases display a reduced mutation rate
Our data suggests that the secondary structure of the SARS-CoV-2
genome is critical for viralfitness and that SARS-CoV-2 conserves these
structures by strong purifying selection. However, the pace of evolu-
tion is also controlled by themutation rate. Accordingly, wewanted to
test the impact of the secondary structure on themutation rate. To do
so, we compared the rate of mutation between paired and unpaired
bases and found that C→U mutations (but not other base substitu-
tions) are ~3 times more frequent at unpaired bases compared to
paired bases in all strains (P = < 0.01, Figs. 4G and S10). Other base
substitutions arenot increased atpairedbases (Fig. 4G), indicating that
the mechanism responsible for this observation is highly specific. A
similar discrepancy is seen at mutational hot spots and cold spots,
which are defined by locations where the mutation frequency either
increases or decreases 10-fold. In hot spots, only 14.2% of nucleotides
are predicted to be paired (vs 47.3% overall, P < 2 × 10−16, chi-square
test), while they make up 81.1% of bases in cold spots (P < 2 × 10−16, chi-
square test, Fig. 4H). One potential explanation for this observation is
spontaneous cytidinedeamination, asunpaired cytidines are 140 times
more prone to spontaneous deamination into uracil than paired
bases26. In support of this idea, we found that C→U mutations are
elevated at CpG sites (Fig. 4I). The electron density of guanine slightly
alters a cytosine’s electron distribution, particularly around the amino
group at the 4-position, thereby increasing the likelihood of sponta-
neous hydrolytic deamination27,28. Another possibility is that the
reduced rate of cytidine deamination at paired sites reflects the pre-
ference of APOBEC proteins for ssRNA. For example, APOBEC3A has a
strong preference for unpaired cytidines that are flanked by a 5’ uracil
and a 3’ guanosine29–31, the exact conditions that show the highest
C→U mutation rate in our dataset (Fig. 3C). Regardless of the
mechanism though, these observations suggest that the secondary
structure of the SARS-CoV-2 genome is not only preserved by strong
purifying selection, but also by local changes in the mutation rate that
spare paired bases. Since paired bases display lower C→U mutation
rates, we hypothesized that selection should result in an excess of
essential components of proteins in paired regions of the genome. In
support of this hypothesis, we found that the more detrimental a
mutation is for a protein, the greater the chance it is located in a paired
region (Fig. 4D, F, H). For example, bases in which C→U mutations
would result in a premature stop codonwith a fitness value of 0 have a
60% chance of being placed in a paired region, compared to 40% for

non-synonymous mutations and 30% for synonymous mutations.
Moreover, when we compiled a short-list of 120 amino acids that have
been proposed to undergo mutational scanning, conservation
between coronaviruses and patient information, that together, these
observations together suggest a synergistic relationship between the
secondary structure of the SARS-CoV-2 genome and its mutation rate,
which reinforces each other to promote viral fitness.

Fitness values, viral evolution, and potential weaknesses of
SARS-CoV-2
Because fitness values reflect the forces of natural selection, we won-
dered whether they could predict the evolution of the SARS-CoV-2
virus. Since the emergence of the Delta variant, we sequenced for our
fitness analysis, multiple variants have evolved that swept the globe.
Each of these strains contains defining mutations that were positively
selected for during the evolution of SARS-CoV-2 in humanpopulations
(Fig. 5A, B). Interestingly, some of these mutations were also detected
in our short-termevolution experiment.Whenwe examined thefitness
values of the mutations that define strain 23H (the most advanced
strain at the time of writing), we found that these mutations displayed
significantly higher fitness values compared to all other mutations
detected in our evolution experiment (0.97 vs 0.72, P = 5 × 10−5, Wil-
coxon rank sum test). Thus, the fitness landscape obtained from our
dataset could help predict the mutations that arise in future variants.
Accordingly, mutations with high fitness values that have not been
observed in known variants so far could be of interest to researchers
trying to predict the evolutionary trajectory of SARS-CoV-232,33.
Although mutations with high fitness values tend to be dispersed
across the SARS-CoV-2 genome (Fig. 5C), regions where they cluster
together might be of particular interest for this purpose (Fig. 5D).

Conversely, we also identified clusters of mutations with fitness
values below 0.5, suggesting that these mutations are targets for
negative selection. Our data suggests that one mechanism by which
these clusters affect viral fitness is by disrupting secondary structures
in the genome. Consistent with this idea, we identified multiple sec-
ondary structures in which mutations on either side of the structure
lead to large fitness defects, even if they are hundreds of bases apart in
the primary sequence of the genome (Fig. 5E, F). Figure S11 contains a
comprehensive 2D map of the SARS-CoV-2 genome containing all the
C→Umutations for which we established fitness values. In addition to
the secondary structure of the genome, C→U mutations may also
affect critical amino acids in protein structures. To visualize the
potential impactofmutations on the proteome,wemapped clusters of
mutations that are subject to negative selection onto the spike protein
and the viral replisome (Fig. 5G–L and see also Supplementary
Movie 1–4). Because the clustersofmutations that negatively affect the
structure of the genome or the proteome highlight immutable com-
ponents of the SARS-CoV-2 virus, they could be valuable targets for
vaccines and treatments. Frequently, viruses develop resistance to
vaccines and treatments by mutation, leading to variants that lack the
targets that treatments or vaccines were developed against; however,
because mutation of these essential components significantly lowers
viral fitness, targeting these clusters could limit the number of esca-
pees that emerge.

Discussion
Single-stranded RNA viruses are often considered to be fast-evolving
organisms, with some of the highest known mutation rates. Indeed, a
recent study estimated the mutation rate of SARS-CoV-2 to be as high
as 1 × 10−4 per nucleotide per round of infection34. Our results indicate,
though, that the mutation rate of SARS-CoV-2 is substantially lower
than that of other ssRNA viruses, allowing ~1.5 × 10−6 base-substitutions
per nucleotide per viral passage. Despite this relatively low mutation
rate, ourmeasurements are in linewith expectations based on genome
size2 and indirect estimates relying on alternative methods35.
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An important contributor to the enhanced fidelity of the SARS-
CoV-2 replisome is its proofreading domain, which reduces the error
rate of multiple base substitutions10,16, but is especially effective
against transitions. This aligns with the evolutionary role of proof-
reading domains in correcting the most frequent errors made by RNA
polymerases. RNA polymerases, including the SARS-CoV-2 RdRp, tend
to generate more transitions than transversions because transitions

better resemble Watson-Crick base pair geometries, and have lower
steric constraints. Consistent with this hypothesis, we found thatG→A
and U→C transitions are suppressed >20-fold in SARS-CoV-2 com-
pared to the polio virus, which does not have a proofreading domain.
Genetic or pharmacological disruption of nsp14, the gene encoding
the proofreading domain, could provide direct insight into this phe-
nomenon in the future.
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Despite the efforts of the proofreading domain, C→U transitions
remain the most prevalent mutation in the SARS-CoV-2 genome, sug-
gesting that these transitions may arise through a mechanism that is
outside of the purview of the proofreading domain. Interestingly,
C→U transitions are increased threefold in regions of the genome that
are not involved in base-pairing interactions. This increase is unlikely
to be caused by a change in the fidelity of the viral RdRP, as there is no
reason to think that this enzyme would be less accurate in paired vs
unpaired regions of the genome. Consistent with this hypothesis, we
found that every other base substitution displays identical mutation
rates in paired and unpaired regions (Fig. 4G). Thus, it is likely that a
substantial number of C→U mutations are generated by other muta-
tional mechanisms, including cytosine deamination. Cytosine deami-
nation converts cytosine to uracil, and can either occur spontaneously,
or in an APOBEC-mediated fashion. Importantly, both of these
mechanisms are specific to C→Umutations and occur preferentially in
unpaired regions of RNAmolecules. Additionally, we found that C→U
mutations are enriched in UCG triplets—a sequence targeted by APO-
BEC3A—suggesting that APOBEC3A may play a key role in the muta-
genesis and evolution of the SARS-CoV-2 virus. Disruption of the
endogenous APOBEC3A gene could provide direct evidence for this
mechanism in the future.

Our fitness measurements suggest that the reduced rate of
C→Umutations in paired regions of the genome is further amplified
by stronger selection against these mutations in paired vs unpaired
regions. The dual role of RNA secondary structures in facilitating
essential viral processes and protecting sensitive regions from
mutations highlights a synergistic relationship thatmay have shaped
the evolution of the SARS-CoV-2 genome. Viruses like SARS-CoV-2
may prefer to encode the most essential features of their genome in
intricate secondary structures because these structures have the
added advantage that they are protected from mutation. In support
of this idea, we found that 30% of synonymous C→U mutations are
lethal when they occur in paired regions, but only 10% when they
occur in unpaired regions (Fig. 4D). Because this trend increases for
non-synonymous (40% vs 10%, Fig. 4F) and non-sense mutations
(60% vs 10%, Fig. 4H), our results suggest that a similar form of
protection may apply to cytidines that encode critical amino acid
sequences. Together, these observations suggest that the secondary
structure of the RNA-encoded genome of SARS-CoV-2 modulates
its local mutation rate and imposes significant constraints on
its evolution.

Similar to SARS-CoV-2, synonymous mutations affect the fitness
of other RNA viruses as well36,37, either by destabilizing secondary
structures36,38,39, or potentially by altering codon usage40,41, although
the latter is still debated41. Compared to other viruses, though, the
percentage of synonymousmutations that affect SARS-CoV-2 fitness is
relatively high. However, it has been reported that the fraction of lethal
mutations among synonymous mutations increases with genome size.
For example, 3% of synonymous mutations are lethal for the 4.2 kb Qβ
genome36,42, 10% for the 7.5 kb polio virus5, 9% for the 9.5 kb TEV
genome42,43, and 13% for the 11 kb VSV genome36. Our study now sug-
gests that this fractionmay be as high as 20% for the 30 kb SARS-CoV-2
genome. Note, though, that in contrast to these other studies, our

measurements exclusively report on the percentage of synonymous
C→U mutations that are detrimental to viral fitness. There are two
main reasons why the percentage of C→U mutations that are detri-
mental for viral fitness may be higher than other base substitutions.
First, becauseC→Umutations dominate themutation spectrumof the
SARS-CoV-2 genome, it is likely that most non-essential cytidines have
been replaced by uracil over the course of viral evolution. The obser-
vation that cytidines are markedly diminished at 4-fold degenerative
sites provides strong evidence for this idea (Table 2). It is reasonable to
assume, then, that the cytidines that remain in the genome are
somehow important for viral fitness, skewing the fitness values of
C→U mutations towards 0. Second, C→U mutations could have an
outsized impact on the stability of secondary structures because C:G
base pairs are held together by three hydrogen bonds, while A:U base
pairs are held together by 2. Thus, loss of a C:G base pair could have a
greater destabilizing effect on secondary structures and viral fitness
than other base substitutions.

Our focus on the impact of C→U mutations on vital fitness is a
limitation that is the direct result of the lowmutation rate of the SARS-
CoV-2 genome. Becausemutations in the viral genome tend to be rare,
they canbe lost between passages if they are absent from the subset of
viral particles that infect the next culture, creating the appearance of
lethal or highly detrimental effects. If ignored, this sampling issue
could artificially increase the number of mutations with a fitness value
of 0. For this reason, we restricted our analysis to C→Umutations, the
most common mutation in the viral genome. In most cases, these
mutations exceed the frequency threshold at which this sampling bias
is likely to occur. Thus, future studies with greater sequencing power
could significantly expand upon the fitness values reported here by
including the contribution of other base substitutions to the fitness
landscape.

If possible, we recommend that these studies consider long-read
sequencing technology for genome analysis. Due to the short-read
sequencing technology employed here, wewereunable to resolve viral
haplotypes and account for epistatic interactions between mutations
within the same viral genome. Thus, while our fitness measurements
provide valuable insights into the impact of individual mutations on
viral fitness, they may not fully capture the effects of interactions
betweenmultiplemutations. Such epistatic interactions could amplify
ormitigate thefitness effects of individualmutations, complicating the
interpretation of their evolutionary significance. We expect, though,
that the impact of these epistatic interactions in our experiment was
limited by the relatively low mutation rate of SARS-CoV-2. Given a
mutation rate of 1.5 × 10−6 per viral passage and a genome that is
30,000 bases long, 0.3 mutations are likely to arise in each genome
over the course of seven passages, limiting the number of genomes
that acquired multiple mutations over the course of our short-term
evolution experiment.

Despite these limitations, though, our findings were robust
enough to demonstrate a clear evolutionary trade-off between gen-
ome size, secondary structure, and viral fitness. The observation that
synonymous mutations can strongly affect viral fitness also has
important implications for our understanding of the selective pres-
sures acting on the evolution of SARS-CoV-2. The ratio of the rates of

Fig. 5 | Fitness values formutations in theSARS-CoV-2genome.ADistributionof
fitness values for all defining C→U mutations in SARS-CoV-2 clade 23H compared
to all other mutations detected during our short-term evolution experiment
(P = 5 × 10−5, Wilcoxon rank sum test, two-sided alternative). BDetails of all defining
C→U mutations in SARS-CoV-2 clade 23H. C Although mutations with similar fit-
ness values tend to cluster together, clusters that are positively or negatively
selected for tend to be semi-randomly distributed across the genome. Orange
bases indicate locations where C→U mutations are selected against, and blue
indicates positive selection. The intensity of the color indicates the intensity of
selection. D–F However, some regions are strongly enriched in either positive or

negative selected cytosines. G–L We plotted the mutations that are most detri-
mental to viral fitness (ω <0.5) on the structure of the SARS-CoV-2 spike protein
(G–I) and the replisome (J–L) in various orientations. The most interesting muta-
tions are those that occur in clusters, highlighting regions of the viral proteome, or
the underlying structure of the genome, that are especially vital to fitness. Three
subunits of the spike protein are depicted in pink, blue, and green. Mutations that
are predicted to be detrimental are depicted in red (all mutations detected were
detrimental) or purple (a subset of mutations detected were detrimental). In
J–L, individual units of the replisome are depicted in various colors, including the
exonuclease, polymerase, and the viral genome itself.
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non-synonymous to synonymous substitutions (dN/dS) is one of the
most widely used tests to detect the types of selection acting on
coding sequences. This test relies on the assumption that synon-
ymous mutations are mostly neutral and elevated dN/dS ratios are
often interpreted as evidence of positive selection. Recent studies
comparing the sequences of different variants of SARS-CoV-2 have
reported dN/dS ratios in the range of ~0.5–1.0(45), which is sub-
stantially higher than the ratios typically observed in prokaryotic and
eukaryotic protein-coding genes. The elevated dN/dS ratios for
SARS-CoV-2 are usually interpreted as evidence for positive selection
acting on the sequence of viral proteins, driven by an arms race
between the virus and the host immune system. However, our results
now show that these elevated dN/dS ratios may also stem from
widespread purifying selection on synonymous mutations rather
than positive selection for rapid evolution.

Notably, similar conclusions were previously drawn for other RNA
viruses. For example, it was previously shown that synonymous
mutations in the HIV-1 genome can disrupt conserved RNA structures
that are important for replication efficiency, sometimes more so than
non-synonymous mutations44,45. Synonymous mutations were also
reported to impact the fitness of the poliovirus46, the hepatitis C
virus47, and the Zika virus48 by disrupting secondary structures
important for protein translation and interactions with the host cell.
Our results now indicate that the same is true in the case of SARS-CoV-
2. Intriguingly, multiple strategies have been proposed to suppress
viruses that rely on the secondary structure of their genome for fitness.
Thus, our results suggest that these therapies may aid treatments
targeting SARS-CoV-2 aswell. For example,methods based ongenome
editing byCRISPRCas13b or RNA translation interference (RNAi) could
be targeted against regions that are important for the secondary
structure of the genome. If these regions are essential for viral fitness,
this strategy should reduce the likelihood of facing mutations that
escape treatment49,50. Alternatively, it may be possible to exploit the
importance of secondary structures for viral fitness with treatments
that are aimed at the viral proteome. It is tempting to target amino
acids that code for essential components of proteins, because those
amino acids are unlikely to escape treatment by mutation. However,
our data now suggests that even amino acids that play a relatively
unimportant role for viral fitness could be targets for antibody-based
treatments and therapies because the bases that encode them are
essential to maintain immutable secondary structures. Because these
structures can be quite large, multiple bases with low fitness values
cluster together in defined areas of the proteome (Fig. 5C–G), which
could make them valuable targets for antibody-based approaches.

Methods
Nasal swabs used for virus generation were obtained from a study
involving health care workers, approved by the Institutional Review
Boardof theUniversityMedical CenterUtrecht (ABRNL73903.041.20).
For ALI cultures, nasal brushings were collected from individuals who
provided written informed consent for the use and storage of their
cells. This procedure was approved by TcBIO (Toetsingscommissie
Biobanks), the institutional Medical Research Ethics Committee for
biobanked materials at the University Medical Center Utrecht (proto-
col ID: 21/265).

Cell lines
Vero C1008 African green monkey kidney Cell Line, Clone E6, (Kindly
provided by Assoc. Prof. Bosch Veterinary Medicine, University
Utrecht, The Netherlands) cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) with L-Glutamine (Lonza) supplemented with
10% fetal bovine serum (FBS (FBS), 100U/mL Penecilin/Streptomycin
(Gibco), 1% Ultraglutamine (250mM in 0.85% NaCl) (Lonza) (cell line
culturemedia) in a humidified incubator at 37 °C 5%CO2. Calu E-3 cells
(kindly provided by Prof. Beekman, Hubrecht Institute, the

Netherlands)were cultured in cell line culturemedia andmaintained in
a humidified incubator at 37 °C 5% CO2.

HNEC culturing
Nasal brushing-derived HNECs (n = 1 healthy donors) were collected,
isolated, and storedwith informed consent of all participants andwere
approved by a specific ethical board for the use of biobankedmaterials
TcBIO (Toetsingscommissie Biobanks), an institutional Medical
Research Ethics Committee of the University Medical Center Utrecht
(protocol ID: 16/586). HNEC were cultured as previously described in
ref. 7. In brief, cells (passage 5) were first expanded in 6-well culture
plates coated with 50 µg/mL collagen IV (Sigma-Aldrich), using a
defined expansion medium composed of: 50% (v/v) Bronchial epithe-
lial cell medium-basal (BEpiCM-b; Sciencell), 23.5 % (v/v) Advanced
DMEM F12 (Thermo Fisher), 2% (v/v) B-27 (Thermo Fisher), 1% (v/v)
GlutaMAX (Thermo Fisher), 10mMHEPES (Thermo Fisher), 0.5μg/mL
(±)-Epinephrine hydrochloride (Sigma-Aldrich), 0.5μg/mL Hydro-
cortisone (Sigma-Aldrich), 100 nM 3,3′,5-Triiodo-L-thyronine (Sigma-
Aldrich), 1.25 mM N-Acetyl-L-cysteine (Sigma-Aldrich), 5mM Nicotina-
mide (Sigma-Aldrich), 500 nMSB 202190 (Sigma-Aldrich), 1 μMDMH-1
(Selleck Chemicals), 1μM A83-01 (Tocris), 5μM Y-27632 (ROCKi)
(Selleck Chemicals), 5μM DAPT (Fisher Scientific), 25 ng/mL recom-
binant human FGF-7, 100 ng/mL recombinant human FGF-10, 5 ng/mL
recombinant human EGF, 25 ng/mL recombinant human HGF (all
Peprotech), 20% (v/v) Rspondin 1 conditioned medium (from
Rspo1 cells Cultrex®), 1% (v/v) Penicillin-Streptomycin (ThermoFisher),
and 100μg/mL Primocin (Invivogen). After reaching confluency, HNEC
(0.2 × 106 cells) were seeded on PureCol (Advanced BioMatrix) coated
24-well transwell inserts (0.4μm pore size polyester membrane,
Corning). Cells were first cultured in submerged conditions in expan-
sion medium. Next, confluent monolayers were differentiated as ALI-
cultures in differentiationmedium, consisting of: 98.5% (v/v) Advanced
DMEM F12, 0.5μg/mL (±)-Epinephrine hydrochloride, 0.5μg/mL
Hydrocortisone, 100 nM 3,3′,5-Triiodo-L-thyronine, 1% (v/v Penicillin-
Streptomycin, 50nM A83-01, 100 nM TTNPB (Cayman), 5μM DAPT,
and 0.5 ng/mL recombinant human EGF. ALI-HNEC cultures were dif-
ferentiated for at least 18 days before use in experiments.

Viral culture
SARS-CoV-2/human/USA/WA-CDC-WA1/2020 was obtained from the
BEI resources.Other SARS-CoV-2 virus strainswerecultured fromnasal
swabs derived from patients from the University Medical Center
Utrecht, the Netherlands. SARS-CoV-2/B1.1.7/Alpha/2021, SARS-CoV-2/
B 1.617.2/Delta/2021, SARS-CoV-2/ B.1.351/Beta/2021, SARS-CoV-2/ P.1/
Gamma/2021 and SARS-CoV-2/ B.1.1.529/Omicron/2021 were obtained
by culturing in Vero E6 cells. 1.67million Vero E6 cells were cultured in
a 25 cm2

filtered tissue flask (T25) in cell line culture medium one day
prior to infection. At the day of infection Vero E6 cells were washed in
culture flask with PBS (Lonza) and 1mL infected with viral sample in
universal transport medium (UTM) (Copan) was supplemented with
4mL cell line culture media adapted to 2.5% FCS and 0.1mg/mL Nor-
micin (Invivogen) and passed through a 0.22 µm Stericup Durapore
(Millipore) for 2 h at 37 C 5%CO2. Subsequently, cellswerewashedwith
PBS, and 5mL culture media (2.5% FCS, 0.1mg/mL Normicin) was
added, and cells were incubated at 37 °C 5%CO2 until cytopathic effect
(CPE) was observed.

Viral clone generation
Virus clones obtained from the first passage were serially diluted in
Vero E6 cells in cell line culture medium by infecting 10,000 cells in a
flat-bottom 96-well cell culture plate. The virus was harvested after
5 dayswhenCPEwas observed in less than 1/3 of a serial dilution series.
This increases the likelihood of clonality. We harvested two clones
of SARS-CoV-2/human/USA/WA-CDC-WA1/2020, SARS-CoV-2/B1.1.7/
Alpha/2021 and SARS-CoV-2/B1.617.2/Delta/2021 and one clone of
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SARS-CoV-2/B.1.351/Beta/2021, SARS-CoV-2/P.1/Gamma/2021 and
SARS-CoV-2/B.1.1.529/Omicron/2021. Viral load for serial passaging
was increased by infecting a T25 tissue culture flask with 1.67 million
Vero E6 cells. The virus was harvested when CPE appeared throughout
the culture.

Viral passage
From the first passage, 50% tissue culture infectious dose (TCID50) was
determined by limiting dilution in Vero E6 cells. One day prior to
infection, 10,000 VeroE6 cells/well were seeded in a flat-bottom tissue
culture 96-well plate (Costar) in cell line culturemedia (2.5% FBS). Cells
were infected in a limiting dilution in 5-fold dilutions in quadruplicate.
Four days post-infection, CPE was scored, and TCID50 was determined.

Serial passaging of the clones of SARS-CoV-2/human/USA/WA-
CDC-WA1/2020, SARS-CoV-2/B1.1.7/Alpha/2021 and SARS-CoV-2/
B1.617.2/Delta/2021 was performed by infecting 5 million Vero E6 cells
in a T75 filtered culture flask at aMOI of 0.1 in 18mL of cell line culture
media (2.5% FBS). Cells were subsequently cultured for 5 days at 37 °C
5% CO2. TCID50 was determined as described above to allow for sub-
sequent infection with an MOI of 0.1. The remainder of the virus was
concentrated using 30 kDa centrifugal filter (Amicon) tubes, and viral
RNA of the concentrated virus was isolated using a total RNA pur-
ification kit (Norgenbiotek) according to the manufacturer's protocol.
SARS-CoV-2/human/USA/WA-CDC-WA1/2020, SARS-CoV-2/B1.1.7/
Alpha/2021, and SARS-CoV-2/B1.617.2/Delta/2021 were passed
seven times.

To compare themutation rate of SARS-CoV-2/B1.617.2/Delta/2021
between different host cells and culture conditions, clone b from
passage 3 was used to infect Calu-3 cells, and SARS-CoV-2/B1.617.2/
Delta/2021 clone b from passage 2 was used to infect HNECs. Six ALI
filters of HNECs were infected using an MOI of 0.1 for 2 h at the apical
level. The virus was washed after 2 h of infection, and the supernatant
was pooled and harvested 5 days post-infection. RNA was extracted
using a total RNA purification kit (Norgenbiotek). Clones of SARS-CoV-
2/B.1.351/Beta/2021, SARS-CoV-2/P.1/Gamma/2021, and SARS-CoV-2/
B.1.1.529/Omicron/2021wereused to infectT75 of Vero E6 at anMOI of
0.01, as anMOI of 0.1 was not obtained. This was done for one passage.
Virus and viral RNA were harvested as described above.

Library preparation and sequencing
We followed a refined protocol of CirSeq to prepare sequencing
libraries3. First, RNAwasDNase-treated for 30min at 37 °C, followedby
DNase inactivation (AM1926, Ambion). DNase-treated RNA was quan-
tified with a Qubit RNA HS (High Sensitivity) Assay Kit (Q32852, Invi-
trogen) and a Qubit 4 Fluorometer (Q33238, Invitrogen). 500ng RNA
was then fragmented using RNase III (AM2290, Ambion) for 9min at
37 °C. After a clean-up with an Oligo Clean & Concentrator kit (D4061,
ZymoResearch), RNA fragmentswere circularizedwith T4RNA ligase 1
(M0204S, New England Biolabs) for 2 h at 25 °C. Circular RNA was
purified with an Oligo Clean & Concentrator kit and used to generate
cDNA with tandem repeats by rolling-circle reverse transcription. For
cDNA synthesis, circular RNA was first primed by incubation with
random hexamers (N8080127, Thermo Fisher) for 10min at 25 °C.
Then, the reaction was shifted to 42 °C for 20min to allow for primer
extension and cDNA synthesis (18080044, Invitrogen). cDNA was
purified with an Oligo Clean & Concentrator kit, and second-strand
synthesis was performed with the NEBNext mRNA Second Strand
Synthesis Module (E6111S, New England Biolabs). After a clean-up with
an Oligo Clean & Concentrator kit, the remaining steps for library
preparation were then performed with the NEBNext Ultra RNA Library
Prep Kit for Illumina (E7530L, New England Biolabs) and NEBNext
Multiplex Oligos for Illumina (New England Biolabs) according to the
manufacturer’s guidelines. Size selection and clean-up during
sequencing library preparationwere performedwithAMPureXPBeads
(A63881, Beckman Coulter). An Agilent TapeStation (G2991AA,

Agilent) with appropriate High Sensitivity ScreenTapes and a Qubit 4
Fluorometer with HS Assay Kits were used for precise sizing and
quantification of nucleic acids during different steps of library pre-
paration. Paired-end reads (250nt) were then generated using the
Illumina NovaSeq 6000 System (SP Reagent Kit v1.5).

Initial data analysis
Rolling-circle RNA sequencing reads were processed as described in
ref. 3, using the pipeline available at https://github.com/jfgout/tr-
errors-pipeline-v1/tree/master. Briefly, reads are first trimmed using
fastp8 with default parameters except for trimming poly-G ends
(minimum size of 6) and requesting a minimum read size of 120
nucleotides after trimming. Trimmed reads are inspected to find
repeats and generate a consensus sequence from the stack of repeats.
Only positions in the consensus supported by at least three repeats,
with all repeats giving the same base call and with a cumulative quality
score of at least 100, are considered reliable and are included in the
analysis. Consensus sequences are mapped to the reference genome
with Kallisto9 followed by a local optimization of the alignment with
the seqan2 library10. For every reliable consensus sequencemapped to
the genome, we record the genotype supported by the consensus
sequence (= a call) to generate a table of all the reliable calls made at
every position in the genome.

Exclusion of subgenomic RNA
While our sequencing protocol is not strand-specific, we took sig-
nificant precautions to ensure that only full-length genomic RNA
molecules were collected for analysis. The virions collected after
shedding from infected cells are not expected to contain negative-
sense RNA strands, as these are replication intermediates that are not
typically packaged into virions. To confirm that this is the case, we
analyzed the sequencing coverage of the SARS-CoV-2 genome.
Importantly, our coverage is evenly distributed between the 5′ and 3′
ends of the genome (see Fig. 2A). If subgenomic RNAs had con-
taminated our data, we would expect a significant skew in coverage
toward the 3′ end of the genome, as ORF1ab (located at the 5′ end)
produces very few subgenomic RNAs, while the genes located near the
3′ end generate abundant subgenomic RNAs (see https://doi.org/10.
1101/2020.03.05.976167). The absenceof suchabias strongly indicates
that our sequencing data primarily represent full-length genomic RNA
molecules.

As a second test, we examined the mutation spectrum for evi-
dence of contamination by negative-sense RNA strands. If both posi-
tive- and negative-sense RNA molecules were present in our dataset,
we would expect to observe a symmetrical elevation of com-
plementary mutations. For example, the elevated C→U mutation fre-
quencyon the positive-sense strand shouldbemirrored by an elevated
G→A mutation rate on the negative strand, as cytosine-to-uracil (C→
U) mutations in the positive strand would correspond to guanine-to-
adenine (G→A)mutations on the complementary strand. However, we
did not observe this symmetry in our mutation spectrum, further
confirming that our data originate exclusively frompositive-sense RNA
molecules. Thus, all mutation data is presented in the context of the
sense strand.

Mutation rate calculations
Wedownloaded the list of variants published fromUShER (8) based on
the alignment of about eight million SARS-CoV-2 genomes on
November 15th, 2024. Mutations that were never observed among the
eight million genome alignment were considered lethal and retained
for the calculation of the mutation rate. To prevent a small subset of
non-lethal mutations missed by the alignment from biasing the result,
we also excludedmutations that occurred at a frequency of more than
0.01% and therefore restricted our analysis to genomic positions
covered by at least 1000 reliable consensus sequences. Mutation rates
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were then calculated, using the genomic sites that passed these cri-
teria, for each of the twelve possible base-substitutions by dividing the
number of calls supporting the base-substitution considered by the
total number of calls at the genomic position with the nucleotide
considered.

Calculation of equilibrium for base frequencies
Equilibrium frequencies were calculated by simulating the genome
evolution for 1,000,000 generations using the mutation rate of each
possible base substitution. Equilibrium was confirmed by the lack of
changes in nucleotide composition in subsequent generations of the
simulation.

Selection of mutations for fitness value calculations
Rare mutations may be absent from the subset of viral particles used
to seed the next passage. Under this scenario, the bottleneck
between each passage would reset the frequency of these mutations
to zero, so that only newmutations generated in the current passage
could be detected, mimicking the pattern expected for lethal muta-
tions. This would result in a systematic underestimation of the fitness
values for thesemutations occurring at low frequency. Therefore, we
transfer approximately half a million viral particles between each
passage. We only included C→U mutations in our fitness analysis
that occur at a rate greater than 1 × 10−5. At this frequency, at least five
mutations should be transferred on average from one passage to
the next.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RAW sequencing reads have been deposited at the NCBI Short Read
Archive database under project ID: PRJNA1135749. A pre-compiled
table of allmutation frequencies is available for download fromGitHub
at https://github.com/jfgout/SARS-CoV-2/tree/main/data.

Code availability
All the code required to reproduce these analyses is available on
GitHub at: https://github.com/jfgout/SARS-CoV-2.
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