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Genome sequencing is critical for forecasting
outcomes following congenital cardiac
surgery
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While exome and whole genome sequencing have transformed medicine by
elucidating the genetic underpinnings of both rare and common complex
disorders, its utility to predict clinical outcomes remains understudied. Here,
weuse artificial intelligence (AI) technologies to explore thepredictive value of
whole exome sequencing in forecasting clinical outcomes following surgery
for congenital heart defects (CHD). We report results for a prospective
observational cohort study of 2,253 CHD patients from the Pediatric Cardiac
Genomics Consortium with a broad range of complex heart defects, pre- and
post-operative clinical variables and exome sequencing. Damaging genotypes
in chromatin-modifying and cilia-related genes are associatedwith an elevated
risk of adverse post-operative outcomes, including mortality, cardiac arrest
and prolonged mechanical ventilation. The impact of damaging genotypes is
further amplified in the context of specific CHD phenotypes, surgical com-
plexity and extra-cardiac anomalies. The absence of a damaging genotype in
chromatin-modifying and cilia-related genes is also informative, reducing the
risk for some adverse postoperative outcomes. Thus, genome sequencing
enriches the ability to forecast outcomes following congenital cardiac surgery.

Congenital heart defects (CHD) represent a complex class of often life-
threatening disorders that affect >40,000 newborns in the U.S.
annually. The prevalence of CHD is ~1 per 100 live births, with an
incidence that varies according to the specific CHD lesion1–3. The
genetic architecture of CHD has been the focus of several large-scale
sequencing efforts4–9, demonstrating that the genetic landscape of
syndromic and sporadic CHDdiffer,with sporadic forms characterized
by considerable locus and allelic heterogeneity7. More recently, work
by the National Heart, Lung and Blood Institute (NHLBI)-funded

Pediatric Cardiac Genomics Consortium (PCGC) has shown that
dominantly and recessively inherited forms of CHD have distinct
genetic and phenotypic landscapes, whereby dominant forms of CHD
are significantly enriched for damaging variants in chromatin-
modifying genes, while recessive forms are enriched for damaging
variants in cilia-related biallelic genotypes and heterotaxy
phenotypes4,5,8,9.

Recent work has also demonstrated the value of genetic testing
for outcomes prediction for specific types of CHD and within specific
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clinical contexts10–14. Broader investigations, however, have faced dif-
ficulties in assaying genetic contributions across multiple CHD phe-
notypes and clinical contexts, in part due to thewidely varying severity
of CHD lesions and the complex medical and surgical interventions
necessary for survival.

Here, we demonstrate that condensing heterogenous CHD phe-
notypes into clinically relevant phenotypic categories using anatomic
descriptors15 renders these data amenable for outcomes analyses. We
also show that the high allelic and locus heterogeneity characteristic of
CHD can be overcome using an artificial intelligence (AI) genome
interpretation tool16, followed by categorization of damaging geno-
types into molecular pathways or gene categories. This two-pronged
approach of phenotypic and genotypic classification, when combined
with probabilistic graphical models, enables clinically relevant and
highly personalized risk estimates in patients undergoing congenital
cardiac surgery.

Results
Refining the genetic architecture of CHD
For genetic and outcomes analysis, the prospective observational
cohort study population consisted of 2,253 PCGC probands (1,998
trios, 21 duos, 234 singletons) with exome sequencing, CHD pheno-
types, and surgical outcomes data. The AI-based genome analysis tool
GEM16 identified putative damaging genotypes in 238 participants
(10.6% of the cohort). A total of 131 damaging de novo/dominant and
196 damaging recessive/biallelic genetic variants were discovered
(SupplementaryData 1, 2). Therewere 17 geneswith damagingdenovo
variants in two or more patients. The most commonly recurrent de
novo variants were in known CHD-related genes such as KMT2D (11),
CHD7 (6),RAF1 (3), JAG1 (3), andTAB2 (3). Biallelicdamaging genotypes
were observed in multiple patients for several genes including
DYNC2H1 (3), DNAH5 (3), LAMA2 (3), GDF1 (2), and IFT140 (2).

We discovered that CHD phenotype categories were enriched for
damaging genetic variants in specific gene pathways/categories
(Table 1, Supplementary Data 3). For example, the LVO class was
enriched 1.6-fold (CI 1.4–1.8) for damaging de novo genotypes in
chromatin-modifying genes, with this signal driven primarily by
patients with hypoplastic left heart syndrome (HLHS), a subset of LVO
in which these genotypes showed a 1.9-fold (CI 1.3–2.5) enrichment.
While previous studies implicated damaging chromatin-modifying
gene variants in CHD cohorts at large4,5,8,9, our analyses here help to
define the specific CHD subtypes most influenced by damaging var-
iants in chromatin-modification genes. The LVO phenotype class was
also enriched for de novo genotypes in WNT genes (2.1-fold, CI
1.9–2.4), signal transduction genes (1.5-fold, CI 1.0–2.0), and a curated

list of genes known to cause CHD (1.2-fold, CI 1.1–1.3; see Supple-
mentary Data 1, 2, and 3). Notably, damaging genotypes in these
pathways were not enriched in HLHS patients, although an association
might be detectable with a larger sample size.

The HTX phenotype class was enriched for damaging recessive/
biallelic variants in cilia-related genes (2.6-fold, CI 2.0-3.2) and showed
proportionally higher enrichment in the subset of motile cilia genes
modulated by FOXJ1 (6.9-fold, 3.3-10.4), findings consistent with pre-
vious reports5,8,17 Patients with FOXJ1 pathwaymutations accounted for
four of nine HTX patients (44%) in the cilia enrichment subset.
Damaged genes in the FOXJ1 pathway were ARMC4, CCDC151, DNAI1,
DRC1, IFT172, and SPEF2. The heterogenous OTHER (OTH) phenotype
class was enriched for damaging de novo variants in chromatin-
modifying genes (1.9-fold, CI 1.4-2.3) and the curated CHD genes (1.6-
fold, CI 1.4–1.8). While the chromatin and CHD gene lists share 35
genes, the chromatin-modifying genes did not account for all of the
association signal. For example, damaging genotypes in the curated
CHD list associatedwith theOTHcategory includedNoonan syndrome
genes SOS1 (2), RAF1 (2), and BRAF. Consistent with previous findings,
the AVC category showed an association with cilia genes but did not
reach statistical significance, likely due to a low number of patients
with AVC. The patients with CTD did not show a significant association
with these gene lists, but our data set did not include copy number
variants (CNVs), which are known to show association with CTD
defects and tetralogy of Fallot18.

Damaging genotypes impact surgical outcomes
To further explore the relationships between genetic and clinical
variables, we utilized Bayesian networks, a powerful statistical frame-
work that can model complex dependencies, including non-linear
relationships and indirect associations, in a probabilistic manner. In
Bayesian networks, variables are depicted as nodes in a graph and
conditional dependencies between variables are represented by the
edges connecting those nodes. Once a network is constructed, the
impact of any combination variables on any selected outcome can be
quantified, while controlling for the effects of other variables incor-
porated into the network. The Bayesian networks describing the con-
ditional dependencies among damaging genotypes, CHD phenotypes
and post-operative variables are shown in Fig. 1a, b.

Damaging genotypes in chromatin-modifying and cilia-related
genes (defined by a GEM16 score ≥ 1.0) increased the probability of
severe adverse clinical outcomes following congenital cardiac surgery,
including mortality, cardiac arrest, and prolonged mechanical venti-
lation (>7 days post-surgery). For example, damaging de novo chro-
matin genetic variants increased the probability (relative risk ratio) of

Table 1 | Absolute risk ratios for CHD phenotypes by gene pathway

Cardiac phenotype

Gene pathway n AVC (n = 64) CTD (n = 934) HTX (n = 219) LVO (n = 647) OTH (n = 389)

Chromatin genes (de novo) 28 - 0.52 (0.32, 0.72) - 1.61 (1.41, 1.81) 1.85 (1.44, 2.26)

Cilia genes (recessive) 35 3.02 (0.00, 6.97) 0.55 (0.41, 0.69) 2.63 (2.06, 3.20) 1.09 (0.90, 1.28) 0.67 (0.18, 1.16)

HHE genes (de novo) 9 - 0.82 (0.00, 1.74) 1.58 (0.00, 9.05) 0.84 (0.00, 4.88) 1.93 (0.00, 4.29)

Wnt genes (de novo) 18 - 0.54 (0.16, 0.92) - 2.13 (1.86, 2.40) 0.99 (0.00, 2.25)

FoxJ1 genes (recessive) 6 - 0.56 (0.00, 3.54) 6.89 (3.30, 10.36) 0.78 (0.00, 4.82) 0.81 (0.00, 3.54)

Notch1 genes (de novo) 8 - 1.49 (0.96, 2.02) - 1.36 (0.00, 2.86) -

Signal trans genes (de novo) 14 3.56 (0.00, 20.50) 0.69 (0.24, 1.14) - 1.51 (1.01, 2.01) 1.26 (0.00, 2.84)

TGF-β genes (de novo) 13 - 1.11 (0.74, 1.48) - 1.09 (0.32, 1.86) 1.37 (0.00, 3.05)

CHD genes (de novo) 51 - 0.86 (0.78, 0.94) 0.27 (0.00, 1.43) 1.22 (1.11, 1.33) 1.59 (1.38, 1.80)

Each ratio is reported as the mean and 95% confidence interval from 1,000 bootstrap replicates fitted to a t-distribution. Absolute risk ratios with 95% CIs > 1.00 are bolded. The column labeled n
indicates the number of patients with damaging genetic variants/genotypes (GEM score ≥ 1) found in that gene pathway. The total number of patients in each CHD category is listed in the column
heading. Dashes indicate no patients with damaging genotypes. Phenotype categories are atrioventricular canal defects (AVC), conotruncal defects (CTD), heterotaxy/laterality defects (HTX), left
ventricular outflow tract obstructions (LVO), and all other defects (OTH). Additional abbreviations: HHE, high heart expression genes in the developing mouse heart; CHD genes, a curated list of
genes previously reported to cause CHD (see also Supplementary Data 3).

Article https://doi.org/10.1038/s41467-025-61625-0

Nature Communications |         (2025) 16:6365 2

www.nature.com/naturecommunications


mortality 1.8-fold (CI 1.5-3.2), cardiac arrest 1.7-fold (CI 1.4-2.9) and
prolonged ventilation 1.6-fold (CI 1.4-2.3). Likewise, damaging reces-
sive/biallelic cilia genotypes increased the probability of mortality 1.4-
fold (CI 1.1–2.1), cardiac arrest 1.5-fold (CI 1.1–2.3) and prolonged ven-
tilation 1.4-fold (CI 1.1–2.0). Reciprocally, in the context of these net-
works, the absence of a damaging genotype was associated with lower
risk for these adverse post-operative outcomes, as compared to
patients with a damaging genetic variant. Thus, for a proband without
a damaging de novo chromatin genotype, the relative risk ratio for
mortality was 0.55 (CI 0.31-0.69), 0.55 (CI 0.34-0.73) for cardiac arrest
and 0.61 (CI 0.44-0.72) for prolonged ventilation. For a proband
without a damaging recessive/biallelic cilia genotype, the relative risk
ratio for mortality was 0.72 (CI 0.48-0.91), 0.63 (CI 0.43-0.88) for
cardiac arrest and 0.70 (CI 0.51–0.92) for prolonged ventilation. The
patient counts for the relative risk ratios presented here range from 1

to 179 (Supplementary Data 4). While the number of adverse events in
some of these genetic and clinical contexts was relatively low, the
Bayesian statistical framework is particularly well-suited for predic-
tions when numbers are limiting19,20, which was our motivation for
employing this framework.

Damaging genotypes impact surgical outcomes in the context
of surgical mortality risk category
We discovered that damaging chromatin and cilia genotypes were
associatedwith an increased riskofmortality for probands undergoing
the highest risk surgical procedures. Thus, probands who died after a
STAT4 or STAT5 surgical procedure were 1.8-fold (CI 1.5–4.1) more
likely to harbor a damaging chromatin variant. Similarly, those who
died after a STAT4 surgery were 1.7-fold (CI 1.2–2.5) more likely to
harbor a damaging recessive/biallelic cilia genotype. Damaging

Fig. 1 | Damagingchromatinand cilia genotypespredict adversepost-operative
outcomes in the context of CHDphenotypes and surgical complexity. Bayesian
networks display a best machine-learned relationship among genotypes, pheno-
types, and outcomes for 2253 surgical patients with CHD. Each network node
represents a present/absent variable. Damaging genotypes in chromatin-modifying
genes (CHRMdGV) or cilia-related genes (CILIAdGV) were identified from the
exomesof 2253CHDpatients byGEM. Phenotype classeswere predicted fromFyler
codes using XGBoost. Surgical outcomes for each patient were obtained from the
Society of Thoracic Surgeons national database. Relative risks for selected
adverse surgical outcomes were then estimated from each network using network-
propagated probabilities. a An exact Bayesian network depicting the relationship
among damaging de novo genetic variants in chromatin-modifying genes (green),
phenotypes: LVO, HLHS, and ECAs (blue), surgical STAT4 or STAT5 category (yel-
low), and adverse surgical outcomes (orange). b An exact Bayesian network
depicting the relationship among damaging recessive genetic variants in cilia-
related genes (green), phenotypes: laterality defects (HTX) and extra cardiac
anomalies (ECAs) (blue), surgical STAT4 category (yellow), and adverse surgical

outcomes: long ventilation time, cardiac arrest, and mortality (orange). Directed
acyclic graphs were moralized and displayed as non-directional networks.
c Relative risk ratio estimates for adverse post-operative outcomes and CHD phe-
notypes or surgical complexity, comparing probands with and without damaging
genotypes. Empirical ninety-fivepercent confidence intervals (CI 5, 95) arebasedon
1000 resampled network-based probability estimates. Because the resampling
distribution estimatesmaybe constrained by the Bayesian network structure, error
bars may not be symmetric with respect to the median point estimate (see Meth-
ods). Abbreviations: CHRMdGV - de novo damaging genotypes in chromatin-
modifying genes, LVO - left ventricular outflow tract obstruction, HLHS - hypo-
plastic left heart syndrome,CILIAdGV - biallelic damaging genotypes in cilia-related
genes, ECA - extra cardiac anomaly, HTX - heterotaxy/laterality defects, MORT -
mortality, STAT4 - surgical STAT4 category, STAT4-5 - surgical STAT 4 or STAT5
category, VENT - post-operative ventilation time >7 days. For Figs. 1c, 2, and 3, there
were 8–35patients in the conditional subsets and 1–5 patients in the target sets (see
Supplementary Data 4).
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chromatin and cilia genotypes were overrepresented in probands
experiencing cardiac arrest or prolonged mechanical ventilation fol-
lowing the most complex surgical procedures (Fig. 1c).

Damaging genotypes impact surgical outcomes in the context
of CHD phenotypes
More broadly, considering mortality in the context of CHD pheno-
types, LVO patients who died were 2.3-fold (CI 1.2–2.9) more likely to
harbor a damaging de novo chromatin genotype, while HTX patients
who died were 2.8-fold (CI 2.5-3.2) more likely to harbor a damaging
recessive/biallelic cilia genotype. Similarly, damaging chromatin or
cilia genotypes were overrepresented in probands with LVO, HLHS,
and HTX who experienced cardiac arrest or prolonged post-operative
ventilation (see Fig. 1c). Specifically, HTX patients who arrested post-
operatively were 3.3-fold (CI 1.4-5.5) more likely to harbor a damaging
recessive/biallelic cilia genotype, compared to similar patients without
a damaging cilia genotype. Collectively, these findings demonstrate
that genome sequencing data are critical for predicting severe post-
operative events in the context of specific CHD phenotypes and the
highest risk congenital heart surgeries.

Damaging genotypes impact surgical outcomes in the context
of extracardiac phenotypes
Given the recognized impact of extra cardiac anomalies (ECAs) on
outcomes following congenital cardiac surgery10,14,21, we also explored
the relationship between ECAs and adverse post-operative outcomes
in the context of genotypes andCHDphenotypes for 898 patients with
reported ECAs (Supplementary Data 5 and 6). ECAs increased the
probability (relative risk) of mortality 2.8-fold (CI 1.5–2.9) and pro-
longed ventilation 1.7-fold (CI 1.6–1.7) following congenital cardiac
surgery. Consistent with previous findings10, all damaging de novo
genetic variants and de novo variants in chromatin-modifying genes
were enriched in probands with ECAs 1.47-fold (CI 1.44-1.48) and 2.09-
fold (CI 2.08-2.11), respectively. By contrast, damaging recessive/bial-
lelic cilia genotypes were not enriched in probands with ECAs (0.8-
fold; CI 0.8–1.1).

We also examined reciprocal effects, i.e., the impact of predicted
damaging genotypes on ECAs and adverse outcomes. For example,
probands with damaging de novo chromatin genotypes identified by
GEM were 2.5-fold (CI 2.2–5.0) more likely to have an ECA and die,
compared to probands without a damaging chromatin genotype, and
2.4-fold (CI 2.0-3.4) more likely to have an ECA and prolonged venti-
lation (Fig. 2). Moreover, a damaging recessive/biallelic cilia genotype
identified by GEM increased the probability of mortality in probands
with an ECA 1.5-fold (CI 1.0–2.8), compared to similar probands with-
out a damaging cilia genotype, and increased the probability of pro-
longed ventilation in the presence of an ECA 1.5-fold (CI 1.1–2.5).
Additionally, a damaging cilia genotype increased the probability of
prolonged ventilation in HTX patients with an ECA 4.0-fold (CI 1.7-
10.6), compared to similar patients without a damaging cilia genotype
(see Fig. 2). Taken together, thesefindings demonstrate that damaging
genotypes in chromatin and cilia genes increase the likelihood of
severe post-operative events in the setting of ECAs.

The number of probands experiencing adverse outcomes in the
AVC, CTD, and OTHER categories and harboring damaging gene
pathway variants was too low to warrant generation of Bayesian net-
works for outcomes prediction in these CHD phenotypes. The reasons
for this are multi-factorial, including genetic and phenotypic hetero-
geneity, lownumber of patients in somecategories, aswell as excellent
surgical outcomes in these categories. For example, no patient with
AVC died post-operatively in this cohort. Consequently, larger cohorts
with complete genome information, including copy number and
structural variation changes, are necessary to adequately predict the
impact of genetics on outcomes for these CHD phenotypes. However,
damaging genotypes in several gene pathways/categories, such as

FOXJ1-controlled genes, high murine heart expression genes (HHE),
WNT signaling genes, NOTCH signaling genes, and genes in a curated
CHD gene list were predictive of mortality for the most complex sur-
gical categories (Fig. 3). Damaging genotypes in signal transduction
and TGF-β pathways were not predictive of mortality in this data set.
Taken together, these findings highlight the value of genomic data for
predicting adverse outcomes following congenital cardiac surgery,
especially in the context of CHD phenotypes, ECAs and surgical
complexity.

Discussion
Assessing the impact of genetics on patient outcomes in CHD is
complicated by the intrinsic severity of the cardiac lesion, the complex
medical and surgical interventions necessary for survival, and the high
degree of phenotypic, locus and allelic heterogeneity. The NHBLI-
funded PCGC is one of the world’s largest collections of genetic,
phenotypic, and clinical variables for CHD and thus provides an
excellent resource for exploring the utility of genomics data for out-
comes prediction. In this study, we implemented an explainable AI-
based analysis framework to automatically classify CHD patients into
phenotype categories and identify damaging genetic variants and
genotypes. This approach allowed us to explore how damaging gen-
otypes impact outcomes following congenital cardiac surgery, in the
context of specific CHD phenotypes, ECAs, and surgical complexity,
providing risk estimates for specific clinical contexts.

Overall, the number of adverse events in probandswith damaging
genotypes in some clinical contexts was relatively low, despite an
initial corpus of >2000 cases. It is well established that the Bayesian
statistical framework is particularly well-suited for predictions when
numbers are limiting22; indeed, this was our motivation for employing
this analytical framework. Bayesian approaches allow for the incor-
poration of prior knowledge, explicitlymodel uncertainty, and provide
established best-practice methodologies to avoid overfitting. More-
over, Bayesian methods model uncertainty using a probability dis-
tribution (the posterior distribution) for each parameter rather than a
single point estimate. This feature is particularly valuable in low-data
scenarios, allowing the model to express uncertainty through condi-
tional probability distributions even with limited data23. The con-
fidence intervals we report were generated by simultaneously
resampling the data and rebuilding the net. This is a gold standard
approach for estimating uncertaintywhen data are limiting. In general,
thewide confidence intervals reflect this data scarcity. Taken together,
these features allow Bayesian networks to make better informed pre-
dictions in low-data scenarios than do traditional frequentist
approaches22–24. It shouldbenoted that riskprojections for someof the
rare, high-risk scenarios are rough estimates. While future analyses
using larger cohorts will one day refine these estimates, our results
provide a necessary starting point for that future work.

De novo variants associated with CHD are enriched in genes
related to chromatin regulation4,5,8,9. Our results identify LVO lesions
and confirm HLHS as a principal driver of the chromatin signal in this
cohort. HLHS is one of the most severe forms of CHD and associated
with substantial morbidity and mortality. Our results show that the
subset of HLHS patients with damaging genetic variants in chromatin
genes has even greater risk (up to 2.6-fold) for severe post-operative
outcomes in the context of the most complex surgical procedures.

Our findings also reinforce previous studies showing that dama-
ging recessive/biallelic genotypes in cilia-related genes are over-
represented in the HTX/laterality phenotype category5,8. Notably,
genes identified in the FOXJ1 pathway were proportionally higher in
HTX patients where four of six gene findings were supported by
recessive mouse models25 of CHD with heterotaxy (ARMC4, CCDC151,
DNAI1,DRC1). All six of the human genes are linked to cilia dysfunction
and human primary ciliary dyskinesia. Our results here demonstrate
the additional utility of genetic findings for outcomes predictions.
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Damaging recessive/biallelic cilia genotypes increase the risk of severe
adverse post-operative outcomes in the context of surgical complex-
ity, HTX phenotype and the presence of an ECA. For example, dama-
ging recessive/biallelic cilia genotypes substantially increase (4-fold)
the risk of prolonged ventilation for HTX patients with an ECA. These
findings are consistent with an emerging body of literature implicating
cilia dysfunction, HTX, and respiratory complications following con-
genital cardiac surgery26,27.

Established and emerging literature has highlighted the impact of
genetics on mortality and other adverse outcomes following con-
genital cardiac surgery,mostly focusing on the impact of copy number

variants10–14. Damaging de novo genic variants were associated with
worse transplant-free survival and longer times to final extubation in a
previously reported subset of the PCGC cohort (N = 1268)10. Here, we
expand upon these findings in the largest study to date relating gen-
otypes to CHD surgical outcomes. Our analyses reveal that damaging
genotypes in specific gene pathways/categories impact post-operative
outcomes across CHD phenotypic categories in specific and
quantifiable ways.

Our AI approach allowed us to unravel the conditional depen-
dencies among diverse clinical and genetic variables and to discover
their impacts, either in isolation or in combination, on post-operative

Fig. 2 | Damaging chromatin and cilia genotypes predict adverse post-
operative outcomes in the context of extracardiac anomalies. Relative risk
ratios for adverse post-operative outcomes and extracardiac anomalies (ECAs),
comparing probands with and without damaging genotypes in chromatin-
modifying or cilia-related genes. Each risk estimate shows the point estimate of the
networkpropagated relative risk. Empirical ninety-five percent confidence intervals

(CI 5, 95) were generated by resampling the data matrix with replacement and re-
estimating the network propagated risk 1000 times. Because the resampling dis-
tribution estimates may be constrained by the Bayesian network structure, error
bars may not be symmetric with respect to the median point estimate. Target and
conditional counts are listed in Supplementary Data 4. The \\ symbol represents a
(CI 5, 95) that exceeds the x-axis range.

Fig. 3 | Damaging genotypes in various gene categories/pathways are pre-
dictive of mortality for the most complex surgical procedures. Relative risk
ratios for adverse post-operative outcomes and surgical complexity compare
probands with and without damaging genotypes in various gene pathways or
categories. Gene lists are described in Supplementary Data 3 and have been pre-
viously published5,8,9. There is overlap between gene lists, with some genes repre-
sented in more than one gene pathway/category (Supplementary Fig. 4). Each

estimate shows the point estimate of the network propagated relative risk.
Empirical ninety-five percent confidence intervals (CI 5, 95) were generated by
resampling the data matrix with replacement and re-estimating the network pro-
pagated risk 1,000 times. Because the resampling distribution estimates may be
constrained by the Bayesian network structure, error bars may not be symmetric
with respect to themedian point estimate. Target and conditional counts are listed
in Supplementary Data 4.
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outcomes. These findings define a critical role for genome sequencing
in outcomes prediction for congenital cardiac surgeries, especially in
the context of higher risk surgical procedures, specific CHD pheno-
types and ECAs. Importantly, the absence of damaging genotypes was
associated with lower predicted probability of adverse outcomes fol-
lowing congenital cardiac surgery as compared to those patients with
damaging genotypes. Thus, genomic information is informative whe-
ther or not a proband has an identified damaging genotype.

The ability to quantify the risk of adverse outcomes allows for
crucial, early deployment of potential therapeutic strategies to miti-
gate these risks and improve patient outcomes. For example, an
extensive body of literature links ciliary dysfunction with respiratory
complications, including prolonged ventilation, in the post-operative
period27–32 Pre-operative knowledge of a damaging cilia genotype
would allow for early institution of aggressive airway clearance ther-
apy, mucolytic therapies, inhaled β2 agonists and specific ventilation
strategies to promote mucociliary clearance31. Avoiding common
anesthetic and analgesic agents that are known to impair mucociliary
function may also be beneficial in these patients32. As turn-around
times shorten and costs decline for ultra-rapid and rapid WGS, geno-
mic data will be available in the pre-operative period to allow for risk
stratification and early interventions to mitigate adverse post-
operative outcomes.

Nevertheless, there are limitations inherent to this study. For
example, the PCGC population is not an inception cohort and thus is
likely depleted for genetic lesions that predispose to early death,
meaningourmorbidity estimates are likely lower bounds. Although the
PCGC cohort reflects a broad spectrum of CHD, recruitment of severe
CHD forms was favored, leaving us under-powered to investigate the
impact of genome sequencing for less severe CHD phenotypes. Addi-
tionally, while large clinical registries, such as the STS database, are
invaluable resources for outcomes research, these databases, despite
the inclusion of auditing features, may suffer from data quality issues,
variability in the abstraction of data, batch effects, andmissing data33–35

that might impact the interpretation of the results presented here.
Finally, we acknowledge that replication in an independent, external
cohort is important for reproducibility and scientific rigor. However,
replication is not possible or directly comparable, as no other CHD
cohorts in the world have the same depth or breadth of post-surgical
variables with genomic information. The lack of comparable cohorts
reflects the current constraints of the field and underscores the unique
nature of the PCGCdataset.While replication in an independent cohort
is not currently feasible, the relationships captured by the Bayesian
network model are biologically and clinically plausible, and impor-
tantly, align with existing literature. For example, the risk of prolonged
mechanical ventilation in patients with damaging cilia genotypes in the
context of HTX and STAT4 surgeries is well-supported by literature
linking cilia dysfunction and HTX with post-operative respiratory
complications27–30. As more data become available in external CHD
cohorts, we plan to validate our model prospectively.

Looking to the future, amore complete description of the genetic
and outcomes landscape of CHD could be enabled through clinical
genome sequencing of CHD patients at even greater scales, together
with initiatives by major consortia to collect and distribute genomic
and clinical data more broadly. As whole genome sequencing sup-
plants exome sequencing, and as new technologies, including long-
read sequencing, reference-free whole genome assembly, and
sequence analysis of somatic tissues are more broadly implemented,
the diagnostic yield for CHD is likely to improve. Given the rapid
decline in costs, the increasing availability and quick turn-a-round
time, rapid genome sequencing is now poised to become the standard
of care for all critically ill newborns36,37. Our findings make it clear that
genome sequencing of all newborns with complex CHD will empower
personalized risk-stratification for outcomes following congenital
cardiac surgery.

Methods
Study participants
All patients in the prospective observational cohort study were diag-
nosed, phenotyped, and recruited by PCGC centers and participating
regional hospitals into the PCGC Congenital Heart Disease Network
Study (CHD GENES: ClinicalTrials.gov identifier NCT01196182; https://
clinicaltrials.gov/). Written informed consent was obtained from all
participants or the participants’ guardians. Approval for this research
was obtained by the institutional review boards of participating cen-
ters, including Boston’s Children’s Hospital, Brigham and Women’s
Hospital, Great Ormond Street Hospital, Children’s Hospital of Los
Angeles, Children’s Hospital of Philadelphia, Columbia University
Medical Center, Icahn School of Medicine at Mount Sinai, Rochester
School of Medicine and Dentistry, Steven and Alexandra Cohen Chil-
dren’s Medical Center of New York, Lucile Packard Children’s Hospital
Stanford, University of California-San Francisco, University of Utah,
andYale School ofMedicine. AutomatedCHDphenotype classification
was performed on 14,765 PCGC participants. A subset of these parti-
cipantswho hadboth exome sequencing andperioperative data (2,253
total patients; 1323males, 930 females) was used for network analyses.

Clinical phenotypes
Cardiac diagnoses were obtained from review of echocardiogram,
cardiac MRI, catheterization, and operative reports at the time of
enrollment into the PCGC4,5. Detailed cardiac diagnoses for each
patient were coded using the Fyler system15. Extra-cardiac anomalies
(ECAs) were identified at the time of PCGC enrollment4,5 (see Supple-
mentary Data 5 and 6). Any structural anomaly that was not acquired
was classified as an extra cardiac anomaly (ECA).

Post-operative variables
For patients undergoing open heart surgery, surgical and hospitaliza-
tion data were obtained from PCGC participating centers using the
local data collected for submission to the Society of Thoracic Surgeons
Congenital Heart Surgery Database (STS-CHSD)38. All surgeries were
standard of care. A total of 59 surgical complication variables were
extracted for analysis. The size of the final data set was constrained to
2253patients, such that all patients hadWES and surgical variables had
no more than 10% missing data. Most patients had multiple cardiac
surgeries. A patient was scored as having an adverse event or surgical
complication (e.g., prolonged mechanical ventilation) if that event
occurred for any surgery at any age.

Surgical complexity
Surgical complexity is a well-known driver of mortality and morbidity.
In response, the STS-European Association for Cardio-Thoracic Sur-
gery (STAT) has created risk assessment categories in which proce-
dures are grouped based on similar mortality rates39. STAT categories
range from 1 to 5, with STAT1 representing the procedures with the
lowestmortality rates and STAT5 representing theprocedureswith the
highest mortality rates.

CHD classification
The PCGC has classified cardiac diagnoses for over 14,000 CHD pro-
bands using the Fyler coding system, which describes the congenitally
malformed heart using a vocabulary of >3000 possible phenotypic
descriptors15. While this system allows for highly granular descriptions
of heart defects, we hypothesized that condensing these terms into a
few clinically relevant phenotypic categories might render themmore
tractable for outcomes analyses. Thus, we sought to automate cardiac
phenotype classification across the entire PCGC cohort, assigning each
patient to a single category. To do so, we used five major cardiac
categories derived from a previous PCGC study5: left ventricular out-
flow tract obstructions (LVO), laterality and heterotaxy defects (HTX),
atrioventricular canal defects (AVC), conotruncal defects (CTD), and
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other defects (OTH), which includes simple atrial septal defects and
more complex heart defects not assigned to the other four
categories5,15. Each participant was assigned uniquely to one of the five
phenotypic categories.

Considerable heterogeneity exists among patients’ heart pheno-
types and the five phenotype categories. For example, pulmonary
stenosis and ventricular septal defects occur in all five phenotype
categories. The observed rate of each Fyler code for each phenotype
category in the 2,253 CHD analysis individuals is shown in Supple-
mentary Data 7. This heterogeneous data structure suggested that a
supervised learningmodel that leverages prior physician classification
information5 and weights each cardiac defect based on expert knowl-
edge would perform better than an unsupervised classification
approach. Therefore, we elected to use a gradient-boosted decision
tree model trained on physician-based classification of 3,000 patients
to learn the importance (i.e., information gain) for each Fyler code.
Once trained, the algorithm can probabilistically assign each proband
to one of the five phenotype categories. In the final algorithm, Fyler
codes strongly associated with a specific phenotype category in the
training data greatly increase the probability that the patient belongs
to a specific category. For example, tetralogy of Fallot is nearly always
assigned to CTD, while hypoplastic left heart is highly predictive of
LVO. In contrast, pulmonary stenosis has lower predictive value for
classification.

Model learning and classification was performed with an
ensemble-basedmethod using the julia XGBoost library (v1.5) [https://
github.com/dmlc/XGBoost.jl] for XGBoost [https://xgboost.ai]40. The
truth set for training the classifier included 3,000 CHD patients, 2,752
PCGC patients previously assigned into the five CHD categories5 and
248 randomly selected PCGC patients that were manually reviewed
and assigned to a CHD phenotype category. A gradient-boosted
probabilistic patient classifier was built with XGBoost40 using Fyler
terms from the 3,000 CHD patients (Supplementary Data 8). Model
training was performed with five-fold cross-validation (CV) and repla-
cement subsampling using a grid search method to minimize mlo-
gloss, std-mlogloss, and classification error (Supplementary Fig. 1a).
Informationgain and frequency for the top20Fyler codes in themodel
is shown in Supplementary Fig. 1b. The model provides an estimate of
the probability of inclusion to each of the five phenotype classes for
each patient, and the highest probability is used to assign each patient
to a final phenotype category (Supplementary Fig. 2). Prediction con-
fidence was assessed by comparing the most probable class assign-
ment to the second-best assignment (Supplementary Fig. 3a, b).
Accuracy was assessed by comparing the patient’s known phenotype
category, derived from expert knowledge5, to the patient’s predicted
phenotype category label (Supplementary Data 9). Single-class pre-
diction accuracy for the training data was higher for HTX (98.9%), AVC
(97.8%), and LVO (97.7%) than for CTD (95.3%) andOTH (91.9%), where
a low level of ambiguity occurred. Overall CV training classification
accuracy was 97.7% with a specificity of 99.3%, and sensitivity of 97.7%
(Supplementary Data 10). We then applied the trained classifier to
14,765 PCGCCHDpatientswith Fyler descriptors to assign eachpatient
to one of the five phenotype categories (Supplementary Data 11). Final
classification of the 3,000 training patientswas identical to the original
training predictions. The five phenotype categories remained gen-
erally proportional between the training data and the full data set, with
a maximum observed difference of 4.2% for CTD patients.

AI-based scoring of predicted damaging genetic variants
All CHD patients were sequenced using exome capture (Agilent, Illu-
mina) and sequenced on Illumina sequencing platforms using 100 bp
paired-end reads. Read data was aligned using the human reference
genome (GRCh37) and then genotyped with GATK / Sentieon using
best practice recommendations to produce a joint-called VCF file with
all probands and their parents, if available. AI-based identification of

candidate disease-causing genotypes was performed using Fabric
GEM16,41–44 (Fabric Genomics, Oakland, CA). GEM evaluates all geno-
types present in a VCF file for a patient. GEM incorporates Human
Phenotype Ontology (HPO) terms, sex, genotype frequency (gno-
mAD), evolutionary conservation, Online Mendelian Inheritance in
Man (OMIM), gnomAD, and ClinVar information and parental geno-
types in a probabilistic AI framework to identify themost likely genetic
variant or genotype that explains the patient’s disease phenotype. HPO
terms utilized in the GEM analyses were based on each patient’s Fyler
phenotypes, which were mapped to HPO terms using the Clinithink
software package (Clinithink, London). Notably, 48 of the 131 de novo
variants identified by GEM were documented as pathogenic or likely
pathogenic in ClinVar, and 27 of 48 (56%) of these were missense
variants. The remaining 83 de novo variants were not listed in ClinVar,
with 33 variants resulting in frameshifts, altered splice sites, or caused
stop-gains, and 47 of 83 (57%) resulting in missense variants (see
Supplementary Data 1). Because GEM is phenotype aware, reported
genes have some support in the literature for association with the
proband’s particular CHDphenotype. However, we cannot exclude the
possibility that in some cases, the reported damaging genotype is
incidental to CHD etiology; however, the high score threshold used for
these analyses (≥1), means that there was strong phenotypic support
for the genotype, and/or the variant(s) involved have strong ClinVar
associations with pathogenicity. Because WES are difficult substrates
for copy number variant (CNV) calling, we restricted our analyses to
SNVs and short indels.

GEM’s gene scores are log10 transformed Bayes factors45 that
summarize the relative support for the hypothesis that the prioritized
genotype damages the gene in which it resides and explains the
patient’s phenotype versus the hypothesis that the variant neither
damages the gene nor explains the patient’s phenotype. We used a
stringent GEM scoreof ≥ 1.0 to represent a likely pathogenic genotype.
A recent genomic analysis of critically ill newborns showed that a GEM
scoreof≥ 1.0 identified90%of all true positivedamaging variants, with
a median of two candidate variants per patient16. Gene penetrance for
GEM calculations was set to 0.95 to enforce strict consideration of
known dominant and recessive disorders. For downstream analyses,
damaging genetic variants were classified as de novo/dominant, or
recessive/biallelic variants based on their inheritance pattern in trios.
Dominant and de novo damaging variants were required to have a
frequency of <1/10,000 in gnomAD databases (v2.1, v3.1) and most of
these variants were not observed in gnomAD. Overall, we identified
damaging de novo or recessive genotypes in 10.56% of the study
cohort (see Supplementary Data 1, 2), in line with previous studies that
utilized different methods of defining pathogenicity4,5,8,9. Damaging
genetic variants were assigned to several functional gene pathways.
The CHD gene list represents genes from the literature known to
directly cause or be associated with CHD8. The CHD gene list contains
35 genes in the chromatin list, but no genes from the cilia gene lists and
represents a diverse set of genes not specific to a single pathway. Gene
lists for all other gene pathways were obtained using the reactome
pathway browser (see Supplementary Data 3) and have been pre-
viously described5,8,9 There is some overlap between gene lists, with
some genes represented in more than one gene pathway/category
(Supplementary Fig. 4).

Probabilistic graphical models. Probabilistic graphical models
(PGMs) provide a robust explainable AI methodology capable of dis-
covering and quantifying additive and synergistic effects amongst
broad classes of variables. For theworkpresented here,weused a form
of PGMs known as a Bayesian networks46. Bayesian networks are fully
transparent, and their graphical representation offers an intuitive,
visual, and qualitative mechanism for understanding the probabilistic
dependencies among variables and the impacts of multiple variables
on outcomes of interest47–54. Moreover, Bayesian networks offer
practical advantages over regression approaches, by capturing the
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entire joint probability distribution of the data, quantitatively
encompassing all interrelationships among the variables incorporated
in the non-linearmodel. Thus, a single network can be used to explore
any combination of variables as a target outcome in one query and
then as a risk factor for a different target outcome, all within the same
model. For more on these points see46,55.

Feature selection
Single variables, such as damaging genetic variants in chromatin-
modifying genes, were tested for conditional dependency with phe-
notype variables using exact Bayesian networks. Each conditional
probability (e.g., the probability of LVO given a damaging de novo
chromatin variant: P (LVO | chromatin dGV )) was estimated as the
median conditional probability from 1000 independent networks.
Conditional probability estimates were divided by the baseline prob-
ability for each respective phenotype to obtain absolute risk ratios.
Associations with absolute risk ratios ≥ 1.0 were selected for further
analyses. Surgery-related variables associated with gene categories
and CHD phenotypes were identified in a similar way. Each surgical
feature was tested individually as a conditional variable with genetic
variables and each of the five specific CHD phenotypes.

Network construction
Bayesian networks were created for each CHD phenotype category.
Each network included genetic and surgical variables identified in the
feature selection stage above. Genetic, phenotypic, and surgical vari-
ables included or excluded for the networks and their baseline fre-
quencies are listed in Supplementary Data 12. Final network variables
are shown in Supplementary Data 13. All-cause mortality was included
in each network. All input conditional variables were coded as pre-
sence/absence. A small number of missing surgical values (<10% for
any single variable)was imputed using aK-nearest neighbors approach
(k = 10). Because highly correlated variables may influence Bayesian
network structure learning and risk estimation, variables included in
the networks were screened for colinear and multicollinear states by
correlation analysis (Supplementary Fig. 5a, b). Final network variables
were not colinear and pairwise correlations were between -0.11 and
0.30, except for LVO and HLHS. The structure of each network was
learned with the Silander-Myllymaki exact algorithm with Bayesian
information criterion (BIC) scoring56. Posterior probabilities were
network propagated using exact inference. The accuracy of network
inferred risk estimates can be affected by sample size. Many studies
advocate Bayesian analysis for low sample size applications19,20,22–24,57.
With low sample sizes, accurate posterior probabilities and risk esti-
mates are highly dependent on unbiased prior probability estimates.
Our initial (prior) probability estimates for variables used in the study
are based on 2253 CHD patients from multiple surgical sites and are,
therefore, likely to be representative probability estimates for a critical
CHD surgical cohort and without strong biases. Network structure
learning and belief propagation were performed in Rwith the bnstruct
and gRain R packages58,59 and implemented in the BayesNetExplorer
package [https://github.com/ScottWatkins/BayesNetExplorer].

Risk calculations
We used two risk ratios (RR) to summarize our risk estimates, absolute
RR and relative RR. For example, the absolute RR of a LVO phenotype
given a damaging genotype in a chromatin-modifying gene is as fol-
lows: Absolute RRLVOjdGVchromatin =

P LVO= truejdGV chromatin= trueð Þ
P LVO= trueð Þ which

estimates the probability of LVO given a damaging mutation in
chromatin-modifying genes compared to the marginal probability of
LVO in the entire population. The relative RR estimates the relative
change in mortality risk for LVO patients with damaging mutations in
chromatin-modifying genes, compared to similar patients without a
damaging chromatin genotype: Relative RRmortality+ LVOjdGV chromatin =
P mortality= true, LVO= truejdGV chromatin= trueð Þ
P mortality= true, LVO= truejdGV chromatin= f alseð Þ. Final risk ratios and their

confidence intervals are reported as the median and 95% confidence
interval from an empirical distribution of risk ratio estimates. The
empirical distributions were created by randomly resampling the data
set with replacement and recreating 1000 independent networks and
their risk estimates. A correction factor (k = 1/N) or a network
smoothing value (0.01) was used to prevent zero-state probability
estimates during bootstrapping.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The final classification and network data matrices used for CHD
phenotype classification and Bayesian network analyses are provided
in the Supplementary Data file. The classification training datamatrix
includes 698 phenotypes for 3,000 CHD patients encoded as binary
variables from Fyler phenotype codes. The network data matrix
encodes genetic variants (dGVs identified by GEM), surgical out-
comes variables, and phenotypic variables used for constructing the
Bayesian networks shown in the paper. All damaging variants and
genotypes identified by GEM and used for risk prediction analyses
are listed in the Supplemental Data file. Exome sequencing data used
in this study was generated through an ongoing effort by the
National Heart, Lung, and Blood Institute’s (NHLBI) Bench to Bassinet
(B2B) project to sequence children with CHD. Sequence data are
deposited in the database of Genotypes and Phenotypes (dbGaP)
under accession numbers phs000571.v1.p1, phs000571.v2.p1 and
phs000571.v3.p2 and are available, under controlled access, to other
investigators by request [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/about.html#request-controlled/]. Exome sequence and
phenotype data, including phenotype variables examined but not
used in the final networks, are also available, with controlled access
[https://b2bperms.research.cchmc.org/request/], to investigators
through the PCGC’s HeartsMart database [https://heartsmart.pcgcid.
org/].

Code availability
Open source and published software packages are listed in the Meth-
ods. GEM was used to identify damaging variants from exome
sequence data. GEM is a commercial tool for AI-assisted clinical
interpretation of WES and WGS. It has been licensed by University of
Utah Hospitals from Fabric Genomics Inc. and is used by Utah faculty,
staff, and affiliates forWGS analyses campuswide. Additional licensing
information is available from Fabric Genomics Inc. [https://
fabricgenomics.com/].
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