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Library-based virtual match-between-runs
quantification in GlyPep-Quant improves
site-specific glycan identification

He Zhu 1,5, Zheng Fang 1,5, Lei Liu1,2, Yan Wang1, Hongqiang Qin1,
Yongzhan Nie 3 , Mingming Dong 4 & Mingliang Ye 1,2

Glycosylation changes are closely related to various diseases, including cancer.
The quantitative analysis of site-specific glycans at proteomics scale remains
challenging due to low glycopeptide spectra interpretation. Here, we present
GlyPep-Quant, a tool for sensitive quantification and identification of site-
specific glycans. Using a well-trained machine learning model, GlyPep-Quant
quantified 25.1%–178.9%more site-specific glycanswithoutmissing values than
pGlycoQuant, MSFragger-Glyco, and Skyline. To utilize identified information
from previous large-scale dataset, anMS1 feature library-based “virtual match-
between-runs” quantification scheme was developed, enabling over eightfold
more site-specific glycan identification/quantification than conventional MS2-
based methods. Enhanced coverage prompted the development of a glyco-
proteomic biomarker discovery method, involving calculation of site-specific
glycan abundances ratios at the same glycosylation site, minimizing individual
expression and experimental condition variability. Two pairs of site-specific
glycan ratios on sites P01011-N127 and P08185-N96, were selected as high-
performance biomarkers to classify gastric cancer (GC) from healthy controls
(AUC>0.95). Moreover, the two ratios performed well in distinguishing GC
using an independent cohort by the library-based quantification strategy with
diagnostic accuracy up to 85%. GlyPep-Quant is poised for broader glycopro-
teomic applications.

Aberrant glycosylation is considered as a hallmark of cancer1–3. Sensi-
tive quantitative and qualitative profiling of protein glycosylation is
essential for identifying dysregulated glycosylation patterns, aiding
the discovery of novel therapeutic targets and biomarkers4. However,
the inherent macro- andmicroheterogeneity of protein glycosylation1,
along with its low abundance, complicates the analysis of site-specific
glycans and results in a low interpretation rate. Although some
alterations in site-specific glycosylation associated with cancer have
been identified, their further clinical translation is significantly

hindered by challenges in reproducible quantitative analysis of site-
specific glycan across large clinical cohorts, variability between sample
batches, and limited identification and quantification capacity in single
MS files.

Mass spectrometry (MS)-based analysis of intact glycopeptides
provides both qualitative and quantitative information of site-specific
glycans5. In glycopeptide analysis, the lower instrument and data
analysis requirements keep data-dependent-acquisition (DDA) as a
common MS acquisition method6–8. However, the low interpretation
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rate of glycopeptide spectra9 contributes to themissing value issues in
glycopeptide quantification. To enhance glycopeptide spectrum
identification, several advanced software, like pGlyco310, MSFragger-
Glyco11, has been presented in the past years. In 2022, we devised the
spectrum expansion strategy by leveraging peptide fragment patterns
to assist data interpretation, and integrated it into Glyco-Decipher9

software, which largely improved glycopeptide identification perfor-
mance. However, the shared identifications across different dataset
files were relatively low, and the quantitation efficiency of individual
files remained limited for large-scale glycoproteomic analysis.

In DDA quantitative analysis, label-free quantification (LFQ) is one
of the most widely used strategies without the need of additional
sample processing steps12. However, it suffers from missing values
(MVs) problem13 because of the stochastic nature of DDA analysis14.
Compared to various imputation methods15 to deal with the MVs
problem, match-between-runs11,16–18 (MBR) quantification strategy
mitigate the problem more directly. In MBR, by using features of
identified spectra precursors, the most likelihood corresponding
peaks of the same precursors are located in another run containing
missing values16. Recently, MSFragger16 and pGlycoQuant18 applied
MBR to the quantitative analysis of glycoproteomics data at intact
glycopeptide level, and were able to acquire more quantitative results
with high confidence compared to other widely-used methods18.
However, due to the high expression heterogeneity of glycosylation
among individuals, the identification level of a single glycoproteomic
file is still relatively low, evenMBR is adopted. Therefore, it is essential
to generate enough amount of data files to achieve high quantification
coverage of the whole dataset. Andmore importantly, the MS1 feature
information of elution profiles from previously quantified dataset has
not been fully utilized.

Here, we develop GlyPep-Quant, a software tool for large-scale
glycoproteomic quantitative analysis. To enhance the performance of
LFQ-MBR quantification, GlyPep-Quant utilizes a well-trained machine
learning model to evaluate the contribution of different features and
assess the confidence of quantitative results. Based on this, a two-step
elution profile extraction method was developed to precisely and
efficiently locate the matched profile. Compared to other state-of-the-
art tools like Skyline19, MSFragger-Glyco11, and pGlycoQuant18, GlyPep-
Quant quantified 25.1%–178.9% more glycopeptides without any MVs.
Based on the excellent quantitative performance, a special strategy
was developed in GlyPep-Quant to investigate the occupancy ratio
changes of site-specific glycans for biomarker discovery. Traditionally,
site-specific glycans with altered abundances (directly from the
intensity of LFQ) are considered as biomarker candidates. However,
peptide abundances can be affected by different sample preparation
periods, different instrument conditions, and individual variances of
total glycoproteomic expression level. Instead, we choose to investi-
gate abundance ratios of site-specific glycans on the same site, and the
relative changes between glycan abundances are elucidated, offering a
perspective that is independent of the influences mentioned above
and distinct from the abundance profiles of individual glycopeptides.
By applying this strategy, two ratios were discovered as promising
biomarkers through analysis of GC dataset7. To expand the quantifi-
cation coverage for data acquired under similar conditions and fully
utilize the information of previous quantifications, an MS1 feature
library-based virtual MBR quantification algorithm was presented. It
consists of a library of summarized MS1 features of different glyco-
peptide precursors and adopts a cluster matching strategy to perform
a one-direction virtual MBR process to maximally obtain quantified
results. Since it is performed from library to new runs, rather than
“between runs” in LFQ-MBR, it is termed “virtual MBR”. The imple-
mentation of library-based quantification further enhanced quantita-
tive coverage, achieving up to an eightfold increase compared to
conventional quantification method. This improvement enables the
accurate quantification of site-specific glycan abundance ratios across

large sample cohorts, providing a valuable tool for early diagnostic
applications.

Results
Development of GlyPep-Quant
To enhance site-specific glycan quantification, which usually suffers
fromMV problem, we presented GlyPep-Quant, a comprehensive tool
for large-scale glycoproteomic quantification analysis, and the analysis
workflow consisted of four parts of novel methods and their applica-
tions (Fig. 1): (1) A new elution profile extraction strategy and a
machine learning evaluation model for LFQ-MBR in GlyPep-Quant. (2)
A biomarker discovery strategy, enabling the identification of abun-
dance ratios of two glycans at the same glycosylation site as potential
biomarkers. (3) An MS1 feature library-based quantification scheme in
GlyPep-Quant to improve the identification and quantification of gly-
copeptides for new glycoproteome data acquired under similar con-
ditions. (4) Direct disease diagnosis for individual samples based on
the site-specific glycan ratios. GlyPep-Quant is integrated in our gly-
coproteomic data analysis software, Glyco-Decipher, and is also com-
patible with pGlyco310 identification.

The detailed workflow of GlyPep-Quant is elaborated in “Meth-
ods” section. Briefly, in LFQ-MBR, the extraction of glycopeptide elu-
tion profiles is parsed through a specially designed peak extraction
method, which is inspired by the feature importance in the subse-
quently used machine learning model. Meanwhile, decoy profiles are
extracted by adding 3–20Th to glycopeptide precursor m/z in a ± 2
min retention timewindow in thedatafile to bematched. Apre-trained
random forestmachine learningmodel is employed for the confidence
assessment of the extracted elution profiles. Results with a false
quantification rate (FQR) of less than 1% are retained based on scores
from the model. The FQR is calculated by the ratio of the number of
decoy elution profiles to the total number of elution profiles in the
result. To investigate the relationship between the stoichiometry of
site-specific glycans and disease, and to fully utilize the deeper cov-
erage of quantification results achieved by GlyPep-Quant, a novel
disease biomarker discovery strategy is developed to screen the
abundance ratios of different site-specific glycans on the same site as
the biomarkers. This method provided an additional dimension to the
expression level of glycopeptides and enabled the detection of stoi-
chiometric alterations of site-specific glycans while excludes the
influence of protein abundance changes. To better exploit the
obtained quantified information, we introduced a library-based
quantification method, library-based virtual MBR, to improve the
quantification coverageof site-specific glycans in a newacquired single
MS file. The methods of decoy elution profile extraction and FQR
calculation is samewith that of LFQ-MBR. Specific strategies, including
dynamic programming to differentiate features with close RTs caused
by glycopeptide isomers and to reduce unnecessary calculation of
brute-force, were employed to summarize the MS1 feature of glyco-
peptide precursors and avoid duplicate matching of features with
similar retention times, further enhanced the efficiency and accuracy
of library-based quantification.

Advanced LFQ-MBR method in GlyPep-quant for glycopeptide
quantification
To enable efficient LFQ-MBR computation, new methods are devel-
oped in GlyPep-Quant: A random forest machine learning model was
trained to estimate the confidence of MBRmatch results. Ten features
(Supplementary Table 1 and Supplementary Note 1) were selected and
used in the machine learning model calculation, including but not
limited to Pearson correlation coefficients for the total isotope dis-
tribution,monoisotopic peak, +1 and +2 peak distributions, andmatrix
of elution profiles for assessing the similarity of between initial elution
profiles (extracted according to identification) and matched elution
profiles (obtained from MBR).

Article https://doi.org/10.1038/s41467-025-61673-6

Nature Communications |         (2025) 16:6483 2

www.nature.com/naturecommunications


One advantage of using machine learning model is that the con-
tribution of different features can be obtained, thereby facilitates
model understanding and identifying key variables. From the impor-
tance and target-decoy distributions of MS1 features illustrated in
Supplementary Fig. 1, the similarity of isotopic distributions between
initial and matched profiles has the most influence on the model’s
predictions, with the most weight among all features, which means an
extractedmatched profile with a higher similarity to its corresponding

initial profile tends to be correct and will be assigned with higher
scores by the model. Therefore, this feature is primarily utilized in the
profile extraction step to ensure the confidence of the acquired results
before model prediction.

Next, we present a two-step elution profile extraction strategy to
extractmatched elution profiles with high confidence (Supplementary
Figs. 2 and 3 and Supplementary Note 2). WithinMBR process, GlyPep-
Quant firstly extracts the elution profile that is closest to the apex of
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initial profile on retention time axis. Then, the Pearson correlation of
isotopic intensity patterns between the initial and matched profile is
calculated to assess the reliability. If the calculated similarity is lower
than the threshold, each profile in the retention time window is mat-
ched to the initial profile to obtain the best matched one with highest
similarity. Implementation of the quality control method in the initial
profile extraction step is a key feature of our method to achieve reli-
able quantitative results.

Systematic evaluation of GlyPep-Quant quantification
performance
The quantification performance of GlyPep-Quant was benchmarked
using several previously published glycoproteome datasets from dif-
ferent aspects. To be noted, through glycan database-independent
peptide matching algorithm in Glyco-Decipher9, two types of glyco-
peptides can be identified: (1) glycopeptides with glycans within the
GlyTouCan database; (2) glycopeptides with modified glycans identi-
fied by the monosaccharide stepping method9. The modified glycans
are denoted as glycan in the database and an additional moiety mass,
and the structures are shown as “glycan+moiety mass”. Unless
otherwise stated, the results fromGlyco-Decipher consist of above two
types of glycopeptides. The detailed glycan unit nomenclature20 of this
manuscript is elaborated in Supplementary Note 3.

Firstly, we evaluated the quantitation confidence of GlyPep-Quant
using different datasets with special treatments: a glycotransferase
gene knockdown mouse dataset21 (Supplementary Figs. 4–6, Supple-
mentary Table 2, and Supplementary Note 4), and a exoglycosidase
treatment dataset22 (Supplementary Fig. 7, SupplementaryTable 3, and
Supplementary Note 5). In these datasets, specific types of glycopep-
tides (core-fucosed glycopeptides in the glycotransferase gene
knockdown dataset, fucosylated or bisecting glycopeptides in the
exoglycosidase treatment dataset) were removed in the experimental
group while retained in the control group. We quantified all the gly-
copeptides identified in the experiment group by GlyPep-Quant, and
then calculated the ratio of such glycopeptides that were quantita-
tively downregulated (<1 and <0.5) among all quantified glycopeptides
in the experimental group and plotted the distribution of the quanti-
tative ratios. It was found that the vast majority of experimental/con-
trol abundance ratios of such glycopeptides are closed to zero
(Fig. 2a–c), which aligns well with the expectation. More detailed dis-
cussions are provided in Supplementary Notes 4 and 5. Above results
indicate that the quantification achieved by are highly confident.

It should be noted that in the experiment group, there are still a
non-negligible number of specific types of glycopeptides could not
be removed (Supplementary Notes 4 and 5) as the efficiency for the
gene knockdown and enzymatic cleavage could not be 100%. It is not
accurate to directly calculating the false discovery rate based on
specific glycopeptide quantification values. Therefore, a two-species
glycoproteome dataset18 was adopted to further assess the con-
fidence of GlyPep-Quant MBR result because the glycoproteome in
these species were different, and the presence of glycopeptides were

not affected by the cleavage or knockout efficiency. Three liquid-
chromatography-mass spectrometry/mass spectrometry (LC-MS/
MS) files from budding yeast and three from human serum were
searched by Glyco-Decipher against corresponding protein data-
bases, and the identification results were submitted to GlyPep-Quant
quantification. Since these two samples have distinct proteomes,
cross-species (human glycopeptide quantified in yeast samples, and
vice versa) quantifications were regarded as false positive. The
quantitation confidence can be approximately evaluated by the ratio
of false positives in all quantification results (Fig. 2d and Supple-
mentary Note 6). The high confidence of our glycopeptide quantifi-
cation results was indicated by the calculated entrapment-based FQR
of the GlyPep-Quant quantitative results, which was below 1%
threshold (0.93%). GlyPep-Quant also has the ability to process
quantification based on identification results from other software,
like pGlyco3. The same evaluation workflow was performed for
GlyPep-Quant quantification of the identification results yielded by
pGlyco3, and the 0.81% entrapment-based FQR was obtained (Sup-
plementary Fig. 8), which further indicates the high confidence of
GlyPep-Quant analysis. We also evaluated the quantitation con-
fidence of GlyPep-Quant using the PNGase F-treated deglycosylation
dataset from pGlycoQuant18 study (Supplementary Figs. 9–19, Sup-
plementary Tables 4–7, and Supplementary Note 7). The results
demonstrated that GlyPep-Quant exhibited high confidence quanti-
fication performance comparable to that of pGlycoQuant.

Then, the accuracy of quantification results was evaluated by
using a mixed-organism sample dataset23, containing glycopeptides
from human serum and budding yeast with different quantities. For
the data labeled as S10, S12, and S15, the abundances of human serum
remained the same, while the relative abundances of yeast were 1, 1.2,
and 1.5-fold. The precision of quantification was analyzed by compar-
ison of mean quantities in different replicates of each sample to the-
oretical values. These mean values of all quantified glycopeptides,
together with the number of quantified glycopeptides without MVs,
are shown in Fig. 2e. It is found that compared to other quantitative
analysis tools, GlyPep-Quant coupled toGlyco-Decipher identifications
reported the most quantified glycopeptides, with 25.1%–178.9% more
quantified glycopeptides without any missing value for human glyco-
peptides and yeast glycopeptides, respectively. The above results
indicate the deep coverage performance of our software at both the
identification and quantification stages. Meanwhile, GlyPep-Quant
maintains a high level of quantification accuracy: the calculated
quantitative fold-changes calculated by GlyPep-Quant is one of the
closest to the theoretical values (Fig. 2e). Since the majority of these
software tools can only identify glycopeptides with database glycans,
we then compared the quantifications of this kind of glycopeptides in
Glyco-Decipherwith that of others (SupplementaryNote 8), the results
also indicate superior performance of our method. Moreover, based
on the identification results of pGlyco3, GlyPep-Quant is able to
quantify more glycopeptides (about 5.6% for human glycopeptides
and 33.3% for yeast glycopeptides) without MVs than pGlycoQuant

Fig. 1 | Workflow of GlyPep-Quant. The quantitative analysis in GlyPep-Quant
includes two modules: label-free quantification with match-between-runs (LFQ-
MBR) (left panel, red) and library-based identification and quantification (library-
based virtual MBR, right panel, blue). In the LFQ-MBR process, MS files I and II in
dataset A are utilized. Elution profiles are firstly extracted based on GPSM identi-
fication in MS file I, dataset A, and then the matched elution profiles are extracted
from the matched data (MS file II, dataset A) using a two-step elution extraction
method. The matched elution profiles include target (same precursor m/z value)
and decoy elution profiles, and their confidence is evaluated by a well-trained
machine learning model. For the generation of decoy elution profile, a random
mass shift of 3–20Th is applied to the original precursor ion m/z value, and the
decoy elution profile is extracted within the same retention time range as the
original. In library-based identification and quantification, an MS1 feature library is

firstly constructedby summarizingMS1 features in a large datasetA acquired under
the same conditions for a large cohort of samples, it is then applied to identify and
quantify glycopeptides for a newly acquired MS file (or files) (from new dataset B)
via a dedicated library-based virtual match-between-runs algorithm. LC-MS/MS
runs in dataset B are newly acquired using the same sample types and experimental
conditions as dataset A. Target and decoy elution profiles in the MS file(s) are
extracted and matched based on the MS1 feature library. The decoy profile gen-
eration method is the same as MBR. The confidence of the matched result is
evaluated by a separate machine learningmodel. Based on the quantitative results,
a new biomarker discovery strategy is developed, which enables the screening of
the site-specific glycan abundance ratios and allows diagnosis of individuals with
newly acquired MS data.
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(Supplementary Fig. 20), which also demonstrates the strong perfor-
mance of GlyPep-Quant when applied to identification results gener-
ated by other software.

Finally, a HeLa cell dataset18 was applied to evaluate the perfor-
mance of GlyPep-Quant inMV elimination (Fig. 2f). The proportions of
MV in line (PMVL) and in total (PMVT)18 were calculated and compared
with those of other tools. The two values of GlyPep-Quant results are
lower than Skyline and pGlycoQuant results (Fig. 2f) when all quanti-
fication were performed based on pGlyco3 identifications. None-
theless, it should be noticed that the absolute number of quantified
glycopeptides of GlyPep-Quant (based on Glyco-Decipher identifica-
tions) is significantly larger than pGlyco3-pGlycoQuant, which were
adopted in their previous study, with 19.2% and 41.1% improvement in
database andmodified glycopeptides, respectively. The quantification

precision can also be evaluated by the calculation of standard
deviation17,18 after removing the MVs in quantification results. The
standard deviations of GlyPep-Quant results are similar to those of
other tools, indicating the high precision of our quantification results.
The ability to precisely identify and quantify glycopeptides with
modified glycans exhibit potential of GlyPep-Quant for more compli-
cated glycoproteomic analysis. The above results indicate GlyPep-
Quant is able to precisely quantify glycopeptides with high confidence
and sensitivity.

GlyPep-Quant allows the discovery of site-specific glycan ratios
as the disease biomarkers
Since LFQ-MBR method in GlyPep-Quant enables deeper coverage of
glycoproteomic quantification compared to other tools, it was then

Fig. 2 | Systematic evaluation of GlyPep-Quant quantification performance.
a Histogram of core-fucoslyated glycopeptides quantitative ratios between the
experimental and control groups reported by GlyPep-Quant MBR for glyco-
transferase gene knockout sample dataset. b, c Histogram of fucosylated (b) and
bisecting (c) glycopeptides quantitative ratios between the experimental and
control groups reported by GlyPep-Quant based on Glyco-Decipher identification
in the exoglycosidase-treatment sample dataset. d Heatmap of quantification
values from the two-species proteome dataset. Quantitative values of glycopep-
tides for proteins that do not belong to the species are considered as entrapment
values, which are shown in orange. True positive quantitative values are colored in
blue. All quantification values are displayed in log2 scale. eQuantification results of
different software tools on the two-species proteome sample. Above boxplot: fold-

change results of human serum and yeast glycopeptide. Boxes show the median
values, which are also labeled near the boxes, and the interquartile ranges. The
whiskers are 1.5-fold of interquartile and the outliers are hidden. Theoretical fold
changes oforganisms in different samples aremarked in the figures. Belowbar plot:
Number of quantified glycopeptides without missing values from different tools.
Source data are provided as a Source Data file. f Number comparison of quantifi-
cation values and quantified glycopeptides between different tools in HeLa cell
dataset. Standard deviations of different quantification results are listed in the
right. “DB” means the glycopeptides with database glycans; “Modified” means
glycopeptides with database glycans and with modified glycans identified by
monosaccharide stepping.
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applied to quantify site-specific glycans for a large-scale gastric cancer
(GC) human serum dataset, which was acquired previously7. The
dataset consisted of a discovery cohort with 70 GC patients and 70
healthy controls (HCs) and a validation cohortwith 30GCs and 30HCs.
The detailed average sample conditions are described in

Supplementary Table 8. LFQ-MBR was performed for the Glyco-
Decipher identification result of the discovery cohort using GlyPep-
Quant. As for the results of database glycans, 7867 site-specific glycans
were quantifiedwith 70% valid values in at least one group (Fig. 3a). It is
worth mentioning that only 866 site-specific glycans remained after

Fig. 3 | New biomarker discovery strategy revealing 2 pairs of site-specific
glycan ratios as high-performance gastric cancer biomarkers. a Number of
quantified site-specific glycans with different thresholds by GlyPep-Quant and by
quantification only fromMS2 identification. b AUC values and ROCs of serum CEA
in discovery cohort (red) and validationcohort (blue). Sourcedata are provided asa
Source Data file. c Structures of glycans in two pairs of the screened site-specific
glycan quantitative ratios with the top performance. d Representative MS2 spectra

of glycopeptide (with sialyl-Lewis structure): “TLNQSSDELQLSMGNAMFVK linked
with H7N6S4F2”, which corresponds to P01011-N127 H7N6S4F1; B/Y fragment ions
(green/yellow) and b/y fragment ions (blue/red) are labeled in the spectrum. e The
abundance distributions of these ratios in discovery and validation cohorts. Source
data are provided as a Source Data file. f–i AUC values and ROCs of site-specific
glycan ratios and their respective quantification values in discovery cohort and
validation cohort. Source data are provided as a Source Data file.
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applying the same filter process to the quantification result without
LFQ-MBR (Fig. 3a). That is an over eightfold improvement in quantifi-
cation following MBR in GlyPep-Quant. As evidenced in Fig. 3b, serum
carcinoembryonic antigen (CEA) levels, which is commonly used to
monitor therapeutic response or tumor recurrence, and in some cases
as an adjunct to radiological imaging or surgical biopsy for tumor
diagnosis, demonstrated limited ability to independently classify GC
and HC samples, emphasizing the need to discover novel biomarker
candidates. It was reported24–26 that the relative abundance changes of
different site-specific glycans on the same site are closely associated
with disease-related biological processes, offering key insights into
disease mechanisms. With the improved quantification coverage, here
we developed an effective biomarker discoverymethod by calculating
the ratios of site-specific glycan abundances on the sameglycosylation
site. This strategy not only minimizes the impact of total glycoprotein
expression differences among individuals (individual variance), but
also offers a more scalable approach compared to traditional single
site-specific glycan abundance biomarker. Ratio biomarkers are parti-
cularly suited for application across different cohorts and large-scale
experiments, with data collected at different times and under varying
instrument conditions.

The ratio calculation was first performed on the discovery cohort
dataset. After data imputation (details in “Methods” section), for each
site where at least two site-specific glycans were quantified (368 gly-
cosites, 5575 site-specific glycans), ratios of quantification values of
each twoglycanswere calculated. For example, if therewere three site-
specific glycans (A, B, C) quantified on site S, 3 kinds of ratios (Q(A)/
Q(B), Q(A)/Q(C), Q(B)/Q(C)) will be computed. Receiver operating
characteristic (ROC) curve analysis was conducted to assess the per-
formance of binary classification (healthy vs. disease) using ratio bio-
markers as features. The areas under the curves (AUC) for these ratios
were calculated to quantify their effectiveness in detecting GC. Ratios
with AUC values higher than 0.90 were considered as candidate bio-
markers with good classification ability. Consequently, 278 such ratios
were obtained, corresponding to 20 different glycosylation sites on 16
glycoproteins (Supplementary Fig. 21). As for the validation cohort
with 30 GCs and 30 HCs, LFQ-MBR was also performed by GlyPep-
Quant. And AUC values are calculated for the 278 sets of ratios men-
tioned above using quantification result in the validation cohort.
RatioswithAUCvalues of at least 0.95 in thediscovery cohort and0.90
in the validation cohort were retained, resulting in 31 distinct ones,
corresponding to two glycosylation sites on two different proteins
(Supplementary Table 9). Next, for each glycosylation site, only the
ratio with the highest AUC from both the discovery and validation
cohorts was retained. This process resulted in two sets of ratios on two
sites (P01011-N127 and P08185-N96), corresponding to four different
site-specific glycans (Fig. 3c).

The two glycoproteins with dysregulated site-specific glycan
occupancy ratios, are alpha-1-antichymotrypsin (AACT) (UniProt27

accession: P01011) and corticosteroid-binding globulin (CBG) (UniProt
accession: P08185). AACT is a serine protease inhibitor involved in
modulating inflammatory responses28. Studies have demonstrated
that serum levels ofAACTare significantly elevated inpatientswithGC,
correlating with disease progression and histological grading29,30.
Notably, studies have shown that AACT levels are elevated in advanced
stages and grade III gastric cancers compared to earlier stages and
grade II, suggesting its potential utility as a biomarker for GCdiagnosis
and staging7,30. CBG is the primary transport protein for glucocorti-
coids, binding approximately 80–90% of circulating cortisol with high
affinity, thereby regulating its bioavailability to tissues31,32. Although
specific studies on CBG in GC are limited, CBG has been shown to play
a crucial role in the pathophysiology of various cancers, including
ovarian cancer33 and lung cancer34, potentially through its influence on
steroid hormone regulation and inflammatory processes. CBG influ-
ences various physiological processes, including immune response

and inflammation. Alterations in CBG glycosylation patterns could
potentially impact these processes, thereby affecting GC
pathophysiology.

These selected site-specific glycan abundance ratios related to the
two glycoproteins are then fully investigated. Interestingly, we found
that among the four site-specific glycans, one was capped with sialyl-
Lewis structures (P01011-N127-H7N6S2F2). Sialyl-Lewis structure is a
glycosylation modification that is usually modified to the surface of
protein or lipidmolecules7. It plays an important role in the occurrence
and development of many diseases, including cancer. Present on gly-
coproteins or glycolipids of tumor cells, it facilitates cell-cell interac-
tions, adhesion, and signaling, contributing to cancer invasion and
metastasis35. Therefore, studying the relationship between sialyl-Lewis
structure and disease is helpful for advancing cancer diagnosis and
treatment strategies. Here in this study, the presence of sialyl-Lewis
structure on glycosite P01011-N127-H7N6S2F2 was confirmed by the
detection of its diagnostic oxonium ions NHAF+ (m/z = 803.31) in the
mass spectra (Fig. 3d). Additionally, its expression was upregulated in
GC compared to HCs (Supplementary Figs. 22 and 23), aligning with
the known biological relevance of the sialyl-Lewis structure in cancer
progression.

We further plotted the ROC curves of the quantitative ratios, and
those of the individual site-specific glycans, as shown in Fig. 3e–i. We
found that across cohorts, the AUCof the ratio was significantly higher
than the AUC of the corresponding single site-specific glycans. This
suggests that the relative changes in site-specific glycan abundance
performed better for GC detection than that of a single site-specific
glycan abundance.We also illustrated the distribution of these ratios in
each data of the discovery and validation groups (Fig. 3e), significant
differences between HCs and GC samples were observed. All the p-
values calculated for these ratios between the two groups were less
than 0.001, indicating that these ratios effectively reflect the differ-
ences in site-specific glycan occupancy between healthy and disease
samples, which are associated with physiological changes in organ-
isms. In fact, these good diagnostic ratios for healthy and GC samples
may not be obtained through the conventional screening process of
disease biomarkers based on glycoproteomics. In conventional
methods, for a single site-specific glycan, the abundance difference
between disease and healthy samples is calculated, and the sig-
nificance of the difference is usually evaluated using p-values obtained
from t-tests. As shown in Supplementary Figs. 22 and 23, for certain
site-specific glycan that makes up the ratios, P01011-N127-H6N5S3 in
the validation cohort, the p-values are higher than 0.1. If the p-value
threshold for significant differences is set to 0.1, this site-specific gly-
can will be filtered out. Compared to serum CEA levels, a widely
adopted marker for monitoring therapeutic response or tumor
recurrence and a supplementary tool to radiological imaging and
surgical biopsy, the two selected site-specific glycan ratios exhibited
markedly higher accuracy in GC diagnosis. The AUCs for these ratios
were notably higher, exceeding 0.987 in the discovery cohort and
0.954 in the validation cohort (Fig. 3f–i), whereas the AUCs for CEA
ranged from 0.509 to 0.542 (Fig. 3b). The two glycan quantification
ratios have the potential as novel GC biomarkers to differentiate
healthy and GC samples.

As a result, by re-analysis of the large-scale dataset, we found two
site-specific glycan ratios which have excellent performance on dis-
tinguishing GC and healthy samples, and revealed the dynamic varia-
tion of glycosylation occupancy in GC disease process.

MS1 feature library-based virtual MBR quantification improves
the identification and quantification of glycopeptides in newly
acquired datasets
Based on the evaluation results from the previous section, advanced
LFQ-MBR with GlyPep-Quant achieved an over eightfold improvement
in quantification sensitivity compared toquantificationbased solely on
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identification. This enhancement arises from the annotation of
numerous elution profiles without high quality MS2 scans by lever-
aging abundant profile features from the large-scale dataset. We
expect that the elution profiles of the quantified glycopeptides from a
large cohort of samples could be leveraged to substantially improve
sensitivity in the identification and quantification of glycopeptides in
newly acquired data under similar conditions.

Inspired by the “spectrum library” used in DIA data analysis, here
we devised an MS1 feature library-based virtual MBR quantification
strategy (hereinafter abbreviated as “library-based quantification” or
“library-basedMBR”), tomake full use of quantified precursor features
from the large-scale datasets acquired from a large cohort of samples
under the same experimental procedures. The quantification library is
composed of different glycopeptide precursor MS1 features from
result of previous datasets. Through a virtual one-direction MBR pro-
cess from the library to the newly acquired LC-MS/MS run(s) for a
different sample under the same experimental condition, glycopep-
tides in the new sample would be identified and quantified even
without MS2 interpretation, potentially enhancing the analysis
sensitivity.

Library construction and virtual MBR with a newly acquired LC-
MS/MS file are two key steps in this library-based quantification
method. When building the quantification library derived from a
dataset, the MS1 features of glycopeptide precursors from identifica-
tions, including elution profiles, retention time of apexes, intensity
distributions of isotopic peaks in the elution profiles, are extracted and
recorded in the library. Different elution profiles with the same pre-
cursor are firstly separated into several clusters based on the retention
time of peak apexes, using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN)36,37 unsupervised clustering
method. Then for each elution profile in one cluster, the intensity
distribution of isotopic peaks is normalized and summed up to form a
“combined”MS1 feature. The retention time of this feature is the time
point obtained fromclustering. Finally, these “combined”MS1 features
are recorded in the quantification library.

Different from the traditional LFQ-MBR between MS files, a one-
direction virtual MBR process was then performed only from the
constructed quantification library to the newly acquired MS file
(details in “Method” section). There are occasions where the same
precursor has more than one elution profiles with different retention
times present in both the library and the newly acquired data. These
elution profiles are formed by glycopeptide and their isomers, as they
share the sameprecursorm/zbut exhibit different retention behaviors
towards reversed-phase separation. Although part of the glycosylation
structure can be analyzed through MS2 spectra identification9,22, it is
impossible to distinguish all these isomers byMS1 features. Therefore,
GlyPep-Quant performs glycoproteomic quantification at the glyco-
peptide level (peptide and glycan composition). Another issue is that
theMS1 features in the library formed by the isomersmay have closely
spaced but different retention times, resulting in the overlap of
retention time windows used for matching. Therefore, MS1 features
which belong to glycopeptide isomers can locate in an overlapped
time window, leading to interference in the library-based quantifica-
tion process (Supplementary Note 9). To address this problem, we
proposed an “MS1 feature cluster matching”method (simplified as FC
method). For those MS1 features whose corresponding time windows
overlap, they are treated as a “MS1 feature cluster”. Together with the
merged time window, this cluster, rather than individual features, is
used for matching with the profiles. The detailed method is shown in
Fig. 4, Supplementary Tables 10 and 11 and explained in Supplemen-
tary Note 9. To avoid unnecessary calculations in a brute-force
method, where all possible MS1 feature-profile match combinations
should be considered, FC algorithm applies a special dynamic pro-
gramming (DP) method. This method identifies the best-scored path
across the match table from the bottom right to the top left, based on

the predicted scores of feature-to-profile matches. It can reduce the
timecomplexity fromO (n ×mn) toO (n ×m2), wheremandn represent
the number of potential elution profiles in the retention time window
and the number of MS1 features in the specific cluster, respectively.

After establishing the library-based quantification method, we
assessed its performance fromdifferent aspects. The library built from
the discovery dataset (termed “discovery library”) recorded approxi-
mately 40,000 MS1 features at different charge states, corresponding
to about 22,000 site-specific glycans (Fig. 5a). Then 20 new human
serum glycoproteomicMS files including 10 healthy control and 10 GC
samples (termed “verification dataset”) were acquired. The informa-
tion of this new dataset is elaborated in “Methods” section, Supple-
mentary Table 8 and Supplementary Note 10–all the experiment
procedures, instrument settings are remained the same as those of the
discovery cohort dataset7.

Firstly, the identification sensitivity of the library-based virtual
MBR strategy was assessed. This new method enabled the quantifica-
tion of 14091 to 16758 site-specific glycans across the 20 samples
(Fig. 5b). In contrast, only 1331 to 1770 site-specific glycans were
identified and quantified by the conventional identified-MS2-based
method (elution profiles were extracted only based on identified
MS2 spectra) using Glyco-Decipher (Fig. 5b). The identification and
quantification coverage were over 8 times by using this new method
than the conventional identified-MS2-based method, which sig-
nificantly enhanced the depth of qualitative and quantitative analysis
of site-specific glycans in individual samples. On the other hand, more
than 73% of the site-specific glycans in the library (containing 22743
site-specific glycans) were identified and quantified in the MS1 spectra
of the new data (verification dataset), which indicates the great
potential of the quantitative libraries in the qualitative andquantitative
analysis of MS1 spectra. By summarizing and applying the site-specific
glycans MS1 feature information from existing results, the qualitative
and quantitative analysis of a single new run can be elevated to a level
previously attainable only through match-between-run operations on
large-scale sample datasets.

We then assessed the confidence of the library-based quantifica-
tion results. After performing the library-based quantification, some
matched profiles are associated with high quality MS2 spectra, which
canbe identifieddirectlybyGlyco-Decipher.Wedenotedglycopeptide
elution profiles which correspond to identifiedMS2 spectra andwhose
features were also recorded in the quantification library as “theoreti-
cally matchable profiles”. “Recorded” indicates that the retention time
ranges of the library feature (cluster) and the elution profile should be
overlapped, with the precursor information remaining the same
(Supplementary Figs. 25 and 26). These profiles can be matched
through library-based quantification theoretically, and how many of
them are actually matched can indicate the confidence of results, or
say, the ability of library-based quantification method to retrieve true
positive results in new LC-MS/MS run. We then calculated the ratio of
“actually matched profiles by library-based quantification” to the
“theoretically matchable profiles”.

The number of “theoreticallymatchable profiles” varied from 1418
to 1812 across the 20 samples. Among these elution profiles, about
95.7% “theoretically matchable profiles” was actually matched, which
means a vast majority of these profiles could be matched through
library-based quantification method (Fig. 5c), indicating high con-
fidence of the method. It should be noted that the remaining 4.3% of
matches are not all incorrect; rather, they may be attributed to special
circumstances, such as: (1) For some glycopeptide precursors, the
number of identification profiles in the LC-MS/MS run exceeds the
number of MS1 features in the library; (2) Some MS1 features are
matched to a profile different from the identification profile, but the
matched profile is derived froman isomer of the sameprecursor as the
identification profile. More detailed discussion is presented in Sup-
plementary Figs. 27–29 and Supplementary Note 10, suggesting that
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the actual false positive rate is lower than 4.3% (Fig. 5c), and the library-
based quantification method can obtain reliable results.

Site-specific glycan ratio biomarkers allow the diagnosis of dis-
ease for individual samples
Two site-specific glycan abundance ratios (corresponding to four site-
specific glycans) are determined as the high-performance biomarkers

to classify the GC and HC based on the discovery and validation
dataset. The 20 individuals (10 HCs and 10 GC patients) for the
acquisition of the verification dataset are different with the 200 indi-
viduals in the discovery and validation cohorts. It’s of interest to
investigate whether these two ratio biomarkers could correctly diag-
nose the GC from the 20 individuals. For this purpose, the four site-
specific glycans should be quantified from the MS data of these
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samples.We first investigated if these 4 glycans could be identified and
quantified from the 20 samples by using conventional identified-MS2-
based methods. As shown in Fig. 6a, two site-specific glycans (P01011-
N127-H7N6S2F2, P08185-N96-H7N6S3) were challenging to quantify,
with only 1 and 7 quantifiable values, respectively, across the 20 sam-
ples. Thus, the ratio calculation relies on interpolated values, which
may deviate significantly from the actual values and lead to inaccurate
diagnosis. We then examined whether these 4 glycans could be
quantified by the new method across 20 samples. The application of
library-based quantification led to a significant improvement in
quantitative performance, effectively fillingmost of theMVspresent in
the original quantifications. The aforementioned two glycans were
quantified in 16 data samples, and the other two glycans in the ratios
were quantified in all data samples, making the calculation of abun-
dance ratios more accurate and reducing the impact of MVs.

Then, the diagnosis performance of the selected ratios was eval-
uated using the new data from the verification cohort, using the best
diagnostic threshold (corresponding to the point in the upper left
corner of the blue ROC curve in Fig. 3f and h) obtained from the
discovery group results. The result indicated that the two abundance
ratios demonstrated excellent performance indetectingGCwhenused
individually—with 100% sensitivities—indicating that these two ratios
can make a completely correct diagnosis of disease samples (Fig. 6b,
c). On the other hand, the specificity and diagnostic accuracy of ratio 2
(70% and 85%) is higher than those of ratio 1 (50% and 75%), showing a
better performance on diagnosis as GC biomarker. Oppositely, serving
as a surveillance and diagnostic aid in GC, CEA is ineffective in accu-
rately diagnosing the health status of the samples (Fig. 6 and Supple-
mentary Table 12). Specifically, 19 out of 20 samples had CEA
concentration values below the diagnostic threshold, leading to their
classification as healthy samples. However, 9 of them are actually
cancer sample. If the diagnostic results are based solely on CEA con-
centration standards, almost all disease samples would be incorrectly
classified as negative, hindering their timely treatment.

It is worth noting that this new dataset was acquired nearly a year
after the discovery and validation datasets, with different instrument
states, utilizing the same type but different enrichment columns and
analytical columns, which indicated that some of the elution behavior
of glycopeptide precursors may differ significantly. However, the
library-based quantification still obtained deep coverage and con-
fident results, and the selected site-specific glycan abundance ratios
also demonstrated strong diagnostic abilities.

Several studies38,39 also conducted glycoproteomic analysis to
discover biomarker candidates for the diagnosis of cancer, and the
diagnostic efficacy of the marker candidates were evaluated by cal-
culating the AUC values in a dataset-dependent way using the dis-
covery and validation cohorts. That is, the optimal diagnostic results of
marker candidates were achieved by using distinct diagnostic thresh-
olds in different datasets. On the contrary, here in this study, the
diagnostic thresholds ofmarker candidates were derived from a large-
scale dataset and applied directly in verification samples. This strategy
offers greater practical value formarker’s clinical application. Also, the
high diagnostic accuracy of the discovered ratio biomarkers in
detecting GC using a fixed diagnostic threshold underscores the
robustness of the library-based virtual MBR quantification method,

and provides another aspect in investigating the protein glycosylation
alterations associated with disease.

Discussion
Due to the low interpretation rate of glycopeptide spectra and the
stochastic nature of DDA, the sensitivity for the qualitative and quan-
titative analysis of site-specific glycans at proteomics scale remains
poor. To address this problem, we developed GlyPep-Quant, a soft-
ware using a match-between-run (MBR) method to eliminate the MVs
between runs and a library-based virtual MBR strategy to enhance the
identification of glycopeptides without MS2 spectra for the newly
acquired dataset. We demonstrated that an over eightfold increase in
site-specific glycan identifications were achieved by using above
methods, comparing to conventional identified-MS2-based method.

For MBR, we employed a well-trained random forest model to
assess importances among individual features across different elution
profiles, assigning scores for evaluating result confidence. Being dif-
ferent from existing LFQ methods that indiscriminately extract all
peaks within a time window, GlyPep-Quant adopts the interpretability
of the random forest model over deep learningmodels, enabling us to
clearly discern the contributions of each selected feature. Based on the
model feature importance, we devised a two-step peak extraction
strategy that effectively implements an initial quality control step
during the peak extraction process, enhancing sensitivity and preci-
sion in quantification. The performance of GlyPep-Quant LFQ method
was benchmarked using several publicly available datasets and com-
pared to other state-of-the-art quantitative software tools, including
MSFragger-Glyco, Skyline and pGlycoQuant. GlyPep-Quant yielded a
higher number of quantified glycopeptides without any MVs.

For the library-based virtualMBR strategy,MS1 precursor features
are summarized according to theirm/z values and retention times, and
recorded in a library. Apex retention time of elution profiles from the
same precursors across different dataset were classified and clustered
by an unsupervised machine learning method, along with their iso-
topic distributions. Then, an MS1 feature library-based virtual match-
between-run process was conducted from the library to the newly
acquired single-file data. Since the features in the library were extrac-
ted from already identified glycopeptides from existing MS2 spectra
through database search, the search space of library-based MBR was
not as large as some other MS1-based identification methods40,41.
Moreover, to address the challenge of close yet discrete elution pro-
files generated by glycopeptide precursor isomers within a single
retention time window, we developed a dedicated MS1 feature cluster
matching algorithm using dynamic programming. This algorithm
enables precise and accurate matching of elution profiles from the
library. Following evaluation, the library-based quantification achieves
high confidence result and greatly increases the quantification cover-
age for single-file analysis.

Library construction fromMS2 identification andvirtualMBRwith
a newly acquired LC-MS/MS file are two key steps in this library-based
quantification method. To allow effective and accurate matching, all
LC-MS/MS runs for library construction and for the following identi-
fication through library-based virtual MBR should be acquired under
identical conditions, and the sample type (e.g., serum, cell lysate, tis-
sue lysate…) should be the same. To increase the library coverage, LC-

Fig. 4 | Workflow of library-based virtual match-between-run quantification
enables the identification and quantification of glycopeptides without
MS2 spectra in new acquired data. a Construction workflow of library used in
library-base identification and quantification by GlyPep-Quant. b Isotopic dis-
tributions and glycopeptide precursor information used in this example. Source
data are provided as a Source Data file. c Extracted elution profiles in the whole
retention timewindowof the precursor in (b). Source data are provided as a Source
Data file. d Scores, DP and match indexes matrices used in the MS1 feature cluster
matching algorithm, and the best matching path selected by the matching

algorithm. The cluster contains MS1 features I, II, and III, their corresponding
matchedprofiles are profile 3, 5, and6. Since feature II-profile 5 and III-profile 5 have
the highest score among feature II and III matches, if FC algorithm is not utilized,
then feature III-profile 6 cannot be obtained for its lower score. However, the score
of feature III-profile 6 match (0.896) is also high, andmore importantly, profile 6 is
the onewhich canbe extracted basedonGPSM identification,meaning it be correct
profile. These results show that FC algorithm can acquire more accurate and
comprehensive quantification, minimizing quantitative loss caused by precursors
of the same m/z eluting in different time regions.
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MS/MS runs for the same type of samples but with different physio-
logical or pathological conditions (e.g., healthy and disease) could be
aggregated to increase the types of glycopeptide identifications. It
should be stressed that currently GlyPep-Quant does not predict elu-
tion profiles or support library frompredicted elution profiles, and the
developed library-based MBR scheme only works for experimentally
built library. And the dataset used for library construction should be

representative, and the size of datasets should be controlled. A more
detailed discussion is provided in the Supplementary Note 11.

For isomers of glycopeptides, especially when the peptides are
the same but the structures of N-glycans are different, their masses
are basically the same and theymay elute at similar retention times; it
is difficult to distinguish such glycopeptides using only MS1 infor-
mation, so we quantify glycopeptides at the level of “glycan

Fig. 5 | Library-based virtual match-between-run quantification dramatically
improves the identification and quantification of glycopeptides for new
acquired data. aWorkflowof the evaluation process. AnMS1 feature library is built
using the features from the discoverydataset identifications, and applied to library-
based quantificationmethod on the verification dataset. b Bar plot of library-based
quantification sensitivity evaluation result. Upper: number of quantified site-
specific glycans (SSG) from library-based quantification. Bottom: number of

quantified site-specific glycans from conventional identified-MS2-based quantifi-
cation method. c Bar plot of library-based quantification confidence evaluation
result. Blue: the number of “theoretically matchable profiles” (profiles that can be
matched in both library-based quantification and MS2 identification). Orange: the
number of un-matched theoretically matchable profiles (profiles whose features
are preserved in the library and could also be directly identifiedbyMS2 spectra, but
not matched from library-based quantification).
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composition + peptide”, and the DP algorithm is also proposed to
solve the problem that information of such glycopeptides may be
missed or repeated during quantification. However, it cannot be
denied that the structural analysis of glycosylation is a research
direction of concern in glycoproteomics22,42,43, and we will continue
to work on the quantification of glycopeptides and the analysis of
glycan structures in glycopeptides, including the incorporation of
retention time prediction models44,45. If it is necessary to confirm and
analyze the structure of a glycopeptide in the quantitative results, we
currently recommend that researchers use targeted mass spectro-
metry scanning technology, such as selected reaction monitoring46

or parallel reaction monitoring47 to fragment specific precursor ions
and then use MS2 spectra for in-depth analysis.

Based on the accurate and sensitive quantifications, we reana-
lyzed datasets from previous large-scale glycoproteomic studies.
Through calculating site-specific glycan abundance ratios, we found
certain ratios with potential as disease biomarkers for diagnostic
purposes. The two selected glycan abundance ratios demonstrated
much better performance than the widely adopted marker for can-
cer surveillance, CEA, on the diagnosis of GC across two different
datasets. Additionally, by computing relative differences between
site-specific glycans, this approach has the potential to mitigate
biases introduced by variations in experimental/instrumental con-
ditions and protein abundance levels. Next, the diagnostic perfor-
mances of the selected site-specific glycan abundance ratios were
validated on a newly generated dataset, where missing value issues
were addressed using the library-based virtual MBR strategy.

Consequently, the two ratio biomarker candidates also exhibited
good performance in detecting disease in the new sample cohort,
with 100% sensitivity and up to 85% diagnosis accuracy. These
results emphasized the robustness of the library-based virtual MBR
quantification method, as well as the efficacy of the discovered ratio
biomarker candidates.

Currently, GlyPep-Quant is equipped with both LFQ-MBR and
library-based virtual MBR quantification strategies, and has been
integrated into our flagship software, Glyco-Decipher. We expect
GlyPep-Quant to have broad applications in large-scale glycopro-
teomic studies.

Methods
This clinical sample collection project was approved by the Ethic
Committee of the First Affiliated Hospital of the Fourth Military Med-
ical University, Xi’an, China (Approved NO. of ethic committee:
KY20192088-F-1). All participants received the written informed con-
sent. The research design and implementation were completely
adhered to the principles outlined in the Declaration of Helsinki.

Glycopeptide quantification by label-free quantification with
match-between-runs using GlyPep-Quant
Extraction of elution profiles. Firstly, elution profiles of identification
results (denote as “initial profiles”) are directly extracted using the
same method described in our previous article9. The elution profiles
are extracted after tracing the monoisotopic peak and up to +6
isotopic peaks.

Fig. 6 | Site-specific glycan ratio biomarkers allow the accurate diagnosis of
disease for individual samples. aHeatmap of quantification values of site-specific
glycan abundance ratios from library-based quantification and identified-MS2-
based quantification. b Scatter plot of CEA concentrations and site-specific glycan
ratios quantification values in different samples. CEA concentrations are acquired

from sample information, and site-specific glycan ratio quantification values are
obtained from library-based quantification. Source data are provided as a Source
Data file. c Sensitivity, specificity and diagnostic accuracy of CEA and the two site-
specific glycan ratios on these samples.
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Then, GlyPep-Quant navigates through the results, focusing on
the elution profile matches between those files. GlyPep-Quant initially
identifies and selects results uniquely obtained in file A, considering
glycan, peptide, glycosylated site, retention time, and charge for
quantification. Subsequently, a two-step method (see “extraction
method” below) is used to trace peaks with identical m/z values in File
B (as target elution profiles). Decoy profiles are generated by adding
3–20 Th to MS1 peaks in file B in a ± 2min retention time window. The
tolerance in extraction is ±10 ppm in this work except stated.

Confidence assessment of extracted profiles. Different features
(Supplementary Note 1) are computed for the target and decoy elution
profiles after the extractionprocess. A random forestmachine learning
model that has been trained beforehand applies these features to
scoring. For each target and decoy elution profiles, a score between 0
and 1 is calculated to estimate the confidence. All profiles are sorted in
the descending order of these scores, and the division of the number
of decoy elution profiles by the total number of elution profiles yields
the false quantitative rate (FQR). The FQR is calculated by:

FQR=
n Decoy Elution Prof iles in the Resultð Þ
n All Elution Prof iles in the resultð Þ ð1Þ

Target elution profiles in quantification results with FQRwithin 1%
are retained for further analysis.

Similarly, for the library-based MBR, the FQR is calculated by:

FQR=
n Decoy Elution Prof iles in the Resultð Þ
n All Elution Prof iles in the resultð Þ ð2Þ

Summary of quantification results. For the same data file, final
glycopeptide quantification results, which arewritten in the output file
“glycopeptide.csv”, are calculated by summing up the areas of initial
profiles from step (1) and target profiles obtained from step (2) for
glycopeptides with same sequences, modifications, glycans. The
results in “site.csv” are thequantification results for glycopeptideswith
same glycans and glycosites.

A random forest machine learning model for confidence
evaluation
Glyco-Decipher identification results from fourMS data files of human
serum were used for the establishment and training of machine
learning model. If one glycopeptide was identified in two data files (A
and B) at the same charge state, with retention time difference less
than 2min, the elution profiles of this glycopeptide were extracted in
these two files. Then the decoy profiles were obtained by the extrac-
tion of decoy peaks, which are generated by mass shifts (+3–20Th) of
the isotopic peaks ofglycopeptideprecursorwithin a ± 2min retention
timewindow. Similar decoy generationmethods have been adopted in
other researches16,18.

Ten features, including different types of similarities (Supple-
mentary Note 1), from these target-target and target-decoy elution
profile pairs were calculated to assess the similarities of extracted
elution profiles to initial profiles and theoretical isotopic distributions.

For the calculation of similarities, “stats.pearsonr” function in
SciPy48 Python package is used to obtain the Pearson Correlation
Coefficient. For two one-dimensional arrays of equal length, such as
isotopic distributions in a pair of elution profiles, where the similarity
between mono-peak and +1 or +2 peak distributions within an indivi-
dual profile is to be assessed, Pearson correlation coefficient can
directly be computed using this method. However, for two one-
dimensional arrays of different lengths, e.g., total intensity distribu-
tions along time axes for two profiles, prior to computing the Pearson
correlation coefficient, the shorter array is first resized to match the
length of the longer array using the “ndimage.zoom” function from the

SciPy package, which is primarily designed for image resizing and
scaling operations.

In the case of two two-dimensional arrays with matching lengths
along one dimension but differing lengths along the other (such as
similarity assessment between elution profile matrices), the same
procedure applies. First, the shorter array is interpolated to match the
length of the longer one by employing the “ndimage.zoom” method.
Subsequently, both arrays are flattened into one-dimensional arrays
before calculating their Pearson correlation coefficient.

In our analysis, we compute a multitude of similarity measures
between various isotopic peak distributions as features, primarily
focusing on the similarity in intensity distribution along the retention
time axis for different isotopic peaks. For instance, “iso_-
single_similar0” assesses the similarity in intensity profiles of mono-
peaks across the initial elution profile and its matched counterpart.
However, when the matched elution profile is derived from decoy
peaks (simulation of random matches), it often contains numerous
zero values, which can lead to one array being entirely composed of
zeros. This scenario poses a problem when computing Pearson cor-
relation coefficients because, during the calculation, the denominator
involves the standard deviation, which becomes zero when all array
values are zero, resulting in an undefined correlation coefficient (due
todivisionbyzero), typically represented asNanvalues. To circumvent
this issue and prevent it from affecting subsequent calculations, we
assign a value of −1 to these cases, signifying very low similarity within
the context of Pearson correlation coefficients.

Furthermore, to mitigate the influence of substantial zero values
on the accurate assessment of similarity, when calculating features
such as “iso_single_similar0”, “iso_single_similar1”, “iso_single_similar2”,
“mono&+1_similar”, “mono&+2_similar”, and “evidence_similar”, we
apply penalties to the computed Pearson correlation coefficient
between two arrays, arr1 and arr2, using the following formula:

Similarity=PearsonR arr1*arr2ð Þ � penalty1� penalty2 ð3Þ

Where

penalty1 =n 0 values in arr1ð Þ=length ðarr1Þ ð4Þ

penalty2 =n 0 values in arr2ð Þ=length ðarr2Þ ð5Þ

Specially, for the model feature “matrix_similar”, the calculation
process is:

For each glycopeptide precursor, we extract the intensity values
of itsmonoisotopic peak alongwith up to six additional isotopic peaks
(+1 to +6) from allMS1 spectrawithin the retention timewindow of the
GPSM identification. If signals are successfully extracted across m
MS1 spectra, the result is a two-dimensional matrix of shape (m × 7).

Since the number of MS1 scans (i.e., retention time points) may
differ between the two elution profiles–one derived from the GPSM
identification and the other from the MBR-matched result–the matri-
ces typically differ in their first dimension. However, if the two profiles
correspond to the same glycopeptide precursor, the underlying signal
patterns should be highly similar. To align them, we apply the “ndi-
mage.zoom” function from the SciPy48 library, which was originally
developed for image resizing and interpolation.

This function is used to rescale the matrix with fewer time points
so that its first dimension matches that of the longer matrix, while
preserving the overall signal pattern. After rescaling, bothmatrices are
flattened along the column (i.e., isotopic peak) dimension to produce
two one-dimensional vectors.

For example, consider two elution profile matrices with shapes
(9 × 7) and (8 × 7), representing 9 and 8 time points and 7 isotopic
peaks, respectively. We first rescale the (8 × 7) matrix to (9 × 7) using
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ndimage.zoom function, and then flatten both matrices column-wise
to obtain two (1 × 63) vectors. We then compute the Pearson correla-
tion coefficient between these vectors to quantify their similarity.

This operation is analogous to the flattening step in convolutional
neural networks, where 2D feature maps are passed into fully con-
nected layers, or a pooling layer is converted to a fully connected
layer49. By applying this process, we can approximate the similarity
between two elution profiles. Importantly, this correlation is only one
of the ten features we use to evaluate the similarity between matched
elutionprofiles. Ourmodel integrates thesediverse features to capture
similarity frommultiple perspectives, and our results demonstrate the
robustness and reliability of this approach.

After the calculation of these features, a random forest regressor
model in Scikit-Learn50 was trained to predict the confidence with a
vector in 1 × 10 size as input and a score in range (0,1) was given for
each profile. All target and decoy profiles were scored and sorted in
descending order. FQR was calculated as the ratio of decoy profiles in
total result under specific threshold. The final result was kept with
calculated FQR less than 1%.

For library-based MBR, the attributes: “time_diff”, “theo_similar”,
“iso_similar”, “iso_single_similar0”, “iso_single_similar1”, were used
trained another random forestmachine learningmodel to evaluate the
confidence of matched profiles.

A two-step elution profile selection method based on feature
importance in machine learning model
The elution profile extraction and selectionmethod in Glyco-Decipher
is as follows, and Supplementary Note 2:
(1) GlyPep-Quant finds the MS1 spectrum where the maximum

summed intensities of extracted precursor isotopic peaks in the
initial profile, and obtain the retention time t1 of this
MS1 spectrum. Then, for the MS1 spectra in a ± 2min retention
timewindow in thematchedMSdata, our software finds the one
whose retention time closest to t1, and where summed
intensities of isotopic peaks higher than 0. Suppose the
retention time of this MS1 spectrum be t2.

(2) From two directions (before or after t2), precursor isotopic
peaks in MS1 spectra in a ± 2min retention time window are
matched and selected, and the summed intensity of these peaks
for eachMS1 spectrum is calculated and recorded. This selection
process ends when the summed intensity drops below than 15%
of the maximum of these intensities, or there are over 5 con-
tinuous MS1 spectra with precursor peaks are missing.

(3) The isotopic similarity between the initial profile and extracted
profile from step (2) is calculated. If this similarity is higher than
0.15 (average of decoy profiles in the training set of random
forest model), this profile is applied to subsequent model pre-
diction, otherwise, this profile is discarded and new profile will
be selected from step (4).

(4) In the retention time window, the method in step (2) is used to
generate all possible extracted profiles from MS1 spectrum with
start retention time to the end. Then the similarities between initial
profile and these extracted profiles are calculated. The extracted
profile with highest similarity to the initial one is retained.

Benefit from the two-step elution profile extraction method and
well-trained machine learning model, confident quantitative results
areobtained, and the estimated FQR (0.93%) is lower than 1% threshold
and similar to that of pGlycoQuant (0.88%) result using the same
dataset and method.

Imputation method used in quantification results of large-
scale data
Similar to previous researches17,51, values for the imputation ofMVs are
obtained from a different Gaussian distribution compared to the

Gaussian distribution of all log2 valid quantification values. The
Gaussian function is generated using “stats” function in Scipy Python
package, and the all the quantification values in the same file are fitted
into aGaussiandistribution using “optimize” function. Afterfitting, the
standard deviation and themean value of the Gaussian function canbe
obtained, and a new distribution is generated with 0.5 in standard
deviation and a down-shift of 3.6 in mean compared to the previous
distribution. For all the MVs in the same file, values picked randomly
from the new Gaussian distribution are imputed. This imputation
method is applied to each file in this work.

Indicators used to measure the proportion of missing values:
PMVL and PMVT
PMVL (%) is defined as the percentage of quantified glycopeptides that
contain more than one missing value out of the total number of
quantified glycopeptides. PMVT (%) indicates the percentage of MVs
relative to the entirety of quantitation values. These indicators were
firstly proposed in the pGlycoQuant18 article.

Library construction in library-based quantification
The quantification library used in library-based quantification is com-
posed of different glycopeptide precursor MS1 features from identi-
fication and quantification of another before similar datasets.

For a previously acquired dataset, all elution profiles of glyco-
peptide precursors are extracted based on Glyco-Decipher identifica-
tions. The retention time of elution apex, together with the m/z values
and intensity distributions of isotopic peaks in the elution profiles, are
recorded in the library. The elution profiles with the same glycopep-
tide and charge state are grouped together. Since precursors with
same m/z and charge values can generate elution profiles in different
time area (discussed in Supplementary Note 9), to restore the original
features to the greatest extent, elution profile clustering algorithmwas
developed: different elution profiles with same precursor are firstly
separated into several clusters based on the retention time apex, using
the DBSCAN unsupervised clustering method. Then for each elution
profile in one category formed by clustering, the intensity distribution
of isotopicpeaks is normalized to0–1 scale, andnormalized again after
merging them together. The retention time of the “combined” library
elution profile is the time point obtained from clustering, and the m/z
values and glycopeptide information remained same with before.
Finally, these “combined” library elution profiles are recorded in the
quantification library for further analysis.

MS1 feature cluster matching algorithm used in the library-
based quantification
To precisely obtain matched profiles based on library features, in this
library-based quantification method: suppose one library elution pro-
file has a retention time T and m/z values [mz0, mz1,…mz6], GlyPep-
Quant will extract all the elution profiles whose isotopic peak m/z
values equals to those of library profile, in a specific time window
T±△t, and △t can be set by users. The one with the highest score
predicted by the newly trained machine learning model will be
retained and used for elution area calculation.

There are occasions where more than one elution profiles with
same precursor and different retention time both in the library and in
the actual data. These elution profiles may be formed by glycan and
glycopeptide isomers, for their precursors have same m/z values and
different retention behaviors. To deal with the problem that some
right results may be omitted in library-based quantification, we pro-
posed an “MS1 feature cluster matching” algorithm (simplified as FC
algorithm). For those MS1 features whose corresponding time win-
dowsoverlap, they are treated as a “MS1 feature cluster”. Togetherwith
the merged time window, this cluster, rather than individual features,
is used in matching with the profiles. Before explain the method, it is
necessary to claim some facts: though the retention time will shift in
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different data files, the elution order of specific glycopeptides is fixed;
identification and quantification of glycoproteomic results differ-
entiate in DDA data for acquisition characteristics and the low effi-
ciency of glycoproteomic identification, causing some MS1 features
cannotmatch with any profile, or some profiles might not be recorded
in the library. Hence, we develop this strategy based on two rules: (1)
The elution order of matched profiles must be consistent in MS1. (2)
The profile corresponding to specific MS1 feature may not appear in
the matched data, and there may be some profiles whose feature the
library does not record.

The detailed algorithm is shown in Fig. 4 and explained in Sup-
plementary Note 9. To avoid unnecessary calculation in brute-force
method where all possible MS1 feature-profile match combinations
should be considered, FC algorithm applied a special dynamic pro-
gramming method. Based on the predicted scores of feature-profile
matches, the best-scored path across the scoring table from bottom
right to top left. As shown in Fig. 4, the cluster containsMS1 feature I, II,
and III, their correspondingmatched profiles are profiles 3, 5, and 6. In
traditional process, since feature II-profile 5 and III-profile 5 have the
highest score among feature II and III matches, if FC algorithm is not
utilized, then feature III-profile 6 cannot be obtained for its lower
score. However, the score of feature III-profile 6 match (0.896) is also
high, and more importantly, profile 6 is one which can be extracted
based on GPSM identification, meaning it be correct profile. These
results show that FC algorithm can acquire more accurate and com-
prehensive quantification, minimizing quantitative loss caused by
precursors of the same m/z eluting in different regions. The detailed
computation process andpseudo code are provided in Supplementary
Tables 10 and 11, and thismethod can reduce the time complexity from
O(n ×mn) to O(n ×m2), where m and n are the number of potential
elution profiles in the retention time window, and the number of MS1
features in the specific cluster, respectively.

Experimental procedure and sample information
Chemicals and reagents. Trifluoroacetic acid (TFA), formic acid (FA),
Urea, ammonium bicarbonate (NH4HCO3), dithiothreitol (DTT),
iodoacetamide (IAA), and trypsin (bovine, TPCK-treated) were pur-
chased from Sigma (St. Louis, MO, USA). Acetonitrile (ACN, HPLC
grade) was purchased from Merk (Darmstadt, Germany). Deionized
water was purified by a Milli-Q system (Millipore, Milford, MA).

Clinical sample collection. This project was approved by the Ethic
Committee of the First Affiliated Hospital of the Fourth Military Med-
ical University, Xi’an, China (Approved NO. of ethic committee:
KY20192088-F-1). All participants received the written informed con-
sent. The research design and implementation were completely
adhered to the principles outlined in the Declaration of Helsinki. All
healthy individuals showed no signs of gastrointestinal tract cancer,
confirmed by serum biomarker screening and CT scans. Clinical serum
samples were collected from the biobank of Xijing Hospital. The GC
patients and HCs in the three cohorts (discovery, validation, and ver-
ification) were carefully matched by age and gender. The clinical
characteristics are outlined in Supplementary Table 8.

Intact N-Glycopeptide enrichment in the HRN platform. Five
microliters of individual human serum from GC patients, HCs were
diluted tenfold with 8M urea/0.1M NH4HCO3, followed by dena-
turation via reduction (20mM DTT at 37 °C for 2 h) and alkylation
(40mM IAA at 25 °C for 40min). The urea concentration in the
mixture was reduced to below 2M with 0.1M NH4HCO3, and pro-
teins were digested with trypsin at an enzyme-to-protein ratio of
1:50 (w/w) at 37 °C for 16 h. The resulting tryptic peptides were
desalted using Oasis HLB C18 cartridges (Waters) and then lyophi-
lized. Glycopeptide enrichment and MS analysis were performed on
intra-batch samples in random order to minimize bias. Intact

N-glycopeptides were enriched using an automated method6:
Briefly, the lyophilized tryptic peptides from 5 μL serum were dis-
solved in 0.1% TFA/80% ACN and automatically injected onto a HILIC
column at a flow rate of 0.2mL/min. After washing away the non-
glycopeptide fraction, the glycopeptide fraction was collected.
System washing and re-equilibration were performed before each
new sample injection, with the total enrichment cycle taking
approximately 20min per sample.

Microflow LC-MS/MS analysis in the HRN platform. The enriched
glycopeptides obtained from 5μL of serum were resuspended in 0.1%
FA buffer and analyzed using microflow LC-MS/MS. This was con-
ducted on an Ultimate 3000 LC system, coupled online to an Orbitrap
Exploris 480 mass spectrometer (Thermo Fisher Scientific, USA). Gly-
copeptide separation was performed on a commercial Acclaim Pep-
Map 100 C18 column (2μm particle size, 1mm inner diameter,
150mm, Thermo Fisher Scientific) with a flow rate of 50μL/min. The
column was kept at a temperature of 45 °C. The mobile phase con-
sisted of solution A (0.1% FA) and solution B (0.1% FA/80% acetonitrile).
The total 60min LC gradient was described as follows: held at 4% B for
0.5min, from4% to 9% B for 0.5min, from9% to 45%B for 51min, from
45% to95%B for 2min, heldon95%B for 4min to clean the system, and
finally return to 4% B for 2min to re-equilibration. The mass spectro-
meter was operated in DDAmode. Full scanMS spectra were acquired
over amass range of 350 to 1800m/z at a resolution of 60,000, with a
normalized AGC target of 300 and a maximum injection time (IT) of
25ms.MS/MS scans were carried out at a resolution of 30,000, using a
2m/z isolation window, with a normalized AGC target of 200 and a
maximum ITof 100ms.Glycopeptideswere fragmentedusing stepped
higher-energy collisional dissociation with normalized collision ener-
gies of 20%, 30%, and 40%.

Global parameters of Glyco-Decipher analysis
Unless otherwise stated, the parameters of Glyco-Decipher used in this
article are: precursor mass tolerance: 10 ppm; fragment mass toler-
ance: 20 ppm; enzyme: full trypsin digestion with three maximum
missed cleavages; carbamidomethylation (+57.022Da) at C was set as
fixed modification; and oxidation (+15.995Da) at M was set as variable
modification. False discovery rate (FDR) of glycopeptide spectrum
match (GPSM) was controlled to less than 1%.

The use of protein databases in various datasets: UniProt S.pombe
protein database (5149 entries) and Homo sapiens protein database
(20350 entries) are used for the identification search of yeast and
human serum data in the two-glycoproteome dataset. The protein
database consisting of proteins from Homo sapiens protein database
(20350 entries) and UniProt S. cerevisiae protein database (6721
entries) is used for the analysis of the mixed-organism dataset. Homo
sapiens protein database is used for the analysis of HeLa cell dataset.

The sources of data and software tools are listed in Supplemen-
tary Tables 13 and 14.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mixed-organism data from Yang et al. 23 were downloaded from
iProX52 partner repository with the dataset identifier PXD023980. Raw
data from Kong et al. 18 were downloaded from the MassIVE53 repository
with accession code MSV000089484 [https://massive.ucsd.edu/
ProteoSAFe/dataset.jsp?task=1587813df5934fbc8c1d1a6fd8479caf] (the
two-glycoproteome dataset, HeLa cell dataset, deglycan dataset). The
glycotransferase gene knockout sample dataset from Shen et al. 22 was
downloaded from PRIDE54 repository with identifier PXD025859. The
exoglycosidase-treatment sample dataset from Chen et al. 21 was
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downloaded from PRIDE54 repository with identifier PXD035158. The
gastric cancer dataset (discovery and validation dataset) from Liu et al. 7

were downloaded from JPOST55 repository with accession number
PXD036733. The results of other software except Glyco-Decipher were
also acquired in this repository. The information of other datasets, whose
results were shown in Supplementary Information, were described in
Supplementary Table 13. Thegastric cancer verificationdataset, all Glyco-
Decipher and GlyPep-Quant results are available in PRIDE with accession
number PXD057799. Source data are provided with this paper.

Code availability
GlyPep-Quant was developed in the Java and Python language, and has
been integrated into Glyco-Decipher. The standalone software Glyco-
Decipher package56 can be downloaded from: https://github.com/
DICP-1809/Glyco-Decipher.
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