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Generative AI enables medical image
segmentation in ultra low-data regimes

Li Zhang1, Basu Jindal1, Ahmed Alaa 2,3, Robert Weinreb 4, David Wilson 5,
Eran Segal 6,7, James Zou 8,9 & Pengtao Xie 1,10

Semantic segmentationofmedical images is pivotal in applications likedisease
diagnosis and treatment planning. While deep learning automates this task
effectively, it struggles in ultra low-data regimes for the scarcity of annotated
segmentation masks. To address this, we propose a generative deep learning
framework that produces high-quality image-mask pairs as auxiliary training
data. Unlike traditional generative models that separate data generation from
model training, ours uses multi-level optimization for end-to-end data gen-
eration. This allows segmentation performance to guide the generation pro-
cess, producing data tailored to improve segmentation outcomes. Our
method demonstrates strong generalization across 11 medical image seg-
mentation tasks and 19 datasets, covering various diseases, organs, and
modalities. It improves performance by 10–20% (absolute) in both same- and
out-of-domain settings and requires 8–20 times less training data than existing
approaches. This greatly enhances the feasibility and cost-effectiveness of
deep learning in data-limited medical imaging scenarios.

Medical image semantic segmentation1–3 is a pivotal process in the
modern healthcare landscape, playing an indispensable role in diag-
nosing diseases4, tracking disease progression5, planning treatments6,
assisting surgeries7, and supporting numerous other clinical
activities8,9. This process involves classifying each pixel within a spe-
cific image, such as a skin dermoscopy image, with a corresponding
semantic label, such as skin cancer or normal skin.

The advent of deep learning has revolutionized this domain,
offering unparalleled precision and automation in the segmentation of
medical images1,2,10,11. Despite these advancements, training accurate
and robust deep learning models requires extensive, annotated med-
ical imaging datasets, which are notoriously difficult to obtain9,12.
Labeling semantic segmentation masks for medical images is both

time-intensive and costly, as it necessitates annotating each pixel. It
requires not only substantial human resources but also specialized
domain expertise. This leads to what is termed as ultra low-data
regimes—scenarios where the availability of annotated training images
is remarkably scarce. This scarcity poses a substantial challenge to the
existing deep learning methodologies, causing them to overfit to
training data and exhibit poor generalization performance on test
images.

To address the scarcity of labeled image-mask pairs in semantic
segmentation, several strategies have been devised, including data
augmentation and semi-supervised learning approaches. Data aug-
mentation techniques13–16 create synthetic pairs of images and masks,
which are then utilized as supplementary training data. A significant
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limitation of these methods is that they treat data augmentation and
segmentation model training as separate activities. Consequently, the
process of data augmentation is not influenced by segmentation per-
formance, leading to a situation where the augmented data might not
contribute effectively to enhancing the model’s segmentation cap-
abilities. Semi-supervised learning techniques8,17–20 exploit additional,
unlabeled images to bolster segmentation accuracy. Despite their
potential, these methods face limitations due to the necessity for
extensive volumes of unlabeled images, a requirement often difficult
to fulfill in medical settings where even unlabeled data can be chal-
lenging to obtain due to privacy issues, regulatory hurdles (e.g., IRB
approvals), among others. Recent advancements in generative deep
learning21–23 have opened new possibilities for overcoming such chal-
lenges by generating synthetic data. Compared to traditional aug-
mentation methods, generative models have the potential to produce
more realistic and diverse samples. However, most existing data gen-
eration or augmentation approaches13–16 do not incorporate feedback
from the segmentation performance itself. Some recent studies24 have
proposed multi-level optimization (MLO) frameworks in which the
data generation process is guided by downstream tasks, such as clas-
sification. Yet, applying such optimization effectively to segmentation
tasks remains underexplored. Moreover, unlike semi-supervised seg-
mentation methods8,17–20, generative approaches have the advantage
of not requiring additional unlabeled data—an important benefit in
sensitive medical domains.

In this work, we introduce GenSeg, a generative deep learning
framework designed to address the challenges of ultra low-data
regimes in medical image segmentation. GenSeg generates high-
fidelity paired segmentationmasks andmedical images through aMLO
process directly guided by segmentation performance. This ensures
that the generated data not only meets high-quality standards but is
also optimized to improve downstreammodel training. Unlike existing
augmentation methods, GenSeg performs end-to-end data generation
tightly coupled with segmentation objectives; unlike semi-supervised
approaches, it requires no additional unlabeled images. GenSeg is a
versatile, model-agnostic framework that can be seamlessly integrated
into existing segmentation pipelines. We validated GenSeg across 11
segmentation tasks and 19 datasets spanning diverse imaging mod-
alities, diseases, and organs. When integrated with UNet1 and
DeepLab10, GenSeg significantly boosts performance in ultra low-data
settings (e.g., using only 50 training examples), achieving absolute
gains of 10–20% in both same-domain and out-of-domain (OOD)
generalization. Additionally, GenSeg demonstrates strong data effi-
ciency, matching or exceeding baseline performance while requiring
8–20 × fewer labeled samples.

Results
GenSeg overview
GenSeg is an end-to-end data generation framework designed to
generate high-quality, labeled data, to enable the training of accurate
medical image segmentationmodels in ultra low-data regimes (Fig. 1a).
Our framework integrates two components: a data generation model
and a semantic segmentation model. The data generation model is
responsible for generating synthetic pairs of medical images and their
corresponding segmentationmasks. This generated data serves as the
training material for the segmentation model. In our data generation
process, we introduce a reverse generation mechanism. This
mechanism initially generates segmentationmasks, and subsequently,
medical images, adhering to a progression from simpler to more
complex tasks. Specifically, given an expert-annotated real segmen-
tation mask, we apply basic image augmentation operations to pro-
duce an augmented mask, which is then inputted into a deep
generativemodel to generate the correspondingmedical image. A key
distinction of our method lies in the architecture of this generative
model. Unlike traditional models22,23,25,26 that rely on manually

designed architecture, our model automatically learns this archi-
tecture from data (Fig. 1b, c). This adaptive architecture enables more
nuanced and effective generation of medical images, tailored to the
specific characteristics of the augmented segmentation masks.

GenSeg features an end-to-end data generation strategy, which
ensures a synergistic relationship between the generation of data and
the performance of the segmentation model. By closely aligning the
data generation process with the needs and feedback of the segmen-
tation model, GenSeg ensures the relevance and utility of the gener-
ated data for effective training of the segmentationmodel. To evaluate
the effectiveness of the generated data, we first train a semantic seg-
mentation model using this data. We then assess the model’s perfor-
mance on a validation set consisting of real medical images, each
accompanied by an expert-annotated segmentation mask. The mod-
el’s validation performance serves as a reflection of the quality of the
generated data: if the data is of low quality, the segmentation model
trained on it will show poor performance during validation. By con-
centrating on improving the model’s validation performance, we can,
in turn, enhance the quality of the generated data.

Our approachutilizes aMLO24 strategy to achieve end-to-end data
generation. MLO involves a series of nested optimization problems,
where the optimal parameters from one level serve as inputs for the
objective function at the next level. Conversely, parameters that are
not yet optimized at a higher level are fed back as inputs to lower
levels. This yields a dynamic, iterative process that solves optimization
problems in different levels jointly. Ourmethod employs a three-tiered
MLO process, executed end-to-end. The first level focuses on training
the weight parameters of our data generationmodel, while keeping its
learnable architecture constant. This training is performed within a
generative adversarial network (GAN) framework22 (Fig. 1d), where a
discriminator network learns to distinguish between real and gener-
ated images, and the data generation model is optimized to fool the
discriminator by producing images that closely resemble real ones. At
the second level, this trained model is used to produce synthetic
image-mask pairs, which are then employed to train a semantic seg-
mentation model. The final level involves validating the segmentation
model using real medical images with expert-annotated masks. The
performance of the segmentation model in this validation phase is a
function of the architecture of the generationmodel. We optimize this
architecture by minimizing the validation loss. By jointly solving the
three levels of nested optimization problems, we can concurrently
train data generation and semantic segmentationmodels in an end-to-
end manner.

Our framework was validated for a variety of medical imaging
segmentation tasks across 19 datasets, spanning a diverse spectrum of
imaging techniques, diseases, lesions, and organs. These tasks com-
prise segmentation of skin lesions from dermoscopy images, breast
cancer from ultrasound images, placental vessels from fetoscopic
images, polyps from colonoscopy images, foot ulcers from standard
camera images, intraretinal cystoid fluid from optical coherence
tomography (OCT) images, lungs from chest X-ray images, and left
ventricles and myocardial wall from echocardiography images.

GenSeg enables accurate segmentation in ultra-low data
regimes
We evaluated GenSeg’s performance in ultra-low data regimes. We
conducted three independent runs for each dataset using different
random seeds. The reported results represent the mean and standard
deviation computed across these runs. GenSeg, being a versatile fra-
mework, facilitates training various backbone segmentation models
with its generated data. To demonstrate this versatility, we applied
GenSeg to two popular models: UNet1 and DeepLab10, resulting in
GenSeg-UNet and GenSeg-DeepLab, respectively. GenSeg-DeepLab
and GenSeg-UNet demonstrated significant performance improve-
ments over DeepLab and UNet in scenarios with limited data (Fig. 2a
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and Supplementary Fig. 1). Specifically, in the tasks of segmenting
placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot
ulcers, and breast cancer, with training sets as small as 50, 40, 40, 50,
50, and 100 samples respectively, GenSeg-DeepLab outperformed
DeepLab substantially, with absolute percentage gains of 20.6%, 14.5%,
11.3%, 11.3%, 10.9%, and 10.4%. Similarly, GenSeg-UNet surpassed UNet
by significant margins, recording absolute percentage improvements
of 15%, 9.6%, 11%, 6.9%, 19%, and 12.6% across these tasks. The limited
size of these training datasets presents significant challenges for

accurately training DeepLab and UNet models. For example, Dee-
pLab’s effectiveness in these tasks is limited, with performance varying
from 0.31 to 0.62, averaging 0.51. In contrast, using our method, the
performance significantly improves, ranging from 0.51 to 0.73 and
averaging 0.64. This highlights the strong capability of our approach
to achieve precise segmentation in ultra low-data regimes. Moreover,
these segmentation tasks are highly diverse. For example, placental
vessels involve complex branching structures, skin lesions vary in
shape and size, and polyps require differentiation from surrounding
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Fig. 1 | Proposed end-to-end data generation framework for improvingmedical
image segmentation in ultra low-data regimes. a Overview of the GenSeg fra-
mework. GenSeg consists of (1) a semantic segmentation model that predicts a
segmentation mask from an input image, and (2) a mask-to-image generation
model that synthesizes an image from a segmentation mask. The latter features a
neural architecture that is both learnable in structure and parameterized by
trainable weights. GenSeg operates through three end-to-end learning stages. In
stage I, thenetworkweights of themask-to-imagemodel are trainedwith realmask-
image pairs, with its architecture tentatively fixed. Stage II involves using the
trainedmask-to-imagemodel to synthesize training data. Real segmentationmasks
are augmented to create new masks, from which synthetic images are generated.
These synthetic image-mask pairs are used alongside real data to train the seg-
mentationmodel. In stage III, the trained segmentationmodel is evaluated on a real
validation dataset, and the resulting validation loss—which reflects the perfor-
mance of the mask-to-image model—is used to update this architecture. Following

thisupdate, themodel re-enters Stage I for further training, and this cycle continues
until convergence. b Searchable architecture of the mask-to-image generation
model. It comprises an encoder and a decoder. The encoder processes an input
mask into a latent representation using a series of searchable convolution (Conv.)
cells. The decoder employs a stack of searchable up-convolution (UpConv.) cells to
transform the latent representation into an output medical image. Each cell, as
shown in (c) contains multiple candidate operations characterized by varying
kernel sizes, strides, and padding options. Each operation is associated with a
weight α denoting its importance. The architecture search process optimizes these
weights, and only the most influential operations are retained in the final model.
d The weight parameters of the mask-to-image generator are trained within a
generative adversarial network (GAN) framework, inwhich a discriminator learns to
distinguish real images from generated ones, while the generator is optimized to
produce images that are indistinguishable from real images. All qualitative exam-
ples are sourced from publicly available datasets.
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mucosal tissue. GenSeg demonstrated robust performance enhance-
ments across these diverse tasks, underscoring its strong capability in
achieving accurate segmentation across different diseases, organs,
and imaging modalities.

GenSeg enables robust generalization in out-of-domain settings
Besides in-domain evaluation, where the test and training images were
from disjoint subsets of the same dataset, we also evaluated GenSeg’s
effectiveness in OOD scenarios, wherein the training and test images
originate from distinct datasets. The OOD evaluations were also con-
ducted in ultra low-data regimes, where the number of training
examples was restricted to only 9 or 40. Our evaluations focused on
two segmentation tasks: the segmentation of skin lesions from der-
moscopy images and the segmentation of lungs from chest X-rays. For
the task of skin lesion segmentation, we trained our models using 40
examples from the ISICdataset. Thesemodelswere then tested on two
external datasets, DermIS and PH2, to evaluate their performance
outside the ISIC domain. In the lung segmentation task, we utilized 9
training examples from the JSRTdataset and conducted evaluations on
two additional datasets, NLM-SZ and NLM-MC, to test the models’
adaptability beyond the JSRT domain. GenSeg showed superior OOD
generalization capabilities (Fig. 2b). In skin lesion segmentation,

GenSeg-UNet substantially outperformed UNet, achieving a Jaccard
index of 0.65 compared to UNet’s 0.41 on theDermIS dataset, and0.77
versus 0.56 on PH2. Similarly, in lung segmentation, GenSeg-UNet
demonstrated superior performance with a Dice score of 0.86 com-
pared to UNet’s 0.77 on NLM-MC, and 0.93 against 0.82 on NLM-SZ.
Similarly, GenSeg-DeepLab significantly outperformed DeepLab: it
achieved 0.67 compared to 0.47 on DermIS, 0.74 vs. 0.63 on PH2, 0.87
vs. 0.80 on NLM-MC, and 0.91 vs. 0.86 on NLM-SZ. Figure 3 and Sup-
plementary Fig. 7 visualize some randomly selected segmentation
examples. Both GenSeg-UNet and GenSeg-DeepLab accurately seg-
mented a wide range of disease targets and organs across various
imaging modalities with their predicted masks closely resembling the
ground truth, under both in-domain (Fig. 3a and Supplementary Fig. 7)
andOOD (Fig. 3b) settings. In contrast, UNet andDeepLab struggled to
achieve similar levels of accuracy, often producing masks that were
less precise and exhibited inconsistencies in complex anatomical
regions. This disparity underscores the advanced capabilities of Gen-
Seg in handling varied and challenging segmentation tasks. Supple-
mentary Fig. 8 presents several mask-image pairs generated by
GenSeg. The generated images not only exhibit a high degree of rea-
lism but also demonstrate excellent semantic alignment with their
corresponding masks. GenSeg’s superior OOD generalization

a b

Fig. 2 | GenSeg significantly boosted both in-domain and out-of-domain gen-
eralization performance, particularly in ultra low-data regimes. a The perfor-
mance of GenSeg applied to UNet (GenSeg-UNet) and DeepLab (GenSeg-DeepLab)
under in-domain settings (test and training data are from the same domain) in the
tasks of segmenting placental vessels, skin lesions, polyps, intraretinal cystoid
fluids, foot ulcers, and breast cancer using limited training data (50, 40, 40, 50, 50,
and 100 examples from the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID
datasets, respectively for each task), compared to vanilla UNet and DeepLab. b The
performance of GenSeg-UNet and GenSeg-DeepLab under out-of-domain settings

(test and training data are from different domains) in segmenting skin lesions
(using only 40 examples from the ISIC dataset for training, and theDermIS and PH2
datasets for testing) and lungs (using only 9 examples from the JSRT dataset for
training, and the NLM-MC and NLM-SZ datasets for testing), compared to vanilla
UNet and DeepLab. In all panels, bar heights represent the mean, and error bars
indicate the standard deviation across three independent runs with different ran-
dom seeds. Results from individual runs are shown as dot points. Source data are
provided as a Source Data file.
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capability stems from its ability to generate diverse medical images
accompanied by precise segmentation masks. When trained on this
diverse augmented dataset, segmentation models can learn more
robust and OOD generalizable feature representations.

GenSeg achieves comparable performance to baselines with
significantly fewer training examples
In comparing the number of training examples required for GenSeg
and baseline models to achieve similar performance, GenSeg con-
sistently required fewer examples. Figure 4 illustrates this point by
plotting segmentation performance (y-axis) against the number of
training examples (x-axis) for various methods. Methods that are clo-
ser to the upper left corner of the subfigure are considered more
sample-efficient, as they achieve superior segmentation performance
with fewer training examples. Across all subfigures, our methods
consistently position nearer to these optimal upper left corners com-
pared to the baseline methods. First, GenSeg demonstrates superior
sample efficiency under in-domain settings (Fig. 4a). For example, in
the placental vessel segmentation task, GenSeg-DeepLab achieved a
Dice score of 0.51 with only 50 training examples, a tenfold reduction
compared to DeepLab’s 500 examples needed to reach the same
score. In foot ulcer segmentation, to reach a Dice score around 0.6,

UNet needed 600 examples, in contrast to GenSeg-UNet, which
required only 50 examples, a twelve-fold reduction. DeepLab required
800 training examples for a Dice score of 0.73, whereas GenSeg-
DeepLab achieved the same score with only 100 examples, an eight-
fold reduction. In lung segmentation, achieving a Dice score of 0.97
required 175 examples for UNet, whereas GenSeg-UNet needed just 9
examples, representing a 19-fold reduction. Second, the sample effi-
ciencyof GenSeg is also evident inOOD settings (Fig. 4b). For example,
in lung segmentation, achieving an OOD generalization performance
of 0.93 on theNLM-SZ dataset required 175 training examples from the
JSRT dataset for UNet, while GenSeg-UNet needed only 9 examples,
representing a 19-fold reduction. In skin lesion segmentation, GenSeg-
DeepLab, trained with only 40 ISIC examples, reached a Jaccard index
of 0.67 on DermIS, a performance that DeepLab could notmatch even
with 200 examples.

GenSeg outperforms widely used data augmentation and
generation tools
We compared GenSeg against prevalent data augmentation methods,
including rotation, flipping, and translation, as well as their combina-
tions. Furthermore, GenSeg was benchmarked against a data genera-
tion approach27, which is based on the Wasserstein Generative

Image

Ground
truth

UNet

GenSeg
-UNet

DeepLab

GenSeg
-DeepLab

Placental vessel (FetReg) Skin lesion (ISIC) Polyp (CVC-Clinic)

Intraretinal cystoid fluid (ICFluid)

Image

UNet

GenSeg
-UNet

DeepLab

GenSeg
-DeepLab

Foot ulcer (FUSeg) Breast cancer (BUID)

Image

UNet

GenSeg
-UNet

DeepLab

GenSeg
-DeepLab

Image

UNet

GenSeg
-UNet

DeepLab

GenSeg
-DeepLab

Skin lesion (DermIS) Skin lesion (PH2)

Lung (NLM-MC) Lung (NLM-SZ)

a b

Ground
truth

Ground
truth

Ground
truth

Fig. 3 | GenSeg improves in-domain and out-of-domain generalization perfor-
mance across a variety of segmentation tasks covering diverse diseases,
organs, and imaging modalities. a Visualizations of segmentation masks pre-
dicted by GenSeg-DeepLab and GenSeg-UNet under in-domain settings in the tasks
of segmenting placental vessels, skin lesions, polyps, intraretinal cystoidfluids, foot
ulcers, and breast cancer using limited training data (50, 40, 40, 50, 50, and 100
examples from the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID datasets),

compared to vanilla UNet and DeepLab. b Visualizations of segmentation masks
predicted by GenSeg-DeepLab and GenSeg-UNet under out-of-domain settings in
segmenting skin lesions (using only 40 examples from the ISIC dataset for training,
and the DermIS and PH2 datasets for testing) and lungs (using only 9 examples
from the JSRT dataset for training, and the NLM-MC and NLM-SZ datasets for
testing), compared to vanilla UNet and DeepLab. All qualitative examples are
sourced from publicly available datasets.
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Adversarial Network (WGAN)28. For each baseline augmentation
method, the same hyperparameters (e.g., rotation angle) were con-
sistently applied to both the input image and the corresponding out-
put mask within each training example, resulting in augmented image-
mask pairs. GenSeg significantly surpassed these methods under in-
domain settings (Fig. 5a and Supplementary Fig. 2). For instance, in
foot ulcer segmentation using UNet as the backbone segmentation
model, GenSeg attained a Dice score of 0.74, significantly surpassing
the top baseline method, WGAN, which achieved 0.66. Similarly, in
polyp segmentation with DeepLab, GenSeg scored 0.76, significantly
outperforming the best baselines—Flip, Combine, and WGAN—which
scored 0.69. GenSeg also demonstrated superior OOD generalization
performance compared to the baselines (Fig. 5c and Supplementary
Fig. 3b). For instance, in UNet-based skin lesion segmentation, with 40
training examples from the ISIC dataset, GenSeg achieved a Dice score
of 0.77 on the PH2 dataset, substantially surpassing the best-
performing baseline, Flip, which scored 0.68. Moreover, GenSeg
demonstrated comparable performance to baseline methods with
fewer training examples (Fig. 5b and Supplementary Fig. 3a) under in-
domain settings. For instance, using only 40 training examples for skin
lesion segmentation with UNet, GenSeg achieved a Dice score of 0.67.
In contrast, the best performing baseline, Combine, required 200

examples to reach the same score. Similarly, with fewer training
examples, GenSeg achieved comparable performance to baseline
methods under OOD settings (Fig. 5c and Supplementary Fig. 3b). For
example, in lung segmentation with UNet, GenSeg reached a Dice
score of 0.93 using just 9 training examples, whereas the best per-
forming baseline required 175 examples to achieve a similar score.

GenSegoutperforms existing data augmentation andgeneration
techniques primarily due to its end-to-end data generation
mechanism. Unlike previous methods that separate data augmenta-
tion/generation from segmentation model training, our approach
integrates them end-to-end within a unified, MLO framework. Within
this framework, the validation performance of the segmentation
model acts as a direct indicator of the generated data’s usefulness. By
leveraging this performance to inform the training process of the
generation model, we ensure that the data produced is specifically
optimized to improve the segmentationmodel. In previousmethods,
segmentation performance does not impact the process of data
augmentation and generation. As a result, the augmented/generated
data might not be effectively tailored for training the segmentation
model. Furthermore, our framework learns a generative model that
excels in generating data with greater diversity compared to existing
augmentation methods.

a

b

Fig. 4 | GenSeg achieves performance on par with baseline models while
requiring significantly fewer training examples. a The in-domain generalization
performance of GenSeg-UNet and GenSeg-DeepLab with different numbers of
training examples from the FetReg, FUSeg, JSRT, and ISIC datasets in segmenting
placental vessels, foot ulcers, lungs, and skin lesions, compared to UNet and Dee-
pLab. b The out-of-domain generalization performance of GenSeg-UNet and
GenSeg-DeepLab with different numbers of training examples in segmenting lungs

(using examples from JSRT for training, and NLM-SZ and NLM-MC for testing) and
skin lesions (using examples from ISIC for training, and DermIS and PH2 for test-
ing), compared to UNet andDeepLab. In all panels, bar heights represent themean,
and error bars indicate the standard deviation across three independent runs with
different random seeds. Results from individual runs are shown as black triangles.
Source data are provided as a Source Data file.
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GenSeg outperforms state-of-the-art semi-supervised segmen-
tation methods
We conducted a comparative analysis of GenSeg against leading semi-
supervised segmentation methods18–20,29, including cross-teaching
between convolutional neural networks and Transformer (CTBCT)30,
deep co-training (DCT)29, and a mutual correction framework (MCF)31,
which employ external unlabeled images (1000 in each experiment) to

enhance model training and thereby improve segmentation perfor-
mance. GenSeg, which does not require any additional unlabeled
images, significantly outperformedbaselinemethods under in-domain
settings (Fig. 6a and Supplementary Fig. 4). For example, when using
DeepLab as the backbone segmentation model for polyp segmenta-
tion, GenSeg achieved a Dice score of 0.76, markedly outperforming
the top baseline method, MCF, which reached only 0.69. GenSeg also

a

b

c
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exhibited superior OOD generalization capabilities compared to
baseline methods (Fig. 6c and Supplementary Fig. 5b). For instance, in
skin lesion segmentation based onDeepLabwith 40 training examples
from the ISIC dataset, GenSeg achieved a Dice score of 0.67 on the
DermISdataset, significantly higher than the best-performing baseline,
MCF, which scored 0.58. Additionally, GenSeg showed performance
onparwith baselinemethods using fewer training examples in both in-
domain (Fig. 6b and Supplementary Fig. 5a) and OOD settings (Fig. 6c
and Supplementary Fig. 5b).

In the context of medical imaging, collecting even unlabeled
images presents a considerable challenge due to stringent privacy
concerns and regulatory constraints (e.g., IRB approval), thereby
reducing the feasibility of semi-supervisedmethods. Despite the useof
unlabeled real images, semi-supervised approaches underperform
compared toGenSeg. This is primarily because thesemethods struggle
to generate accurate masks for unlabeled images, meaning that they
are less effective at creating labeled training data. In contrast, GenSeg
is capable of producing high-quality images from masks, ensuring a
close correspondence between the images’ contents and the masks,
thereby efficiently generating labeled training examples.

GenSeg’s end-to-end generation mechanism is superior to
baselines’ separate generation
We compared the effectiveness of GenSeg’s end-to-end data genera-
tion mechanism against a baseline approach, Separate, which sepa-
rates data generation from segmentation model training. In Separate,
themask-to-image generationmodel is initially trained and then fixed.
Subsequently, it generates data, which is then utilized to train the
segmentation model. The end-to-end GenSeg framework consistently
outperformed the Separate approach under both in-domain (Fig. 7a
and Supplementary Fig. 6a) and OOD settings (Fig. 7b and Supple-
mentary Fig. 6b). For instance, in the segmentation of placental ves-
sels, GenSeg-DeepLab attained an in-domain Dice score of 0.52,
significantly surpassing Separate-DeepLab, which scored 0.42. In lung
segmentation using JSRT as the training dataset, GenSeg-UNet
achieved an OOD Dice score of 0.93 on the NLM-SZ dataset, con-
siderably better than the 0.84 scored by Separate-UNet.

GenSeg outperforms nnUNet across both in-domain and out-of-
domain scenarios
We compared GenSeg-UNet with nnUNet2 - a state-of-the-art method
for medical image segmentation - under both in-domain and OOD
settings acrossmultiple segmentation tasks.GenSeg-UNet consistently
outperformed nnUNet in these data-scarce scenarios (Fig. 8a, b). In in-
domain scenarios (Fig. 8a), GenSeg-UNet achieves 1–7% (absolute
percentages) higher performance scores across all tasks. In OOD eva-
luations (Fig. 8b), which involve more substantial distributional shifts,
GenSeg-UNet demonstrates even greater improvements across all
tasks, outperforming nnUNet by 5–16% (absolute percentages). For
instance, in the lung segmentation task, when trained on only 175
examples from the JSRT dataset and evaluated on the SZ dataset,
GenSeg-UNet achieves a Dice score of 94.5%, compared to 78.4% with
nnUNet—a substantial gain of 16.1%.

The superior performance of GenSeg over nnUNet in ultra-low data
regimes can be attributed to fundamental differences in their

augmentation strategies. nnUNet employs standard augmentation
techniques such as rotation, scaling, Gaussian blur, and intensity
adjustments, which, while effective in moderate- to large-scale data
settings, offer limited diversity and adaptability in severely data-
constrained scenarios. In contrast, GenSeg trains a deep generative
model that synthesizes diverse and semantically consistent image-mask
pairs tailored to the specific task and dataset. This generative augmen-
tation approach introduces significantly greater variability into the
training data, enabling the segmentation model to learn more robust
and generalizable representations. By aligning the data generation
process with segmentation performance through end-to-end MLO,
GenSeg ensures that the synthesized data is not only realistic but also
highly informative for improving downstream segmentation accuracy.

GenSeg improves the performance of diverse backbone
segmentation models
GenSeg is a versatile, model-agnostic framework that can seamlessly
integrate with segmentation models with diverse architectures to
improve their performance. For example, after applying our frame-
work on UNet and DeepLab, we observed significant enhancements in
their performance (Figs. 2–7), both for in-domain and OOD settings.
Furthermore, we also integrated this framework with a Transformer-
based segmentation model, SwinUnet32. Using just 40 training exam-
ples from the ISIC dataset, GenSeg-SwinUnet achieved a Jaccard index
of 0.62 on the ISIC test set. Furthermore, it demonstrated strong
generalization with OOD Jaccard index scores of 0.65 on the PH2
dataset and 0.62 on the DermIS dataset. These results represent a
substantial improvement over the baseline SwinUnet model, which
achieved Jaccard indices of 0.55 on ISIC, 0.56 on PH2, and 0.38 on
DermIS (Fig. 8c).

GenSeg improves 3D medical image segmentation
In addition to 2D medical image segmentation, GenSeg can be exten-
ded to support 3D segmentation tasks. To enable this, we adapted our
frameworkby incorporating 3DUNet33 as the segmentationmodel and
Pix2PixNIfTI34 as the generativemodel, facilitating joint generation and
segmentation in a 3D volumetric setting. We make the architecture of
the Pix2PixNIfTI model searchable by replacing the convolution and
transposed convolution layers in the original generator with our dif-
ferentiable convolutional and transposed convolutional cells. The
architecture parameters of the modified Pix2PixNIfTI model are opti-
mizedbyminimizing the segmentation losson the validation setwithin
our MLO-based framework. During training, the input 3D masks are
first augmented using rotation and flipping transformations, and the
generator then synthesizes 3D volumes from these augmented masks.
We evaluated this 3D extension on two datasets from the Medical
Segmentation Decathlon (MSD) challenge4, focusing on hippocampus
and liver segmentation tasks. Experimentswere conducted under both
ultra-low data settings (40 training volumes) and higher data settings
using the full available training sets (208 volumes for hippocampus
and 98 for liver).

GenSeg consistently improved segmentation performance over
thebaseline 3DUNet in both regimes (Fig. 8d). Notably, in theultra-low
data setting, GenSeg yielded substantial gains, demonstrating its
robustness and effectiveness in data-constrained 3D segmentation

Fig. 5 | GenSeg significantly outperformedwidely used data augmentation and
generation methods. a GenSeg’s in-domain generalization performance com-
pared to baseline methods, including Vanilla (without any data augmentations),
Rotate, Flip, Translate, Combine, and WGAN, when used with UNet or DeepLab in
segmenting placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot
ulcers, and breast cancer using the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and
BUID datasets. b GenSeg’s in-domain generalization performance compared to
baseline methods using a varying number of training examples from the ISIC
dataset for segmenting skin lesions, with UNet and DeepLab as the backbone

segmentation models. c GenSeg’s out-of-domain generalization performance
compared to baseline methods across varying numbers of training examples in
segmenting lungs (using examples from JSRT for training, and NLM-SZ and NLM-
MC for testing) and skin lesions (using examples from ISIC for training, and DermIS
and PH2 for testing), with UNet and DeepLab as the backbone segmentation
models. In all panels, bar heights represent the mean, and error bars indicate the
standard deviation across three independent runs with different random seeds.
Results from individual runs are shown as dot points. Source data are provided as a
Source Data file.
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tasks. These results confirm that GenSeg generalizes beyond 2D seg-
mentation and remains effective when applied to more complex 3D
volumetric data.

GenSeg is effective in high-data regimes as well
While GenSeg is designed to enable medical image segmentation in
ultra-low data regimes, we further investigated its effectiveness in

higher data settings. We conducted experiments on the ISIC, FetReg,
BUID, and CVC-Clinic datasets using UNet as the segmentation model.
Two training regimes were evaluated: (1) UNet-low and GenSeg-UNet-
low, trained under ultra-low data conditions with 40, 50, 100, and 40
training examples from the respective datasets; and (2) UNet-high and
GenSeg-UNet-high, trained using the full available training sets, con-
sisting of 1000, 2000, 400, and 400 examples, respectively.
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Fig. 6 | GenSeg significantly outperformed state-of-the-art semi-supervised
segmentation methods. a GenSeg’s in-domain generalization performance com-
pared to baseline methods, including Vanilla (UNet/DeepLab), CTBCT, DCT, and
MCF, when used with UNet or DeepLab in segmenting placental vessels, skin
lesions, polyps, intraretinal cystoid fluids, foot ulcers, and breast cancer utilizing
the FetReg, DermQuest, CVC-Clinic, ICFluid, FUSeg, and BUID datasets. bGenSeg’s
in-domain generalization performance compared to baseline methods using a
varying number of training examples from the ISIC and JSRT datasets for seg-
menting skin lesions and lungs, with UNet and DeepLab as the backbone

segmentation models. c GenSeg’s out-of-domain generalization performance
compared to baseline methods across varying numbers of training examples in
segmenting lungs (using examples from JSRT for training, and NLM-SZ and NLM-
MC for testing) and skin lesions (using examples from ISIC for training, and DermIS
and PH2 for testing), with UNet and DeepLab as the backbone segmentation
models. In all panels, bar heights represent the mean, and error bars indicate the
standard deviation across three independent runs with different random seeds.
Results from individual runs are shown as dot points. Source data are provided as a
Source Data file.
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Fig. 7 | GenSeg’s end-to-end data generation mechanism significantly out-
performed baselines’ separate generation mechanism. a The in-domain gen-
eralization performance of GenSeg, which performs data generation and
segmentation model training end-to-end, compared to the Separate baseline,
which performs the two processes separately, when used with UNet or DeepLab in
segmenting placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot
ulcers, andbreast cancer utilizing the FetReg, ISIC,DermQuest, CVC-Clinic, KVASIR,
ICFluid, FUSeg, and BUID datasets. b GenSeg’s out-of-domain generalization

performance compared to the Separate baseline in segmenting skin lesions (using
examples from ISIC for training, and DermIS and PH2 for testing) and lungs (using
examples from JSRT for training, and NLM-SZ and NLM-MC for testing), with UNet
and DeepLab as the backbone segmentation models. In all panels, bar heights
represent the mean, and error bars indicate the standard deviation across three
independent runs with different random seeds. Results from individual runs are
shown as dot points. Source data are provided as a Source Data file.
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As shown in Fig. 8e, several key observations emerge. First,
GenSeg-UNet-high outperforms UNet-high across all datasets,
demonstrating that GenSeg’s generative augmentation strategy
continues to provide benefits even in high-data regimes. Second, as
expected, segmentation performance improves for all models as the
training set size increases. Third, despite being trained on sig-
nificantly fewer examples, GenSeg-UNet-low achieves performance
that is often close to that of UNet-high, highlighting GenSeg’s

strength in data-scarce scenarios. These findings underscore the
versatility and effectiveness of the GenSeg framework across varying
data availability conditions. GenSeg consistently enhances segmen-
tation performance regardless of dataset size by integrating gen-
erative augmentation into an end-to-end, task-driven learning
paradigm. While particularly valuable in low-data regimes, GenSeg
also improves generalization in more data-rich settings by enriching
the training signal.
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Further improvement on ISIC and FetReg datasets
To further enhance GenSeg’s segmentation performance on challen-
ging datasets such as ISIC and FetReg, we conducted additional
experiments by incorporating several targeted strategies. These
included increasing the amount of training data, refining augmenta-
tion techniques, and employing a more proper segmentation back-
bone. For the ISICdataset (UNetwas used as the segmentationmodel),
we increased the number of training examples from 40 to 1000, which
led to an improvement in Jaccard score from 67.3% to 73.9% (Fig. 8f),
reaching a level considered satisfactory for binary segmentation tasks.
For the FetReg dataset, which presents unique challenges due to high
anatomical variability, low image contrast, and the complexity of pla-
cental vessel structures, we implemented three modifications: nar-
rowing the rotation augmentation range to (−5° to 5°), replacing UNet
with DeepLab as the segmentation model, and expanding the training
set size from 50 to 2000 examples. These adjustments resulted in a
significant performance gain, improving the Dice score to 71.7%
(Fig. 8f). These findings indicate that with sufficient data and appro-
priate architectural and augmentation refinements, GenSeg can
achieve high segmentation accuracy even in complex tasks.

Ablation study evaluating different mask-to-image
generative models
We conducted ablation studies to investigate how different choices of
mask-to-image generative models affect the final segmentation per-
formance. In addition to the GAN-based Pix2Pix model used in our
current framework, we evaluated two state-of-the-art alternatives:
Soft-Intro VAE35, a variational autoencoder (VAE)36–39 basedmodel, and
BBDM40, a diffusion-based generative model41. We integrated each
model into our GenSeg framework by using them to replace the ori-
ginal Pix2Pix mask-to-image generator. We modified both BBDM and
Soft-Intro VAE by incorporating our multi-branch convolutional cells
into their generator networks, to allow their architectures to be opti-
mized based on segmentation performance. We trained each model
using two strategies: (1) Separate, where the generative model is
trained independently and then fixed before segmentation model
training, and (2) End2End, our proposed MLO framework. Evaluation
was performed under both in-domain and OOD scenarios.

BBDM (End2End) achieved the highest performance across all
datasets, under both in-domain settings (Fig. 9a) and OOD settings
(Fig. 9b). The performance of Pix2Pix (End2End) and Soft-Intro VAE
(End2End) was comparable, with both trailing slightly behind BBDM.
However, BBDM incurs significantly higher computational cost and
model size compared to both Pix2Pix and Soft-Intro VAE under the
End2End strategy (Fig. 9c). Considering the trade-off between seg-
mentationperformance and computational efficiency, Pix2Pix remains
a practical and effective choice for our setting, particularly when
computational resources are limited. Furthermore, all three End2End
approaches consistently outperformed their respective Separate
counterparts, highlighting the advantage of jointly optimizing the
generative and segmentation models within an end-to-end training

framework. This result reinforces the central premise of GenSeg: that
aligning the data generation process with downstream segmentation
performance leads to more effective learning.

In addition, within the GAN family, we compared the Pix2Pix
model with two other GAN-basedmodels: SPADE42 and ASAPNet43. For
a fair comparison, we also made the generator architectures of these
models searchable by applying the multi-branch convolutional mod-
ification (Fig. 1c) to their generators. Pix2Pix and SPADE demonstrated
comparable performance, both significantly outperforming ASAPNet
(Fig. 9d). Thisperformancegapcanbe attributed to the superior image
generation capabilities of Pix2Pix and SPADE.

Ablation study investigating the impact of generating images
and masks jointly
In our current framework, image and mask generation is performed
using a two-step approach: we first generate augmented masks from
real masks using standard augmentation techniques, and then syn-
thesize images from the augmented masks using a mask-to-image
generative model. As an alternative, one can generate both the image
and the corresponding mask simultaneously44. To investigate which
strategy ismoreeffective,we comparedour two-step approachwith an
ablation setting referred to as Simultaneous, in which images and
masks are generated jointly using the WGAN-GP model28, integrated
within our framework when using UNet as the segmentationmodel. In
this setting, WGAN-GP takes a random noise vector sampled from a
Gaussian distribution as input and simultaneously produces a medical
image and its corresponding mask. To maintain architectural con-
sistency with our framework, we modified the original WGAN-GP by
replacing its convolutional layers with our multi-branch convolutional
cells. We then trained the model using our end-to-end optimization
strategy to ensure a fair comparison.

The two-step approach consistently outperforms the WGAN-GP-
based simultaneous generation method in both in-domain (Fig. 9e)
and OOD (Fig. 9f) settings. Notably, in the OOD evaluations—where 40
examples from the ISIC dataset were used for training and PH2 and
DermIS served as test sets—the two-step method achieved 12.1% and
8.9% higher performance, respectively.

The superior performance of the two-step approach over the
simultaneous generation method can be attributed to the explicit
conditioning and structural alignment enforced during the data gen-
eration process. In the two-step pipeline, segmentation masks are first
augmented and then used as conditioning inputs to guide the image
generation process. This explicit conditioning enables the mask-to-
image generation model to synthesize images that are tightly aligned
with the structural boundaries and semantics defined by the input
mask. As a result, the generated image-mask pairs exhibit high spatial
coherence and fidelity, which is crucial for effective segmentation
model training. In contrast, the simultaneous generation approach, as
implemented with WGAN-GP, synthesizes both the image and the
mask jointly without enforcing a strong pixel-wise correspondence
between the two outputs. This lack of explicit conditioning can lead to

Fig. 8 | GenSeg consistently enhances segmentation performance across
diverse tasks, domains, and data regimes. a GenSeg-UNet consistently outper-
forms nnUNet across a range of segmentation tasks under in-domain scenarios.
bGenSeg-UNet consistently demonstrates superior performance to nnUNet across
diverse segmentation tasks in out-of-domain settings. In the X-Y notation, X refers
to the training dataset and Y to the test dataset, where X and Y are from distinct
distributions. c GenSeg-SwinUnet outperforms SwinUnet, both trained on 40
examples from the ISIC dataset and evaluated on the test sets of ISIC, PH2, and
DermIS. d Extension of the GenSeg framework to 3D medical image segmentation
tasks under different training data regimes. “Hippo.-low” refers to training with an
ultra-low data setting for hippocampus segmentation, while “Hippo.-full” refers to
training with the full available dataset. The same settings are applied to the liver
segmentation task. e Comparison of model performance under ultra-low and high

data regimes. “UNet-low”denotes theUNetmodel trainedwith an ultra-low amount
of data,while “UNet-high” refers to themodel trainedwith the full available dataset.
The same training settings are applied to GenSeg-UNet. fGenSeg’s performance on
the ISIC and FetReg datasets can be further improved by employing several stra-
tegies, including increasing the number of training examples, using task-
appropriate segmentation models, and refining augmentation techniques. g The
runtime (in hours on an A100 GPU) of GenSeg-UNet was measured for lung seg-
mentation using JSRT as the training data and for skin lesion segmentation using
ISIC as the training data. In all panels (except g), bar heights represent the mean,
and error bars indicate the standard deviation across three independent runs with
different random seeds. Results from individual runs are shown as dot points.
Source data are provided as a Source Data file.
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weaker structural alignment, especially in low-data regimes where the
model may struggle to learn accurate joint representations. Specifi-
cally, it does not impose semantic constraints that guarantee the
generated masks accurately delineate regions of interest within the
corresponding images. This misalignment can reduce the effective-
ness of the generated data in training downstream segmentation
models.

The impact of mask augmentation operations on segmentation
performance
InGenSeg, the initial step involves applying augmentationoperations to
generate synthetic segmentation masks from real masks. We explored
the impact of augmentation operations on segmentation performance.

GenSeg, which utilizes all three operations—rotation, translation, and
flipping—is comparedagainst three specific ablation settingswhereonly
one operation (Rotate, Translate, or Flip) is used to augment themasks.
GenSeg demonstrated significantly superior performance compared to
any of the individual ablation settings (Fig. 10a). Notably, GenSeg
exhibited superior generalization on OOD data, highlighting the
advantages of integratingmultiple augmentation operations compared
to using a single operation. By combining various augmentation
operations, GenSeg can generate a broader diversity of augmented
masks, which in turn produces amorediverse set of augmented images.
Training segmentation models on this diverse dataset allows for learn-
ing more robust representations, thereby significantly enhancing gen-
eralization capabilities on OOD test data.

c d

ba

fe

Fig. 9 | Ablation studies on generative models and generation strategies in
GenSeg. a, b Ablation study evaluating the effectiveness of different generative
models - including Pix2Pix (GAN-based), BBDM (diffusion-based), and Soft-Intro
VAE (VAE-based) - under separate and end-to-end training strategies. Evaluations
were conducted under both in-domain (a) and out-of-domain (b) scenarios, using
UNet as the segmentationmodel. For out-of-domain scenarios, datasets are labeled
in the format X-Y, where X denotes the training dataset and Y denotes the test
dataset. c Comparison of training time (left) measured on an A100 GPU andmodel
size (right) for Pix2Pix, BBDM, and Soft-Intro VAE within our end-to-end training
framework, in skin lesion segmentation with 40 training examples from the ISIC
dataset when using UNet as the segmentation model. d Impact of mask-to-image

GAN models on the performance of GenSeg-UNet was evaluated on the test data-
sets of ISIC, PH2, and DermIS, in skin lesion segmentation. GenSeg-UNet was
trained using 40 examples from the ISIC training dataset. e, f Ablation study
comparing simultaneous image-mask generation with the two-step approach,
where masks are first augmented and then used to generate images. The two-step
strategy outperforms simultaneous generation. Experiments were conducted
under both in-domain (e) andout-of-domain (f) settings. In all panels (except c), bar
heights represent the mean, and error bars indicate the standard deviation across
three independent runs with different random seeds. Results from individual runs
are shown as dot points. Source data are provided as a Source Data file.
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Ablation study on elastic and deformable augmentations
Elastic and deformable augmentations have recently shownpromise in
enhancing medical image segmentation performance45. To evaluate
their effectiveness within our framework, we conducted an ablation
study assessing the impact of incorporating elastic augmentation into
the training pipeline when using UNet as the segmentation model.
Specifically, we compared the following three ablation settings: 91)
Without Elastic, using only our original set of augmentations (e.g.,
flipping, rotation, translation), (2) With Elastic, combining our original
augmentations with elastic augmentation, and 93) Only Elastic, using
elastic augmentation alone, without any other augmentations.

The combination of elastic and traditional augmentations (With
Elastic) resulted in modest performance improvements across both in-
domain (Fig. 10b) and OOD (Fig. 10c) settings. However, the Without
Elastic setting—using only our original traditional augmentations—con-
sistently outperformed the Only Elastic setting (Fig. 10b, c), which
applies elastic deformation alone, across all tasks. One possible expla-
nation is that elastic augmentation, when used in isolation,may result in
a narrower range of transformations, focusing primarily on localized
shape distortions. While such deformations can be beneficial in
mimicking anatomical variability, they may not capture broader
appearance and geometric changes—such as orientation, scale, or
intensity shifts—that traditional augmentations introduce. As a result,
relying solely on elastic transformations might limit the diversity of the
training data and reduce generalization. These results suggest that tra-
ditional augmentations provide a strong and versatile baseline, and that
combining them with elastic augmentations may offer additional bene-
fits depending on the dataset characteristics and task requirements.

Ablation study on the impact of rotation augmentation in pla-
cental vessel segmentation
In placental vessel segmentation, the orientation of vessels is highly
sensitive, raising concerns that rotation-based augmentations may be
unsuitable for such images. To investigate this, we conducted an
ablation study on two vessel segmentation datasets: FetReg and FPD,
each using 100 training examples. We tested the impact of different
degrees of rotation augmentation by comparing five settings: no
rotation, small-angle rotation (−5° to 5°), moderate rotation (−15° to
15°), large rotation (−30° to 30°), and very large rotation (−45° to 45°).

As shown in Fig. 10d, on the FPD dataset, all degrees of rotation
yielded better performance than the no-rotation baseline. On the
FetReg dataset, small-angle rotation (−5° to 5°) provided the best
performance, while increasing the rotation range gradually led to
performance degradation. These observations indicate that large-
angle rotations can distort vessel morphology and interfere with fine-
grained structural cues essential for accurate segmentation, particu-
larly in tasks requiring high spatial precision. On the other hand, small-
angle rotations appear beneficial. They introduce controlled variability
that helps improve model generalization without compromising ana-
tomical integrity. We hypothesize that such mild transformations
encourage robustness to minor viewpoint changes while still preser-
ving the spatial structure of vessels—an important consideration in
vascular imaging. In summary, our results confirm that vessel seg-
mentation tasks are sensitive to large rotational transformations,
which can negatively impact performance. However, mild rotations in
the range of −5° to 5° strike a balance between augmentation diversity
and structural preservation, leading to improved outcomes.

Ablation study on learnable multi-branch convolutions
To quantify the impact of the multi-branch design in Fig. 1c, we con-
ducted an ablation study involving three settings. In the first setting
(Single-branch), we trained a standard single-branch Pix2Pix generator
to synthesize images, which were then used to train the segmentation
model in a separate stage. In the second setting (Fixed Multi-branch),
we used a multi-branch Pix2Pix generator with branch weights (i.e., all

weights α in Fig. 1c) fixed to 1, also trained independently from the
segmentation model. In the third setting (Learnable Multi-branch),
which corresponds to our full GenSeg framework, the generator was
integrated into an end-to-end pipeline, where the branch weights α
were learned by minimizing segmentation loss on the validation set.
We evaluated all three configurations on three representative tasks:
skin lesion segmentation (ISIC dataset, 200 training examples),
intraretinal cystoid segmentation (ICFluid dataset, 50 training exam-
ples), and breast cancer segmentation (BUID dataset, 100 training
examples). As shown in Fig. 10e, the Fixed Multi-branch model con-
sistently outperformed the Single-branch model, demonstrating the
advantage of using multi-branch convolutions. Moreover, the Learn-
able Multi-branch model further improved performance, highlighting
the benefit of learning the branch weights in a task-adaptive manner.
To assess the statistical significance of these improvements, we con-
ducted two-sided paired t-tests on performance scores across three
tasks. As shown in Supplementary Table 2, eachmethodwas evaluated
over three independent training runswith different random seeds, and
pairwise comparisons were performed. Most p-values are below 0.05,
indicating that the performance gains from the multi-branch archi-
tecture—particularly the learnable variant—are statistically significant.

We attribute these improvements to the increased representa-
tional capacity of the multi-branch architecture, which enables the
generator to learn a more diverse set of features tailored to varying
spatial and structural characteristics across datasets. While the fixed
multi-branch design provides architectural flexibility, the learnable
version further strengthens performance by enabling end-to-end
optimization that aligns synthetic data generation with the segmen-
tation objective. In summary, this ablation study demonstrates that
learnable multi-branch convolutions significantly improve segmenta-
tion accuracy, demonstrating their role as an important micro-
architectural component of the GenSeg framework.

The impact of the tradeoff parameter γ on segmentation
performance
We investigated the effect of the hyperparameter γ in Eq. (2) on the
performance of our method. This parameter controls the balance
between the contributions of real and generated data during the
training of the segmentation model. Optimal performance was
observed with a moderate γ value (e.g., 1), which effectively balanced
the use of real and generated data (Fig. 10f).

Computation costs
Given that GenSeg is designed for scenarios with limited training data,
the overall training time is minimal, often requiring less than 2 GPU
hours (Fig. 8g). To enhance the efficiency of GenSeg’s training, weplan
to incorporate strategies from refs. 46,47 for accelerated GAN training
and implement the algorithm proposed in ref. 48 to expedite the
convergence of MLO. Importantly, our method does not increase the
inference cost of the segmentation model. This is because our
approach maintains the original architecture of the segmentation
model, ensuring that the Multiply-Accumulate (MAC) operations
remain unchanged.

Discussion
We present GenSeg, a robust data generation tool designed for gen-
erating high-quality data to enhance the training of medical image
segmentation models. Demonstrating superior in-domain and OOD
generalization performance across nine diverse segmentation tasks
and 19 datasets, GenSeg excels particularly in scenarios with a limited
number of real, expert-annotated training examples (as few as 50).
GenSeg substantially enhances sample efficiency, requiring far fewer
expert-annotated training examples than baseline methods to achieve
similar performance. This greatly reduces both the burden and costs
associated with medical image annotation.
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GenSeg stands out by requiring fewer expert-annotated real
training examples compared to baseline methods, yet it achieves
comparable performance. This substantial reduction in the need for
manually labeled segmentationmasks significantly cuts downboth the
burden and costs associated with medical image annotation. With just
a small set of real examples,GenSeg effectively trains a data generation
model which then produces additional synthetic data, effectively
mimicking the benefits of using a large dataset of real examples.

GenSeg significantly improves segmentation models’ OOD gen-
eralization capability. GenSeg is capable of generating diversemedical

images accompanied by precise segmentationmasks.When trained on
this diverse augmented dataset, segmentation models can learn more
robust and OOD generalizable feature representations.

GenSeg stands out from current data augmentation and genera-
tion techniques by offering superior segmentation performance, pri-
marily due to its end-to-end data generation mechanism. Unlike
previous methods that separate data augmentation/generation and
segmentation model training, our approach integrates them end-to-
end within a unified, MLO framework. Within this framework, the
validation performance of the segmentation model acts as a direct
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indicator of the generated data’s usefulness. By leveraging this per-
formance to inform the training process of the generation model, we
ensure that the data produced is specifically optimized to improve the
segmentation model. In previous methods, segmentation perfor-
mance does not impact the process of data augmentation and gen-
eration. As a result, the augmented/generated data might not be
effectively tailored for training the segmentationmodel. Furthermore,
our framework learns a generativemodel that excels ingeneratingdata
with greater diversity compared to existing augmentation methods.

GenSeg excels in surpassing semi-supervised segmentation
methods without the need for external unlabeled images. In the con-
text of medical imaging, collecting even unlabeled images presents a
significant challenge due to stringent privacy concerns and regulatory
constraints (e.g., IRB approval), thereby reducing the feasibility of
semi-supervised methods. Despite the use of unlabeled real images,
semi-supervised approaches underperform compared to GenSeg. This
is primarily because these methods struggle to generate accurate
masks for unlabeled images,meaning they are less effective at creating
labeled training data. On the other hand, GenSeg is capable of pro-
ducing high-quality images from masks, ensuring a close correspon-
dence between the images’ content and the masks, thereby efficiently
generating labeled training examples.

Our framework is designed to be universally applicable and
independent of specific models. This design choice enables it to aug-
ment the capabilities of a broad spectrum of semantic segmentation
models. To apply our framework to a specific segmentationmodel, the
only requirement is to integrate the segmentation model into the
second and third stages of our framework. This straightforward pro-
cess enables researchers and practitioners to easily utilize our
approach to improve the performance of diverse semantic segmen-
tation models.

GenSeg presents several limitations that warrant attention. First,
although GenSeg generates high-quality synthetic image-mask pairs,
its performancemay still be dependent on the quality and diversity of
the limited real-world training data available. If the small dataset used
to guide the generation process is highly biased or unrepresentative,
the synthetic data produced may inherit these biases, potentially
leading to suboptimal generalization on unseen cases. Additionally,
while GenSeg demonstrates strong OOD performance, its general-
ization capabilities may diminish when faced with divergent datasets
or imaging modalities that differ significantly from the training set.
Furthermore, although GenSeg does not require extensive unlabeled
data like semi-supervised methods, it still relies on a small set of
expert-annotated data to initiate the synthetic data generation pro-
cess,meaning that its utilitymaybe limited in cases where even a small
annotated dataset is difficult to obtain. Finally, the integration of
GenSeg into clinical workflows would require validation in real-world
settings to ensure that the synthetic data does not introduce artifacts
or inconsistencies that could affect diagnostic decisions. Addressing
these limitations in future iterations of GenSeg would be crucial for
broadening its applicability and improving its robustness in diverse
clinical environments.

Future research on GenSeg can progress in multiple directions. A
key area is improving synthetic data generation to better represent
complex anatomical structures and the variability inherent in diverse
imaging modalities. This could involve refining the MLO process to
capturefiner details or incorporating advanced neural architectures to
enhance the quality of synthetic images. Additionally, using generative
models that can learn from limited examples may help GenSeg gen-
eralize more effectively across a broader range of medical scenarios.
Another important direction is applying domain adaptation techni-
ques to improveGenSeg’s robustnesswhenencounteringdatasets that
diverge significantly from the training data, such as novel imaging
technologies or underrepresented patient populations. This would
ensure more reliable performance in real-world clinical settings.
Extending GenSeg’s capabilities beyond segmentation to tackle other
medical imaging challenges, like anomaly detection, image registra-
tion, ormultimodal image fusion, could further expand its utility. Such
developments would position GenSeg as a more versatile tool for
medical image analysis, addressing a wider array of diagnostic and
treatment planning needs. Furthermore, integrating feedback from
clinical experts into the synthetic data generation process could
increase its clinical relevance, aligning outputs more closely with
diagnostic practices. These research directions could enhance Gen-
Seg’s adaptability and effectiveness across diverse medical
imaging task.

An important consideration in evaluating the realism and utility of
generated masks is how their variability compares to inter-reader
variability observed in expert annotations. While our current study
does not include a direct comparison—due to the use of datasets with
only a single reference annotation per image—this is a valuable direc-
tion for future work. Qualitatively, we find that the augmented masks
produced by our generative model exhibit anatomically plausible and
semantically consistent variations, often resembling the natural
diversity seen across patients and imaging conditions. Quantitatively,
the consistent improvements in segmentation accuracy suggest that
these synthetic masks enrich the training set with meaningful varia-
bility. Nevertheless, a systematic comparison with inter-reader varia-
bility would provide deeper insights into the clinical realism of the
generated data. Incorporating multi-reader datasets in future evalua-
tions could help assess whether the diversity introduced by generative
augmentation aligns with the range of acceptable expert
interpretations.

In summary, GenSeg is a robust data generation tool that seam-
lessly integrates with current semantic segmentation models. It sig-
nificantly enhances both in-domain and OOD generalization
performance in ultra low-data regimes, markedly boosting sample
efficiency. Furthermore, it surpasses state-of-the-art methods in data
augmentation and semi-supervised learning.

Methods
Overview of GenSeg
GenSeg consists of a data generation model and a medical image
segmentation model. The data generation model is based on

Fig. 10 | Ablation studies of augmentation strategies, architectural compo-
nents, and parameter sensitivity in GenSeg. a (Left) Impact of augmentation
operations on the performance of GenSeg-UNet was evaluated on the test datasets
of JSRT, NLM-MC, and NLM-SZ, in lung segmentation. GenSeg-UNet was trained
using 9 examples from the JSRT training dataset. ALL refers to the full GenSeg
method that incorporates all three operations. (Right) Impact of augmentation
operations on the performance of GenSeg-UNet was evaluated on the test datasets
of ISIC, PH2, and DermIS, in skin lesion segmentation. GenSeg-UNet was trained
using 40 examples from the ISIC training dataset.b, cAblation study evaluating the
impact of elastic augmentation under in-domain (b) andout-of-domain settings (c).
In out-of-domain scenarios, datasets are denoted in the format X-Y, where X
represents the training dataset and Y the test dataset. UNet was used as the

segmentation model. d Ablation study evaluating the impact of rotation augmen-
tation on placental vessel segmentation using the FetReg and FPD datasets with
UNet as the segmentation model. e Ablation study on learnable multi-branch
convolutions, with UNet as the segmentationmodel. f (Left) Impact of the tradeoff
parameter γ on the performance of GenSeg-UNet on the test datasets of JSRT, NLM-
MC, and NLM-SZ, in lung segmentation with 9 examples from the JSRT training
dataset. (Right) Impact of the tradeoff parameter γ on the performance of GenSeg-
UNet on the test datasets of ISIC, PH2, andDermIS, in skin lesion segmentationwith
40 examples from the ISIC training dataset. In all panels (except f), bar heights
represent the mean, and error bars indicate the standard deviation across three
independent runs with different random seeds. Results from individual runs are
shown as dot points. Source data are provided as a Source Data file.
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conditional generative adversarial networks (GANs)49,50. It comprises
two main components: a mask-to-image generator and a dis-
criminator. Uniquely, our generator has a learnable neural
architecture51, as opposed to the fixed architecture commonly seen
in previous GAN models. This generator, with weight parameters G
and a learnable architecture A, takes a segmentation mask as input
and generates a corresponding medical image. The discriminator,
with learnable weight parameters H and a fixed architecture, differ-
entiates between synthetic and real medical images. The segmenta-
tion model has learnable weight parameters S and a fixed
architecture.

Data generation is executed in a reverse manner. Starting with an
expert-annotated segmentation mask M, we first apply basic image
augmentations, such as rotation, flipping, etc., to produce an aug-
mented mask bM. This mask is then fed into the mask-to-image gen-
erator, resulting in a medical image Îð bM,G,AÞ, which corresponds tobM, i.e., pixels in Îð bM,G,AÞ can be semantically labeled using bM. Each
image-mask pair ð̂Ið bM,G,AÞ, bMÞ forms an augmented example for
training the segmentation model. Like other deep learning-based
segmentationmethods, GenSeg has access to a training set comprised
of real image-mask pairs Dtr

seg = fIðtrÞn ,MðtrÞn g
Ntr

n= 1 and a validation
set Dval

seg = fIðvalÞn ,MðvalÞn g
Nval

n= 1.

A multi-level optimization framework for GenSeg
GenSeg employs aMLO strategy across threedistinct stages. The initial
stage focuses on training the data generation model, where we fix the
generator’s architectureA and train the weight parameters of both the
generator (G) and the discriminator (H). To facilitate this training, we
modify the segmentation training dataset Dtr

seg by swapping the roles
of inputs and outputs, resulting in a new dataset Dgan = fMðtrÞn , IðtrÞn g

Ntr

n= 1.
In this setup, MðtrÞn serves as the input, while IðtrÞn acts as the output for
our mask-to-image GAN model.

Let Lgan represent the GAN training objective, a cross-entropy
function that evaluates the discriminator’s ability to distinguish
between real and generated images. The discriminator’s goal is to
maximize Lgan, effectively separating real images fromgenerated ones.
Conversely, the generator strives to minimize Lgan, generating images
that are so realistic they become indistinguishable from real ones. This
process is encapsulated in the following minimax optimization pro-
blem:

G*ðAÞ,H* = argminG argmaxH LganðG,A,H,DganÞ, ð1Þ

where G*(A) indicates that the optimally trained generator G* is
dependent on the architectureA. This dependency arises becauseG* is
the outcome of optimizing the training objective function, which in
turn is influenced by A. A is tentatively fixed at this stage and will be
updated later. Otherwise, if we learn A by minimizing the training loss
Lgan, it may lead to a trivial solution characterized by an overly large
and complex architecture. Such a solution would likely overfit the
training data perfectly but perform poorly on unseen test data.

In the second stage, we leverage the trained generator to generate
synthetic training examples using the aforementioned process, where
expert-annotatedmasks are fromDtr

seg. Let bDðG*ðAÞ,Dtr
segÞ represent the

generated data. We then use bDðG*ðAÞ,Dtr
segÞ and real training data Dtr

seg

to train the segmentation model S by minimizing a segmentation loss
Lseg (pixel-wise cross-entropy loss). This training is formulated as the
following optimization problem:

S*ðAÞ= argminS LsegðS, bDðG*ðAÞ,Dtr
segÞÞ+ γLsegðS,Dtr

segÞ, ð2Þ

where γ is a trade-off parameter.
In the third stage, we assess the performance of the trained seg-

mentation model on the validation dataset Dval
seg. The validation loss,

LsegðS*ðAÞ,Dval
segÞ, serves as an indicator of the quality of the generated

data. If the generated data is of inferior quality, it will likely result in
S*(A)—trained on this data - performing poorly on the validation set,
reflected in a high validation loss. Thus, enhancing the quality of
generated data can be achieved by minimizing LsegðS*ðAÞ,Dval

segÞ w.r.t
the generator’s architecture A. This objective is encapsulated in the
following optimization problem:

minA LsegðS*ðAÞ,Dval
segÞ: ð3Þ

We can integrate these stages into a MLO problem as follows:

minA LsegðS*ðAÞ,Dval
segÞ

s:t S*ðAÞ= argminS LsegðS, bDðG*ðAÞ,Dtr
segÞÞ+

γLsegðS,Dtr
segÞ

G*ðAÞ,H* = argminG argmaxH LganðG,A,H,DganÞ

ð4Þ

In this formulation, the levels are interdependent. The output
G*(A) from the first level defines the objective for the second level, the
output S*(A) from the second level defines the objective for the third
level, and the optimization variable A in the third level defines the
objective function in the first level.

Architecture search space
To enhance the generation of medical images by accurately capturing
their distinctive characteristics, we make the generator’s architecture
searchable. Inspired by DARTS51, we employ a differentiable search
method that is not only computationally efficient but also allows for a
flexible exploration of architectural designs. Our search space is
structured as a series of computational cells, each forming a directed
acyclic graph that includes an input node, an output node, and inter-
mediate nodes comprising K different operators, such as convolution
and transposed convolution. These operators are each tied to a
learnable selection weight, α, ranging from 0 to 1, where a higher α
value indicates a stronger preference for incorporating that operator
into the final architecture. The process of architecture search is
essentially the optimization of these selection weights. Let Conv-xyz
and UpConv-xyz denote a convolution operator and a transposed
convolution operator respectively, where x represents the kernel size,
y the stride, and z the padding. The pool of candidate operators
includes Conv/UpConv-421, Conv/UpConv-622, and Conv/UpConv-
823, i.e., the number of operators K is 3. For any given cell i with input
xi, the output yi is determined by the formula yi =

PK
k = 1 αi, koi, kðxiÞ,

where oi,k represents the k-th operator in the cell, and αi,k is its corre-
sponding selection weight. Consequently, the architecture of the
generator can be succinctly described by the set of all selection
weights, denoted as A = {αi,k}. Architecture search amounts to learn-
ing A.

Optimization algorithm
We develop a gradient-basedmethod to solve theMLO problem in Eq.
(4). First, we approximate G*(A) using one-step gradient descent
update of G w.r.t LganðG,A,H,DganÞ:

G*ðAÞ � G0 =G� ηg∇GLganðG,A,H,DganÞ, ð5Þ

where ηg is a learning rate. Similarly, we approximateH* using one-step
gradient ascent update of H w.r.t LganðG,A,H,DganÞ:

H* � H0 =H+ηh∇HLganðG,A,H,DganÞ: ð6Þ

Then we plug G*ðAÞ � G0 into the objective function in the second
level, yielding an approximated objective. We approximate S*(A) using
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one-step gradient ascent update of Sw.r.t the approximated objective:

S*ðAÞ � S0 =S� ηs∇S LsegðS, bDðG0,Dtr
segÞÞ+

�

γLsegðS,Dtr
segÞ

�
:

ð7Þ

Finally, we plug S*ðAÞ � S0 into the validation loss in the third level,
yielding an approximated validation loss. We update A using gradient
descent w.r.t the approximated loss:

A A� ηa∇ALsegðS0,Dval
segÞ: ð8Þ

AfterA is updated, weplug it into Eq. (5) to updateG again. The update
steps in Eq. (5)–(8) iterate until convergence.

The gradient ∇ALsegðS0,Dval
segÞ can be calculated as follows:

∇ALsegðS0,Dval
segÞ=

∂G0

∂A
∂S0

∂G0
∂LsegðS0,Dval

segÞ
∂S0

, ð9Þ

where

∂G0

∂A
= � ηg∇

2
A,GLganðG,A,H,DganÞ, ð10Þ

∂S0

∂G0 = � ηs∇
2
G0 , S LsegðS, bDðG0,Dtr

segÞÞ+
�

γLsegðS,Dtr
segÞ

�
:

ð11Þ

Datasets
In this study, we focused on the segmentation of skin lesions from
dermoscopy images, lungs from chest X-ray images, breast cancer
from ultrasound images, placental vessels from fetoscopic images,
polyps from colonoscopy images, foot ulcers from standard camera
images, intraretinal cystoid fluid from OCT images, and left ventricle
and myocardial wall from echocardiography images, utilizing 19
datasets. Additionally, we extendedGenSeg to 3D image segmentation
and evaluated its effectiveness on two 3Dmedical imaging datasets for
hippocampus and liver segmentation. Each dataset was randomly
partitioned into training, validation, and test sets, with the corre-
sponding statistics presented in Supplementary Table 1. The number
of training examples was determined based on two considerations.
The first consideration is consistency with prior work. For well-
established benchmarks such as ISIC, we adopted low-data config-
urations used in previous studies to enable fair comparisons. For
example, in the skin lesion segmentation task, we followed the setup
used in SemanticGAN20. The second consideration is dataset-specific
complexity. For datasets without standardized low-sample training
protocols, we selected training set sizes based on task difficulty. Spe-
cifically, datasets involving more complex anatomical structures, high
intra-class variability, or low contrast typically required more training
samples to obtain stable performance. In contrast, datasets with sim-
pler and well-defined structures could be effectively learned using
fewer samples.

For skin lesion segmentation from dermoscopy images, we uti-
lized the ISIC201852, PH253, DermIS54, and DermQuest55 datasets. The
ISIC2018 dataset, provided by the International Skin Imaging Colla-
boration (ISIC) 2018 Challenge, comprises 2,594 dermoscopy images,
each meticulously annotated with pixel-level skin lesion labels. The
PH2 dataset, acquired at the Dermatology Service of Hospital Pedro
Hispano inMatosinhos, Portugal, contains 200dermoscopic images of
melanocytic lesions. These images are in 8-bit RGB color format with a
resolution of 768 × 560 pixels. DermIS offers a comprehensive collec-
tion of dermatological images covering a range of skin conditions,

including dermatitis, psoriasis, eczema, and skin cancer. DermQuest
includes 137 images representing two types of skin lesions: melanoma
and nevus.

For lung segmentation from chest X-rays, we utilized the JSRT56,
NLM-MC57, NLM-SZ57, and COVID-QU-Ex58 datasets. The JSRT dataset
consists of 247 chest X-ray images from Japanese patients, each
accompanied by manually annotated ground truth masks that
delineate the lung regions. The NLM-MC dataset was collected from
the Department of Health and Human Services in Montgomery
County, Maryland, USA. It includes 138 frontal chest X-rays, with
manual lung segmentations provided. Of these, 80 images represent
normal cases, while 58 exhibitmanifestations of tuberculosis (TB). The
images are available in two resolutions: 4020 × 4892 pixels and
4892 × 4020 pixels. The NLM-SZ dataset, sourced fromShenzhenNo.3
People’sHospital, Guangdong, China, contains 566 frontal chestX-rays
in PNG format. Image sizes vary but are approximately 3000 × 3000
pixels. The COVID-QU-Ex dataset, compiled by researchers at Qatar
University, comprises a large collection of chest X-ray images,
including 11,956 COVID-19 cases, 11,263 non-COVID infections, and
10,701 normal instances. Ground-truth lung segmentation masks are
provided for all images in this dataset.

For placental vessel segmentation from fetoscopic images, we uti-
lized the FPD59 and FetReg60 datasets. The FPD dataset comprises 482
frames extracted from six distinct in vivo fetoscopic procedure videos.
To reduce redundancy and ensure a diverse set of annotated samples,
the videos were down-sampled from 25 to 1 fps, and each frame was
resized to a resolution of 448×448 pixels. Each frame is provided with a
corresponding segmentation mask that precisely outlines the blood
vessels. The FetReg dataset, developed for the FetReg2021 challenge, is
the first large-scale, multi-center dataset focused on fetoscopy laser
photocoagulation procedures. It contains 2718 pixel-wise annotated
images, categorizing background, vessel, fetus, and tool classes, sourced
from 24 different in vivo TTTS fetoscopic surgeries.

For polyp segmentation from colonoscopic images, we utilized
the KVASIR61 and CVC-ClinicDB62 datasets. Polyps are recognized as
precursors to colorectal cancer and are detected in nearly half of
individuals aged 50 and older who undergo screening colonoscopy,
with their prevalence increasing with age. Early detection of polyps
significantly improves survival rates from colorectal cancer. The
KVASIR dataset was collected using endoscopic equipment at Vestre
VikenHealth Trust (VV) inNorway, which consists of four hospitals and
provides healthcare services to a population of 470,000. The dataset
includes images with varying resolutions, ranging from 720× 576 to
1920 × 1072 pixels. It contains 1000 polyp images, each accompanied
by a corresponding segmentation mask, with annotations verified by
experienced endoscopists. CVC-ClinicDB comprises frames extracted
from colonoscopy videos and consists of 612 images with a resolution
of 384 × 288 pixels, derived from 31 colonoscopy sequences. videos.

For breast cancer segmentation, we utilized the BUID dataset63,
which consists of 630 breast ultrasound images collected from 600
female patients aged between 25 and 75 years. The images have an
average resolution of 500 × 500 pixels. For foot ulcer segmentation,
we utilized data from the FUSeg challenge64, which includes over 1000
images collected over a span of two years from hundreds of patients.
The raw images were captured using Canon SX 620 HS digital cameras
and iPad Pro under uncontrolled lighting conditions, with diverse
backgrounds. For the segmentation of intraretinal cystoids from
Optical Coherence Tomography (OCT) images, we utilized the Intrar-
etinal Cystoid Fluid (ICFluid) dataset65. This dataset comprises 1460
OCT images along with their corresponding masks for the Cystoid
Macular Edema ocular condition. For the segmentation of left ven-
tricles and myocardial wall, we employed data examples from the
ETAB benchmark66. It is constructed from five publicly available
echocardiogram datasets, encompassing diverse cohorts and provid-
ing echocardiographies with a variety of views and annotations.
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For 3D medical image segmentation tasks, we utilized two data-
sets from the MSD challenge4: Task04 (hippocampus segmentation)
and Task03 (liver segmentation). The hippocampus segmentation task
focuses on segmenting the hippocampal region from single-modality
MR images. The hippocampus is a key brain structure involved in
memory formation, spatial navigation, and emotion processing. Ana-
tomically, it is often divided into anterior and posterior regions, each
associated with distinct cognitive and emotional functions. In our
experiments, we merged the anterior and posterior regions into a
single segmentation category. Thedataset includesMR scans from394
patients, officially split into 260 training and 131 test cases. Since test
annotations are not publicly available, we split the original training set
into training and test subsets using an 80:20 ratio. During training, the
training set was further split into training and validation sets, also with
an 80:20 ratio. The Task03 dataset for liver segmentation contains 201
contrast-enhanced CT scans from patients with primary liver cancers
and metastatic disease originating from colorectal, breast, and lung
cancers. Among these, 123 cases are officially designated for training.
We applied the same data-splitting strategy as used in the hippo-
campus dataset, resulting in 98 training cases and 25 test cases.

Metrics
For all segmentation tasks except skin lesion segmentation, we used
the Dice score as the evaluation metric, adhering to established con-
ventions in the field67. The Dice score is calculated as 2jA\Bj

jAj+ jBj, where A
represents the algorithm’s prediction and B denotes the ground truth.
For skin lesion segmentation, we followed the guidelines of the ISIC
challenge68 and employed the Jaccard index, also known as
intersection-over-union (IoU), as the performance metric. The Jaccard
index is computed as jA\BjjA∪Bj for eachpatient case. Thesemetrics provide
a robust assessment of the overlap between the predicted segmenta-
tion mask and the ground truth.

Hyperparameters
In our method, mask augmentation was performed using a series of
operations, including rotation, flipping, and translation, applied in a
random sequence. Themask-to-image generationmodel was based on
the Pix2Pix framework50, with an architecture that was made search-
able, as depicted in Fig. 1b. The tradeoff parameter γ was set to 1. We
configured the training process to perform 5000 iterations. The
RMSprop optimizer69 was utilized for training the segmentation
model. It was set with an initial learning rate of 1e–5, a momentum of
0.9, and a weight decay of 1e–3. Additionally, the ReduceLROnPlateau
scheduler was employed to dynamically adjust the learning rate
according to themodel’s performance throughout the training period.
Specifically, the scheduler was configured with a patience of 2 and set
to max mode, meaning it monitored the model’s validation perfor-
mance and adjusted the learning rate tomaximize validation accuracy.
For training the mask-to-image generation model, the Adam
optimizer70 was chosen, configuredwith an initial learning rate of 1e–5,
beta values of (0.5, 0.999), and a weight decay of 1e–3. Adamwas also
applied for optimizing the architecture variables, with a learning rate
of 1e–4, beta values of (0.5, 0.999), and weight decay of 1e–5. At the
end of each epoch, we assessed the performance of the trained seg-
mentation model on a validation set. The model checkpoint with the
best validation performance was selected as the final model. The
experiments were conducted on A100 GPUs, with each method being
run three times using randomly initialized model weights. We report
the average results along with the standard deviation across these
three runs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The skin lesion segmentationdata used in this study are available in the
ISIC, PH2 [https://www.fc.up.pt/addi/ph2The lung segmentation data
used in this study are available in the JSRT, COVID-QU-Ex [https://www.
kaggle.com/datasets/anasmohammedtahir/covidqu], NLM-MC, and
NLM-SZ [http://archive.nlm.nih.gov/repos/chestImages.php] data-
bases. The breast cancer segmentation data used in this study are
available in the BUID [https://www.kaggle.com/datasets/aryashah2k/
breast-ultrasound-images-dataset?select=Dataset_BUSI_with_GT] data-
base. The placental vessel segmentation data used in this study are
available in the FPD [https://www.ucl.ac.uk/interventional-surgical-
sciences/fetoscopy-placenta-data] and FetReg [https://www.ucl.ac.
uk/interventional-surgical-sciences/weiss-open-research/weiss-open-
data-server] databases. Thepolyp segmentationdata used in this study
are available in the KVASIR and CVC-Clinic [https://www.kaggle.com/
datasets/balraj98/cvcclinicdb] databases. The foot ulcer segmentation
data used in this study are available in the FUSeg [https://github.com/
uwm-bigdata/wound-segmentation/tree/master] database. The intrar-
etinal cystoid segmentation data used in this study are available in the
ICFluid [https://www.kaggle.com/datasets/zeeshanahmed13/
intraretinal-cystoid-fluid] database. The left ventricle and myocardial
wall segmentation data used in this study are available in the ETAB
database. The hippocampus and liver segmentation data used in this
study are available in the MSD [https://drive.google.com/drive/
folders/1HqEgzS8BV2c7xYNrZdEAnrHk7osJJ--2] database. Source data
are provided with this paper.

Code availability
The source code used in this study is available at https://github.com/
importZL/GenSeg and is archived at https://zenodo.org/records/
1542767171. GenSeg is licensed under the Apache 2.0 License72.
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