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PIP4K2C inhibition reverses autophagic flux
impairment induced by SARS-CoV-2
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John M. Dye11, Norma Neff 12, Peter K. Jackson 7, Benjamin A. Pinsky 1,6,
Tuomo Laitinen 13, Tatu Pantsar 13, Antti Poso 13, Fabio Zanini14,15,16,
Steven De Jonghe 10, Christopher R. M. Asquith 13 & Shirit Einav 1,12,17

In search for broad-spectrumantivirals, wediscover a smallmolecule inhibitor,
RMC-113, that potently suppresses the replication of multiple RNA viruses
including SARS-CoV-2 in human lung organoids. We demonstrate selective
inhibition of the lipid kinases PIP4K2C and PIKfyve by RMC-113 and target
engagement by its clickable analog. Lipidomics analysis reveals alteration of
SARS-CoV-2-induced phosphoinositide signature by RMC-113 and links its
antiviral effect with functional PIP4K2C and PIKfyve inhibition. We identify
PIP4K2C’s roles in SARS-CoV-2 entry, RNA replication, and assembly/egress,
validating it as a druggable antiviral target. Integrating proteomics, single-cell
transcriptomics, and functional assays, reveals that PIP4K2Cbinds SARS-CoV-2
nonstructural protein 6 and regulates virus-induced autophagic flux impair-
ment. Promoting viral protein degradation by reversing autophagic flux
impairment is a mechanism of antiviral action of RMC-113. These findings
reveal virus-induced autophagy regulation via PIP4K2C, an understudied
kinase, and propose dual PIP4K2C and PIKfyve inhibition as a candidate
strategy to combat emerging viruses.

Emerging viral infections pose major threats to human health. Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted
in over six million deaths. The incidence of mosquito-borne viral
infections, such as those caused by the flavivirus dengue (DENV) and
the alphavirus Venezuelan equine encephalitis virus (VEEV), has been
increasing, inpart due to globalwarming1. Thefiloviruses Ebola (EBOV)
and Marburg (MARV), causative agents of lethal hemorrhagic fever,
continue to cause outbreaks. No effective countermeasures are cur-
rently available for the majority of these and other emerging viral
infections. The current prevailing strategy—targeting viral factors by
direct-acting antivirals (DAAs)—is typically limited by a narrow-

spectrum coverage and the emergence of drug resistance. There is
thus a large unmet need for novel approaches, to be used individually
or with DAAs. Targeting cellular kinases exploited by multiple viruses
is one attractive approach to overcome these challenges and provide
readiness for future outbreaks2.

The phosphoinositide family consists of the membrane lipid
phosphatidylinositol (PI) and its seven phosphorylation products,
whose activity is tightly regulated by cellular kinases3. PI-3,5-bispho-
sphate [PI(3,5)P2] is generated through 5’-phosphorylation of PI-3-
monophosphate [PI(3)P] by PIKfyve (PI-3-phosphate 5-kinase) on late
endosomal/lysosomal and autophagic compartments4. PIKfyve
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inhibition depletes PI(3,5)P2, disrupting lysosomal function and caus-
ing lysosomal enlargement5. However, this effect is non-cytotoxic, as
shown by the favorable safety profile of apilimod in clinical trials for
inflammatory diseases6. PIKfyve is required for viral infections, and its
pharmacological inhibition suppresses viral entry (coronaviruses,
filoviruses) and/or egress (filoviruses, Lassa virus)7,8.

PI-4,5-bisphosphate [PI(4,5)P2] is formedvia4’-phosphorylationof
PI5P by three PI-5-phosphate 4-kinases: products of the PIP4K2A,
PIP4K2B, and PIP4K2C genes9. These isoforms, with sig-
nificant structure similarity, differ in enzymatic activity and subcellular
distribution10. Whereas PIP4K2A/B positively regulate autophagic flux,
PIP4K2C knockdown reduces levels of autophagy cargo proteins and
mutant huntingtin protein (mHTT), and positively regulates
mTORC110–12. Yet, PIP4K2C’s biology is poorly understood, its role in
viral infections is unexplored, and its therapeutic relevance remains
unknown.

Various viruses impair autophagic flux to support their
replication13–15. SARS-CoV-2 nonstructural 6 protein (NSP6) was shown
to bind a subunit of the vacuolar ATPase, disrupting lysosomal
acidification16. However, impaired autophagic flux is not currently
targeted as an antiviral strategy.

While optimizing inhibitors of the NUMB-associated kinase GAK
as an antiviral strategy17, we identified a novel small molecule inhi-
bitor, RMC-113, that did not suppress GAK activity. Here we discover
that RMC-113 selectively inhibits PIP4K2C and PIKfyve and sup-
presses the replication ofmultiple RNA viruses.We probe the roles of
these kinases in SARS-CoV-2 infection and the therapeutic potential
and mechanism of antiviral action of RMC-113. Our findings validate
PIP4K2C as a druggable antiviral target, beyond PIKfyve, demon-
strating its binding to NSP6 and regulation at various stages of the
SARS-CoV-2 life cycle, in part by controlling viral-induced autophagic
flux impairment, thereby suppressing viral protein degradation.
Moreover, our findings identify PIP4K2C and PIKfyve as the mole-
cular targets of RMC-113, with enhanced autophagic flux as its anti-
viral mechanism, proposing a candidate for broad-spectrum antiviral
development.

Results
RMC-113 demonstrates broad-spectrumantiviral activity in vitro
and in human adult lung organoid (ALO)-derived monolayers,
with a high genetic barrier to resistance
Structure-affinity relationship analysis of isothiazolo[4,3-b]pyridine-
based analogs for targeting GAK17 generated a 3,6-disubstituted ana-
log, RMC-113, which exhibited low affinity to GAK (Kd=7.6 µM) (Fig. 1a).
To determine the antiviral potential of RMC-113, we studied its effect
against SARS-CoV-2. Five-day treatment with RMC-113 dose-depen-
dently rescued Vero E6 cells constitutively expressing enhanced green
fluorescent protein (eGFP) from SARS-CoV-2-induced lethality (isolate:
Belgium-GHB-03021) (Fig. 1b–d). Similarly, RMC-113 dose-dependently
inhibited replication of wild-type (WT) SARS-CoV-2 expressing Nluc-
reporter (rSARS-CoV-2/Nluc (USA-WA1/2020 strain)) in human lung
epithelial (Calu-3) cells, as measured via plaque (EC50 = 0.13μM) and
luciferase (EC50 = 1.45μM) assays (Fig. 1e and Supplementary Fig. 1a).
RMC-113 also suppressed replication-restricted pseudovirus bearing
SARS-CoV-2 spike (S) protein (rVSV-SARS-CoV-2-S) in Vero cells
(EC50 = 1.8μM) (Supplementary Fig. 1b). No apparent effect on cellular
viability was measured at the concentrations used in infected and
uninfected cells via alamarBlue andCellTiter-Glo assays (CC50 > 20μM,
CC90 > 20μM) (Fig. 1e and Supplementary Fig. 1a–c). Beyond SARS-
CoV-2, RMC-113 dose-dependently inhibited the replication of the
vaccine strain of VEEV (TC-83) in human astrocytes (U-87 MG) via
luciferase assays (EC50 = 1.4 µM), DENV2 (EC50 = 1.4 µM) in human
hepatoma (Huh7) cells via plaque assays, and EBOV (EC50 = 5μM) and
MARV (EC50 = 7.8μM) in Huh7 cells via microneutralization assays,
without apparent cellular toxicity (Supplementary Fig. 1d–g).

To assess the barrier to resistance, SARS-CoV-2 was passaged in
TMPRSS2 expressing Vero E6 (Vero E6-TMPRSS2) cells in the presence
of RMC-113 at concentrations ranging between the EC50 and EC90

values or DMSO, and infectious viral titers were measured in culture
supernatants by plaque assays (Fig. 1f). No phenotypic resistance was
observed over nine passages (Fig. 1g). Furthermore, SARS-CoV-2 har-
vested following nine passages under RMC-113 treatment remained
susceptible to RMC-113 (Fig. 1h).

Next, we studied the effect of RMC-113 on SARS-CoV-2 infection in
human adult stem cell-derived lung organoid (ALO)-monolayers
composed of airway and alveolar cells18,19 (Fig. 1i). RMC-113 dose-
dependently suppressed SARS-CoV-2 replication measured in ALO
culture supernatants by plaque assays (EC50 = 0.15μM) and nucleo-
capsid (N) transcript expression measured in ALO lysates by RT-qPCR
(EC50 = 0.35μM), with CC90 > 10μM (Fig. 1j, k). Moreover, RMC-113
treatment nearly abolished SARS-CoV-2 nucleocapsid (N) expression,
as shown by confocal immunofluorescence (IF) analysis (Fig. 1l).

The observed activity of RMC-113 against several unrelated viruses
highlights its broad-spectrum potential, while its high resistance bar-
rier suggests it more likely targets cellular rather than viral functions.

RMC-113 selectively inhibits PIP4K2C and PIKfyve
To identify the putative cellular targets, we first conducted kinome
profiling in cell lysates treated with RMC-113 via multiplexed inhibitor
beads kinome profiling coupled with mass spectrometry (MIB/MS) on
224 kinases20. RMC-113 exhibited dose-dependent binding to PIKfyve,
PIP4K2A, PIP4K2B, and PIP4K2C, with low or no binding to other
kinases (Fig. 2a and Supplementary Fig. 2a). An orthogonal radiometric
kinase activity screening of 335-kinases, excluding PIKfyve and PIP4K2s,
measured no confirmed activity against any kinase, with an excellent
selectivity score (S(50) =0.003) at both 100nM and 1μM (Supple-
mentary Data 1). RMC-113 potently bound recombinant PIKfyve
(Kd=370 nM) and PIP4K2C (Kd=46nM) and suppressed the enzymatic
activity of PIKfyve (IC50 = 8 nM) (Fig. 2b–d). While no in vitro enzymatic
assay currently exists for PIP4K2C, cell-based target engagement ana-
lysis via live-cell NanoBRET assays21 revealed comparable activities on
PIP4K2C and PIKfyve (IC50 = 392 nM and IC50 = 300nM, respectively).
No kinase activity (IC50 > 10 µM) and lower affinity (Kd=1.7 µM) were,
however, measured on PIP4K2A and PIP4K2B, respectively (Fig. 2d).

To validate these targets, we designed a clickable analog, SRN2-
002, by adding a terminal alkynyl motif with an aziridine photoaffinity
group attached via an ethylene glycol linker, replacing the solvent-
exposed 3,4-dimethoxyphenyl moiety22 (Fig. 2e). SRN2-002 exhibited
potent activity on PIKfyve (in vitro: IC50 = 6.35 nM; cell-based:
IC50 = 462 nM) and moderate activity on PIP4K2C (in vitro:
Kd = 610 nM; cell-based: IC50 = 3210 nM) (Fig. 2d). SRN2-002 dose-
dependently suppressed SARS-CoV-2 infection in Calu-3 cells
(EC50 = 0.23 µM, CC50 > 20 µM), comparably to RMC-113 (Fig. 2f). We
confirmed the copper-catalyzed azide-alkyne cycloaddition CuAAC/
click reaction between SRN2-002’s alkyne and azide-biotin (Supple-
mentary Fig. 2b,c). Although kinome profiling via MIB/MS SRN2-002
exhibited dose-dependent loss in binding to PIKfyve but not to
PIP4K2C (Supplementary Fig. 3a), induced fit docking suggested
plausible binding of SRN2-002 to the ATP-binding site of both kinases
(Supplementary Fig. 3b,c) and that its reduced PIP4K2C activity may
result from the tighter environmentwith the solvent-oriented clickable
group. The approximately 13-fold difference in Kd values and 10-fold
difference in cellular IC50 values between the parent compound (RMC-
113) and the functionalized compound (SRN2-002) on PIP4K2C is likely
driven in part by the removal of the meta-methoxy group (present in
RMC-113 but not in SRN2-002).

To assess target engagement, SARS-CoV-2-infected A549-ACE2
cells were treated with SRN2-002 individually or along with (non-
clickable) RMC-113, followed byUV irradiation of cell lysates to bind the
click probe to targets, click reaction, pull-downwith streptavidin beads,
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and immunoblotting. SRN2-002 (5 µM) pulled down PIKfyve and
PIP4K2C, withminimal signal in non-UV irradiated samples. Addition of
RMC-113 dose-dependently reduced PIKfyve and PIP4K2C pull-down,
indicating effective competition and target engagement (Fig. 2g).

Collectively, these findings provide evidence that RMC-113 is a
cell-active dual inhibitor of PIP4K2C and PIKfyve.

RMC-113 displays comparable binding at the active site of
PIP4K2C and PIKfyve
To disclose the putative bindingmode of RMC-113 to these kinases, we
utilized molecular dynamics (MD) simulations23. Our microsecond

timescale simulations suggest stable binding to RMC-113 with both
PIKfyve and PIP4K2C in the ATP-binding site (Fig. 2h). Both kinases
showed comparable binding modes with RMC-113, maintaining a
constant hydrogen-bond with the hinge region throughout the simu-
lations (PIP4K2C: Met206; PIKfyve: Leu1940) (Fig. 2h–I). Two pheny-
lalanine residues located above and below the solvent-exposed region
accommodate the aromatic dimethoxyphenyl in the binding pocket
(PIP4K2C: Phe141, Phe207; PIKfyve: Phe1866, Phe1941). On the pyridyl-
endof themolecule,π–π stacking is observedwith anaromatic residue
(PIP4K2C: Phe185; PIKfyve: Tyr2037). A key difference in the interac-
tions of the solvent-exposed region between the kinases is the stable
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Fig. 1 | RMC-113 inhibits SARS-CoV-2 infection in vitro and in humanALOs with
a high genetic barrier to resistance. a Chemical structure of RMC-113. b Rescue
assay for virus-induced cell lethality. RMC-113 (10μM) was incubated with Vero E6-
eGFP cells for 20h followed by SARS-CoV-2 infection. eGFP signal measured at 96
hpi indicates cell survival. c and d Fluorescence images (c) and corresponding
graph (d) of Vero-eGFP cells rescued from SARS-CoV-2-induced lethality by RMC-
113 (Belgium-GHB-03021 strain, MOI = 0.05). Original magnification, ×5 (c). e and j,
Dose response to RMC-113 of SARS-CoV-2 infection [black, USA-WA1/2020 strain,
MOI = 0.05 (e), 1 (j)] and cell viability (blue) in Calu-3 cells (e) or ALO-derived
monolayer supernatants (j) via plaque and alamarBlue assays at 24 (e) or 48 (j) hpi,
respectively. f and i, Schematics of the experiments shown in g (f) and j, k, l (i),
respectively. Figure was created in BioRender. Karim, M. (2025) https://biorender.
com/2yx5sx9. g, Vero E6-TMPRSS2 cells were infectedwith rSARS-CoV-2-nLuc virus

(MOI = 0.05) and passaged daily under RMC-113 (0.1–0.3 μM) or DMSO over
nine passages. Viral titers weremeasured by plaque assays. h, Dose response to
RMC-113 of rSARS-CoV-2-nLuc virus harvested after nine passages under RMC-
113 or DMSO via luciferase assays. k Dose response to RMC-113 of SARS-CoV-2
(MOI = 1) nucleocapsid copy number in ALO lysates measured by RT-qPCR
assays at 48 hpi. l Confocal IF microscopy images of F-actin (violet), nucleo-
capsid (green), and DAPI (blue) in uninfected and SARS-CoV-2–infected ALOs,
pretreated with DMSO or RMC-113 (5 μM) at 24 hpi. Representative merged
images at x40 magnification are shown. Scale bars: 50 μm. Data shown are
representative of independent experiments (c, d, j, l) or represent combined
results from two (n = 2; e,g,h) or three (n = 3; k) independent experiments. Data
in e, h, j, and k are relative to DMSO. Means ± SD are shown. Source data are
provided as a Source Data file.
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interaction with Lys216 observed in PIP4K2C, but not in PIKfyve. RMC-
113 behaves similarly in complex with these kinases, with the one key
movementwithin the binding being an occasionalflipwith the solvent-
exposed dimethoxyphenyl-groups (Fig. 2i, j and Supplementary
Fig. 4a, b). The pyridyl-end of the molecule appears slightly more
stable with PIP4K2C, likely due to the direct hydrogen-bond interac-
tions via its nitrogen (Fig. 2k, l and Supplementary Fig. 4a, b). Notably,
both kinase domains display high flexibility in the simulations, high-
lighting their specific characteristics (Supplementary Fig. 4b–d).

Overall, these simulations imply stable bindingofRMC-113 to both
kinases, consistent with the experimental data.

PIKfyve and PIP4K2C are required for effective SARS-CoV-2
infection and are the molecular targets mediating the antiviral
effect of RMC-113
To define the molecular targets mediating RMC-113’s antiviral effect,
we assessed the effect of siRNAs targeting PIKfyve and PIP4K2C in
SARS-CoV-2-infected Calu-3 cells via plaque assays. Knockdown effi-
ciency was confirmed via RT-qPCR and immunoblotting (Fig. 3a–c),
and no cytotoxicity was observed (Fig. 3d and Supplementary
Fig. 5a). Depletion of PIKfyve and PIP4K2C suppressed SARS-CoV-2
replication by over 2 logs relative to a non-targeting (siNT) con-
trol (Fig. 3d).
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We assessed the requirement of these kinases by testing the
anti-SARS-CoV-2 effects of chemically distinct investigational
compounds targeting PIKfyve and/or PIP4K2C (Fig. 3e). Apilimod,
a selective PIKfyve inhibitor (in vitro: IC50 = 14 nM)4, dose-
dependently inhibited the replication of SARS-CoV-2 both in
Calu-3 cells (EC50 = 3.06 µM, CC50 > 20 µM), as reported7, and ALOs

(EC50 = 0.42 µM, CC50 > 10 µM) (Fig. 3f and Supplementary Fig. 5b-
d). TM-04-176-01, a selective PIP4K2C inhibitor (Kd=3.4 nM; cell-
based PIP4K2C: IC50 = 36.7 nM, PIKfyve: IC50 = 10,000 nM)24,
potently suppressed SARS-CoV-2 replication (EC50 = 0.6 µM,
CC50 > 20 µM) (Fig. 3f). THZ-P1-2 and CVM-05-002, inhibitors of
PIKfyve and PIP4K2C24,25, also inhibited SARS-CoV-2 infection
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(EC50 = 0.2 µM and EC50 = 1.04 µM, respectively), albeit THZ-P1-2
demonstrated greater cytotoxicity (CC50 = 16 µM) (Fig. 3f).

To verify that RMC-113’s antiviral mechanism is mediated, at least
in part, by inhibition of the kinase activity of PIKfyve and PIP4K2C, we
conducted “rescue” experiments in Vero cells infected with rVSV-
SARS-CoV-2-S. Ectopic expression of WT, but not catalytically inactive
PIKfyve (K1877E) and PIP4K2C (D280K) mutants or a control plasmid,
completely or partially reversed the effect of RMC-113 on viral entry
(Fig. 3g–i and Supplementary Fig. 5e–h).

A549-ACE2 cells expressing 2xFYVE, mCherry-fused PI3P marker,
showed cytosolic vacuolation and swelling of membrane structures,
positive for endosomal markers (EEA-1, Rab-7), upon RMC-113 and
apilimod treatment (Supplementary Fig. 5i–k), supporting PIKfyve
suppression without alteration of its subcellular distribution.

Unlike PIKfyve7, the functional relevance of PIP4K2C in viral
infections has not been previously demonstrated. These findings
provide genetic and pharmacological validation that PIP4K2C, beyond
PIKfyve, is a druggable antiviral target and a molecular target med-
iating the effect of RMC-113 on viral entry.

RMC-113 alters the phosphoinositide regioisomer signature by
advanced lipidomics analysis
To determine the impact of RMC-113 treatment on phosphoinositide
abundance, lipid extracts derived from uninfected and SARS-CoV-2-
infectedA549-ACE2 cells were subject to lipidomic analysis. Employing
phosphoinositide regioisomer measurement by chiral column chro-
matography and mass spectrometry (PRMC-MS)26, we comprehen-
sively profiled all eight PI classes and their acyl chain variants (defined
by carbon number and saturation level) (Fig. 3j, k). Seven phosphoi-
nositide classes (except for PI(3,4)P2) were detected in all tested con-
ditions. Upon SARS-CoV-2 infection, the abundance of multiple PI
classes was increased relative to uninfected samples, albeit with some
variability across independent experiments (Fig. 3l and Supplementary
Fig. 6a). This increase was most pronounced with the abundant acyl
chain (38:4) (Fig. 3l), yet a similar trend was observed with other acyl
chains (Supplementary Fig. 6b-e and Supplementary Data 2). Notably,
RMC-113 treatment in infected cells caused a 1.5-2-fold increase in the
abundance of PI3P and PI5P—the substrates of PIKfyve and PIP4K2C,
respectively (Fig. 3j)—relative to DMSO (Fig. 3m and Supplementary
Fig. 6f). Whereas the respective phosphorylated products, PI(3,5)P2
and PI(4,5)P2, were unaltered (likely due to intact activity of enzymes
not targeted by RMC-113, such as PIP4K (1A/1B/1 C)), the product-to-
substrate ratios of PIKfyve and PIP4K2C were reduced in both unin-
fected and infected cells upon RMC-113 treatment relative to DMSO
(Fig. 3j, m, n and Supplementary Fig. 6g). Similar results were observed
with other acyl chain variants (Supplementary Data 2).

These findings provide evidence that the antiviral effect of RMC-
113 is correlated with functional inhibition of PIP4K2C and PIKfyve
activities and propose modulation of virus-induced PI signature as a
candidate mechanism of antiviral action.

PIP4K2C is required for SARS-CoV-2 entry, RNA replication and
assembly/egress,whereasPIKfyve is required for viral entryonly
To pinpoint the steps of the viral life cycle impacted by RMC-113, we
conducted time-of-addition experiments. RMC-113 was added to Calu-
3 cells upon infection or at 2, 5, or 8 hpi with SARS-CoV-2 (Fig. 4a). Cell
culture supernatants were harvested at 10 hpi (corresponding to a
single viral replication cycle in Calu-3 cells), and infectious viral titers
were measured by plaque assays. RMC-113 treatment initiated upon
infection onset and maintained throughout the 10 h experiment
(0–10) suppressed viral infection by 99.5% relative to DMSO (Fig. 4b).
RMC-113 treatment during the initial 2 h of infection (0–2) suppressed
viral infectionby 79.4%, confirming aneffect onentryofWTSARS-CoV-
2 (beyond rVSV-SARS-CoV-2-S) (Fig. 4b and Supplementary Fig. 1b).
Following extensive washing at 2 hpi (to remove the viral inoculum),

addition of RMC-113 at 2, 5, and 8 hpi suppressed viral infection by 97,
96, and 69.3%, respectively, indicating inhibition at post-entry stages
(Fig. 4b). In contrast, apilimod suppressed SARS-CoV-2 replication
when added during the first two hpi, but not at later time
points (Fig. 4c).

RMC-113 dose-dependently suppressed intracellular SARS-CoV-2
N copy number (EC50 = 0.137μM) at 2 hpi of Calu-3 cells with a high-
inoculum virus relative to DMSO, as measured by RT-qPCR, validating
an effect on SARS-CoV-2 entry (Fig. 4d, e). Moreover, RMC-113 dose-
dependently inhibited the replication of in vitro transcribed RNA
encoding a nano-luciferase reporter-based SARS-CoV-2 subgenomic
replicon deleted for three structural proteins27 in Vero E6 cells. Similar
to ensitrelvir, albeit with a higher EC50 value (1.5 vs. 0.06 µM), this
effect reveals that RMC-113 also suppresses viral RNA replication
(Fig. 4f, g). In contrast, apilimod suppressed rVSV-SARS-CoV-2-S
pseudovirus infection (Fig. 4h, i), confirming its effect on SARS-CoV-2
entry, yet it dose-dependently increased viral RNA replication (Fig. 4j).
RMC-113 treatment initiated at a post-entry stage did not alter the
intracellular expression pattern of non-structural protein 6 (NSP6), its
colocalizationwith the ERmorphogenic protein RTN3—twomarkers of
double-membrane vesicles (DMV) biogenesis28—and the number of
NSP6-RTN3 colocalized puncta per cell relative to DMSO controls
(Supplementary Fig. 7a, b).

To probe the requirement for PIKfyve and PIP4K2C in viral entry
and RNA replication, we conducted the assays described above in cells
depleted for the individual lipid kinases by siRNAs (Fig. 4d, f). Deple-
tion of PIKfyve and PIP4K2C suppressed SARS-CoV-2 entry by 81.7 and
73.8%, respectively, relative to siNT as measured at 2 hpi by RT-qPCR
(Fig. 4d, k). Moreover, depletion of PIP4K2C, but not PIKfyve, sup-
pressed replication of the subgenomic replicon (Fig. 4f, l).

These findings pinpoint the role of PIKfyve specifically in SARS-
CoV-2 entry and the role of PIP4K2C in viral entry, RNA replication, and
assembly/egress. Concordantly, RMC-113, but not apilimod, sup-
presses temporally distinct stages of the SARS-CoV-2 life cycle.

RMC-113 reverses SARS-CoV-2-induced impairment of autopha-
gic flux and promotes viral protein degradation
To test the hypothesis that by suppressing PIP4K2C RMC-113 mod-
ulates autophagy, we studied its effect on autophagosome formation
and autophagic flux first via IF analysis of multiple single A549-ACE2
cells expressing the premo-GFP-RFP-LC3 reporter and stained for
SARS-CoV-2 N protein (Fig. 5a). Since GFP fluorescence is quenched in
the acidic lysosomes whereas RFP signal is stable, in this assay,
autophagosomes appear as yellow (RFP+/GFP+) and autolysosomes as
red (RFP+/GFP-) puncta (Fig. 5b and Supplementary Fig. 7c). Upon
SARS-CoV-2 infection, we measured a 2.4-fold increase in the number
of yellow puncta and a 1.2-fold decrease in the number of red puncta
relative to uninfected controls (Fig. 5c and Supplementary Fig. 7d). The
autophagic flux (autolysosome-to-autophagosome or red-to-yellow
puncta ratio) was 2.4 times lower in infected vs. uninfected cells
(Fig. 5c,d). Concurrently, the expression signals of p62 (autophagy
cargo) and LC3-II (mature autophagosome marker) were greater in
SARS-CoV-2-infected vs. uninfected (DMSO-treated) A549-ACE2 cells,
as measured via immunoblotting (Fig. 5e). These results provide evi-
dence that SARS-CoV-2 impairs autophagic flux, in agreement with
prior studies16,29. While ULK1 expression (an autophagy initiation
marker) was unchanged upon SARS-CoV-2 infection (Supplementary
Fig. 7e), prior studies reported variable effects of SARS-CoV-2 on
autophagy initiation, suggesting a dynamic regulation29,30.

RMC-113 treatment caused a 2-fold reduction in the number of
yellow puncta in SARS-CoV-2-infected cells, over a 5-fold increase in
the number of red puncta, and 7.6-fold increase in the autolysosome-
to-autophagosome ratio relative to DMSO in the IF analysis (Fig. 5c,d,
Supplementary Fig. 7d), revealing induction of autophagic flux.
Moreover, it caused a 2–5.2-fold and a 7.4–10.4-fold reduction in p62
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and LC3-II expression signals, respectively, in uninfected and SARS-
CoV-2-infected A549-ACE2 and VeroE6-TMPRSS2 cells, relative to
DMSO (Fig. 5e-g and Supplementary Fig. 7f-i), consistent with
enhanced autophagic degradation. In contrast, apilimod and

chloroquine (CQ), an inhibitor of autophagosome-lysosome fusion31,
moderately reduced the autolysosome number and the autolysosome-
to-autophagosome ratio relative to DMSO (Fig. 5c, d and Supplemen-
tary Fig. 7d). Moreover, the colocalization of LC3 with LAMP-1
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(lysosomal marker) was greater in GFP-RFP-LC3-expressing cells upon
treatment with RMC-113 than apilimod and CQ, suggesting increased
autophagosome-lysosome fusion by this compound (Supplemen-
tary Fig. 7j).

Next, we sought to determine whether the observed reduction in
yellow puncta and LC3-II upon RMC-113 treatment resulted solely from
increased autophagic flux or also from reduced autophagosome for-
mation and maturation. ULK1 expression levels were comparable in
RMC-113- andDMSO-treated cells (Supplementary Fig. 7e).Moreover, no

reduction in autophagosome maturation was observed under condi-
tionswhere autophagic degradationwas blocked: in fact, therewas a 2.5-
fold increase in LC3-II signal upon addition of RMC-113 two hours post-
treatment with a saturating concentration (10 µM) of CQ32 compared to
DMSO in SARS-CoV-2-infected cells (Fig. 5e and Supplementary Fig. 7g).
Comparable trends were observed, albeit with a greater magnitude,
when CQ was added for 4 (vs. 24) hours prior to cell lysis (Fig. 5e and
Supplementary Fig. 7f, g). These findings favor increased autophagy flux
over reduced autophagosome formation by RMC-113.
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To test the hypothesis that PIP4K2C-regulated impaired autop-
hagic flux impacts degradation of SARS-CoV-2 proteins, we measured
the effect of RMC-113 on the half-life of ORF3a and the non-structural
protein 3 (NSP3). RMC-113 treatment reduced the half-life of ectopi-
cally expressed ORF3a from >24 to 4 h and of NSP3 from >8 to 4.4 h in
A549-ACE2 cells relative toDMSO (Fig. 5h, i and Supplementary Fig. 7k,
l). Since measured in uninfected cells, this time-dependent reduction
inORF3a andNSP3 expression did not result from an effect of RMC-113
on viral replication, but rather on protein degradation.

These findings provide evidence that RMC-113, but not apilimod,
promotes autophagic degradation arrested by SARS-CoV-2 and this
effect is mediated by PIP4K2C (vs. PIKfyve) inhibition. Moreover, they
highlight reduced viral protein degradation as one mechanism by
which PIP4K2C promotes SARS-CoV-2 replication.

Virus-inclusive scRNA-seq (viscRNA-seq) analysis reveals tem-
poral SARS-CoV-2-induced autophagy signatures and partial
reversion by RMC-113
To determine whether the observed induction of autophagic degra-
dation by RMC-113 is accompanied by transcriptional regulation of
autophagy and/or lysosomal functions, we characterized the tran-
scriptional response to SARS-CoV-2 infection and RMC-113 treatment
in correlation with viral RNA (vRNA) abundance via viscRNA-seq
analysis33. Using PARSE technology in ALOs at 4 and 24 hpi and treat-
ment, we recovered 20,672 high-quality cells (Supplementary Fig. 8a)
and identified four major cell populations: alveolar epithelial type II
(AT2)-like, AT1-like, and basal-like cells, as well as NGFR-HOPX-CEA-
CAM6+ cells, likely representing various differentiation stages
(Fig. 5j,k). AT2-like cells were the main viral RNA-harboring cells
(VHCs) (Fig. 5l).

Gene ontology (GO) analysis of differentially expressed genes
(DEGs) in AT2-like cells revealed mTORC1 signaling, implicated in
autophagy regulation10,12, among the top-upregulated pathways upon
infection and RMC-113 treatment (Fig. 5m,n). We thus focused the
differential expression analysis on genes involved in autophagy and
lysosomal functions. At 4 hpi, AT2-like cells from SARS-CoV-2-infeced
ALOs exhibited downregulation of mTOR along with upregulation of
autophagy initiation genes (ULK1, ATG13, RB1CC1, BECN1) relative to
uninfected ALOs, and variable regulation of genes involved in elon-
gation and fusion, suggesting infection-induced autophagy initiation.
While a variable pattern was observed in uninfected ALOs, RMC-113
treatment of SARS-CoV-2-infected ALOs was associated with upregu-
lation of mTOR and elongation factors (e.g. SQSTM1, MAP1LC3B),
downregulation of BECN1, and variable regulation of fusion genes
relative to DMSO (Supplementary Fig. 8b).

At 24 hpi, AT2-like cells from SARS-CoV-2-infected ALOs demon-
strated mild upregulation of mTOR along with profound down-
regulation of multiple genes involved in autophagy initiation (ULK1,
ATG13, RB1CC1), elongation [ATG12, ATG16L1, MAP1LC3B (p62),

SQSTM1 (LC3-II), TAX1BP1] and fusion (LAMP2, ATG14, RAB7A,
PLEKHM1, VPS41) relative to uninfected ALOs. In uninfected ALOs,
RMC-113 treatment induced upregulation of genes involved in all
stages of autophagy, particularly elongation (MAP1LC3B, SQSTM1,
WDFY3, NBR1) and fusion [ATG14, RAB7A, PLEKHM1 andmember of the
SNARE (VAMP8) and HOPS (VPS41) complexes] relative to DMSO
(Fig. 5o). In SARS-CoV-2-infected ALOs, RMC-113 treatment resulted in
a more variable signature with upregulation of some elongation
(MAP1LC3B, SQSTM1,WDFY3) and fusion (PLEKHM1, GRABARAP) genes,
yet downregulation of others, as the SNARE (STX17, VAMP8) and HOPS
(VPS18, VSP33A, VSP41) complex genes, relative to DMSO (Fig. 5o).
Several genes including MAP1LC3B, SQSTM1, PLEKHM1, ATG14 and
WDFY3 demonstrated a pattern wherein expression level was down-
regulated upon SARS-CoV-2 infection (vs. no infection) in DMSO-
treated ALOs and upregulated in response to RMC-113 treatment
(Fig. 5p-r, and Supplementary Fig. 8c,d). The overall expression levels
of autophagy genes were slightly higher in VHCs than bystander cells
in both DMSO and RMC-113-treated ALOs (Supplementary Fig. 8e,f).

Downregulation of multiple genes involved in lysosomal func-
tions was observed at 24 hpi in infected vs uninfected ALOs. These
includedmembrane transporters, hydrolyses, multiple subunits of the
v-ATPase complex and genes involved in lysosomal biogenesis and
other functions (SupplementaryFig. 9). In contrast, RMC-113 treatment
induced upregulation of multiple genes in the same categories,
including membrane transporters (e.g. LAPTM4A, LMBRD1, LAMP1);
hydrolyses (e.g. CTSZ, GGH, GNS), and v-ATPase complex subunits
(Supplementary Fig. 9).

These findings indicate a transcriptional effect of SARS-CoV-2
infection on autophagic and lysosomal genes and propose partial
reversion of this phenotype as a potential mechanism of antiviral
action of RMC-113.

PIP4K2C binds SARS-CoV-2 NSP6 and regulates SARS-CoV-2-
induced impairment of autophagic flux
Repeating the functional autophagic flux experiments using a genetic
approach revealed that siRNA-mediated PIP4K2C depletion caused a
41.6% reduction in the number of yellow puncta along with a 31.4%
increase in the number of red puncta, and a 2.6-fold increase in the
autolysosome-to-autophagosome ratio relative to siNT control via IF
analysis of SARS-CoV-2- infected A549-ACE2 cells (Fig. 6a–c and Sup-
plementary Fig. 10a, b). A similar pattern was observed in uninfected
A549-ACE2 cells (Supplementary Fig. 10b, c). Concurrently, PIP4K2C
depletion caused a 1.3–4.2-fold reduction in p62 and LC3-II expression
signals relative to siNTcontrol asmeasuredby immunoblotting inboth
uninfected and SARS-CoV-2-infected A549-ACE2 cells (Fig. 6d-f).

In contrast, PIKfyve depletion did not significantly alter the
autolysosome-to-autophagosome ratio via IF analysis (Fig. 6a–c and
Supplementary Fig. 10a–c), yet it resulted in 2.1-6.6-fold increase inp62
and LC3-II expression signals relative to siNT in uninfected and SARS-

Fig. 5 | RMC-113 reverses SARS-CoV-2-induced impairment of autophagic flux
and accelerates viral protein degradation. a Schematic for c and d. b Autophagy
flux: from autophagosomes (yellow, RFP + /GFP + ) to autolysosomes (red, RFP
+/GFP-). Figure was created in BioRender. Karim, M. (2025) https://biorender.com/
yynkvs0. c, Representative confocal images (x40) of A549-ACE2 cells expressing
GFP-RFP-LC3, infected with SARS-CoV-2 (MOI = 0.5), treated with DMSO, RMC-113
(5μM), apilimod (5μM) or CQ (10μM) for 24h, and stained for nucleocapsid
(violet). Scale bars: 10μm. Zoomed-in images: autophagosomes (yellow); auto-
lysosomes (red). d, Autolysosome-to-autophagosome ratio in 70 single cells (c).
e–gAutophagymarker expression in uninfected andSARS-CoV-2-infected (MOI = 1)
A549-ACE2 lysates treated with RMC-113 (5 µM) and/or CQ (10 µM) or DMSO at 24
hpi via immunoblotting (e). Quantificationof p62/actin (f) and LC3II/actin (g) ratios
normalized to DMSO (n = 4 membranes). h and i, Representative membranes (h)
and quantification (i) (n = 3 membranes) showing ORF3A half-life in A549-ACE2
lysates after RMC-113 (5 µM) or DMSO treatment. j, Marker genes annotating cell

populations. Color: expression (cpm); dot size: expressing cell fraction. k and
l UMAP embedding of scRNA-seq dataset indicating distinct cell types (k) or SARS-
CoV-2 transcripts (l).m and n Pathway enrichment in AT2 cells infected vs. unin-
fected (m) andRMC-113 vs. DMSOtreated (n) ALOs.o, Heatmapof log2 fold-change
in autophagy-related genes between infected vs. uninfected (DMSO), RMC-113 vs.
DMSO (uninfected), and RMC-113 vs. DMSO (infected) AT2-like cells at 24 hpi. Black
rectangles: significant changes (Wilcoxon test). See Supplementary Fig. 8b.p–rBox
plots of gene expression in individual AT2 cells at 24 hpi. Horizontal lines indicate
quartiles; whiskers extend to ±1.5 × interquartile range. Adjusted P values (two-
sided Wilcoxon test, Benjamini-Hochberg correction). Data are representative of
independent experiments (c, e, h) or combined results from three (n = 3; d, i–r) or
four (n = 4; f,g) independent experiments.Means ± SDare shown (d, f,g, i). P values
by 1-way (d) or 2-way (i) ANOVA with Tukey’s (d) or two-tailed unpaired t-test (f, g)
or Šídák’s (i) multiple comparison test are indicated. ns= non-significant. Source
data are provided as Source Data file.
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CoV-2-infected A549-ACE2 cells (Fig. 6g–i), in agreement with prior
reports in uninfected cells12,34. Similar findings were observed with
siPIP4K2C and siPIKfyve in VeroE6-TMPRSS2 cells (Supplementary
Fig. 10d–j).

Lastly, to determine if PIP4K2C plays a direct role in SARS-CoV-2
infection, we screened for its interactions with 15 nonstructural
SARS-CoV-2 proteins and two accessory proteins—ORF3a, ORF7a—
shown to impair autophagosome-lysosome fusion in SARS-CoV-2
infected cells15 — via protein-fragment complementation assays
(PCAs). Plasmids encoding Gluc1-PIP4K2C and individual Gluc2-
tagged viral proteins were transfected pairwise into HEK-293T cells
followed by luciferase assays. A cutoff value of >2.2 SDs (corre-
sponding to normalized luminescence ratio (NLR) > 10) relative to a
random reference set composed of 15 noninteracting human protein
pairs35 was chosen as the threshold to define positive interactions.
PIP4K2C bound NSP3 and NSP6, whereas its co-expression with other
viral proteins yielded background-level signals (Fig. 6j). Additionally,
confocal microscopy analysis demonstrated colocalization of endo-
genous PIP4K2C with overexpressed Flag-tagged NSP6 in A549-ACE2
cells, with a mean Manders’ colocalization coefficient (M2: NSP6
overlapping PIP4K2C) of 0.56 (Fig. 6k,l).

We propose a model wherein PIP4K2C binds SARS-CoV-2 NSP6
and regulates impairment of autophagic flux by altering the phos-
phoinositide composition on autophagosomal and/or lysosomal
membranes (Fig. 6m). By acting on additional membranes, PIP4K2C
regulates temporally distinct viral life cycle stages. RMC-113 reverses
PIP4K2C-suppressed viral protein autophagic degradation, beyond
PIKfyve-mediated entry, thereby simultaneously targeting two key
pathways implicated in SARS-CoV-2 and other viral infections.

Discussion
There is an urgent need for novel antivirals to combat emerging viral
infections. Impaired autophagic flux, a conserved mechanism exploi-
ted by various viruses13–15, is not currently targeted directly by phar-
macological interventions (without inducing global autophagy).
Integrating biochemical, virologic, pharmacological, genetic, single-
cell transcriptomics, proteomics, and lipidomics approaches with
functional assays, we uncover PIP4K2C as a key regulator of SARS-CoV-
2 infection interacting with NSP6. We provide insight into the under-
lying mechanism: PIP4K2C regulates virus-induced autophagic flux
impairment, suppressing viral protein degradation. Moreover, we
reveal the therapeutic potential and mechanism of antiviral action of
dual inhibition of PIP4K2C and PIKfyve as a novel broad-spectrum
antiviral strategy.

We identified PIP4K2C, not previously implicated in viral infec-
tions, as a druggable antiviral target using a pharmacological probe,
RMC-113. We validate the requirement for PIP4K2C in SARS-CoV-2
infection genetically and with a chemically distinct selective PIP4K2C
inhibitor. Utilizing a panel of assays withWT SARS-CoV-2, pseudovirus
and subgenomic replicon, we show that PIP4K2C regulates viral entry,
RNA replication and an assembly/egress stage. Although not ubiqui-
tously expressed in all cell types and organs, its regulation at
temporally-distinct viral life cycle stages, likely facilitated by its pre-
sence on various membranes (plasma, autophagosomes, Golgi10),
highlights that PIP4K2C acts as a key regulator of SARS-CoV-2 infection
and an attractive candidate antiviral target.

The observed reduced p62 and LC3-II protein degradation and
autolysosome-to-autophagosome ratio upon SARS-CoV-2 infection
supports virus-induced autophagic flux impairment, as previously
reported in coronaviral infections15,29. Nevertheless, the cellular
mechanism that regulates this process remained unknown and
untargeted. We provide pharmacological and genetic evidence that
PIP4K2C is a key regulator of SARS-CoV-2-induced autophagic flux
impairment. Prior demonstration of reduced autophagy cargo
expression and mHTT aggregates upon PIP4K2C suppression indicate

a role in autophagy11,12, yet PIP4K2C is largely understudied, possibly
due to its low abundance and only recent development of pharma-
cological tools24,25. Phenotypically, we show a partially reversed tran-
scriptomic autophagy signature by viscRNA-seq upon RMC-113
treatment. Demonstrating reduced p62 and LC3-II protein expression,
along with an increased autolysosome-to-autophagosome ratio in
SARS-CoV-2-infected cells upon PIP4K2C suppression via siPIP4K2C or
RMC-113 (but not siPIKfyve or apilimod) treatment in two cell lines,
functionally validates PIP4K2C’s role in autophagic flux impairment.
Notably, we provide evidence that suppression of autophagic flux by
PIP4K2C, preventing degradation of some viral proteins, is a
mechanism by which PIP4K2C regulates SARS-CoV-2 replication.

The discovery that PIP4K2C binds NSP6 supports its direct role in
SARS-CoV-2 infection and suggests that it may regulate NSP6-
mediated functions, such as lysosomal deacidification via ATP6AP1
binding16. Probing PIP4K2C’s role in regulation of NSP6 and other
SARS-CoV-2 proteins shown to impair autophagosome-lysosome
fusion (ORF3a, ORF7a, NSP15)15 is a topic for future research. More-
over, although our IF analysis did not support the hypothesis that
PIP4K2C regulates NSP6-induced DMV formation28, additional work is
necessary to definitively test this hypothesis.

Our findings point to RMC-113 as a candidate antiviral for further
development. RMC-113 inhibits replication of RNA viruses from four
families: corona-, flavi-, alpha- and filoviruses. Moreover, passaging
SARS-CoV-2 under RMC-113 treatment does not select for escape
mutations, albeit the interpretationof thesedata in the absenceofDAA
controls (avoided to prevent gain of function mutations) is somewhat
limited.

We discovered that RMC-113 selectively inhibits PIP4K2C and
PIKfyve using cutting-edge biochemical technologies, MD simulation
and a clickable probe12. Moreover, we provide multiple lines of evi-
dence that modulating PIP4K2C’s and PIKfyve’s enzymatic activities is
an important antiviral mechanism of RMC-113. First, measuring
increased levels of PI5P—PIP4K2C’s substrate and a low-abundance,
least-studied phosphoinositide36, previously shown to induce
autophagy12—and PI3P by comprehensive lipidomics profiling, links
RMC-113’s antiviral effectwith suppression of PIP4K2C and PIKfyve and
modulation of autophagic flux12. Second, RMC-113mimics siPIP4K2C in
suppressing SARS-CoV-2 entry, RNA replication, and infectious virus
production, and in reversing the autophagic flux impairment. Third,
WT PIKfyve and PIP4K2C, but not their kinase-dead mutants, reverse
RMC-113’s anti-SARS-CoV-2 effect.

Extending previous findings29, the viscRNA-seq analysis on ALOs
reveals temporal regulation, with upregulation of autophagy genes at
SARS-CoV-2 entry followed by downregulation of autophagy and
lysosomal genes at 24 hpi. Among the genes downregulated in SARS-
CoV-2-infected relative to uninfected cells, yet upregulatedbyRMC-113
treatment, particularly in VHCs, are the elongation factors MAP1LC3B
(LC3B) as well as SQSTM1 and WDFY3, whose encoded proteins (p62
and ALFY) form a complex tethered to autophagosome membranes,
recruiting ubiquitinated protein aggregates37. Contrastingly, p62 and
LC3II protein levels increased following infection and decreased upon
RMC-113 treatment. Thus, while suppression of autophagic flux at the
protein level is a primary result of infection, cells might activate tran-
scriptional downregulation to compensate for these virus-induced
changes. Supporting this hypothesis, cells that controlled infection
(zero vRNA counts) suppressed SQSTM1 and WDFY3 expression more
than cells that failed to control infection (1+ viral counts).

The transcript levels of PLEKHM1 (facilitates autophagosome-
lysosome fusion by interacting with components of the HOPS and
SNARE complexes38) and GABARAP (a ubiquitin-like modifier on
autophagosomes to which PLEKHM1 binds) were also downregulated
in infected ALOs and upregulated upon RMC-113 treatment, yet with
no correlation with vRNA presence. It is tempting to speculate that by
reversing the autophagic flux impairment, RMC-113 promotes binding
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of ubiquitinated viral proteins, such as NSP6 and the nucleocapsid39,40,
to these cargo receptors and their degradation. The observed upre-
gulation of genes involved in lysosomal functions upon RMC-113
treatment offers additional exploratory paths.

Our findings suggest that simultaneous inhibition of PIP4K2C and
PIKfyve by RMC-113 may provide better protection over PIKfyve-only
inhibitors. Our results exclude a role for PIKfyve in post-entry stages,
extending prior findings that PIKfyve mediates SARS-CoV-2 entry7.
Moreover, while suppressing its role in endosomal functions is
protective7, we and others provide evidence that PIKfyve inhibition
mildly suppresses autophagic flux12,34, which could reduce the antiviral

effect. These findings may explain why siPIKfyve and apilimod had no
effect or even increased viral RNA replication, respectively, in our
replicon data, and why apilimod and two other PIKfyve inhibitors could
not achieve viral clearance and protection from SARS-CoV-2 infection
in mice41. The suboptimal pharmacokinetic profile of apilimod has also
limited its clinical development42, yet its excellent safety profile in
human clinical trials for inflammatory diseases, has de-risked PIKfyve as
a target6. While our data in ALOs are promising, the in vivo safety and
activity of PIP4K2C suppression remains to be determined. Developing
dual PIP4K2C/PIKfyve inhibitors may benefit conditions beyond viral
infections, including Huntington’s disease and cancer11,12,43.
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In summary, our study identifies PIP4K2C, an understudied
kinase, as a proviral factor required for SARS-CoV-2-mediated autop-
hagic impairment and validates it as a druggable antiviral target. We
propose dual inhibition of PIP4K2C and PIKfyve as a candidate ther-
apeutic strategy for further development to enhance preparedness for
viral outbreaks.

Methods
Study approval
SARS-CoV-2 and filovirus work were conducted in BSL3 and BSL4
facilities at Stanford University, KU Leuven Rega Institute, and
USAMRIID according to CDC and institutional guidelines. Human lung
organoid (ALO) propagation was approved under protocol IRB 190105
at UCSD.

Compounds
RMC-113 (Steven De Jonghe)17, Apilimod (Selleckchem, S6414), Rapa-
mycin (Med chem express, #HY-10219), Bafilomycin A1 (Invivogen,
#tlrl-baf1), Chloroquine diphosphate (Premo Autophagy Tandem
Sensor RFP-GFP-LC3B Kit, Thermo Scientific, # P36239). THZ-P1-2,
CVM-05-002 and TM-04-176-0124 were a gift from Dr. Nathanael S.
Gray, Stanford University.

Plasmids
Plasmids used to produce SARS-CoV-2 pseudovirus were a gift from
Jing Lin (Vitalant, San Francisco)44. The rSARS-CoV-2/WT and rSARS-
CoV-2/Nluc (rSARS-CoV-2 expressing Nluc-reporter gene) plasmids
were a gift from Dr. Luis Martinez-Sobrido. DENV2 (New Guinea C
strain) TSV01 Renilla reporter plasmid (pACYCNGC FL) was a gift from
Dr. Pei-Yong Shi (University of Texas Medical Branch)45. mCherry-
2xFYVE plasmid was obtained from Addgene (#140050). SARS-CoV-2
subgenomicΔS-E-M repliconwasprovidedbyDrs. JudithGottwein and
Jens Bukh (Copenhagen University Hospital, Denmark). VEEV-TC-83-
nLuc RNA (a gift from Dr. William Klimstra (Department of Immunol-
ogy, University of Pittsburgh, Pittsburgh). GFP-hPIKfyve (Addgene,
#121148) cloned in gateway entry plasmid pDON221 and pDONR223-
PIP4K2C (Addgene, #23450). Open reading frames encoding viral
proteins were recombined into a gateway-compatible pGluc fusion
expressing vectors using Gateway technology (Invitrogen). Mutations
were introduced by site-directed mutagenesis using the QuikChange
Lightning Site-Directed Mutagenesis Kit (Agilent).

Cells
Vero E6 cell line engineered to constitutively express enhanced green
fluorescent protein (eGFP) was provided by Dr. Marnix Van Loock
(Janssen Pharmaceutica, Beerse, Belgium) and was maintained in Dul-
becco’s modified Eagle’s medium (DMEM, Gibco) supplemented with
10% v/v fetal calf serum (FCS, Biowest), 0.075% sodium bicarbonate
and 1% penicillin-streptomycin (Pen-strep, Gibco). Vero E6, Vero, Calu-

3, HEK-293T, U-87 MG, and BHK-21 cells (ATCC, CRL-1586, CCL-81,
HTB-55, CRL-3216, HTB-14, CCL-10) and Huh7 cells (Apath LLC) were
maintained in DMEM supplemented with 10% fetal bovine serum (FBS,
Omega Scientific, Inc), 1% L-glutamine, 1% Pen-strep, 1% nonessential
amino acids (NEAA, Gibco), 1% HEPES (Gibco), 1% Sodium pyruvate
(Thermo Fisher Scientific). Vero E6-TMPRSS2 (JCRB cell bank,
#JCRB1819) and A549-ACE2 cells (BEI resources, NR-53821) were
maintained in DMEM supplemented with 10% FBS, 1% Pen-strep, and
1mg/ml G418 (Gibco, #10131035). All cells were maintained in a
humidified incubator with 5% CO2 at 37 °C and tested negative for
mycoplasma by MycoAlert (Lonza, Morristown, NJ).

Human adult lung organoids (ALOs) model
The ALO model was generated from adult stem cells isolated from
deep lung biopsy specimens. Thismodel consists of cell types found in
both proximal and distal airway epithelia, as validated previously18.
Lung-organoid-derived monolayers were prepared as outlined18,19 and
plated in Pneumacult Ex-Plus Medium (StemCell Technologies).

Cell viability assays
Cell viability was assessed using alamarBlue reagent (Invitrogen) or
CellTiter-Glo (Promega) according to the manufacturer’s protocol.
Fluorescence or luminescence were detected using GloMax Discover
Microplate Reader (Promega).

Viral stocks preparation and sequencing
The Belgium-GHB-03021 strain of SARS-CoV-2 was isolated from a
nasopharyngeal swab obtained from a patient returning from China
in early February 202046 and passaged 6 times on Vero E6 cells. Viral
stocks for rSARS-CoV-2/WT and rSARS-CoV-2/Nlucwere generated as
previously described19. Viruses produced in Vero E6-TMPRSS2 cells
and passaged 3-4 times were used for the experiments. SARS-CoV-2
whole-genome sequencing was performed as previously described19,
and showed no deletions in the spike multi-basic cleavage (MBC)
domain. VEEV-TC-83-nLuc RNA was transcribed in vitro from cDNA
plasmid templates linearized with MluI via MEGAscript SP6 kit
(Invitrogen #AM1330) and electroporated into BHK-21 cells. DENV
RNA was transcribed in vitro from pACYC-DENV2-NGC plasmid using
mMessage/mMachine kits (Ambion) and electroporated into BHK-21
cells. EBOV (Kikwit isolate) and MARV (Ci67 strain) (BEI Resources)
were grown in Vero E6 cells. Supernatants were collected, clarified,
and stored at −80 °C, and viral titers were determined via plaque
assays on BHK-21 (DENV, VEEV) or Vero E6 cells (SARS-CoV-2,
EBOV, MARV).

For rVSV-SARS-CoV-2-S pseudovirus production, HEK-293T cells
were transfected with spike expression plasmid followed by infection
with VSV-G pseudotyped ΔG-luciferase VSV virus and harvesting of
culture supernatant, asdescribed19. rVSV-SARS-CoV-2-Swas titrated via
luciferase assay, and TCID50 was determined on Vero cells.

Fig. 6 | PIP4K2C binds SARS-CoV-2 NSP6 and mediates virus-induced impair-
ment of autophagic flux. a Schematic of the experiment shown in b and c.
b Representative confocal microscopic images of A549-ACE2 cells transfected with
indicated siRNAs and GFP-RFP-LC3 tandem plasmid, and infected with SARS-CoV-2
(MOI = 0.5) for 24h and stained for nucleocapsid (violet). Representative merged
images at x40magnification are shown. Scale bars: 10μm. Zoomed-in images show
autophagosomes (yellow) and autolysosomes (red). c Autolysosome-to-
autophagosomes ratio (autophagyflux) in single cells (n = 27cells per category) (b).
d–i The expression levels of p62, LC3-I and LC3-II following transfection of
siPIP4K2C (d–f) and siPIKfyve (g–i) in uninfected and SARS-CoV-2-infected A549-
ACE2 cell lysates at 24 hpi. Bar graphs show quantitative analysis of p62/actin (e, h)
and LC3II/actin ratios (f, i), from 2 membranes and normalized to corresponding
siNT controls. j PIP4K2Cand PIKfyve interactions with 15 SARS-CoV-2 nonstructural
proteins, ORF3a, ORF7a, and empty plasmid as measured via protein-fragment
complementation assay (PCAs) inHEK293Tcells. Dots depictmeanNLRvalues. The

dotted line depicts the cutoff (NLR> 10) used to define PIP4K2C-interacting pro-
teins (green), representing greater than two SDs above the mean NLR of a non-
interacting reference set. k and l Confocal IF microscopy images of PIP4K2C (red)
and NSP6 (green) in A549-ACE2 cells ectopically expressing FLAG-NSP6 24h after
transfection. Shown are images at 60× magnification with a 6-fold zoom in (right
panel) (k) and Manders’ colocalization coefficients (M2: NSP6 overlapping
PIP4K2C) (l) in 32 cells. Scale bar: 10μm. m Proposed model for the roles of
PIP4K2C andPIKfyve in SARS-CoV-2 infection and themechanismof antiviral action
of RMC-113. Figure was created in BioRender. Karim, M. (2025) https://biorender.
com/glw3z17. Data are representative of independent experiments (b, d, g, k) or
combined from two (n = 2; e, f, h, i, j) or three (n = 3; c, l) independent experiments.
Data are relative to siNT (c, e, f, h, i). Means ± SD are shown (c, l). P values by 1-way
ANOVA followed by Dunnett’s multiple comparison test are shown (c). Source data
are provided as a Source Data file.
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Infection assays and pharmacological inhibition
Unless otherwise specified, inhibitors or DMSO were added 1–2 h
(cells) and 4 h (ALOs) prior to viral inoculation and maintained
throughout the experiment. Calu-3, Vero cells, or ALOs were infected
with SARS-CoV-2 (MOI = 0.05 or 1) in DMEM containing 2% FCS or 1X
PneumaCult™-Ex Plus Medium at 37 °C under biosafety level 3 (BSL3)
conditions. Following a 1 to 4-hour incubation, the viral inoculum was
removed, and cells were washed thoroughly and supplemented with
fresh medium. At various time points postinfection, culture super-
natants were collected for measurement of viral titer using standard
plaque assays47, and cells were lysed in TrizolLS for RT-qPCR analysis.
Huh7 cellswere infectedwithDENV2 in (MOI = 0.05) and at48hpi, viral
replication was measured via luciferase assays. Huh7 cells were infec-
ted with EBOV (MOI = 1) or MARV (MOI = 2) under BSL4 conditions. At
48 hpi, cells were formalin-fixed for 24 h prior to removal from BSL4
facility. Infected cells were detected using specific monoclonal anti-
bodies against EBOV (KZ52) or MARV (7E6) glycoproteins and quan-
titated by automated fluorescencemicroscopy using anOperetta High
Content Imaging System (PerkinElmer).

Antibodies
Immunoblotting. Antibodies targeting PIKfyve (Thermo Scientific,
#PA5-75977), PIP4K2C (Sigma, #WH0079637M1, Sigma), SQSTM1/p62,
(Cell Signaling Technology, #5114), LC3A/B (D3U4C) XP® Rabbit mAb
(Cell Signaling Technology, #12741), and β-actin (Sigma-Aldrich,
#A3854), ULK1 (D8H5) Rabbit mAb (Abcam, #8054), Gaussia luciferase
Polyclonal Antibody (Thermo Scientific, #PA1-181), PIKFYVE Polyclonal
Antibody (Thermo Scientific, #PA5-13977), Flag (DYKDDDDK) Tag
Polyclonal Antibody (Thermo Scientific, #PA1-984B).

Immunofluorescence. Antibodies targeting SARS-CoV-2 nucleo-
capsid (SinoBiological, #40143-MM05), EEA-1 (Abcam, #ab109110),
anti-LAMP1 (Abcam, #ab24170), Rab7 (Origene, #AB0033-200) RTN3
Monoclonal Antibody (Thermo Scientific, #1E11 MA5-15538), NSP-6
Anti-SARS-CoV-2 antibody (Abcam, #EPR24845-90). Goat anti-Mouse
IgG (H+ L), cross-absorbed secondary antibody, Alexa Fluor™ 633
(Thermo Scientific # A-21052A-21050), Goat anti-rabbit IgG (H + L),
cross-absorbed secondary antibody, Alexa Fluor™ 488 (Thermo Sci-
entific #A-11008).

RNA interference
ON-TARGETPlus siRNA against PIKfyve, PIP4K2C, and SMARTpools
non-targeting siRNA (siNT) (D-001206-13-05), were purchased from
Dharmacon/ Horizon Discovery. siRNA sequences: PIKfyve—GGAAA
UCUCCUGCUCGAAAUU; PIP4K2C—CCGAGUCAGUUGGACAACGAUU.

siRNA transfection
siRNAs (10 pmol/well) were transfected into Calu-3, Vero E6, VeroE6-
TMPRSS2 or A549-ACE2 cells using Dharmafect-4 (Dharmacon, #T-
2004-02), lipofectamine RNAiMAX (Invitrogen) or Polyplus-
transfection INTERFERin® (Genesee Scientific, #55-129), respectively,
48 h prior to viral infection.

Rescue assays
Plasmids encoding PIKfyve, PIP4K2C, or controls, were transfected
into Vero cells using Lipofectamine 3000 reagent (Invitrogen) 24 h
before treatment and viral infection. Viral infection and cell viability
were measured 24 hpi via luciferase and alamarBlue assays,
respectively.

RT-qPCR assays
The cells were lysed with TRIzolLS (Invitrogen). The total RNA was
extracted from cell lysates using Direct-zol RNA Miniprep Plus Kit
(Zymo Research) and reverse-transcribed using High-Capacity cDNA
RTkit (AppliedBiosystems), following themanufacturer’s instructions.

Primers and PowerUp SYBR Green Master Mix (Applied Biosystems)
were added to the samples, and PCR reactions were performed with
QuantStudio3 (Applied Biosystems). Target genes were normalized to
GAPDH. Sequences of primers used for RT-qPCR are available upon
request.

Time-of-addition experiment
Calu-3 cells were infected with SARS-CoV-2 (MOI = 1). Following 2 hpi
for SARS-CoV-2, the virus inoculum was removed, and cells were
washed twice with PBS. At specific time intervals, 10μM RMC-113 or
apilimod and 0.1% DMSO were added. Cell culture supernatants were
collected at 10 hpi (SARS-CoV-2), and infectious viral titers were
measured by plaque assays.

Resistance studies
Vero E6-TMPRSS2 cells were infected with SARS-CoV-2 (MOI = 0.05)
and passaged daily 9 times by transferring an equal volume of viral
supernatant to naive cells under DMSO or RMC-113 treatment at con-
centrations between the EC50 and EC90 values: 0.1μM, passage 1;
0.3μM passages 2–9. Viral titers in culture supernatants were mea-
sured by plaque assays.

SARS-CoV-2 entry assay
Calu-3 cells were infected with SARS-CoV-2 (MOI = 1). At 2 hpi, the viral
inoculum was removed, and cells were washed three times with PBS.
Cells were then lysed in TRIzolLS (Invitrogen), and intracellular viral
RNA levels were measured by RT-qPCR.

SARS-CoV-2 subgenomic replicon assay
The ΔS-E-M Nluc replicon was generated as described in27. Briefly, full-
length DNA was linearized with NotI, followed by purification with the
Zymo DNA clean & concentrator-25 kit but using Zymo-Spin™ IC-XL
columns (ZR BAC DNA Miniprep Kit, ZymoResearch, Irvine, CA, USA).
The linearized plasmid was in vitro transcribed using the mMESSAGE
mMACHINE T7 Transcription Kit (ThermoFisher, Waltham, MA, USA)
following the manufacturer’s instructions. RNA transcripts were
quantified using the Qubit RNA BR Assay Kit (ThermoFisher, Waltham,
MA, USA) and used for transfection. To measure RNA replication,
in vitro transcribed replicon RNA was transfected into Vero E6 cells
using Lipofectamine® MessengerMAX (#LMRNA015), 24 h prior to
treatment with RMC-113 or 48h following siRNA transfection. Viral
RNA replication wasmeasured after additional 24h via nano-luciferase
assays.

Immunoblotting
Whole-cell lysates were harvested in RIPA lysis buffer (Thermo Scien-
tific) containing protease and phosphatase inhibitor cocktails. Protein
concentration was measured using the detergent-compatible (BCA)
protein assay (Thermo Scientific). Denatured lysates were separated
on NuPage 8-16% Tris-glycine Midi Protein gels (Invitrogen) and
transferred to polyvinylidene difluoridemembrane (Immobilon) using
a TransBlot Turbo dry transfer machine (Bio-Rad). The membrane was
blocked and incubated with primary antibodies overnight at 4 °C fol-
lowed by incubation with respective secondary antibodies and
revealed with ECL Prime (Thermo). Chemiluminescent signals were
acquired using Odyssey imaging system (Li-Cor), and densitometric
analysis was performedusing Image Studio 5.2 software (LI-COR, USA).
All experiments were conducted and analyzed in 3–4 independent
experiments.

Immunofluorescence and confocal microscopy. For detection of
viral protein in ALOs, SARS-CoV-2-infected ALO-derived monolayers
were washed with PBS, fixed with 4% PFA, blocked, and incubated with
mouse mAb SARS-CoV-2 nucleocapsid antibody (SinoBiological)
overnight at 4 °C, followed by incubation with secondary antibodies,
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and counterstaining with DAPI (ThermoFisher). Images were taken on
an SP8 microscope (Leica).

For colocalization and autophagy studies, A549-ACE2 cells were
transduced with the Premo Autophagy Tandem Sensor RFP-GFP-LC3B
kit (P36239, Thermo Scientific) and in 24h, infected with SARS-CoV-2
(MOI = 0.5) for 2 h, followed by PBS washing and addition of medium
containing 5 µMRMC-113, 5 µMapilimod, 10 µM chloroquine or DMSO.
At 24 hpi, cells were fixed with 4% PFA, permeabilized with 0.5% (v/v)
Triton-X-100, blocked with 2% (v/v) bovine serum albumin (BSA;
Sigma-Aldrich) and stained as described above.

For imaging in siRNA-depleted cells, A549-ACE2 cells were trans-
duced with premoRFP-GFP-LC3B sensor for 24 h and infected withWT
SARS-CoV-2 for 2 h, washed with PBS, and replenished with the new
medium. Images were acquired using LSM 710 confocal micro-
scope (Zeiss).

To quantitate autophagic flux, image stacks were processed using
3D deconvolution in Zen 2.1 software. Maximum intensity projections
of image stacks with both green and red channels were generated, and
puncta counts for the respective channels were recorded using the
Mosaic and ITCN plugins in Image J. Autolysosomal numbers were
computed by subtracting the autophagosome count from the total
puncta count, determined by combining the green and red channel
image stacks using Fiji. For colocalization quantification, the JACoP
plugin in Fiji was used, and Manders’ correlation coefficients (M2)
calculated.

Degradation assays
A549-ACE2 cells were transfected with a GFP-ORF3a and Gluc2-NSP3
expressing plasmid using Lipofectamine3000 transfection reagent.
48 h later, cells were treatedwith DMSOor RMC-113.Whole-cell lysates
were harvested in RIPA lysis buffer at 0, 4-, 8-, 16- and 24 h post-
treatment, followed by immunoblotting with anti-GFP and anti-actin
antibodies. Protein half-life was calculated using GraphPad Prism
software and Excel by fitting the curve with a one-exponential phase
decay model, lnð2ÞK = t1=2, here, K represents the rate constant, and ln(2)
denotes the natural logarithm of 2.

In vitro kinase assays
In vitro kinase assays to determine IC50 and dissociation constant (Kd)
were performed on the LabChip platform (Nanosyn) and Eurofins
respectively.

NanoBRET assays were performed at Carna Biosciences. Briefly,
HEK293 cells were transiently transfected with the NanoLuc® Fusion
DNA and incubated at 37 °C. Twenty hours post-transfection, Nano-
BRET™ tracer reagent and the compounds were added to the cells and
incubated at 37 °C for 2 h. Nanoluciferase-based bioluminescence
resonance energy transfer (BRET) was measured using NanoBRET™
Nano-Glo® Substrate on a GloMax® Discover Multimode Microplate
Reader (Promega).

Kinome profiling
Multiplexed Inhibitor Bead (MIB) affinity chromatography/MS analysis
was performed as previously described20. Briefly, SUM159 cell lysates
were incubated with either DMSO or the indicated concentration of
RMC-113 and SRN2-002 for 30min on ice. Kinase fragments were then
detected and analyzed by mass spectrometry. The abundance of
kinases was quantified in a label-free manner using MaxQuant
software.

ProQinase assaywas conducted by ProQinase (GmbH, Germany)
by measuring residual activity of 335 wild-type protein kinases upon
incubation with RMC-113 at 0.1 and 1μM.

Molecular modeling
Molecular modeling was conducted with Maestro (Schrödinger
Releases 2021-4/2022-2, Maestro, Schrödinger, LLC, New York, NY,

2021/2022) with OPLS4 force field48. Induced fit docking of SRN2-002
to MD simulation derived structures was conducted as reported
earlier49. MD simulations of RMC-113 in complex with PIKfyve (PDB ID:
7K2V)50 and PIP4K2C (8BQ4)51 were run with Desmond52, resulting in
total aggregate simulation data of 72 and 20μs, respectively (see
details below).

Molecular dynamics simulations
To build the PIKfyve–RMC-113 complex, as no high-quality crystal
structure of PIKfyve kinase domain was available, we used the cryo-EM
structure (PDB ID: 7K2V)50. RMC-113 was manually placed on the
binding site of PIKfyve utilizing the information of an analogue struc-
ture in complex with the lipid kinase PI3K p110δ (PDB ID: 2WXM)53

(Schrödinger Release 2021-4). Next, the obtained protein–ligand
complex structure was prepared with Protein Preparation Wizard54.
The termini were capped, H-bonds were optimized, and system was
energy minimized twice using 0.5 Å heavy atom RMSD convergence.
The energy minimized system was solvated in a cubic box with a 15 Å
minimum distance to the box edges from the protein or ligand atoms.
We used TIP3P model55 to describe the water and system was neu-
tralizedwith six Cl- ions and K+ and Cl- ions were added to obtain a final
salt concentration of 0.15M. The final system contained a total of
55,180 atoms. The default Desmond relaxation protocol was applied
before the production simulations. The production simulations were
run in NpT ensemble: 1.01325 bar, Nosé–Hoover method; 300K,
Martyna–Tobias–Klein method; RESPA integrator with 2, 2, and 6 fs
timesteps for bonded, near and far, respectively; Coulombic cutoff of
9 Å. In total, we ran 20 replica simulations (Supplementary Table 1),
each with a different random seed, with a length of 4μs each.
Within these final simulations, we discarded two replicas from further
analysis due to their conformational instability. The remaining 18
replicas, with an aggregate simulation data of 72μs, were used in the
final analysis.

Building the PIP4K2C–RMC-113 complex, used a combination of
X-ray structure 8BQ451 and AlphaFold model (AF-Q8TBX8-F1)56 using
(Schrödinger Release 2022-2). RMC-113was superimposed over the co-
crystallized ligand of 8BQ4 and the structure was directed to protein-
ligand complex refinement protocol for local optimization of side
chain conformations. A similar pose as to PIKfyve was gained. Missing
loops of the template protein (residues Gly136–Gly139; Ile291–Phe350;
Thr377–Thr402) were modelled with the assistance of Maestro’s
homology modelling tool, using multiple template approach i.e.,
consensus protocol, where chains A and B from 8BQ4 and AlphaFold9

model AF-Q8TBX8-F1 were selected as input structures, respectively.
As a result, a complete PIP4K2C kinase domain (residues 45-421)
structure was obtained, where the core of the protein was taken from
8BQ4, and missing loops were obtained from AF-Q8TBX8-F1. The
earlier obtained RMC-113 pose was merged to new model and the
refinement step was repeated, after which the structure was H-bond
optimized and minimized using standard Protein Preparation Wizard
(as above). The energy minimized structure, was solvated with TIP3P
waters in an orthorhombic periodic system with 10 Å buffer
(91.0 × 77.9 × 71.2 Å), and neutralized, including 0.1M NaCl buffer. The
final system contained a total of 46,285 atoms. Desmond MD simula-
tions were carried out using same settings as with PIKfyve, resulting in
10 replicas of with the length of 2μs each (total simulation time of
20μs) (Supplementary Table 1).

Simulation trajectories were analyzed by Maestro simulation
interactions diagram tools and visualization of the structures was
conducted with PyMOL (The PyMOL Molecular Graphics System,
Version 2.5.4 Schrödinger, LLC.). H-bonds were defined as a 2.5 Å dis-
tancewith ≥120° angle for a donor and ≥90° for an acceptor, andwater
bridged interactions were defined as 2.8 Å, ≥110° and ≥90°. The
hydrophobic contact definitionwas3.6 Å for non-specific hydrophobic
interactions and 4.5 Å distance for π–cation or π–π interactions.
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Target engagement by Click Chemistry
As described22, cell lysates were prepared from A549-ACE-2 cells
infected with SARS-CoV-2 at 24 hpi (MOI = 1). Lysis buffer containing
50mMPIPES, 50mMNaCl, 5mMMgCl2, 5mMEDTA, 0.5%NP-40, 0.1%
Triton X-100, and 0.1% Tween 20 at pH 7.4 was used to inactivate the
virus, followed by centrifugation to remove debris. For the biotin-
azide-streptavidin magnetic pull-down, cell lysates were incubated
with the photoaffinity clickable probe (SRN2-002, 1 and 5 µM), fol-
lowed by UV light irradiation. A CuAAC click reaction mixture con-
taining CuSO4, THPTA, Biotin-Azide, and sodium ascorbate was
added, and after desalting, streptavidin magnetic beads were used to
pull down biotin-protein complexes. The resulting product was
washed and analyzed by immunoblotting. Controls included samples
without the clickable probe, without UV irradiation, and with compe-
titive click reactions using excess parent compound (RMC-113,
10X or 50X).

Lipid extraction, purification and methylation
A549-ACE2 cells infected with SARS-CoV-2 (MOI = 0.5) were treated
with 5 µM RMC-113 or DMSO. Following cell lysis at 24 hpi, samples
were inactivated using 1.5ml methanol and mixed with chloroform
(chloroform/methanol 1:9) supplemented with 1 nmol of PI(4,5)P2 as
an absorption inhibitor to prevent non-specific binding, along with 10
pmol each of 4 reference standards (deuterated 5 PI, deuterated 62
PI3P, deuterated 62 PI(4,5)P2) spiked into methanol. The mixture was
inactivated with 1.5mlmethanol and chloroform, followed by addition
of Ultrapure water, 2M HCl, and 1M NaCl. The crude lipid extract
(2.9ml) was subjected to purification using a DEAE Sepharose Fast
Flow column, washedwith chloroform/methanol (1:1) and chloroform/
methanol/28% aqueous ammonia/glacial acetic acid (200:100:3:0.9),
and then eluted with chloroform/methanol/12M hydrochloric acid/
ultrapure water (12:12:11). The eluate was combined with 850 µl of
120mM NaCl and purified by centrifugation. The resulting purified
phosphoinositides underwent derivatization through methylation by
adding 0.6M trimethylsilyl diazomethane at room temperature for
10minutes. The reactionwas quenchedwith 20 µl of glacial acetic acid.
The samples were further processed with methanol/ultrapure water/
chloroform (48:47:3), followed by evaporation under nitrogen and
dissolution in 100 µl of acetonitrile for analysis. Samples were placed
on a shaker for 10minutes and then transferred to a 200 µl glass vial
insert. Samples were loaded on a UPLC autosampler and injected at
30 µl for LC/MS analysis.

Lipidomics analysis
These experiments were conducted at Element Materials Technology.
Purified, methylated lipid samples were analyzed using posphoinosi-
tide regioisomer measurement by chiral column chromatography
coupled with tandem mass spectrometry (PRMC-MS), employing an
MS triple quad Sciex Qtrap 5500 mass spectrometer operating in
positive ionmode.Mass spectrawere acquired over a broadm/z range
(5–2000), with multiple reaction monitoring (MRM) applied for tar-
geted data acquisition. Instrument parameters, including ionization
voltages (5.5 kV), collision energy (30–42 V), gas pressures (20 psi for
curtain gas, 9 psi for collision gas, and 30 psi for ion source gases), and
temperature (400 °C source block temperature), were meticulously
optimized to maximize sensitivity and resolution. Liquid chromato-
graphy (LC) separation was achieved using a Lux 3 µm i-Cellulose-5
column (250× 4.6mm) maintained at 35 °C, with a mobile phase gra-
dient ofmethanol/5mM ammonium acetate (A) and acetonitrile/5mM
ammonium acetate (B). The LC gradient started at 0% A and 100% B,
transitioning to 30% A and 70% B over 3min, held for 15min, and then
re-equilibrated. Data processing involved normalization against deut-
erated reference standards, enabling precise quantification and com-
parison of lipid species across samples.

virus-inclusive single cell RNA-seq (ViscRNA-seq)
ALOswere seeded in 96-well plates at 1 × 105 cells per well and infected
with SARS-CoV-2 (MOI = 1) in the presence of 5μM RMC-113 or 0.1%
DMSO. After a 4 h incubation, the viral inoculum was removed, and
cells were washed thoroughly and supplemented with fresh medium
with orwithout the compound. At 4 and 24 hpi, ALOswerewashed and
then detached via 5min incubation with TrypLE followed by cen-
trifugation at 300 g for 10min. The pellets were suspended and fixed
with Cell fixation solution (Parse, Evercode Fixation, cat: ECF2001, Part
number WF303) for 10min followed by incubation with Cell permea-
bilization Solution (Parse, Evercode Fixation, cat: ECF2001, Part num-
ber WF305) for 3min at RT. ALOs were then taken out from BSL3 for
single-cell sequencing according to the manufacturer’s instructions
(Parse, EvercodeTM WT mini Mega v2).

viscRNA-seq data analysis
Data processing. The Parse Biosciences processing pipeline (split-
pipe v1.0.3a)was usedwith default settings to align the rawsequencing
reads to the Parse Biosciences pre-built human reference (GRCh38)
and to demultiplex samples. The downstream processing was per-
formed using the Python package Scanpy57. Cells with more than 30%
mitochondrial reads ormore than 50,000uniquemolecular identifiers
(UMIs) were excluded from subsequent analysis. The raw gene counts
matrix was normalized to a total UMI counts of 1,000,000 (CPM) per
cell and was log2 transformedwith the addition of a pseudocount of 1.

Cell clustering and annotation. Samples from three independent
experiments were clustered and annotated separately. Principal com-
ponent analysis (PCA) was performed on the 2000 features that were
highly variable across most of the samples. The first 50 PCA compo-
nents were used to generate the nearest neighbor graphs and were
subjected to a non-linear dimensionality reduction using Uniform
Manifold Approximation and Projection (UMAP). Cells were clustered
using the Leiden algorithm with a resolution of 1. Cell clusters were
annotated based on the expression ofmarker genes as follows: (1) AT2-
like cells (SFTPD, MUC1, CLIC5), (2) AT1-like cells (HOPX, RTKN2,
EMP2, CAV1), (3) Basal-like cells (NGFR, ITGA6, TP63, KRT5), and (4)
transitioning cells that are HOPX and NGFR negative and CEACAM6
positive. After initial annotation, PCA components were computed on
the 2,000 features that were highly expressed across all the samples
from independent experiments. Principal components were adjusted
for each sample using Harmony integrate function. The first 40 Har-
mony components were used to generate batch-corrected UMAP
visualizations.

Detection of viral RNA harboring cells (VHCs). To capture the viral
RNAs in SARS-CoV-2 infected samples, the raw sequencing reads were
aligned to a custom reference genome by integrating the SARS-CoV-2
isolate USA-WA1/2020 (MT246667.1) to the human reference genome
(GRCh38) using the ParseBiosciences processing pipeline as described
above. Reads uniquely mapped to the viral genome were extracted as
viral reads. Cells with at least four detected viral transcripts were
considered as VHCs, and cells with zero detected viral transcripts were
considered as bystanders. This threshold was defined empirically
based on the inflection point in the cumulative distribution of viral
RNA counts across cells in each sample.

Pairwise comparison of VHCs and bystanders. Both VHCs and
bystanders were subsampled randomly to the lowest number of cells
in one group and log2 fold change of the gene expression was calcu-
lated. This calculation was iterated 100 times to form an empirical
distribution of differential expression. Themedian log2 fold change of
all the comparisons was used to estimate effect size (color) and the
noise level (box size) of the comparison was shown using boxplots.
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Protein-fragment complementation assays. Combinations of plas-
mids encoding prey (A) and bait (B) proteins, each fused to a fragment
of the Gaussia luciferase protein (GLuc1 andGLuc2) or control vectors,
were co-transfected into HEK-293T cells plated in 96-well plates in
triplicate35. At 24 h post-transfection, cells were lysed and subjected to
luciferase assays (Promega). Results were expressed as NLRs calcu-
lated as follows: the average signal in cells transfected with GLuc1-A
andGLuc2-Bwasdividedby the average signal inwells transfectedwith
GLuc1-A and anemptyGLuc2 vector and those transfectedwithGLuc2-
B and an empty GLuc1 vector.

Statistical analysis
Data were analyzed with GraphPad Prism software. EC50 and CC50

values weremeasured by fitting of data to a 3-parameter logistic curve.
P values were calculated by 1-way ANOVA with either Dunnett’s or
Tukey’s multiple comparisons tests or a two-sided Wilcoxon test with
Benjamini-Hochberg correction as specified in each figure legend.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
PDB coordinates of the representative snapshots shown in Fig. 2 are
provided in Supplementary Table 1. Full trajectories of the Desmond
molecular dynamics simulations are freely available at: https://doi.org/
10.5281/zenodo.10878041 (PIKfyve simulations) and https://doi.org/
10.5281/zenodo.10889319 (PIP4K2C simulations). Data related to
viscRNA-seq have been deposited in the NCBI Gene Expression
Omnibus (GEO) and are accessible through GEO accession number
GSE272840. The code used in the present study is publicly available at
https://github.com/hbusra/ALO-scRNAseq-data-analysis. Lipidomics
data are available at the metabolomics workbench database under
accession code Study ID ST003388 (DatatrackID:5007). The processed
lipidomics data are available at https://doi.org/10.21228/M89C1V.
Source data are available at https://doi.org/10.6084/m9.figshare.
29260706.
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