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Recent progress in multiplexed tissue imaging is deepening our understanding
of tumor microenvironments related to treatment response and disease pro-
gression. However, analyzing whole-slide images with millions of cells remains
computationally challenging, and few methods provide a principled approach
for integrative analysis across images. Here, we introduce SpatialTopic, a
spatial topic model designed to decode high-level spatial tissue architecture
from multiplexed images. By integrating both cell type and spatial informa-
tion, SpatialTopic identifies recurrent spatial patterns, or “topics,” that reflect
biologically meaningful tissue structures. We benchmarked SpatialTopic
across diverse single-cell spatial transcriptomic and proteomic imaging plat-
forms spanning multiple tissue types. We show that SpatialTopic is highly
scalable to large-scale images, along with high precision and interpretability. It
consistently identifies biologically and clinically significant spatial topics, such
as tertiary lymphoid structures, and tracks spatial changes over disease pro-
gression. Its computational efficiency and broad applicability will enhance the
analysis of large-scale imaging datasets.

Recent advancements in multiplexed tissue imaging allow the profiling
of RNA and protein expression in situ across thousands to millions of
single cells within a whole-slide tissue context'”. These technologies
generate high-dimensional molecular imaging data, offering sig-
nificant opportunities for a spatially resolved understanding of cellular
heterogeneity and organization within tissues. Compared to other
single-cell technologies (such as single-cell RNA-seq, flow cytometry),
multiplexed imaging provides unique opportunities to examine spatial
patterns of diverse cell types and characterize the tissue micro-
environment of interest, which may play an essential role in under-
standing disease progression, tissue development, and mechanisms of
treatment response’”*”’. One recent discovery in cancer, partly

enabled by multiplexed spatially resolved omics data, is the presence
of tertiary lymphoid structures (TLSs) in tumor tissues and its role in
the adaptive antitumor immune response®™. TLSs have been identified
in a wide range of human cancers’ and have demonstrated a promising
positive association with improved outcomes in cancer patients who
underwent immunotherapy®.

While promising, the complex cellular architecture revealed by
whole-slide multiplexed tissue imaging presents significant analytical
challenges. Pathology images of tissue samples affected by certain
diseases, such as cancer, are particularly complex, displaying abnormal
cellular structures and significant variation between tumor samples.
Currently, most analyses focus on individual images, examining
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elements such as cell densities and inter-cellular distances*, or con-

ducting basic spatial domain analyses that primarily focus on binarized
tissue compartments, such as tumor versus stroma” ™, Associating
these features with outcomes requires manual and heuristic aggrega-
tion across images. While promising, a significant hurdle in spatial
pattern analysis is deciphering biologically and clinically relevant
patterns from the complex architecture within tissue across various
slides.

In recent literature, cell neighborhood (niche) analysis has
emerged as a popular approach. This analysis pipeline typically con-
sists of two primary steps by first identifying neighborhood features
for each single cell using either a K-nearest-neighbor (KNN) graph or a
defined radius, and then applying a clustering algorithm, such as k-
means, Louvain, or Latent Dirichlet Allocation (LDA)**"*>"7, Seurat v5'¢,
for instance, clusters cells using k-means based on similar cell type
compositions, offering a straightforward niche analysis method. There
are different variants of the approach depends on how to incorporate
spatial information into the clustering process. UTAG" averages mar-
ker expression within the neighborhood for clustering, while BankSY"
further refines this by combining local mean expression with individual
cell expression. Spatial-LDA' incorporates spatial priors into cluster-
ing to allow proximity-closed cells to share similar cell neighborhoods.
More recently, graph neural networks have been employed to discern
cell neighborhood patterns, such as CytoCommunity*. However, deep
learning methods like CytoCommunity require significant computa-
tional resources, posing challenges for individual labs, particularly for
large-scale image analysis. Other studies adapt computational meth-
ods designed for spatial transcriptomics to analyze tissue imaging
data® %, such as those intended for 10x Visium, face limitations due to
high computational costs'" and are generally restricted to single tissue
sections with fewer spots™?*. These methods struggle with large-scale
images, like whole-slide multiplexed images containing millions of
cells, and are challenging to adapt for modern imaging platforms like
Nanostring CosMx and 10x Xenium.

Highly interpretable and scalable machine learning methods are
in great need for analyzing molecular tissue imaging data. In this work,
we propose SpatialTopic, a Bayesian topic model designed to identify
and interpret spatial tissue architecture across various multiplexed
images by considering both the cell types and their spatial arrange-
ment (Fig. 1A). We adapt an approach originally developed for image
segmentation in computer vision®*, incorporating spatial information
into the flexible design of regions (image partitions, analogous to
documents in language modeling). Unlike standard image pixels, the
basic units of analysis in multiplexed tissue images are cells, which are
not uniformly distributed due to the complexity of human tissue
samples, posing a unique challenge. To address these challenges, we
refined the original model used for image segmentation by using a
nearest-neighbor kernel function to boost computational efficiency, as
well as a unique initialization strategy for increasing robustness. In
addition, we also provide an efficient C++ implementation of the
spatial topic model in our R package SpaTopic.

SpatialTopic offers a scalable solution for cell neighborhood and
domain analysis for large-scale, multi-image datasets, efficiently
handling millions of cells without the need to extract cell neighbor-
hood information for each individual cell-a process that becomes
computationally demanding and inefficient at scale. In contrast, Spa-
tialTopic completes analysis of an image with 100,000 cells within
1min on a laptop. Moreover, unlike the rigid clustering strategies of
other methods, SpatialTopic identifies “topics”’—tissue microenviron-
ment features—through a probabilistic distribution over cell types and
across diverse tissue images using a generative model. We demon-
strate our method can accurately identify and quantify interpretable
and biologically meaningful topics from imaging data without human
intervention. We also present multiple case studies encompassing
tissue images from mouse spleen, non-small cell lung cancer (NSCLC),

healthy lung, and melanoma tissue samples. Finally, we highlight an
example of a TLS-like topic and its correlation with outcomes from
SpatialTopic analysis across different platforms, as well as a multi-stage
example showing dynamic changes in spatial tissue architecture across
varying disease stages. With computational efficiency and broad
applicability, SpatialTopic provides a scalable framework that will
enhance the analysis of large-scale tissue imaging studies.

Results

Overview of SpatialTopic, a Bayesian probabilistic model for
highly scalable and interpretable spatial topic analysis across
multiplexed tissue images

SpatialTopic is designed as a flexible spatial analysis module within the
current imaging analysis workflow (Fig. 1B). Its main objective is to
identify biologically meaningful topics across multiplexed images
using unsupervised learning. Here, “topics” refer to latent spatial fea-
tures defined by distinct cell type compositions within tissue micro-
environment neighborhoods. SpatialTopic incorporates spatial data
into an LDA model, assuming that each cell in an image arises from a
mixture of spatially resolved topics, with each topic being a distribu-
tion over distinct cell types. Combining cell-type information with
their spatial layout, this method enables the automated and simulta-
neous detection of immunological patterns across multiple images.
Subsequent analyses can further link these topics with patient data,
such as treatment response and survival.

We adopt a Bayesian approach for model inference, considering
the uncertainties inherent in tissue spatial patterns. SpatialTopic
requires cell types and their locations as input, with the cell types
determined by the users’ preferred phenotyping algorithm tailored to
the specific marker panel of the dataset. The algorithm generates two
key statistics for further analysis: (1) topic content, a spatially resolved
topic distribution over cell types, and (2) topic assignment for each cell
within the images. After Gibbs sampling, the topic assignment of each
cell is determined by the topic with the highest posterior probability.
Cell types enriched in the same topic tend to be spatially correlated
across images, leading to the identification of recurrent patterns of
cell-cell interactions.

We developed an R package SpaTopic to efficiently implement the
SpatialTopic algorithm as outlined in Fig. 1A, which details the primary
steps of the algorithm (See the “Methods” section). Figure 1C displays a
graphical representation of the spatial topic model. The key inputs for
SpatialTopic are the cell type annotations C and their locations X
across all images. Here, Z;; denotes the topic assignment, and Dg;
indicates the region assignment of cell i in image g. Analogous to how
computer vision algorithms segment images by spatially co-occurring
pixel patterns with similar color, intensity or texture for object
detection, SpatialTopic identifies topics as clusters of spatially co-
occurring cell types (shown in Fig. 1D), potentially corresponding to
biologically meaningful cellular structures (e.g., TLSs). The process
involves the following steps:

* Initialization: anchor cells are chosen as regional centers via spa-
tially stratified sampling. For each image, a KNN graph is con-
structed between anchor cells and all other cells: for each cell, we
retrieve its top m closest anchor cells. The initial region assign-
ments of cells are made based on proximity to region centers.
Collapsed Gibbs Sampling: each cell undergoes two main steps
per iteration:

- Sample topic assignment Z,; conditional on its region assign-
ment Dg; and cell type cg;, as well as the topic composition of
the region Dg; and the cell type composition of the topic Z;.

- Sample region assignment Dg; conditional on current topic
assignment Zg;, distance of the cell xg; to the region center
x¢ ,and the topic composition of the region D,;. The spatial
information is weakly incorporated with a kernel function.
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Fig. 1| SpatialTopic unsupervisedly identifies distinct tissue microenviron-
ments across images, utilizing topic model concepts in computer vision.

A Overview of SpatialTopic. SpatialTopic identifies biologically relevant topics
across multiple images, while each topic is a distribution of cell types, reflecting the
spatial tissue architecture across images. B Image analysis pipeline designed for
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multiplexed immunofluorescence images. SpatialTopic is designed as a critical step
for spatial analysis after cell phenotyping. C Graphic representation for Spa-
tialTopic. D SpatialTopic groups cells in an unsupervised manner based on spatially
co-occurrent cell types, similar to image segmentation based on spatially co-
occurrent colors in the photo.

* After Gibbs sampling, the output includes the posterior prob-
abilities of Z; of each cell and the per-topic cell type distribution
{ifk}. Each cell in the image is assigned to a topic with the highest
posterior probability P(Z,;|C, X).

We applied SpatialTopic to multiple datasets from diverse ima-
ging platforms, including spatial proteomics data from Co-detection
by Indexing (CODEX), Multiplexed ImmunoFluorescence (miF), and
Imaging Mass Cytometry (IMC) platforms, as well as spatial tran-
scriptomics data from Nanostring CosMx platform (Supplementary
Table 1). In the next few sections, we apply SpatialTopic to analyze
tissue imaging data from a variety of spatial molecular profiling plat-
forms and benchmark SpatialTopic with other popular algorithms for
spatial domain/niche analysis, including Seurat v5'®, Spatial-LDA®,
CytoCommunity?®, UTAG"”, and BankSY" (Supplementary Table 2).
The benchmark datasets contain between 0.1 and 1 million cells;
making it challenging to apply methods with high computational costs.

In contrast, SpatialTopic processes these large-scale images within just
a few minutes.

SpatialTopic identifies global and local spatial features of
human lung cancer tissue with higher precision and
interpretability

We applied our method to a single NSCLC tissue image generated
using a 960-plex CosMx RNA panel on the Nanostring CosMx Spatial
Molecular Imager platform, which is publicly available on the Nano-
string website”. We selected a Lung5-1 sample containing 100,000
cells, with 38 cell types annotated using Azimuth® based on the human
lung reference v1.0 (Fig. 2A).

To illustrate the general tissue architecture, Fig. 2A displays the
distribution of the top 10 main cell types and the expression patterns
of key genes, including KRT17, C1QA, IL7R, TAGLN, and MS4AI. These
genes serve as markers for tumor cells, macrophages, CD4 T cells,
stroma cells, and B cells, respectively (Fig. 2B). Our results
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demonstrate that SpatialTopic identified seven distinct topics fromthe  immune cells. Topics 1, 5, and 7 are fibroblast-concentrated stroma
complex image (Fig. 2A), with each topic representing a unique spatial  regions, each enriched with a different immune cell type: macro-
niche characterized by a specific cell-type composition, as detailed in  phages, dendritic cells, and plasma cells, respectively.

Fig. 2C. For example, Topic 2 is predominantly composed of tumor Notably, Topic 3 captures lymphoid aggregate structures in this
cells, indicating the tumor region in the image. Topic 4 represents a lung cancer tissue sample, consisting of B cells, CD4 T cells, and
stromal region with a high proportion of macrophages, as well as  smaller proportions of dendritic cells and CD8 T cells. This composi-
dendritic cells. Topic 6 consists of a mixture of myofibroblast and tion aligns with the current understanding of cell types in TLSs,
smooth muscle cells spatially located tightly around the tumor, with  recognized as a promising biomarker for cancer immunotherapy
dense cellular structure limiting the interactions between tumor and  across various cancer types, including NSCLC* ™. TLSs are generally
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Fig. 2 | SpatialTopic better detects tumor microenvironments in a Nanostring
human non-small cell lung cancer tissue image. A We compare SpatialTopic,
Seurat v5, Spatial-LDA, CytoCommunity, BankSY, and UTAG results on the human
lung tumor tissue sample. We also visualize the distribution of the top 10 most
abundant cell types and five unique mRNA molecules (KRT17, C1IQA, IL7R, TAGLN,
MS4A1), showing the tissue architecture. We only show up to a total of 20k mole-
cules due to limitations in visualization. The two black rectangles (1and 2) mark the
zoom-in areas shown in (D, E), respectively. The red rectangle marks the zoom-in
area shown in (F). B Dot plots showing gene marker expression across all 38
annotated cell types. KRT17, CIQA, IL7R, TAGLN, and MS4A1 are marker genes for
tumor, macrophage, CD4 T, stroma, and B cells, respectively. C Heatmap shows

per-topic cell type composition. Topic 2 represents tumor regions. The other topics
represent distinct immune-enriched stroma regions, including topic 3, which cap-
tures the lymphoid structure in the lung tissue consisting of B cells and CD4 T cells,
and topic 4, which is a macrophage-enriched stroma region. D, E SpatialTopic can
better capture the local structures of the lung tumor tissue. F Topic 3 captures the
lymphoid structures, consistent with the distribution of /L7R (CD4 T cell marker,
red) and MS4A1 (B cell marker, blue). G We compare the consistency of different
results, presenting the percentage of cells in the identified tumor domains
expressing the KRT17 gene. SpatialTopic and UTAG generally show higher con-
sistency compared to other methods. Source data are provided as a Source

Data file.

characterized as aggregates of B cells and other types of immune cells
found in nonlymphoid tissue, and the presence of TLSs in tumor
biopsy has shown to be highly correlated with a better prognosis and
clinical outcome upon immunotherapy®. In a recent publication, we
reported B-cell aggregates strongly associated with progression-free
survival in patients with unresectable melanoma treated with immune
checkpoint inhibitors™. Despite the importance of TLSs, challenges
remain to reliably detect them to be used in clinical applications due to
their complex cell type composition and variation in size and spatial
location. SpatialTopic provides a flexible and efficient computational
tool to address this need.

Cancer-associated fibroblasts (CAFs) are also an important com-
ponent of tumor microenvironment. A recent publication by Liu et al.”
found four spatially distinct CAF subtypes, each exhibiting different
transcriptomic profiles as a result of cellular interactions with their
unique neighbors. On the Nanostring CosMx lung cancer dataset, the
topics identified by SpatialTopic are highly correlated with the four
distinct CAF spatial subtypes reported in the paper” (Supplementary
Fig. 1). Specifically, Topic 6 is associated with s1-CAFs adjacent to
the tumor; Topics 5 and 7 correspond to s2-CAFs within the stromal
niche; Topic 1 is linked to s3-CAFs in the myeloid niche; and Topic 3,
primarily comprising B cells and CD4 T cells along with some myofi-
broblasts, corresponds to s4-CAFs in the TLS niche. In addition, Spa-
tialTopic offers a more comprehensive analysis by encompassing all
cell types, not just CAFs, and is scalable to larger datasets. This allows
for further exploration, such as testing for differential gene expression
among cell types, like CAFs, across various tumor microenvironments
(topics).

Moreover, we benchmarked the results from SpatialTopic with
Seurat v5, Spatial-LDA, CytoCommunity, BankSY, and UTAG. BankSY
and UTAG directly use cell-level gene expression as input, whereas the
other four methods, including SpatialTopic, rely on cell-type annota-
tions (Fig. 2A, D, E). All methods can detect the global structure of the
lung cancer tissue and classify tumor and stromal regions. However,
BankSY and UTAG appear to miss the TLSs, likely because they did not
take advantages of the cell-type annotations. Moreover, both methods
assume homogeneous gene expression patterns in the neighbor-
hoods, while TLSs are mixture of B cell and T cell subsets with highly
mixed and variable transcriptomic profiles, thus making it difficult for
methods that rely on homogeneous gene expression assumptions.
Reference-based cell type annotation typically offers more detailed
information and can be more robust for noisy data when matched with
a single-cell reference’®?. SpatialTopic distinctly identified the lym-
phoid structure as Topic 3, comprising a mix of CD4 T cells and B cells
(Fig. 2F). Additionally, when we focused on two local tumor tissue
regions (Fig. 2D, E), SpatialTopic identified the tumor region with
higher precision (Topic 2), more consistently matching the expression
pattern of KRT17, a lung cancer marker gene. SpatialTopic and UTAG
are the only two methods showing consistency (between tumor
domain and KRT17 expression) higher than 0.8 across the entire image
(Fig. 2G), which aligns with the visual measure in Fig. 2D, E. Addition-
ally, we can evaluate the posterior probabilities of each cell’s assign-
ment to various topics (Supplementary Fig. 2), as SpatialTopic employs

a soft-clustering approach. Unlike hard clustering methods such as k-
means, which categorically assign cells to clusters/domains, Spa-
tialTopic quantifies uncertainty, providing a probabilistic measure of
the statistical confidence for each cell's topic assignment, and
enriching the interpretation of the cell-topic relationships by revealing
nuanced details that might otherwise be overlooked.

SpatialTopic identifies tertiary lymphoid structures from whole-
slide melanoma tissue imaging

We applied SpatialTopic to a whole-slide melanoma tissue image
obtained from our previous published mIF imaging datasets, with a 12-
plex marker panel*. This analysis covered a whole-slide soft tissue
image containing 0.4 million cells, annotated into seven major cell
types (CD4 T cells, Tumor/Epithelial, B cells, CD8 T cells, Macrophages,
Regulatory T (Treg) cells, and Others). The categorization was based
on the expression of six lineage markers: PanCK/SOX10, CD3, CDS8,
CD20, CD68, and FoxP3. Cells were annotated as “Other” if they
showed negative expression for all six markers.

Despite fewer identified cell types (due to fewer markers) com-
pared to the Nanostring CosMx platform, SpatialTopic identified five
distinct topics (Fig. 3A): Topic 1 (tumor), Topic 2 (CD4 immune zone),
Topic 3 (stroma), Topic 4 (immune-enriched tumor-stroma boundary),
and Topic 5 (TLSs). The tissue structures revealed by these topics
visually correspond to the histological pattern seen in the co-
registered Hematoxylin and Eosin (H&E) image (Fig. 3B) and the
merged raw mlF images (Fig. 3C) with three key markers: CD3 (T cells),
CD20 (B cells), and PanCK/SOX10 (tumor cells). Figure 3D demon-
strates that topic 5 (TLSs) mainly consists of B cells, CD4 T cells, a few
CD8 T cells, and Treg cells, consistent with the TLS-like pattern iden-
tified in the Nanostring dataset discussed earlier. Due to the lack of a
dendritic cell marker in the mIF dataset, dendritic cells could not be
identified and included in topic 5. This analysis demonstrates that
SpatialTopic can consistently detect the same biologically relevant
patterns across various tumor tissues and imaging platforms, which
may be clinically significant, as TLS has been recognized as a promising
biomarker for cancer immunotherapy?.

SpatialTopic recovers spatial domain from cell type spatial
organization in healthy lung tissue

We further demonstrate that SpatialTopic can effectively distill signals
from noisy cell type annotations and identify clear tissue architecture
based solely on the spatial arrangement of cells. To illustrate this, we
applied SpatialTopic to the IMC dataset from the UTAG paper®, which
includes 26 small regions of interest (ROIls) images from healthy lung
tissue. For comparison, we used the UTAG result provided in the
paper” without rerunning UTAG.

Our analysis shows that SpatialTopic can recover tissue archi-
tectures directly from the spatial distribution of cell type annotations,
yielding results consistent with manual annotations (Fig. 4A). Spa-
tialTopic performs comparably to UTAG using only cell type annota-
tions (Fig. 4B), as indicated by the adjusted Rand index, which shows
similar performance levels. Additionally, Fig. 4C illustrates the topic
content and the cell type composition for each topic identified by
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(immune-enriched stroma-tumor boundary), and topic 5 (putative tertiary lym-
phoid structures). Three regions of interest (ROIs) are highlighted. This panel is a
pseudocolor representation of the same tissue shown in (C). B Hematoxylin and
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B corresponds to an adjacent section of the tissue shown in (A, C). C Merged
multiplexed immunofluorescence images of the same tissue section as in (A),
showing PanCK/SOX10 (red), CD3 (blue), and CD20 (green) across the full slide and
selected ROIs. D Heatmap shows per-topic cell type composition for the five topics
identified by SpatialTopic. Topic 5 (tertiary lymphoid structures) mainly consists of
B cells and CD4 T cells, with a small proportion of CD8 T cells and regulatory T
(Treg) cells. Source data are provided as a Source Data file.

SpatialTopic. This demonstrates SpatialTopic’s capability to perform
domain analysis without discarding existing cell-type annotations,
offering valuable flexibility for datasets with cell-type annotations or
for incorporating any existing cell-type annotation method. Unlike
UTAG, which learns spatial tissue architecture directly from cell fea-
tures due to noisy cell type annotations, we show that SpatialTopic can
effectively identify tissue architecture from these annotations. Thus
SpatialTopic is a robust alternative that leverages existing data without
the need for additional cell-level features. We note that this dataset is
challenging and we have to increase number of initialization to find a
good start for SpatialTopic.

SpatialTopic identifies disease-specific topics and tracks topic
evolution in mouse spleen over disease progression

We also applied SpatialTopic to a CODEX mouse spleen dataset’ to
demonstrate its proficiency in identifying spatial topics across multiple
images. This dataset includes nine images: three control normal BALBc
spleens (BALBc 1-3) and six MRL/Ipr spleens (MRL/Ipr 4-9) at varying
disease stages-early (MRL/Ipr 4-6), intermediate (MRL/Ipr 7-8),
and late (MRL/Ipr 9) of systemic autoimmune disease (Fig. 5A). Using
a 30-plex protein marker panel, the study identified 27 major

splenic-resident cell types across the nine tissue images. We use the
cell type annotation provided in the original paper’.

SpatialTopic identified six topics from ~0.7 million cells across the
nine images, highlighting the dramatic changes in spatial tissue
structures associated with disease progression from normal spleen to
spleen tissue at different disease stages (Fig. 5A). Figure 5B, C high-
lights per-topic cell type compositions aiding in labeling each topic.
The normal spleen tissue samples predominantly comprised three
topics: Topic 1 (red pulp), Topic 2 (periarteriolar lymphoid sheath,
PALS), and Topic 3 (B-follicle). Supplementary Figs. 3 and 4 show the
cell type distribution and domain annotations from the original paper,
demonstrating SpatialTopic’s ability to capture the main structures
consistent with these annotations, as compared to other methods
(Supplementary Figs. 3 and 5). With an increasing number of topics,
SpatialTopic also successfully delineated the marginal zone from the
B-follicle (Supplementary Fig. 3).

One key advantage of SpatialTopic is its ability to identify topics
jointly across all images, ensuring that topics are comparable across
normal and diseased spleens. This allows us to identify condition-
specific topics and quantify changes in topic proportions as the dis-
ease progresses. Diseased tissues often become disorganized, posing
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additional challenges to delineate spatial features compared to normal
tissues. For instance, in contrast to normal spleens, the red pulp region
in lupus-affected spleens (MRL/Ipr) shows early signs of reorganiza-
tion. These spleens exhibit an increase in granulocytes and erythro-
blasts, indicative of lupus-related splenic hematopoiesis and
potentially leading to splenomegaly, in contrast to the B cells and F4/
80(+) macrophages typically observed in normal spleens®>*>*, With
SpatialTopic, this alteration is marked by the dominance of Topic 6
(Erythromyeloid niche) in lupus spleens, which supersedes Topic 1, the
prevalent topic in normal spleen tissue. Other methods, including
Spatial-LDA, UTAG, and BankSY, did not detect this change in the
original red pulp region (Supplementary Fig. 5), partly due to over-
correction of batch effects. Topic 4 (CD106+ stroma niche), emerging
in the lupus spleen, is characterized by a high abundance of CD106+
stroma cells, which attract immune cells to the inflamed areas***, and is
enriched with CD4 and CD8 T cells. Notably, plasma cell, a disease-
related B-cell subtype, is also uniquely enriched in Topic 4 and appears
consistently across different disease stages. A plasma cell is a repre-
sentative cell type for this topic, as identified by both lift and FREX
metrics (Supplementary Fig. 6). A high abundance of plasma cells is
often observed in lupus-affected tissue, such as the spleen. Ther-
apeutic strategies aimed at eliminating plasma cells have demon-
strated efficacy in patients with refractory systemic lupus
erythematosus®. Topic 5 (Double Negative T cell niche), also unique to
lupus spleens, features an enrichment of B220+ double negative (DN)
T cells, as well as conventional CD4 T cells, and is more likely to be seen
in the advanced stages of the disease, as compared to Topic 4 and 6.
The expansion of DN T cells, is associated with disease progression,
not only in MRL/Ipr mice but also in patients with systemic lupus

erythematosus’”’. These dynamic changes in the spleen tissue archi-
tecture indicate a significant reorganization of the immune landscape,
reflecting immune dysregulation as systemic lupus erythematosus
progresses>.

Furthermore, SpatialTopic identifies topics based on the spatial
proximity of cell types, implying that cell types grouped within
the same topic are likely co-localized and prone to inter-
action. Figure 5D illustrates the changes in topic proportions
throughout the course of the disease progression. The distinct con-
tributions of cell types to each topic are highlighted in Fig. SE, mainly
selected based on the lift and FREX metrics***° (Supplementary Fig. 6),
as well as cell type composition. Cell types are clustered into topics
that exhibit similar dynamics across different slides, which provides
further insights into cell-cell interactions in both normal and diseased
tissues.

SpatialTopic is highly scalable on large-scale modern images
To benchmark the scalability of SpatialTopic as the number of cells in
images increases, we conducted tests using simulated datasets of
varying scales. Figure 6A shows that SpatialTopic significantly out-
performs Seurat v5 in terms of scalability with an increasing number of
cells within a single image. Moreover, as demonstrated in Fig. 6B,
SpatialTopic shows high efficiency on real large-scale imaging datasets,
requiring less user time compared to other methods. For example, on
the Nanostring CosMx NSCLC image with ~0.1 million cells, Spa-
tialTopic runs within 1 min on a standard MacBook Air, a performance
currently unbeatable by other methods.

Across all datasets, SpatialTopic ranks in the highest tier with
Seurat v5, while BankSY and UTAG fall into a second tier due to their
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Fig. 5 | SpatialTopic captures the main dynamics in tissue architecture of
normal and diseased mouse spleen. A Six topics were identified by SpatialTopic
across nine mouse spleen samples representing normal (BALBc 1-3) and different
disease stages of lupus: early (MRL/Ipr 4-6), intermediate (MRL/lpr 7-8), and late
(MRL/Ipr 9). B Heatmap shows per-topic cell type composition for the six main
topics identified by SpatialTopic. Based on cell type compositions, the first three
topics are labeled as red pulp, PALS (periarteriolar lymphoid sheath), and B-follicle
in normal mouse spleen tissue, while the other three topics are unique to the
disease stages. C Barplots shows the top 10 per-topic cell types for the six main
topics identified by SpatialTopic. D Dynamic change in the topic proportion of the
six topics during disease progression. Normal spleen samples are primarily

characterized by topics 1 (dark blue), 2 (red), and 3 (light green), which reflect red
pulp (mixed of B cells, erythroblasts, and F4/80(+) macrophages), PALS (mixed of
CD8T cells and CD4 T cells), and B-follicle (B cell dominated) respectively. There is
anincrease in Topic 6 (dark green) and depletion of Topic 1in lupus-affected spleen
(MRL/lIpr samples), representing much fewer B cells and F4/80(+) macrophages but
more granulocytes and erythroblasts in the red pulp regions. Topic 5 (mainly
B220(+) DN T cells and CD4(+) T cells, pink) is enriched in lupus-affected spleen
tissue at late disease stage. Topic 4 (light blue) is mainly in lupus-affected spleen
(MRL/Ipr samples) with high expression of CD106 in the stroma. E Dynamic change
of key cell types within each topic, identified jointly by FREX(omega=0.9) and lift
metrics (See Supplementary Fig. 6). Source data are provided as a Source Data file.

reliance on similar but less optimized strategies. CytoCommunity,
limited by its dependency on GPU support and memory demands, was
run with reduced epochs and CPU-only for the NSCLC dataset, which
compromised its performance and underscored its impracticality for
labs without extensive computing resources on large-scale imaging
analysis. Additionally, on images with cells more than 0.1 million, both
UTAG and CytoCommunity required running on high-performance
computing servers, due to their high memory demands. In contrast,

SpatialTopic is highly scalable on large-scale imaging analysis, with all
analysis done within minutes on a standard laptop.

Discussion

In summary, we introduced SpatialTopic, a spatial topic model
designed to identify and quantify biologically relevant topics across
multiple multiplexed tissue images. This unique computational
approach leverages language modeling techniques to decipher the
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Fig. 6 | SpatialTopic s scalable to large-scale images and can be run on a regular
laptop within minutes. A Runtime of SpatialTopic (region radius r=60) and
Seurat-v5 (K=30) on simulated datasets with increasing cell numbers on a single
image. n =5 replicates. The Error bar represents the standard error of the mean.

B Runtime of SpatialTopic, Seurat-v5, BankSY, UTAG, Spatial-LDA, and Cyto-
Community on large-scale Nanostring NSCLC and CODEX mouse spleen datasets.
All methods were benchmarked on a standard MacBook Air (M2, 2022) unless
exceeding the memory limitation. Source data are provided as a Source Data file.

tissue microenvironment from tissue imaging data. SpatialTopic
stands out as one of the few unsupervised learning methods capable of
discerning clinically relevant spatial patterns™'**. Unlike other meth-
ods that rely on hard clustering strategies for analyzing samples,
SpatialTopic is a probabilistic model-based approach using Bayesian
inference to identify complex tissue architectures. The model gen-
erates two key outputs: The first of these, the topic content maps the
cell type composition in spatial niches, allowing direct interpretation
of the corresponding topic (e.g., TLSs); The second output, topic
assignment for each single cell allows the quantification of each topic
in individual tissue samples for subsequent association analysis with
patient outcome. Application to multiple datasets along with bench-
mark analysis shows that SpatialTopic achieves higher precision in
defining global and local spatial niches and higher sensitivity at cap-
turing complex structures such as TLSs. Notably, our method is highly
scalable to large-scale imaging data with efficient runtime, handling
millions of cells on a standard laptop.

SpatialTopic is designed as a flexible spatial analysis module
within the current imaging analysis workflow. A standard image ana-
lysis pipeline includes cell segmentation, data normalization/batch
correction, cell phenotyping/clustering, and the analysis of cell type
content and spatial relationships. Downstream statistical analysis
typically starts with cell-level metadata derived from image analysis.
Due to varied marker panels and molecular imaging platforms, a one-
size-fits-all solution for cell phenotyping across diverse platforms
seems unlikely. In practice, we find that reference-based cell annota-
tion works best on single-cell imaging data rather than unsupervised
clustering due to high-noisy data. SpatialTopic does not specify any
upstream method and thus can be seamlessly integrated with other
cell phenotyping modules tailored for datasets from different plat-
forms. This design offers users adaptability, accommodating datasets
from different panel designs.

In our proposed analysis pipeline for imaging data, we separate
cell phenotyping from cell neighborhood/domain analysis for image-
based spatial data, with SpatialTopic directly taking cell types as input.
This key difference sets SpatialTopic apart from UTAG and BankSY,
which use protein/gene expression as input for niche/domain analysis.
UTAG performs dimension reduction before message passing, while
BankSY engineers new spatial features for each cell before dimension
reduction. We propose that treating cell phenotyping and neighbor-
hood/domain analysis as distinct steps is a better analysis strategy for
datasets generated by image-based technology with selected marker

panels. Using cell type annotations as input for cell neighborhood
analysis enhances the interpretability of different tissue micro-
environments and undoubtedly increases the computational efficiency
when analyzing large-scale images. The performance of SpatialTopic
may rely on the accuracy of cell phenotyping. A better strategy for cell
phenotyping is to annotate cells directly from cell images instead of
using summary statistics, such as mean marker expression or gene
count data. As part of the analysis pipeline, we are developing an
image-based deep learning method for cell phenotyping, incorporat-
ing subcellular information, as well as domain knowledge*.

For multi-sample analysis, addressing the batch effect is a key
challenge. Our proposed analysis pipeline seeks to mitigate the batch
effect during cell phenotyping using a reference-based cell pheno-
typing method. For spatial transcriptomics data, a supervised classifi-
cation method with a reliable single-cell reference can mitigate batch
effects and inherent noises in the imaging data. The Batch effect is
more critical for algorithms that directly consider gene expression
data as input. When analyzing the mouse spleen dataset, we used
Combat* for batch correction across multiple images before applying
UTAG and BankSY. However, Combat appears to over-correct for
batch effects (Supplementary Fig. 5), thus failing to distinguish
between normal and diseased red pulp tissue and ignoring key players
in diseased tissues. This might stem from the substantial differences
between normal and diseased tissues.

Modern datasets from platforms, such as 10x Xenium and Nano-
string CosMx, require scalable computational methods to handle their
size and complexity. Existing spatial domain analysis methods, origin-
ally designed for 10x Visium spatial transcriptomics data and optimized
for datasets with thousands of cells or spots per slide, find it challen-
ging to handle these more advanced datasets with millions of cells per
image. SpatialTopic meets this need by efficiently managing neigh-
borhood calculations and constructing the KNN graph only among
m anchor cells instead of all n cells in the image. This reduces the time
complexity of constructing KNN graphs from O(n log n) to O(mlog m),
and the time complexity of finding the closest anchor cell for each cell
from O(logn) to O(logm), where m < n. Furthermore, SpatialTopic
maintains linear time complexity relative to the number of cells and
iterations with collapsed Gibbs sampling and adapts an efficient
approach for K nearest neighbor searching. These optimizations
ensure SpatialTopic’s computational efficiency, making it accessible on
standard laptops and practical for analyzing large-scale imaging data
from platforms such as the 10x Xenium and Nanostring CosMx.
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Moreover, advances in technology now enable the quantification
of immune cell spatial diversity and the characterizing of tumor
microenvironments in three-dimensional (3D) tissues*’. While Spa-
tialTopic can be adapted to infer immunological topics from 3D tissue,
a refined strategy is needed to select anchor cells in the 3D spaces, as
the spatial information obtained by SpatialTopic primarily relies on the
relationships between anchor cells and other cells. In Supplementary
Fig. 7, we demonstrate the applicability of SpatialTopic to a 3D spleen
tissue image reconstructed from multiple tissue sections. To further
improve the performance and applicability of SpatialTopic, several
strategies could be pursued in the future. For instance, incorporating a
hierarchical Dirichlet prior to topic distributions across regions would
allow regions within the same image to share priors while allowing
variability across different images. Furthermore, optimizing the initi-
alization strategy is essential for applying SpatialTopic to population-
scale datasets comprising hundreds or even thousands of images.
These improvements would broaden the applicability and robustness
of SpatialTopic.

Methods

SpatialTopic

Notations. We assume there are total V cell types that contribute
to K different tissue microenvironments (topics) across G multiplexed
images. Let ¢y be the ith cell at the location xg,=(xg,, Xg,),
g=L2,...,G,i=12,...,n,, on the gth image with total ng cells. Let
cgi=v if the cell has been classified to the vth cell type. Let

C={cy}8 120 and X ={x¢,)4"1> ¢ denote all observed cell types
i=12,. 8%i=1,2,.,n,

and cell Iocatlons across all G images.

Model. In a conventional LDA model, each image is treated as an
individual document, employing a bag-of-words approach without
accounting for spatial information. This approach is similar to our
prior work on longitudinal flow cytometry data analysis®. Here, in
order to incorporate spatial information within images, we introduce a
spatial topic model, SpatialTopic, integrating spatial data into the
foundational LDA framework. This spatial topic framework was ori-
ginally proposed for image segmentation®, instead of viewing each
image as a singular document, we treat each image consisting of
densely placed overlapping regions (documents). Unlike the conven-
tional LDA model where relationships between documents and words
are known and fixed, the word-document relationship here is
unknown: each cell (word) is flexible to be assigned to all possible
regions (documents). This flexible region (document) design allows us
to identify spatial structure with irregular shapes.

For SpatialTopic, we introduce an additional hidden variable, D,;,
to denote cell region (document) assignment. Thus, each cell is asso-
ciated with two hidden variables: the latent topic assignment
Zgi €11, 2, ..., K} and the latent region assignment D; € {1, 2, ..., M},
M=% Mg, where M, denotes the number of regions on the image g.
During the initialization, we pre-selected anchor cells as region cen-
ters. Let X7 = {x d} d=12,. 1 be the set of all M region centers across all
images. Let 8, be the proportlon of region d over K topics and B be the
proportion of topic k over V cell types. Hyperparameters ¢ and a
specify the nature of the Dirichlet priors of {8} and {0}, respectively.

Then we are ready to describe our generative model:

* For each topic k, sample B (topic weights over V cell types) from a

Dirichlet prior By ~ Dir(yp).

* For each image region d (centered atxg), sample topic proportion

6, - Dir(a)

* For each cell, the ith cell in the image g

- Sample its region assignment Dg; from a uniform prior over
possible documents (regions) in the image g.

- Sample the location Xg; conditional on its region assignment

Dy; with a kernel function based on the distance between the
cell location Xg; and the region center xd

=d o K(x5;, x3).

C
XgilDyg;

- Sample topic assignment Z|Dg;=d - Multi(04, 1).
- Sample cell type cgi|Zg; =k ~ Multi(By, 1).

Hyperparameters a and g should be chosen based on the belief
on {6, and {B;} in a Bayesian perspective. In our application, both a
and @ are set very small by default (default: ax = 0.01, Vk; ¢, = 0.05, Yv)
to encourage the sparsity in region-topic distributions {6, and topic-
celltype distributions {}.

Nearest-neighbor exponential kernel. The flexible relationships
between regions and cells in SpatialTopic allow each cell to be assigned
to any one of its proximate regions. We employ a nearest-neighbor
Gaussian kernel to capture the spatial correlation between cells
and their respective regions, as previously used in the nearest-
neighbor Gaussian process*. For computational efficiency, especially
with large-scale images, we restrict our consideration to the top
nearest-neighbor regions for each cell. Let N (g C x“ be the col-
lection of m closed region centers to the cell x;; (default: m=5). In
practice, the commonly used squared exponential Gaussian kernel
function decays too rapidly. This rapid decay often results in cells
predominantly being linked to their closest region, irrespective of their
cell types. Let o be the length scale that controls how fast correlation
decays with distance in the kernel function. Thus, drawing inspiration
from ref. 44, instead of the squared exponential kernel, we used the
following exponential kernel,

K(x;,,xd> S ]l{xg € N(x;,-) } exp{—||x§, —xg||2/g}, Q)

where [lxg; — xd| |, represents the Euclidean distance between the cell
location xz, and the region center xd We fix o for computational
efficiency, but it may be sampled durlng the Gibbs sampling. Increas-
ing o would reduce the strength of the spatial correlation, resulting in a
diminished spatial effect when assigning cells to regions.

Collapsed Gibbs Sampling. We use collapsed Gibbs sampling for
model inference. The collapsed Gibbs sampling algorithm was origin-
ally introduced as the Bayesian approach of LDA*. This method’s
comprehensive derivation and implementation can be found in the
paper*. Similar to ref. 24, we further adapted and extended the algo-
rithm for our proposed spatial topic model. It's noteworthy that during
the collapsed Gibbs sampling process, the parameters B and 6, are
integrated out and are not explicitly sampled. Instead, our focus is on
the two hidden variables associated with each cell: the topic assign-
ment Z; and the region (or document) assignment D,;. These variables
undergo iterative sampling using the collapsed Gibbs sampler:

1. Sample topic assignment Z; conditional on region assignment Dy;

with®
PZg=k | Dgi=d,cyi=0,D_4, Z_3;,C_gi, ¥, @)
(v) (k)
n, —gi +d, ny —gi +ay 2
() «
Zt 11 7g1+wf2k lnd)gl+ak
where ni”) - refers the number of times that cell type v has been

observed with topic kand n(")  refers the number of times that
topic k has been observed in reglon d, both excluding the cur-
rent cell gi, the ith cell on the gth image. The first ratio expresses
the probability of cell type v under topic k, and the second ratio
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BOX 1

Collapsed Gibbs sampling algorithm

A W N =

. Gibbs sampling over burn-in and sampling period. For each cell, do
% and n”

(a) Update counts n excluding the current Zg; and Dyg;.

. Identify M anchor cells (located at {xg}d:1 o i) as the region centers across images.
. For each image, pre-compute a KNN graph between all cells and the selected region centers.
. Initialize topic assighment Z; and region assignment D; for each cell. Compute region-topic counts nfjk) and topic-celltype counts nf(‘”.

(b) Sample topic assignment Zg; conditional on region assignment Dg; based on Eq. (2).
(c) Sample region assignment Dg; conditional on topic assignment Zg; based on Eq. (3).

(d) Update counts n¥’ and n{"’ with the updated Z,; and Dy;.

. Check convergence. If converged during burn-in and L posterior samples drawn, output posterior samples and parameters estimated based

on Egs. (4) and (5). If not, increase the number of iterations for burn-in.

expresses the probability of topic k in regiond. D_ and

Lz .
gir < —giv
C_g; denote collections of D, Z, and C excluding cell gi.

2. Sample D,; conditional on Z; with

P(Dgi=d | Zy=k,D_g;,
O<P(Zgi=k ‘ z—gi,

Z X5, X4, @,0)
Dyi=d, D_g;, @)P(xS; | Dyi=d, X%, 0)P(Dy; =d)

According to ref. 46, P(Zg;=k | Z_g;,Dy;=d, D_g, &) can be
obtained by integrating out 8, that
(k)
n, .t
P(Zy=k | Z_g;,Dyi=d, D_;, @)= K"+
k=1 ng, —gi tay

We can further omit P(D,; = d) due to uniform prior. Thus D; can
be sampled based on the following conditional distribution:

— — C d
P(Dg; = d| Zgi =k, D_gir Z_gi) X1 X, &, 0)
(k)
nd, —gi
K k)
kK =1 nd, —gi

+0‘k

3
ocK(xg;, x9) " @)
ak'

Initialization

During initialization, we employ a spatially stratified sampling
approach to randomly select anchor cells from each image, which
serve as region centers. The number of anchor cells per image is
determined by a predefined region radius r (default: r=400) and the
image size. The choice of r should take into account both image
resolution and tissue complexity. To ensure an accurate estimation of
the topic distribution 6, each region should contain a sufficient
number of cells. In practice, for whole-slide imaging, we expect at least
100 cells per region on average, which guides our selection of region
radius r for each dataset.

Since different imaging platforms may report spatial coordinates
in either pixels or microns, users are advised to adjust parameters
accordingly. In addition, the length scale g, another critical parameter
controlling the strength of the spatial effect, should be tuned in con-
junction with the region radius r. Empirically, we have found that set-
ting o ~ /r often works well. However, the optimal value may vary
depending on the structure complexity of the imaging data. A smaller
o benefits the identification of local structure, while a larger o supports
global structure. We recommend users to turn the two parameters on a
small subset of images before applying to the whole datasets. For each
image, we construct an m-nearest-neighbor graph linking all cells to

the selected anchor cells. Specifically, for each cell, its m-closest
anchor cells are identified. For computational efficiency, distances
between each cell and its top m-nearest anchor cells are pre-computed
before Gibbs sampling.

The performance of SpatialTopic may be sensitive to the initi-
alization of anchor cells, especially on images with highly complex
spatial organization. To address this, we take a warm start strategy
instead of starting Gibbs sampling from a single random initialization.
This involves running multiple short Gibbs sampling chains during
initialization (default: ninit 10), each with a unique set of
randomly-selected anchor cells. After a few iterations (default:
niter init = 100), only the one with the highest log-likelihood is
retained and continued.

Implementation

We implemented SpatialTopic in Rcpp and made it an R package
SpaTopic (officially available on CRAN after Jan 17, 2024). The complete
algorithm is shown in Box 1. For the Gibbs sampling, we have set the
default parameters as follows: iter = 200, burnin = 1000, thin =20 (200
Gibbs sampling draws are made with the first 1000 iterations discarded
and then every 20th iteration kept). We can infer topic distributions
across all images using the posterior samples drawn from the Gibbs
sampling. For each of these posterior samples, both parameters {f}
and {0} can be estimated as follows:

)
N n’+y
B = Y S — 4)
D ”g) +,
(k)
. n;, +a,
Ok = 4k 5)

K (9 :
D=1y tay

Moreover, we also keep the posterior distribution of Z; from all
posterior samples for each individual cell. Notably, D; has been mar-
ginalized during this process and each cell in the end is assigned to the
topic with the highest posterior probability. Thus we are also able to
visualize the spatial distribution of cell topics in the images.

Model selection

The likelihood of the topic model is intractable to compute in general,
but we can approximate the model log-likelihood in terms of model
parameters {B;} and {8.". With the law of total probabilities, we take
into account uncertainties both in cells’ region and topic assignment,
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then the log-likelihood of the spatial topic model can be presented as
Ng K M V

e, x)=>">"10g|> > "1y =0)0ubBrn |, (6)
g k

i=1 =1d=1v=1

where nd,=P(x¢; | Dy; =d, x3)P(Dy; =d) o K(x5;, x5).
We use the Deviance Information Criterion (DIC)*® to select the
number of topics, a generalization of the Akaike Information Criterion

(AIC) in Bayesian model selection:

DIC=p,+D(C, X), %)
where the Deviance is defined as
and pp = 1 Var(D(C, X)).

DIC requires calculating the log-likelihood for every posterior
sample, which is time-consuming. To determine the optimum number
of topics, we run SpatialTopic with a varied number of topics (2-9 in
practice) and collect a few posterior samples (such as the first 20
posterior samples) after convergence (with trace=TRUE). The num-
ber of topics was selected based on DIC with (7). Otherwise, we only
output the deviance and the log-likelihood of the final posterior sam-
ple (default: trace=FALSE). In Supplementary Fig. 8, we show the
convergence of the Gibbs sampling algorithm on the Nanostring
NSCLC dataset. The number of topics was selected as seven
based on DIC.

D(C, x)= — 2ll(C, X)

Comparing to other methods

We compared the performance of SpatialTopic with other five niche
analysis methods: spatial-LDA, Seurat-v5, UTAG, CytoCommunity, and
BankSY. BankSY and UTAG used protein or gene expression data and
cell spatial coordinates as inputs, while the other methods used
existing cell-type annotations and cell spatial coordinates. We followed
the pre-processing procedures and parameters described in the ori-
ginal papers and tutorials for each method, with some hyperpara-
meters slightly adjusted for computational efficiency on large datasets
or when clear guidelines for tuning parameters were available. Details
of these adjustments and the rationale for not using the default set-
tings are described in this section.

All methods were initially run using R Studio (for R-based meth-
ods) or Jupyter Lab (for Python-based methods) on a standard Mac-
Book Air (M2, 2022). If a method could not be run on a standard Mac
due to memory constraints, we used our high-performance computing
server with a single-core CPU and 200 GB of assigned memory. For the
Nanostring CosMx NSCLC dataset, both CytoCommunity and UTAG
were run on the server due to high memory usage. Additionally, for the
CODEX mouse spleen dataset, UTAG can be run on the Mac only
without the default parallel mode due to memory constraints.

SpatialTopic (SpaTopic R package v1.1.0). We ran SpatialTopic with
region_radius =400, 150, 300 for the Nanostring CosMx NSCLC, the
CODEX mouse spleen, and the mIF melanoma datasets, respectively,
allowing around 100 cells per region on average during initialization,
which is necessary for accurately estimating the topic-region dis-
tribution. We chose length-scale sigma=20 for the mouse spleen
dataset while using the default parameters for the NSCLC and the
melanoma dataset. Posterior samples were collected after the con-
vergence of the Gibbs sampling chain, with a burn-in period of 2000
iterations for the NSCLC and the melanoma dataset, and 1500 itera-
tions for the mouse spleen dataset. For the healthy lung dataset with
26 small ROIs, SpatialTopic was run with sigma=5 and region _ra-
dius = 60 to identify the complex local structures. Only on this dataset,
we increased the number of initializations to 200 times to increase the
robustness of identifying consensus patterns across ROIs while
increasing the running time.

Seurat-v5 (v5.0.2). We used the default niche analysis in Seurat
v5, specifically the BuildNicheAssay() function in the Seurat R
package. Seurat v5 employs k-means clustering to group cell
neighborhood features, which are derived from the shared-nearest-
neighbor graph (default neighbors.k=30), a variant of the KNN
graph, as part of its image-based spatial data analysis pipeline. We
ran BuildNicheAssay() with all default parameters except for the
Nanostring CosMx NSCLC datasets, for which we set neighbors.k =
100. Because we found that increasing neighbors.k from 10 to 100
(testing neighbors.k=10, 30, 50, 100) significantly improved the
algorithm’s performance on this dataset, with results presented in
Supplementary Fig. 9.

Spatial-LDA (v0.1.3). For the CODEX mouse spleen datasets, we used
the same parameters as the authors used in the original methodology
paper, though we now use neighborhoods of all cells as the input, not
only B cells. For the Nanostring CosMx NSCLC datasets, we also use
neighborhoods of all cells as the input but set radius =400 to extract
neighborhood cell type compositions, consistent with region_radius
r=400 in SpatialTopic on this dataset. To reduce the computational
complexity for both datasets, we set the threshold = 0.01 for ADMM
Primal-Dual optimizer. Finally, we output the topic weights for every
cell and assign every cell to a topic with the maximal weight.

CytoCommunity (v1.1.0). CytoCommunity (unsupervised mode) was
run on a CPU with 200 GB of assigned memory and evaluated only on
the Nanostring CosMx NSCLC dataset due to its demand for large
memory and its unsupervised mode’s inability to learn Tissue Cell
Neighborhoods across multiple images. We set KNN-K =300 for 0.1IM
cells, as suggested in the original paper. For large-scale image data, the
second step of CytoCommunity is time-consuming when trained on a
CPU. Therefore, we greatly reduced num_RUN to 10 and Num_Epoch to
100 per run while ensuring the final loss was less than -0.2 for each run.
Other parameters were set to the default.

UTAG (v0.1.1). UTAG was primarily developed for protein expression
data with limited marker channels. For the Nanostring CosMx NSCLC
datasets with 960 genes, we used typical pre-processing steps sug-
gested by Scanpy (v1.9.8) for analyzing scRNA-seq datasets. These
steps included filtering low-prevalence genes, log transformation, and
retaining only highly variable genes. We then performed z-score nor-
malization, truncated at 10 standard deviations, followed by PCA. Only
the top 50 principal components were used as input for UTAG. UTAG
was run under multiple clustering resolutions [0.05, 0.1, 0.3, 0.5] and
mix_dist = 60, with an image resolution of 0.18 microns per pixel, since
the authors suggested setting mix_dist between 10 and 20 um in the
user manual. For the CODEX mouse spleen dataset (with intensity
values already transformed), we performed z-score normalization
truncated at 10 standard deviations, followed by Combat batch
correction* and a second z-score normalization truncated at 10 stan-
dard deviations, a similar procedure as introduced in the UTAG paper
for preprocessing IMC data®. We also set mix_dist =60, with an ima-
ging resolution of 0.188 microns per pixel.

BankSY (v0.99.9). In contrast to UTAG, BankSY is specifically
designed to analyze spatial transcriptomics datasets. We ran BankSY
with lambda = 0.8 to identify spatial domains, as recommended, with
other parameters set to default, as described in the Github tutorial. For
the Nanostring CosMx NSCLC dataset, we followed the same pre-
processing procedures outlined in the domain analysis tutorial, using
k_geom =30, npcs =50, and clustering resolutions of 0.1, 0.2, 0.3, and
0.5. For the CODEX mouse spleen datasets, we used the same input as
UTAG, after batch correction and normalization. We followed the
tutorial for multi-sample analysis, running the results under
npcs =30 since the dataset has only 30 markers.
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Data preprocessing

Nanostring CosMx human NSCLC. The Nanostring CosMx NSCLC
dataset is available on the Nanostring Website (https://nanostring.
com/products/cosmx-spatial-molecular-imager/ffpe-dataset/nsclc-
ffpe-dataset/). For our analysis, we selected Lung5-1 sample and
annotated about 0.1IM cells into 38 cell types using Azimuth® with a
human lung reference v1.0 (https://azimuth.hubmapconsortium.org/
references/). We used the same cell type annotations from the Seurat
image analysis pipeline tutorial (https://satijalab.org/seurat/articles/
seurat5_spatial_vignette_2.html). Since healthy lung tissue was used as
the reference, the “basal” cells were re-labeled as tumor cells since they
are the most closed cell type. We checked that the tumor locations
indicated by the reference-based cell annotations are consistent with
the tumor region labeled by the Nanostring company.

CODEX mouse spleen. We used the cell type annotation, marker
expression level, and imaging coordinates from the original paper’.
The image dataset can be downloaded from https://data.mendeley.
com/datasets/zjnpwh8mS5b/1. For cell coordinates, we only use the X
and Y axes of the samples, ignoring Z axis. However, the result is
similar when considering all three dimensions.

IMC healthy lung. We used the cell type annotation, marker expres-
sion level, cell imaging coordinates, and cell UTAG domain labels in the
original paper®. This image dataset can be downloaded from https://
zenodo.org/records/6376767.

mlF melanoma. The 12-plex whole-slide mIF image on Melanoma tis-
sue sample is one of the imaging datasets that have been published
from our group". The dataset contains following 12 markers:
CDS8, PD-1, PD-L1, CD68, CD3, CD20, FoxP3, pancytokeratin+SOX10
(panCK/SOX10), TCF1/7, TOX, Ki67, LAG-3. The processed dataset
can be downloaded from Mendeley data with link https:/data.
mendeley.com/datasets/syfmgsv3d9/1. Here, we only used cell
phenotypes (classified based on marker expression of CD8, panCK/
SOX10, CD68, CD3, CD20, FoxP3) and cell locations as the input of
SpatialTopic.

Simulation

We tested methods on simulated datasets of different scales to
benchmark the scalability of SpatialTopic with an increasing number of
cells in images. We randomly sampled 10 k, 40 k, 90 k, 160 k, and 250 k
pixels from an image, similar to the simulation method described in
ref. 23, to represent cell locations. We did not simulate gene expression
levels for every individual cell. Instead, for each domain, we randomly
sampled cells with domain-specific cell type distributions, with para-
meters simulated from Dirichlet(1, 1, 1, 1, 1), anticipating five distinct
cell types per domain (a simulated example is shown in Supplementary
Fig. 10A). Five unique datasets were generated for each simulation
scenario. We also scaled the X and Y axes to maintain consistent cell
densities across all simulation scenarios.

In addition, we also assessed other aspects of SpatialTopic,
including the recovery of the number of topics and topic distributions
in our simulation studies. In Supplementary Fig. 10, we evaluated
SpatialTopic across 20 simulated datasets (each with 10k cells) and
showed that SpatialTopic not only achieves high clustering accuracy
(evaluated using Adjusted Rand Index) but also effectively recovers the
topic distributions (evaluated by sum of residual squared error
between the true topic content matrix {ff;} and the estimated {ilk}),
which highlights our model’s capability to recover the underlying topic
structure.

Statistics and reproducibility
All statistical calculations were implemented in R (v4.3.3). No statistical
method was used to predetermine sample size. The experiments were

not randomized. This study does not involve group allocation that
requires blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets we used in the study are publicly available and can be
downloaded online, with analysis details described in the Method
section. The Nanostring CosMx NSCLC dataset is available on the
Nanostring Website (https://nanostring.com/products/cosmx-spatial-
molecular-imager/ffpe-dataset/nsclc-ffpe-dataset/). =~ The  CODEX
Mouse spleen dataset can be downloaded from Mendeley Data with
link https://data.mendeley.com/datasets/zinpwh8mS5b/1. The IMC
Healthy Lung dataset can be downloaded from Zenodo with link
https://zenodo.org/records/6376767. The mlIF Melanoma image
dataset™ present in the manuscript can be downloaded from Mendeley
Data with link https://data.mendeley.com/datasets/syfmgsv3d9/1.
Source data for each individual figure are provided with this
paper. Source data are provided with this paper.

Code availability

The R package is available on Github (https://github.com/xiyupeng/
SpaTopic/) with a tutorial (https://xiyupeng.github.io/SpaTopic/). The
R package is also available on CRAN (https://cloud.r-project.org/
package=SpaTopic) with https://doi.org/10.32614/CRAN.package.
SpaTopic. The first version of the R package was officially released
on CRAN on Jan 17, 2024. Analysis codes are available on Github
(https://github.com/xiyupeng/Spatial Topic_Analysis_codes) with
https://doi.org/10.5281/zenodo.15588176.
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