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Integrative multi-omics reveals a regulatory
and exhausted T-cell landscape in CLL and
identifies galectin-9 as an
immunotherapy target

L. Llaó-Cid 1,16, JKL Wong1,16, I. Fernandez Botana2, Y. Paul 1, M. Wierz2,
L-M Pilger1,3, A. Floerchinger1,3, CL Tan 4, S. Gonder2, G. Pagano2,
M. Chazotte 5, K. Bestak 5, C. Schifflers 1, M. Iskar 1, T. Roider 6,
F. Czernilofsky 6,7,8, P-M Bruch 6, JP Mallm 9, A. Cosma 10, DE Campton11,
E. Gerhard-Hartmann12, A. Rosenwald12, D. Colomer 13, E. Campo 13,
D. Schapiro 5,14,15, EW Green 4, S. Dietrich 6, P. Lichter1, E. Moussay 2,16,
J. Paggetti 2,16, M. Zapatka 1,16 & M. Seiffert 1,16

T-cell exhaustion contributes to immunotherapy failure in chronic lympho-
cytic leukemia (CLL). Here, we analyze T cells from CLL patients’ blood, bone
marrow, and lymph nodes, as well as from a CLL mouse model, using single-
cell RNA sequencing,mass cytometry, and tissue imaging. T cells in CLL lymph
nodes show the most distinct profiles, with accumulation of regulatory T cells
and CD8+ T cells in various exhaustion states, including precursor (TPEX) and
terminally exhausted (TEX) cells. Integration of T-cell receptor sequencing data
and use of the predicTCR classifier suggest an enrichment of CLL-reactive
T cells in lymph nodes. Interactome studies reveal potential immunotherapy
targets, notably galectin-9, a TIM3 ligand. Inhibiting galectin-9 inmice reduces
disease progression and TIM3+ T cells. Galectin-9 expression also correlates
with worse survival in CLL and other cancers, suggesting its role in immune
evasion and potential as a therapeutic target.

Failure of response to immune checkpoint inhibitors (ICI) is commonly
seen in cancer patients with unclear causes and predictors, limiting the
use of these immunotherapy approaches. B-cell lymphomasdevelop in
lymph nodes (LNs), the site of T-cell priming and activation in infec-
tions and cancer. Even though there is a constant interaction of
malignant B cells with CD4+ and CD8+ T cells in this tissue, adaptive
immune control fails and response to ICI is very limited in patientswith
B-cell lymphomas. Very low response rates to anti-PD1 antibodies were
observed in patients with chronic lymphocytic leukemia (CLL)1,2, a
malignancy of mature B cells that accumulate in blood, LNs, and bone
marrow. In contrast to patientswith acute lymphocytic leukemia (ALL),
also response rates to CD19 CAR-T-cell therapy remain below the

expectations inCLL3. A lackof fit and functional T cells is discussed as a
main limitation explaining the failure of immunotherapy responses in
CLL and beyond4,5. Chronic exposure of T cells to tumor (neo)antigens
and an immune suppressive microenvironment lead to their exhaus-
tion and dysfunction6. In addition, current treatment regimens for CLL
were shown to impact T-cell fitness7. Whereas terminally exhausted
T cells, characterized by high PD1 expression levels and expression of
TOX, fail to reactivation by ICI, their precursor state that expresses
lower levels of PD1 and is positive for TCF-7, harbors self-renewal
capacity and the ability to control tumor development upon ICI
treatment8–10. The presence of these cell states has been confirmed in
CLL patients and mouse models11, even though a characterization of
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T cells in CLL LNs is lacking due to the limited access to such samples.
Current efforts aim at characterizing mechanisms of T-cell exhaustion
in cancer and at identifying therapeutic targets to overcome this
limitation.

Here, we used single-cell RNA sequencing (scRNA-seq) and mass
cytometry (CyTOF) of LNs, peripheral blood (PB) and bone marrow
(BM) samples of patients with CLL, as well as reactive lymph nodes
(rLN) as control, combined with multiplex imaging of LN tissue sec-
tions andmicroarrays to characterize the distribution, phenotype, and
functionof T cellsunder chronic exposure to cancer.We show that CLL
LNs constitute a unique niche where clonally expanded CD8+ T cells
expressing CD39 and with an exhausted phenotype are enriched in
comparison to reactive LNs, and are predicted to be CLL-reactive. We
further defined cells with a precursor exhausted signature that accu-
mulate in CLL LNs, as well as several types of regulatory T cells. The
results of interactome analyses led us to target galectin-9 in a CLL
mouse model, which resulted in improved T-cell function and an
attenuated tumor development. Our analyses link galectin-9 expres-
sion with the survival of patients with CLL, kidney or brain tumors.

Results
Definition of the T-cell landscape in CLL using mass cytometry
To comprehensively characterize the T-cell compartment associated
with CLL, a large-scale and high-dimensional analysis of T cells from
CLL patients as well as non-cancer controls was conducted using mass
cytometry, scRNA-seq, and multiplex imaging of tissue sections fol-
lowed by integrative data analysis (Fig. 1A). The patient cohort reflects
the heterogeneity of CLL in respect to cell-of-origin, including both
IGHVmutated (n = 10) and unmutated (n = 10) cases, as well as patients
with the prevalent genetic aberrations (Supplementary Data 1). We
performedmass cytometry profiling of T cells from 22 CLL LNs, plus 7
paired PB and 3 paired BM samples, as well as 13 reactive LNs (rLNs)
using a panel of 42 antibodies (Supplementary Data 2) designed to
identify and characterize naïve, memory, effector, regulatory, and
exhausted T cells. The analysis comprised 5.29 × 106 T cells, with a
median of 51,937 cells per sample (Supplementary Fig. 1A–C). Unsu-
pervised graph-based clustering based on the differential expression
of the analyzed proteins grouped cells into 30 clusters which are
presented as uniformmanifold approximation and projection (UMAP)
plot (Fig. 1B, C, Supplementary Fig. 2A). This approach led to the
identification of 15 CD4+ T-cell clusters, 9 CD8+ T-cell clusters, 4
double-negative T-cell clusters, and 2 clusters with a mixture of CD4+

andCD8+ T cells (Fig. 1D, Supplementary Fig. 2B,C, and Supplementary
Data 3). The expression of CD45RA, CD45RO, and CCR7 allowed for a
general classification of T cells into naïve (TN, CD45RA+ CD45RO-

CCR7+), central memory (TCM, CD45RA- CD45RO+ CCR7+), effector
memory (TEM, CD45RA

- CD45RO+ CCR7-) and effectormemory cells re-
expressing CD45RA (TEMRA, CD45RA

+ CD45RO- CCR7-). The CD8+ T-cell
subsets comprised 1 naïve (CD8 TN), 1 central memory (CD8 TCM),
3 subsets with a short-lived effector cell (SLEC) phenotype expressing
TBET and KLRG1 (CD8 TEM TBET, CD8 TEMRA TBET, and CD8 TEMRA

CD56)12,13, and 4 effector memory subsets with a higher expression of
the cytotoxic molecule granzyme K (GZMK) and an increasing
expression of exhaustion-related molecules such as the inhibitory
receptors PD1 and TIGIT, the transcription factors EOMES and TOX,
and the ectoenzymes CD38 and CD39 (CD8 TEM GZMK, CD8 TEM TBET
GZMK, CD8 TEX CD38, and CD8 TEX CD39)14. The CD4+ T-cell subsets
comprised 1 naïve (CD4 TN), 3 central memory (CD4 TCM1 CCR7, CD4
TCM2 CD25, and CD4 TCM3), 1 follicular helper (TFH), and 6 effector
memory subsets. Of these, twoexpressedTBETandKLRG1, resembling
SLEC subsets (CD4 TEM CD56, and CD4 TEM TBET), while 3 of them
expressed higher levels of PD1 and TIGIT (CD4 TEM PD1), CTLA4 and
CD38 (CD4 TEM CTLA4), or CD39 (CD4 TEM CD39). The last CD4 TEM

subset expressed EOMES, GZMK and PD1 (CD4 TEMGZMK), and shares
therefore characteristics of T regulatory type 1 cells (TR1) and CD4+

T cells with cytotoxic properties15,16. In addition, FOXP3 expression
identified 4 TREG clusters within the CD4+ T cells, 2 with a central
memory phenotype (CD4 TREG-CM1 and CD4 TREG-CM2), and 2 subsets
with an activated inhibitory phenotype (CD4 TREG PD1 and CD4 TREG

CD39). CD4 and CD8 double-negative (DN) CD3+ T cells comprised 2
clusters with a phenotype similar to CD8 SLEC subsets (DN TEM KLRG1
and DN TEMRA TBET), and 2 cytotoxic clusters expressing GZMK and
EOMES as well as CD38 (DN TEMRA CD38) or the transcription factor
HELIOS (DNTEMHELIOS). A KI67+ proliferative subset (TPR), aswell as a
cluster with high expression of ICOS (TEM ICOS) were both composed
of CD4+ and CD8+ T cells.

To identify relationships between the T-cell populations present
in the CLL LNs, we correlated the subset frequencies of all individual
CLL LN samples (n = 20, excluding 2 duplicate samples, Fig. 1E). Naïve
CD4+ and CD8+ T cells as well as CD4+ and CD8+ T cells with a SLEC
phenotype were significantly associated with each other, indicating
that the LN tumormicroenvironment (TME) is similarly influencing the
differentiation of these cell states both in CD4+ and CD8+ T cells.

Spatial analyses of immune cell populations by multiplex immu-
nofluorescence staining of a tissue microarray (TMA) of 42 CLL LN
samples confirmed the presence and colocalization of malignant B
cells with T cells in the tissue (Fig. 2A, Supplementary Fig. 3A, B).
Quantification of the frequencies of the major immune cell subsets in
the tissues revealed a positive correlation for CD8+ PD1- and CD8 PD1+

T cells, for myeloid cells and CD4 TREG, and for CD4 TREG and CD8+

T cells (Fig. 2B, Supplementary Fig. 3C) which is in line with a role of
CD4 TREG in promoting the accumulation of dysfunctional CD8+

T cells17. We next quantitatively assessed the spatial cell-cell interac-
tions by calculating the enrichment of pairwise interacting cell types
for all cores using Giotto18. This confirmed an enrichment of physical
interactions between CD4 TREG and CD8 PD1+ T cells as well as CD4
PD1+ or PD1- T cells (Fig. 2C, D, Supplementary Fig. 3D) suggesting that
TREG limit the activity of CD4 and CD8 T cells in the CLL LNs.

CLL LNs are enriched with regulatory T cells and exhausted
cytotoxic T cells
We next examined the distribution of T-cell immunophenotypes
across the three different tissues analyzed in CLL. The sample com-
position of PB and BM was similar, but differed from LN samples
(Fig. 3A, B, Supplementary Fig. 4A), suggesting that tissue cues sig-
nificantly determine T-cell composition. PB and BM samples were
enriched in SLECT cells, such asCD8TEM TBET, CD4TEMTBET, andDN
TEMRA TBET, while CLL LNs contained higher frequencies of exhausted
T cells (CD8 TEX CD39 and CD8 TEX CD38), CD4 TEM GZMK cells, CD4
TFH cells, several CD4 TREG subsets (CD4 TREG-CM1, CD4 TREG PD1, and
CD4 TREG CD39), as well as proliferating cells (TPR) (Fig. 3C). Even
though the abundancies among cell clusters within the tissue types
correlated, no significant associations of the frequencies of cell subsets
between PB and LN samples of the same patient were identified,
underscoring a differential composition of T-cell subsets between
tissues (Supplementary Fig. 4B).

The comparison of cell subset frequencies between CLL LNs and
rLNs revealed that higher percentages of cytotoxic CD8 TEM GZMK as
well as exhausted CD8+ T cells (CD8 TEX CD39 and CD8 TEX CD38) were
present in CLL LNs (Fig. 3D). Within the CD4 compartment, CD4 TEM

GZMK cells and all CD4 TREG clusters (CD4 TREG-CM1, CD4 TREG-CM2, CD4
TREG PD1, and CD4 TREG CD39) were also enriched in CLL LNs, in addi-
tion to proliferating TPR cells and DN TEM HELIOS cells (Fig. 3D). The
main enriched cell types in rLNs versus CLL LNs were naïve CD4 and
CD8 T cells as well as CD4 TFH cells (Supplementary Fig. 4C). A com-
parative analysis of activation and exhaustionmarkers on CD8 TEM cells
revealed significantly higher CD39 expression in CLL LNs in comparison
to rLNs, and a tendency towards higher expression levels of CTLA4,
OX40, and TOX in CLL LNs (Fig. 3E). Collectively, these results suggest
that CLL LNs constitute a distinct niche where malignant B-cell
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accumulation induces an immunosuppressive microenvironment with
an enrichment of regulatory T cells and exhausted cytotoxic T cells.

Next, we examined the relation of clinical features to a distinct
T-cell composition in the CLL LNs. We detected a strong negative
association between the age of the patients and the frequency of naïve
CD8+ T cells (Supplementary Fig. 4D) which is in line with published
data19. In addition, the frequencies of 2 CD4 TREG clusters (CD4 TREG

-CM2 and CD4 TREG PD1) showed a positive correlation with age (Sup-
plementary Fig. 4E, F). We did not observe significant associations
between the frequencies of T-cell clusters with sex, clinical stage, or
outcome of the patients according to the adjusted p-values after
multiple comparisons (Supplementary Data 4). However, significant
associations between several cell clusters and tumor load or clinical
stage were detected beforemultiple testing (Supplementary Data 4; p-
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value < 0.05). In addition, we observed a significant correlation
between CD4 TCM3 cells and time to treatment, as well as CD4 TFH cells
and survival. A Kaplan–Meier-survival analysis showed a significant
benefit for patients with a higher abundance of CD8 TEM GZMK cells
(Supplementary Fig. 4G), suggesting their involvement in CLL control.
As 3 of the patients harbored a deletion in 17p, including the TP53
locus, we specifically compared those cases with TP53-proficient
samples. Even though the LN samples of these cases were not distinct,
all 3 PB samples with del17p (BC1PB, BC12PB, and BC15PB) clustered
together due to a higher abundance of CD4 TEM CD39 cells (Supple-
mentary Fig. 4A, orange cluster). In addition, the del17p samples
contained significantly more CD4 TEM GZMK, TPR, and DN TEM HELIOS
cells compared to TP53 wild-type cases (Supplementary Fig. 4H). This
is in line with emerging knowledge that TP53 modulates tumor
immunity20.

Definition of T-cell exhaustion states and their trajectories in
CLL LNs by scRNA-seq
Next, single-cell RNA-seq of T cells frompaired CLL LN and PB samples
was performed to characterize their transcriptional profile and clonal
diversity. CD3+ T cells and CLL cells (as small spike-in population) of
these samples were FACS-sorted (gating strategy shown in Supple-
mentary Fig. 5A) and subjected to scRNA-seq using the 10X Genomics
platform, yielding 61,040 cells with an average of 4780 reads per cell
and a median of 1807 genes per cell (Supplementary Data 5). Using
unsupervised graph-based clustering, we identified 16 clusters pre-
sented as a UMAP plot (Fig. 4A), for which we assigned an identity
based on the differential gene expression of each cluster compared to
the rest of the cells (Fig. 4B). All cell clusters were shared among
patients although at different proportions (Supplementary Fig. 5B, C).
Wedefined twoclusters consisting ofCLLcells, 6 CD4+ T-cell clusters, 5
CD8+ T-cell clusters, and a KI-67+ proliferating T-cell cluster (TPR)which
contained both CD4+ and CD8+ T cells (Fig. 4A, B). More specifically,
both CD4+ and CD8+ naïve T cells (CD4 TN and CD8 TN) were defined
based on the expression of marker genes such as LEF1, CCR7 and SELL;
centralmemory T cells were identified by a high expressionof IL7Rand
LTB for CD8+ (CD8 TCM), and additionally CD40LG for CD4+ T cells
(CD4 TCM1 and CD4 TCM2). Regulatory CD4+ T cells (CD4 TREG)
expressed FOXP3, IL2RA, and IKZF2; and follicular helper CD4+ T cells
(CD4 TFH) were defined by the expression of CXCR5, CD200, and ICOS.
A cluster of CD4+ T cells expressed memory markers and effector
molecule genes such as PRF1 and GZMA and was therefore defined as
CD4+ effector memory cells (CD4 TEM). Similarly, a high expression of
effector molecule genes like CCL5, PRF1, and GZMA characterized a
CD8+ effector memory cluster (CD8 TEM). Two clusters expressed
genes characteristic of NK cells, such as GNLY, FCGR3A, and NKG7.
While onewas clearly CD8A positive and therefore defined asCD8 TEM,
the other also contained cells without CD8A or CD4 expression, and
was therefore named NK-like, as suggested by the pbmc3k signatures
fromHao et al.21 (Supplementary Fig. 5D). We further identified a CD8+

T-cell cluster with elevated expression of genes related to exhaustion
suchasHAVCR2 (coding for TIM3), LAG3, ENTPD1 (CD39), PDCD1 (PD1),
CTLA4, TIGIT, and TOXwhichwe defined asCD8 TEX cells. In addition, a
cluster that shared many features with CD8 TEM cells, but lacked PRF1,
and showed expression of GZMK and exhaustion-related genes (e.g.

EOMES, LAG3) resembled the CD8 TEM GZMK cluster identified by
mass cytometry (Fig. 1B), and was defined as a precursor state of
exhaustion (CD8 TPEX). Finally, we identified a cluster of T cells that
expressed genes characteristic of mucosal-associated invariant T
(MAIT) cells, including SLC4A10 and TRAV1-2.

The frequency of the main T-cell clusters was comparable and
positively correlated between scRNA-seq and mass cytometry in the 6
samples analyzed by both techniques (Supplementary Fig. 5E),
underscoring the robustness of our data. The comparison of T-cell
subset distribution between LN and PB revealed an enrichment of CD8
TEM, NK-like, and MAIT cells in PB, and CD4 TREG, and CD8 TEX in LN
(Fig. 4C), which is in agreement with the CyTOF data (Fig. 3C).

To gain a better insight into the transcriptional phenotypes of
T cells present in the LNs, we performed a clustering analysis of LN
T cells separately and defined 13 cell clusters along the same criteria as
described above (Supplementary Fig. 6A–D). Using a published
exhaustion score of CD8+ T cells by Zheng et al.22, we identified the
strongest expression of this gene signature in the CD8 TEX cluster
(Fig. 4D), confirming its dysfunctional state,while thedefinedCD8TPEX

cluster presented the highest score of the precursor exhausted sig-
natures from Guo et al.23 (Fig. 4E) and Andreatta et al.24 (Supplemen-
tary Fig. 6E) suggesting that these cells constitute a precursor state of
exhausted CD8+ T cells.

To delineate the relationship between T-cell states, we performed
trajectory analyses of LN CD4+ and CD8+ T cells by destiny25. When
defining CD8 TN cells as the starting point of the differentiation path,
we observed a divarication into two branches, one containing CD8 TEM

cells and the other CD8 TPEX cells, from which TEX cells diverged and
constituted a terminal state (Fig. 4F, Supplementary Fig. 6F). When
inspecting the differentiation path from CD8 TN to CD8 TEM, four
clusters of differentially expressed genes (DEGs) were identified along
the trajectory. Naïve marker genes (LEF1, SELL) were highly expressed
in the first cluster, the second included the transcription factor KLF2
and IL6R, the third activationmarker genes (CD69 andDUSP1), and the
fourth effector molecule genes (GZMH, NKG7, GZMA, and FAS)
(Fig. 4G). The differentiation path from CD8 TN to CD8 TPEX and CD8
TEX was also comprised of four clusters of DEGs, with naïve marker
genes (SELL, IL7R, and CCR7) expressed at the beginning, followed by
genes associatedwith activation (such asCD69) and cytotoxic function
(GZMK ), and genes related to exhaustion (LAG3, TIGIT, EOMES, CD38
and HAVCR2) that were highest at the end of the trajectory (Fig. 4H).
This data suggests GZMK+ CD8+ T cells as a precursor state of term-
inally exhausted CD8+ T cells, in line with previously published data26.
Together with our CyTOF results that showed an accumulation of the
CD8 TEM GZMK precursor state and terminally exhausted CD8+ T cells
in CLL LNs (Fig. 3D), these findings suggest cancer-driven exhaustion
of CD8+ T cells in the lymphatic tissue of patients with CLL.

The CD4+ T-cell trajectory followed a similar pattern as CD8+

T cells, starting with naïve genes (SELL, TCF7, and IL7R), followed by
genes for activation and effector molecules (CD44, CXCR3, and
GZMM), and then by exhaustion-related genes (LAG3, EOMES, LAYN,
BTLA, and IRF4) (Fig. 4I, J; Supplementary Fig. 6G), indicating cancer-
driven exhaustion also of CD4+ T cells. The CD4 TFH and CD4TREG cell
clusters were diverted into two branches of the trajectory at an early
stage (Fig. 4I).

Fig. 1 | Profiling of the T-cell landscape in CLL tissues at the single-cell resolu-
tion. A Graphical overview of the study design. Mass cytometry analyses were
performed on 13 reactive lymph node (rLN), 7 CLL peripheral blood (PB), 3 CLL
bonemarrow (BM), and 22CLL LN samples, 15-colormultiplex immunostainingwas
applied in an additional data set of 42 CLL LNs, and 5 paired CLL LN and PB
samples were analyzed using scRNA-seq and TCR-seq. Created in BioRender.
Zapatka, M. (2025) https://BioRender.com/deezga2. B UMAP plot of 5.2 ×106 CD3+

T cells from 13 rLN, 7 CLL PB, 3 CLL BM and 22 CLL LN samples analyzed by mass
cytometry identifying 30 clusters, including 15 for CD4+ T cells, 9 for CD8+ T cells, 2

clusters containing both CD4+ and CD8+ T cells, and 4 CD4 and CD8-double-
negative (DN) T cells. C Projection of a selection of protein markers identifying
T-cell states. Cells are colored based on the normalized protein expression. D Dot
plot of the expression of marker genes in the 30 cell clusters. E Heatmap showing
the Pearson correlation coefficient and its associated p-value of cell subset pro-
portions from the 20 CLL LN samples (excl. 2 duplicates), corresponding to the
worst performing subset (forwhich the p-valuewas the highest) of all leave-one-out
patient sample sets. Source data are provided as a Source Data file Fig1.
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TCR analyses reveal differential clonal expansion and CLL-
reactivity of T cells in LN compared to PB
The reconstruction of the T-cell receptor (TCR) sequences at the
single-cell level allowed us to examine the clonal diversity of T cells
within the identified subsets. T cells that shared the same TCR

sequence with at least one other cell were defined as clonal, and
clone sizes were categorized in small (2–5 cells), medium (6–20
cells), large (21–100 cells), and hyperexpanded (101–1250 cells).
Thereby, we identified a major clonal expansion of CD8+ T cells
(ranging from 12% to 76%) and a lower expansion rate of CD4+ T cells
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(2% to 38%; Fig. 5A). The expansion of T cells was significantly higher
in PB compared to LN samples (Supplementary Fig. 7A), and we did
not observe a correlation between the expansion rate of CD4+ and
CD8+ T cells. The clonal composition of CD8+ T cells in the LNs was
highly variable among patients, with most samples showing pre-
dominantly small and medium-sized clones. Notably, T-cell clonal
expansion was enriched in the CD8 TEM, cluster, followed by CD4

TEM, NK-like, and CD8 TPEX subsets in PB, while in the LNs the
expansion was mostly in CD8 TEM cluster followed by CD8 TPEX and
NK-like cells (Fig. 5B, C, Supplementary Fig. 7B). The cluster dis-
tribution of the shared expanded T-cell clones between PB and LNs
did not substantially vary, suggesting that clonally expanding T cells
maintain the transcriptional phenotype in PB and LNs (Supplemen-
tary Fig. 7C).
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Next, we assessed the clone dynamics between paired LN and PB
samples. For two of the patients (BC1 and BC9), we obtained time-
matched LN and PB samples at a treatment-naïve stage. From a third
treatment-naïve patient (BC3), the PB sample was collected 31 months
after the LN sample. For BC0 and BC2, PB samples were taken 67 and
34 months, respectively after the LN sample and, more importantly,
these patients received therapy between the two sampling time points
(Supplementary Fig. 7D). The top 10most abundant T-cell clones in the
LNs were mostly detectable also in PB of the time-matched samples in
untreated patients (BC1 and BC9), although at different frequencies
(Fig. 5D). We further detected the majority of the most abundant
clones in the LNs also in the PB taken years later in the patient without
treatment (BC3). However, therewasmuch less sharing of T-cell clones
between LN and PB in the two patients who were treated between the
two sampling times (BC0 and BC2), which suggests an expansion of
newly arising T-cell clones induced by therapy.

As clonal expansion alone cannot be used as a proxy for tumor
reactivity, especially in lymphoid tissues, we used the predicTCR27

machine learning classifier to identify potentiallyCLL-reactiveT cells in
our samples. A percentage of CLL-reactive cells was predicted in all
analyzed cases, with a generally higher frequency in LN versus PB
samples, and an accumulation of these cells in CD8 TEX, TPR, CD4 TFH,
and CD4 TREG clusters, both in LN and PB samples (Fig. 5E, Supple-
mentary Fig. 7E, F). The predicted CLL-reactive cells were pre-
dominantly non-expanded, but some clones of NK-like, CD8 TPEX, and
CD8 TEM clusters were identified (Supplementary Fig. 7G, H). A com-
parative analysis of T-cell clones showed that the majority of highly
expanded clones that are shared between LN and PB samples were
predicted to be non-reactive (Fig. 5F). In contrast, predicted CLL-
reactive clones were small and resided either only in the LNs or were
detectable in LN and PB samples. T-cell clones that were detected only
in PB were mostly predicted as non-reactive. Altogether, this suggests
that CLL-reactivity of T cells is predominantly happening in LNs with a
low circulation rate of these cells to PB.

The presence of convergently recombined TCRs - those with
similar CDR3 sequences - has been associatedwith antigen reactivity in
prior studies28,29. However, identifying such patterns requires suffi-
ciently deep TCR repertoire sequencing for each patient. To explore
theutility of predicTCRas a TCRprioritization tool,weperformedbulk
TCR repertoire sequencing of T cells from PB samples of the same 5
CLL patients included in the scRNA-seq cohort. Using GLIPH2, we
identified clusters of convergently recombined TCRs in each patient
(Supplementary Fig. 8). Within these clusters, some TCRs were prior-
itized by predicTCR as potentially tumor-reactive (Fig. 5G, left)27,
indicating that these may represent candidate CLL-reactive TCRs.
However, we emphasize that these predictions are hypothesis-
generating and not functionally validated. We also observed clusters
of TCRs predicted to be non-tumor reactive.

To further contextualize the repertoire, we performed in silico
HLA typing using arcasHLA and cross-referenced identified TCRs with
the VDJdb and ImmuneDETECT databases to determine whether any
TCR/HLA combinations had been functionally annotated

(Supplementary Data 6). For example, in patient BC9, we identified a
GLIPH2 cluster (SP%RNTE_ANQS) with known specificity for the HLA-
B*07-restricted CMV epitope RPHERNGFTVL (Fig. 5G, middle)30, con-
sistent with the patient’s HLA type and the known susceptibility of CLL
patients to CMV reactivation. This finding highlights the ability of
predicTCR to help differentiate virus-reactive from potentially tumor-
reactive TCRs, though functional validation was not performed.

We also observed heterogeneous clusters, which we attribute
partly to the conservative thresholds used in predicTCR classification
and, in some cases, to the mixing of CD4+ and CD8+ T cells within
clusters, likely reflecting shared TCR motifs but divergent antigen
specificities (Fig. 5G, right). Taken together, these analyses illustrate
how predicTCR, by integrating transcriptomic and VDJ sequence data,
can assist in prioritizing candidate TCRs for future validation studies,
while underscoring the current limitations of relying solely on com-
putational inference to define antigen specificity.

Prediction of the CLL-T-cell interactome suggests galectin-9 and
TIM3 as ligand–receptor pair
Next, we predicted receptor-ligand interactions between the differ-
ent cell types in the CLL LNs by using the public repository of
ligand–receptor interactions fromOmniPath31 to perform differential
interaction analysis using CellChat32. This identified CLL cells to be
highest for predicted outgoing interactions, and CD8 TPEX, CD8 TN,
CD8 TEM and CD8 TEX for incoming interactions (Fig. 6A, B). As a
prominent outgoing signal of CLL cells, MIF was predicted to interact
with all antigen-experienced CD8 T-cell clusters via CD74, CXCR4
and CD44 (Fig. 6C), which is of interest as MIF was identified as a
driver of CLL development in the Eµ-TCL1 mouse model33. MIF was
also among the most prominent outgoing signals predicted for CD4
TREG (Supplementary Fig. 9A) which in general strongly mirrored
signals provided by CLL cells. We further identified galectin-9
(encoded by LGALS9) as a prominent signal from CLL cells to all
other cell types, including a cell type-specific interaction with TIM3
(encoded by HAVCR2) on CD8 TEX (Fig. 6C). To estimate which of the
identified interactions are specific for CLL and not common to non-
malignant lymph nodes, we included published scRNA-seq data from
5 rLNs in this analysis (Supplementary Fig. 9B, C)34. T-cell subsets in
this published and our datasets were grouped into major functional
types: CD4 TN, CD8 TN, CD4 TFH, CD4 TCM (including CD4 TH KLF2
and CD4 TH CD69), CD4 TREG, CD4 TEM, and CD8 TEM (including CD8
TEM, CD8 TPEX, and CD8 TEX) to facilitate comparison. Predicted
receptor-ligand interactions were prioritized by the probability of
differential interactions across CLL LNs and rLNs. Overall, the num-
ber of inferred interactions was higher in CLL LNs compared to rLNs
(1828 vs. 1622; Supplementary Fig. 9D). The highest number of pre-
dicted interactions was found for CLL cells and CD8 TEM cells, which
act as senders and receivers of signals, both in an autocrine and
paracrine manner (Fig. 6D, E). These two cell types were predicted to
strongly interact with each other and also with all other cell subsets.
Galectin-9 and MIF remained relevant outgoing signals from CLL
cells also in this differential analysis (Fig. 6F). In addition, several

Fig. 4 | Single-cell RNA-seq defines T-cell states in CLL LNs. A UMAP plot of
61,040 cells from paired LNs and PB samples of 5 CLL patients analyzed by scRNA-
seq identifying 16 clusters, 6 CD4+ T-cell clusters, 5 CD8+ T-cell clusters, 1 cluster of
proliferating CD4+ and CD8+ T cells, 1 cluster ofMAIT cells, 1 cluster of NK-like cells,
and 2 clusters of CLL cells which were spiked in. B Dot plot of the expression of
marker genes in the 16 cell clusters. C Frequency of cell subset out of total T cells,
from PB (n = 5) and LN (n = 5) samples of CLL patients. A box plot represents the
25th to 75th percentiles and themean, with dots corresponding to samples.D-I) LN
samples were clustered and analyzed separately, identifying 13 clusters of T cells
and CLL cells (see Supplementary Fig. 6A, B).D, E Violin plot of average expression
levels in LNT-cell subsets of the slightly adapted exhaustion gene signaturederived
from Zheng et al.22 (D), and the precursor exhaustion gene signature derived from

Guo et al.23 (E). Stars indicate that the CD8 TEX (D) and CD8 TPEX (E) subsets have
statistically significantly higher signature scores compared to all other subsets (see
Supplementary Data 5). F Pseudotime trajectory across the 4 CD8+ T-cell subsets
identified in LNs. G, HHeatmap showing genes with significant expression changes
along the trajectory from CD8 TN to CD8 TEM (G), and from CD8 TN to CD8 TEX (H).
Color represents z-scores. I Pseudotime trajectory across the 6 CD4+ T-cell subsets
identified in LNs. J Heatmap showing genes with significant expression changes
along the trajectory from CD4 TN to CD4 TFH. Color represents z-scores. Statistical
significance was tested by two-sided unpaired t test (C) and two-sided Wilcoxon
rank sum test (D, E). Only significant p-values (p <0.05) are shown. Source data are
provided as a Source Data file Fig4.
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cytokines and chemokines with known relevance in CLL (TGFβ,
CCL4, CCL5, IL16, IFNγ)35,36, as well as collagen and adhesion mole-
cules (COL9A2/3 and ICAM-ITGAL) were predicted to be part of CLL-
specific interactions (Fig. 6F). Numerous inferred interactions
between T cells and CLL cells were related to T-cell inhibitory signals,
such as HLA-LAG337, BTLA-CD24738, ENTPD1-ADORA2A39, and LGALS9-
related circuits, suggesting their relevance in immune escape. Of

interest, galectin-9 levels are increased in serum of patients with
CLL40–42, and binding of galectin-9 to TIM3 induces T-cell death and
thus contributes to tumor immune escape43,44. Our scRNA-seq data
identified CLL cells as a source of galectin-9, and an increased LGALS9
expression in dendritic cells in CLL compared to rLNs (Supplemen-
tary Fig. 9E). The galectin-9 binding partner TIM3 (encoded by
HAVCR2) was detected in CD8 TEX cells in CLL LNs, but was absent in
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rLNs (Supplementary Fig. 9E). Multiplex immunofluorescence stain-
ing of CLL LN sections further confirmed the presence of TIM3-
expressing CD4+ and CD8+ T cells in the tissue (Supplemen-
tary Fig. 9F).

Galectin-9 blockade reduces CLL development in mice
We next aimed to preclinically test the potential of galectin-9
blockade in a mouse model of CLL. To evaluate the validity of the
commonly used Eµ-TCL1mouse line45 for this study, we characterized
the splenic T-cell compartment of 2 mice after adoptive transfer of
TCL1 leukemia (TCL1 AT) by single-cell RNA-seq. This allowed us to
identify 13 clusters of T cells, including naïve, effector, effector
memory, and regulatory T-cell subsets (Fig. 7A, B, Supplementary
Fig. 10A). When integrating TCR-seq data, it became clear that one of
the two analyzed samples (#107) harbored a hyperexpanded CD4+

T-cell clone showing an effector phenotype and Gzmk expression,
which was not the case for the second sample (#110) that contained a
large CD8+ effector memory T-cell cluster (Supplementary Fig. 10B,
C). The clonally expanded CD4+ effector T cells in sample #107
contained a cluster of cells expressing exhaustion-related genes. This
data suggests the occurrence of CD4+ T-cell-driven adaptive immune
control in TCL1 AT mice which is in line with observations in other
tumor mouse models and patients with cancer16,46–48.

Flow cytometry analyses showed that the vast proportion of
malignant B cells in the spleen and bone marrow of TCL1 AT mice
expressed galectin-9 which was not the case for B cells from wild-type
(WT) mice (Fig. 7C, Supplementary Fig. 10D). Also, higher frequencies
of galectin-9-positive CLL cells were detected in LNs of TCL1 AT mice
compared to B cells from WT mice (Supplementary Fig. 10D). We
further observed TIM3-positive T cells in tumor-bearing TCL1 AT but
not WT mice, with the highest frequencies detected in CD8 TEF and
CD4 TREG cells (Fig. 7D). Altogether, we concluded that the TCL1 AT
model is useful for testing the potential of galectin-9 as immunother-
apy target for CLL.

Therefore, we treated CLL-bearing TCL1 AT mice with galectin-9-
blocking antibodies for 20 days (Fig. 7E). By a weekly assessment of
CLL cell counts in the blood of the mice, a deceleration of leukemia
development was observed by anti-galectin-9 compared to isotype
control treatment (Fig. 7F). At the endpoint of the experiment, 7 weeks
after TCL1 AT, a reduced spleenweight and lower numbers of CLL cells
were detected in the spleen and lymph nodes of the mice receiving
anti-galectin-9 (Fig. 7G, Supplementary Fig. 10E). We further analyzed
T cells in the spleen and lymph nodes at the endpoint and did not
observemajor differences in thenumbers of CD8+ T cells, conventional
CD4+ T cells, or CD4+ TREG, nor in their activation state. We detected
however a lower frequency of CD39+ and a higher frequency of
CD107A+ CD8+ T cells in the treated mice (Fig. 7H, I), suggesting a
higher functionality ofCD8+ T cells uponanti-galectin-9 treatment. The
most drastic differences were observed in the frequencies of TIM3+

T cells, whichwere drastically decreased for CD8+ T cells, conventional
CD4+ T cells, and CD4+ PD1+ TREG cells in the spleen, and to a lower
degree also in LNs (Fig. 7J–L, Supplementary Fig. 10F) which is in line
with the proposed role of galectin-9 in preventing apoptosis of TIM3+

T cells44. Basedon these data, we suggest that anti-galectin-9 treatment
results in a better immune control of CLL via suspending the immune
suppressive activity of TIM3 on CLL-associated T cells.

High galectin-9 expression is associated with shorter survival of
patients with CLL, kidney or brain tumors
Next, we explored the expression of LGALS9 across cancer entities
using TCGA data49. A comparison of tumor and respective normal
tissue revealed a higher expression in about half of the cancer types
analyzed (Fig. 8A, Supplementary Fig. 11A). To estimate the relevance
of galectin-9 in CLL development, we analyzed a previously published
proteome data set of CLL cells50. Dividing patients into two groups
based on the median level of galectin-9 expression clearly demon-
strated a significantly shorter treatment-free survival in caseswith high
galectin-9 expression (Fig. 8B). Dividing this cohort of patients into the
twomainprognostic groups, namely caseswith unmutatedormutated
IGHV gene locus, we observed a generally high heterogeneity in
galectin-9 levels in both groups, and a significantly higher expression
in the IGHV-unmutated group which has a worse overall prognosis
(Supplementary Fig. 11B). Within this group, higher galectin-9 protein
levels clearly predicted shorter treatment-free survival (Supplemen-
tary Fig. 11C) whichwas not the case in the IGHV-mutated group of CLL
patients (Supplementary Fig. 11D).

We further analyzed the prognostic value of LGALS9 expression
across cancer types and identified significant associations of high
levels of LGALS9 with shorter overall survival for renal cell carcinoma
and glioma patients (Fig. 8C, D). By exploring published scRNA-seq
data of these twocancer types, weobserved LGALS9 expressionmainly
in tumor-associated myeloid cells (Fig. 8E–J). Of interest, myeloid cell
infiltration has been linked to immune suppression and worse out-
come of patients for renal cell carcinoma and glioma51–54. Altogether,
this suggests galectin-9 as potential target for immunotherapy in CLL
and likely other cancer entities.

Discussion
T-cell exhaustion is considered one of the main reasons for the failure
of immunotherapies, including immune checkpoint inhibitors, CAR-T
cells, or bispecific T-cell engagers. However, its role in treatment
resistance among patients with CLL, who often exhibit limited ther-
apeutic response to these therapies, has not been explored so far. Our
study provides a single-cell-resolved analysis of the T-cell landscape in
blood and tissue samples of CLL, the most common leukemia in the
Western world. CLL is a disease that arises in the lymph nodes, but the
malignant B cells accumulate also in the peripheral blood. Most pre-
vious studies characterized disease-associated alterations in the T-cell
compartment in blood samples. Our findings reveal that exhaustion of
tumor-reactive cytotoxic T cells and accumulation of regulatory T cells
are very prominent in the lymph nodes but not in blood, suggesting
the lymphoid tissue as the site of cancer-directed immune responses in
CLL. This in-depth characterization of the T-cell landscape in CLL LNs
suggests that failure to immunotherapies can be attributed to CLL-
induced T-cell exhaustion, confounded by an immunosuppressive
microenvironment enriched with TREG cells.

Fig. 5 | TCR analyses reveal increased tumor-reactive T cells in the LNs. A Bar
plot indicating the percentage (rounded values are indicated) of single, small,
medium, large and hyperexpanded-sized clones in CD8+ (left) and CD4+ (right)
T cells in LN and PB for each patient analyzed (n = 10). B UMAP plot colored
according to the T-cell clone size based on the TCR-seq data. NA: no TCR infor-
mation available. CGraph showing the TCR Shannon diversity index for each T-cell
subset identified by scRNA-seq in PB and LN samples. The dot color corresponds to
the UMAP cluster plot from Fig. 4A. D Alluvial plot displaying the top 10 most
frequent clones for LN and PB. E Proportionof predictedCLL-reactive, non-reactive
and unknown/ NA T-cell clonotypes out of total T cells in LN and PB. F Scatter plot
shows LN and PB clone sizes from all 5 CLL patients. Color represents reactivity

status anddot size the total numberof cells per clonotype.G Left: Examples of large
clusters of convergently recombined TCRs identified by GLIPH2 containing multi-
ple CLL T-cell-derived TCRs predicted to be CLL-reactive (orange-red), as well as
TCRs found in the LN or PB for which no scSEQ data and predicTCR scores were
available (grey).Middle: Examples of TCR clusters called as non-CLL reactive (blue);
in patient BC9 7 TCRs within the SP%RNTE_ANQS cluster are known to bind the
HLA-B*07 restricted epitope of the CMV pp65 protein (bold black node border).
Right: Examples of heterogeneous clusters. TCRs for which CD4/CD8 status could
not be determined due to lack of scSEQ data are illustrated as rectangular nodes.
Source data are provided as a Source Data file Fig5.
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Using the predicTCR and GLIPH2 tools, we identified clusters of
TCRs with features suggestive of shared antigen specificity, whichmay
include CLL-associated reactivities. However, we stress that these
results are exploratory and do not constitute direct evidence of CLL-
specific T-cell responses. The antigenic targets of these TCRs remain
unknown, and while previous studies have suggested that genomic
aberrations or the leukemic immunoglobulin genes could serve as

potential neoantigens in CLL55,56, further investigation is required to
substantiate these hypotheses. Moving forward, cloning the herein-
predicted CLL-reactive TCRs and screening their reactivity against
autologous CLL cells will be critical for validating these observations
and further advancing our understanding of the mechanisms driving
immune dysfunction in CLL, with the final aim to improve effective
antigen-specific immunotherapies. In this study, predicTCR was used
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as a prioritization tool to identify candidate TCRs for downstream
validation, not as a means of confirming tumor reactivity.

In addition to terminally exhausted CD8+ T cells that are enriched
in the lymph nodes, a population of cells that resemble the previously
described precursor cells of exhaustion (TPEX)

8,9, that share features
with memory T cells, and have a high GZMK expression26, were iden-
tified in CLL PB and LN samples. Our data identifying such cells in CLL
LNs is in line with recent studies demonstrating their presence in
tumor-draining LNs of solid cancer, where they are essential for effi-
cient response to ICI therapy57,58. A recent study identified an inter-
mediate exhausted CD8 effector/effector memory T-cell cluster
marked by ZNF683 expression in bone marrow samples from patients
with Richter’s transformation (RT), which correlates with anti-PD1
therapy response59. In our scRNA-seq analysis of lymph node samples,
we found two small ZNF683-expressing cell clusters in CD8 TEM and
CD4 TFH cells, but none in the CD8 TPEX cluster. Even though this
comparison is limited by looking at T cells from different tissues, this
suggests potential differences in T-cell exhaustion states between CLL
and RT, possibly contributing to the efficacy of ICI therapy which is
higher in RT.

CLL cells in lymph nodes are densely packed together with T cells
and interactome analyses using the scRNA-seq data suggested a list of
molecular interactions between the two cell types. It is well-accepted
that CLL cells depend on microenvironment-derived signals for sur-
vival and proliferation, and the identified interactions including MIF-
CD7433, CCL4 and CCL536, and INFγ60 are part of this support. Further,
the interactome study inferred several inhibitory molecular interac-
tions including BTLA-CD247, CTLA4, and galectin-9 (encoded by
LGALS9). Galectin-9 is a known ligand of TIM3, an inhibitory receptor
that is expressed on exhausted T cells61. And even though we detected
very low levels of HAVCR2 (encoding TIM3) by scRNA-seq, we con-
firmed the presence of TIM3-positive T cells in CLL LN tissue, and
assumed an involvement of this interaction in immune escape as
galectin-9 binding to TIM3 promotes CD4+ TREG development in CLL62.

TIM3-targeting antibodies now enter clinical trials and show
promising anti-tumor activity in patients with advanced solid tumors63.
These antibodies block the interaction of TIM3 with phosphatidylser-
ine and CEACAM1, but only partially the binding to galectin-964,65.
Blocking antibodies targeting galectin-9 can overcome this limitation
and suppress tumor growth in combination with chemotherapy in a
breast cancer mouse model66, and in ex vivo models of follicular
lymphoma67. This activity was dependent on CD8+ T cells, which is in
line with our observation of an enhanced CD8+ effector function in
anti-galectin-9 treated mice with TCL1 leukemia.

The binding of galectin-9 to TIM3 on T cells induces cell death
thereby limiting adaptive immunity44. This raises the question of why
terminally exhausted T cells harboring TIM3 expression persist in the
tumormicroenvironment. Recent data showed that PD1, via physically
interactingwith galectin-9 and TIM3, protects T cells from apoptosis68.
As a consequence, PD1+ TIM3+ T cells accumulate in tumors even in the
presence of enhanced levels of galectin-9. Blockade of galectin-9

in vitro and in mouse models results in enhanced T-cell survival and
improved anti-tumor immunity, especially in combination with co-
stimulatory anti-GITR treatment68. In accordance, anti-galectin-9
treatment of TCL1 AT mice diminished PD1+ TIM3+ T cells along with
a reduction in leukemia development. Besides improving T-cell
responses, ligand activation of galectin-9 in the tumor microenviron-
ment of pancreatic ductal adenocarcinoma results in tolerogenic
macrophage programming and adaptive immune suppression69. As
CLL is dominated by immunosuppressive myeloid cells70, galectin-9
blockade potentially ameliorates thismilieuwhich likely contributes to
a better T-cell function.

In line with these mechanistic findings, LGALS9 expression is
higher in tumor compared to respective normal tissue across many
cancer types. In CLL, we defined the malignant B cells as the main
source of galectin-9, even though myeloid cell types likely contribute
to its expression. In solid cancers however, galectin-9 is likely pro-
duced mainly by myeloid cells, like tumor-associated macrophages or
myeloid-derived suppressor cells. This also explains that both the
abundance of tumor-infiltrating myeloid cells and high expression of
LGALS9predict shorter survival of patientswith renal cell carcinomaor
glioma. Prediction of outcome is restricted in CLL to cases with
unmutated IGHVgene locus, which show significantly higher galectin-9
expression compared to cases with mutated IGHV and are generally
considered as the worse prognostic group of patients71,72. As the Eµ-
TCL1 mouse model mimics CLL with unmutated immunoglobulins73,
our data suggest treatment efficacy of anti-galectin-9 specifically for
this more aggressive form of CLL.

Our study focused on an in-depth characterization of the T-cell
landscape in CLL and we excluded myeloid cells from the analysis,
which represents a limitation of our analysis. Immunosuppressive
interactions of CLL-associated myeloid cells and T cells contribute to
immune escape in CLL74,75, but their analysis requires fresh tissue
samples to prevent a biased loss of myeloid cell subsets by freezing
and thawing, and such samples are rarely available. As suppression of
anti-tumor immunity is complex and multifactorial, obtaining a com-
plete picture of all cell types and their interactionswith the cancer cells
will be necessary for the development of combinatorial treatment
targeting multiple immune cell types and checkpoints to avoid
immune escape and resistance to therapy.

Methods
Ethics declarations
Lymph node (LN, n = 22), peripheral blood (PB, n = 7), and bone
marrow (BM, n = 3) samples from CLL patients, and reactive lymph
node (rLN, n = 13) samples from heathy controls were obtained
after informed consent and according to the guidelines of the Ethics
Committees of themedical faculties of the University of Barcelona and
the University of Heidelberg, and the Declaration of Helsinki. Patients
with CLL were diagnosed following the World Health Organization
(WHO) classification criteria. All clinical information of the patients
analyzed in this work is provided in Supplementary Data 1. The

Fig. 6 | Interactome analyses predict a robust and disease-specific cross-talk of
CLL andT cells in LNs including galectin-9 circuits. A–CCell-cell communication
network was analyzed on scRNA-seq data from 5 CLL LNs using CellChat.
A Heatmap depicting the number of interactions between cell subsets in CLL LNs.
B Scatter plot showing the dominant sender (X-axis) and receiver (Y-axis) cell
subsets. C Heatmap plot depicting the list of significant ligand–receptor pairs
between CLL cells (molecule in blue) and all the other cell subsets (molecule in
black). The dot color and size represent the calculated communication probability
and p-values, which are computed from one-sided permutation test. D–F Differ-
ential cell-cell communication networks between CLL LNs and rLNs were analyzed
using CellChat. D Circle plot depicting the differential number of interactions
between cell subsets in CLL LNs compared to rLNs. Thickness of bands represents
the number of differential interactions between the two data sets, and increased

interactions are depicted in red, decreased interactions in blue. E Heatmap plot
showing the differential number of interactions of CLL LNs versus rLNs. Rows and
columns represent cell subsets acting as sender and receiver, respectively. Bar plots
represent the total outgoing (right) and incoming (top) interaction scores,
respectively, for each cell subset. F Heatmap plot depicting a curated list of
ligand–receptor pairs differentially upregulated in CLL LNs compared to rLNs as
identified via CellChat32. The dot color and size represent the calculated commu-
nication probability and p-values of differential communication, respectively.
Significantly differentially upregulated ligand–receptor pairs were calculated via
theWilcoxon rank-sum test. The first 7 columns show interactions sent by CLL cells
(molecule on CLL cells in blue), while the last 7 columns show interactions received
by CLL cells (molecule on CLL cells in black). Source data are provided as a Source
Data file Fig6.
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provided information does not allow for the identification of the
individuals.

All experiments involving laboratory animals were conducted in
pathogen-free animal facilities at the German Cancer Research
Center in Heidelberg or the Luxembourg Institute of Health in
Luxembourg with the approval of the Regierungspräsidium Karls-
ruhe (G-77/19 and G-112/21) and the Luxembourg Ministry for

Agriculture (#LUPA 2019/21), respectively. Mice were treated fol-
lowing the European guidelines.

Mice and tumor models
Female C57BL/6 wild-type (WT) mice were purchased from Charles
River Laboratories (Germany) or Janvier Labs (France). Adoptive
transfer of TCL1 leukemia cells was performed following our
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standard protocol37,74. In short, malignant B cells were enriched from
splenocytes of Eµ-TCL1 mice using EasySep Mouse Pan-B Cell Isola-
tion Kit (StemCell Technologies, Inc., Cologne, Germany). The
CD5+CD19+ content of purified cells was typically above 95%, as
measured by flow cytometry. 1 × 107 malignant TCL1 splenocytes
were transplanted by intravenous (i.v.) injection into 8-12 weeks-old
C57BL/6 WT female mice. Leukemia progression was monitored
weekly by assessment of the percentage of CD5+CD19+ cells in the PB.
The use of female mice was justified due to a more homogeneous
disease development in those compared tomale mice, and due to no
major differences observed in the T-cell landscape of male and
female CLL patients.

Antibody treatments
Treatment of mice with anti-galectin-9 antibodies was performed at
the LIH animal facility with the approval of the Luxembourg Ministry
for agriculture and following EU guidelines. Mice were maintained
under standard housing conditions: a 12 h light / 12 h dark cycle,
ambient temperature of 22 ± 2 °C, and relative humidity between 45%
and 65%. Two weeks after transplantation with TCL1 leukemia cells,
mice were assigned to different treatment arms according to the
percentage of CD5+CD19+ (CLL) cells out of live cells in PB to ensure
comparable average CLL burden across groups prior to treatment.
Subsequently, mice were injected i.p. with 6mg/kg of anti-galectin-9
(clone: RG9-1) or rat IgG2b isotype control antibody (clone: LTF-2), 3
times per week for another 7 weeks. All antibodies for in vivo experi-
ments were acquired from BioXcell (West Lebanon, NH). The maximal
tumor burden permitted was defined as 95% CLL cells and 200million
CLL cells per mL of blood. This limit was not exceeded in any of the
experiments. At the endpoint, mice were euthanized by cervical
dislocation.

Tissue sample collection and preparation of cell suspensions
Mice were euthanized by increasing concentrations of carbon dioxide
(CO2) or by cervical dislocation before reaching the established
humane endpoint. PB was drawn from the submandibular vein or via
cardiac puncture and collected in ethylenediaminetetraacetic acid
(EDTA)-coated tubes (Sarstedt). Single-cell suspensions from spleens,
bone marrow (BM) and inguinal LNs were prepared74,76. BM cells were
flushed from femurs with 5mL of phosphate-buffered saline (PBS)/5%
fetal calf serum (FCS). Spleen single-cell suspensions were generated
by using the gentleMACS tissue dissociator with Gentle MACS tubes C
(Miltenyi Biotec). Single-cell suspensions from LNs were prepared by
grinding the tissue through 70 µm cell strainers (BD Biosciences).
Erythrocytes were lysed by using Red blood cell lysis buffer (Mitenyi
Biotec).

Flow cytometry
Single-cell suspensions were immunostained with antibodies against
cell surfaceproteins (Supplementary Data 2) in FACSbuffer containing
0.1% fixable viability dye (Thermo Fisher Scientific, 65-0866-14) for

30min at 4 °C. Cells were subsequently washed twice in FACS buffer,
fixed with IC fixation buffer (Thermo Fisher Scientific, 00-8222-49) for
30min at room temperature, washed twice with FACS buffer, and
stored at 4 °C in dark conditions until being analyzed.

For transcription factor or intracellular cytokine staining, cell
surface-stained cells were fixed for 30min at room temperature with
Foxp3 fixation/permeabilization buffer (Thermo Fisher Scientific, 00-
5523-00 or Miltenyi Biotec, 130-093-142). After a washing step with
FACS buffer, cells were permeabilized for 30min at room temperature
with 1X permeabilization buffer (Thermo Fisher Scientific, 00-8333-
56). Intracellular staining with antibodies against transcription factors
or cytokineswasperformed in 1Xpermeabilizationbuffer for 30min at
room temperature. Excess antibodies were washed twice with 1X per-
meabilization buffer and cells were resuspended in 1X permeabiliza-
tion buffer and stored at 4 °C in dark conditions until they were
analyzed by flow cytometry.

For intracellular CD107a assessment, splenocytes were stimulated
overnight with phorbol myristate acetate (PMA) and ionomycin (100
nmol/L and 1 μmol/L) and incubated for 4 h with Brefeldin A (BFA, 1X)
prior to washing and cell surface staining.

Cell fluorescence was assessed using a BD LSRFortessa (BD Bios-
ciences) or a Novocyte Quanteon (Agilent) flow cytometer, and data
were analyzed using FlowJo X 10.0.7 software (FlowJo). In each
experiment, single fluorochrome stainings were used to compensate
for spectral overlap. Fluorescence minus one (FMO) controls were
employed for proper gating of positive cell populations. FMO-
normalized Mean Fluorescence Intensity (nMFI) for unimodal dis-
tributions or percentage of positive cells for bimodal distributions
were determined for populations of interest. The standard gating
strategy for analysis of CLL cells and T cells is depicted in Supple-
mentary Fig. 5A.

Immunofluorescence of whole lymph node sections
Paraffin-embedded tissue sections of lymphnodeswere obtained from
the National Center for Tumor Disease (NCT) Heidelberg, Hospital
Clínic de Barcelona, and the University of Würzburg.

After validation of primary and secondary HRP-conjugated anti-
bodies using DAB chromogenic detection, incubation times and
appropriate antibody concentrations were optimized using the Opal
5-color kit (Akoya Biosciences, NEL840001KT). Epitope stability was
assessed to determine the order of each antibody in sequence, and
antigen stripping efficiency was confirmed in all used primary
antibodies.

De-paraffinization and rehydration of lymph node sections were
performed by immersion in xylene for 10min twice, followed by
immersion in a series of descending ethanol concentrations prior to
distilledwater. Slides were then cooked in a steam cooker with antigen
retrieval buffer pH9 (Akoya Biosciences, AR900250ML) at 100 °C for
25min. Slideswere allowed to cool at room temperature andwashed in
tris-buffered saline containing 0.1% tween 20 (TBS-T). Next, slideswere
incubatedwith blocking buffer (Akoya Biosciences, NEL840001KT) for

Fig. 7 | Blocking of galectin-9 controls tumor growth in the TCL1mousemodel.
AUMAP plot of 6,201 cells from the spleens of 2mice after adoptive transfer of TCL1
leukemia (TCL1 AT) analyzed by scRNA-seq identifying 13 clusters, including 11 T-cell
clusters, CLL cells andmyeloid cells. BDot plot of the expression of marker genes in
the 13 cell clusters. C Representative contour plot and percentage of galectin-9+

(Gal9+) B cells and CLL cells from spleen of wild-type control (WT; n= 5) and TCL1 AT
(n= 5) mice, respectively. D Percentage of TIM3+ cells out of CD8 TN, CD8 TM
(memory cells), CD8 TEF (effector cells), CD4 TCONV (conventional), and TREG T cells
in spleen of WT (n= 5) and TCL1 AT (n= 5) mice measured by flow cytometry.
E Schematic diagram of treatment of TCL1 AT mice with galectin-9-blocking anti-
body (α-Gal9). Analyses of T, myeloid and CLL cells were performed 7 weeks after
treatment start in isotype antibody- (n= 11) and α-Gal9-treated (n= 8) mice. Created
in BioRender. Floerchinger, A. (2025) https://BioRender.com/x4or7yz. F Absolute

number of CD19+ CD5+ CLL cells in blood of isotype antibody- (n= 11) and α-Gal9-
treated (n= 8) mice.G Spleen weight of isotype antibody- (n= 11) and α-Gal9-treated
(n= 8) mice. H Representative contour plot and percentage of CD39+ cells out of
CD8+ T cells from spleen of isotype antibody- (n= 11) andα-Gal9-treated (n= 8)mice.
I Representative contour plot and percentage of CD107A+ out of CD8+ T cells from
spleen of isotype antibody- (n= 11) and α-Gal9-treated (n= 8) mice. J–L Repre-
sentative contour plot and percentage of PD1+ TIM3+ cells out of CD8+ T cells (J),
CD4+ TCONV (K), and TREG (L) cells from spleen of isotype antibody- (n= 11) and α-
Gal9-treated (n= 8) mice. Each symbol represents an individual mouse, and statis-
tical significance was tested by two-sided unpaired t test with Welch approximation.
Boxplots represent the 25th to 75th percentiles with the median as the central line,
whiskers indicate minimal and maximal value (C,D), bars plots indicate mean± SEM
(F–L). Source data are provided as a Source Data file Fig7.
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10min at room temperature and incubated with the primary antibody
for the indicated time and concentration (Supplementary Data 2).
After three washing steps with TBS-T, slides were incubated with anti-
rabbit HRP-conjugated secondary antibody (Akoya Biosciences,
NEL840001KT). Sections underwent rounds of antigen stripping via
incubation at 100 °C in AR9 buffer (Akoya Biosciences, AR900250ML)
for 25min, allowing removal of the excess of antibody complex

formed. Formulti-color staining, tissue sectionswent throughmultiple
rounds of blocking, primary and secondary antibody labelling, each
round with a different Opal dye (Akoya Biosciences, NEL840001KT).
Finally, background signal reduction through incubation for 10min at
room temperature in 0.1% Sudan Black (Sigma-Aldrich, 199664) took
place and sections were washed thoroughly in TBS-T. Finally, nuclei
were stained with DAPI (Akoya Biosciences, NEL840001KT) and slides
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were mounted using ProLong Diamond Antifade Mountant (Life
Technologies, P36965).

Slides were imaged using a Carl Zeiss Axioscan 7 slide scan-
ner at 20X.

Immunofluorescence staining and imaging of CLL TMA
TMA 159/2 was de-paraffinized and subjected to antigen retrieval for
5min at 95 °C followed by 5min at 107 °C, using pH8.5 EZ-AR 2 Ele-
gance buffer (BioGenex). To reduce tissue autofluorescence, slides
were placed in a transparent reservoir containing 4.5% H2O2 and
24mM NaOH in PBS and illuminated with white light for 60min fol-
lowed by 365 nm light for 30min at room temperature77. Slides were
rinsed with surfactant wash buffer (0.025% Triton X-100 in PBS),
placed in a humidified stain tray, and incubated in Image-iT FX Signal
Enhancer (Thermo Fisher) for 15min at room temperature. After rin-
sing with surfactant wash buffer, the slides were placed in a humidity
tray and stained with the panel of fluor- and hapten-labeled primary
antibodies in PBS-Antibody Stabilizer (CANDOR Bioscience GmbH)
containing 5% mouse serum and 5% rabbit serum for 2 h at room
temperature. Slides were then rinsed again with surfactant wash buffer
and placed in a humidified stain tray and incubated with SYTOX Blue
(Thermo Fisher), ArgoFluor 845 mouse-anti-DIG in PBS-Antibody Sta-
bilizer containing 10% goat serum for 30min at room temperature.
The slideswere then rinsed a final timewith surfactant wash buffer and
PBS, coverslippedwithArgoFluorMountingMedia (RareCyte, Inc.) and
dried overnight78.

Slides were imaged using an Orion instrument (RareCyte, Inc.) at
20X. Raw image files wereprocessed to correct for system aberrations;
then signals from individual targets were isolated to separate channels
using the Spectral Matrix obtained with control samples, followed by
stitching of FOVs to generate a continuous open microscopy envir-
onment (OME) pyramid TIFF image.

Image analysis
Preprocessing. TMA 159/2 with 18-color staining was analyzed using
the multiple-choice microscopy pipeline MCMICRO79 (Commit
91fcd5eefd69da112414b06cf3a65a9a66afeccf). Dearraying was per-
formed by Coreograph79 2.2.8, Unmicst80 2.7.0 segmented the cells
based on the nuclear channel Sytox, S3segmenter81 1.3.12 generated
single-cell masks and Mcquant81 1.5.1 quantified the signal of each of
the 18 channels in each cell. The corresponding parameters (para-
ms.yml) for full reproducibility of this MCMICRO runs are available on
Github (https://github.com/SchapiroLabor/ImageAnalysisTMA159_2).

Following visual inspection of Coreograph’s QC file, all cores
that were damaged were filtered out. Additionally, the 4 muscle
tissue cores –which were used as control –were filtered. In total, we
performed the downstream analysis with 42 cores. Channel num-
bers 2 (Sytox), 14 (E-cadherin), 17 (Pan-CK) and 18 (AF-Tissue) were
removed for downstream analysis since (i) Sytox and AF-Tissue
represent nuclei and autofluorescence which are not relevant for
cell type calling; and (ii) E-cadherin and Pan-CK expression are not

expected in LN tissue and therefore, failed our visual QC due to
unspecific staining patterns. Image visualization was performedwith
QuPath82 and Napari83.

Batch correction. Cell type clustering on the raw data results in clus-
ters consisting mainly of cells of a single core of origin. This is due to
preanalytical variability, which requires batch correction on core-level.
Therefore, marker intensities were normalized with Mxnorm84

0.0.0.9000 (transform: log10_mean_divide, method: none) before
using Rphenograph85 0.99.1 to cluster the individual cell types.

Cell type assignment. Cell types were assigned based on marker
thresholding (positive/negative) and comparison to an expert-curated
list of markers associated with the specific cell types (Supplemen-
tary Data 3).

Spatial Analysis. Neighborhood analysis was performed with Giotto
1.1.218. After building a Delaunay network and running 1000 simula-
tions, we compared the number of observed interactions between the
cell types with their respective expected number of interactions. Cell-
cell interactions between the same cell types are significantly enriched
because of segmentation inaccuracies. Cells are slightly over seg-
mented creating multiple cells with the same phenotype.

Statistical analysis. The subsequently calculated cell type frequencies
in each core were used to perform two-sided t-tests (base package
stats) for changes in cell type frequencies between patients that were
positive or negative for a variety of binary clinical parameters (sex,
IGHV, del13q, del17p, died, treated, del17p_tp53 (del17p and/or tp53
positive)). Additionally, Cox regression (survivalAnalysis 0.3.0) was
calculated on overall survival and time to next treatment. Finally,
correlation with the Pearson method was checked (cor.test() in base
package stats) between overall survival, time to next treatment and all
cell type frequencies.

Up to the statistical analysis, calculations were performedunder R
version 4.1.0 (2021-05-18) on platform x86_64-apple-darwin17.0 (64-
bit) running under macOS 13.0. Statistical analysis was done on R
version 4.0.5 (2021-03-31) on platform: x86_64-apple-darwin17.0 (64-
bit) running under: macOS Big Sur 10.16.

All the mentioned steps of image processing were performed on
the BWforCluster.

Mass cytometry
A panel of 42 heavy metal-labeled antibodies for the detection of both
surface and intracellular proteins was adopted fromBengsch et al. and
modified based on literature research in order to characterize diverse
T-cell phenotypes86. The complete list of proteins detected and the
heavy metal-conjugated antibodies used are listed in the Supplemen-
tary Data 2. For most of the markers, heavy metal-conjugated anti-
bodies were commercially available and purchased from Fluidigm.
Where no heavy metal-conjugated antibodies were commercially

Fig. 8 | Elevated galectin-9 expression correlates with poor survival in cancer
patients. A Differential expression of LGALS9 in tumor versus healthy tissue in
CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma),
COAD (Colon adenocarcinoma), DLCL (Diffuse large B cell lymphoma), ESCA
(Esophageal carcinoma), GBM (Glioblastomamultiforme), KIRC (Kidney renal clear
cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LAML (AcuteMyeloid
Leukemia), LGG (Brain Lower Grade Glioma), LIHC (Liver hepatocellular carci-
noma), OV (Ovarian serous cystadenocarcinoma), PAAD (Pancreatic adenocarci-
noma), READ (Rectumadenocarcinoma), SKCM (Skin CutaneousMelanoma), STAD
(Stomach adenocarcinoma), TGCT (Testicular Germ Cell Tumors), and UCEC
(Uterine Corpus Endometrial Carcinoma) analyzed by the standard processing
pipeline GEPIA2with default cut-off settings49. Statistical differences were assessed

by limma model with adjusted p-values (Benjamini-Hochberg FDR). B Time-to-
treatment in CLL patients with high or low galectin-9 protein levels (n = 63)50. Dif-
ferences were assessed using Cox proportional hazardmodel. C,DOverall survival
in renal cell carcinoma (C) and glioma (D) patients with high or low LGALS9 tran-
script levels. Differences in survival were assessed using Cox proportional hazard
model with Benjamini-Hochberg correction. E–J Single-cell RNA-seq analysis of
tumor samples in renal cell carcinoma104 (E–G) and glioma105 (H–J).E,HUMAPplots
identifying tumor, infiltrating immune cells and normal tissue cells from (E) 8 renal
cell carcinoma patients, and (H) 9 glioma patients. F, I UMAP plot displaying
LGALS9 expression.G, JViolin plots of LGALS9 expression in the different cell types.
Source data are provided as a Source Data file Fig8.
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available, coupling of heavy metal to respective antibodies was per-
formed in-house using the Maxpar X8 Multimetal Labeling kit (Flui-
digm) following the manufacturer’s instructions. 113In, 115In and 139La
heavy metal isotopes (#) were not available from Fluidigm and were
purchased from Trace Sciences International (113In) and Sigma (115In,
#203440-1 G; 139La, #211605-100G). Following the preparation of a 1M
solution, 113In, 115Ln and 139La heavy-metal isotopes (#) were conjugated
tomonoclonal purified IgG antibodies using theMaxparX8Multimetal
Labeling kit (Fluidigm, #201300).

Frozen cell suspensions were thawed and washed prior to incu-
bation in 15mL of pre-heated RPMI 1640 containing 10% FBS in a roller
incubator for 30min at room temperature. Cells were filtered to
remove dead cells and B-cell depletion was performed using human
CD19 microbead (Miltenyi Biotec) labeling according to the manu-
facturer’s protocol. Unlabeled CD19- cells were collected, washed, fil-
tered, and counted prior to mass cytometry processing.

CD19-depleted single-cell suspensions were stained for mass
cytometry analysis37. Briefly, cells were stained with 5μM cisplatin
(Cell-ID Cisplatin, Fluidigm) for 5min in order to label dead cells. Cells
were then washed once and cell surface staining was performed for
30min at room temperature. After awashing step, cellswerefixedwith
Fixation/Permeabilization buffer (Thermo Fisher Scientific) following
the manufacturer’s instructions. Intracellular staining was performed
by incubating the antibody-cocktail for 30min at room temperature.
After a washing step, cells were stained with cell-ID Intercalator-Ir
(Fluidigm) in fixation and permeabilization solution, followed by
another two washing steps with PBS and ddH2O, respectively. Prior to
acquisition, cells were resuspended at a concentration of 5 × 105 cells/
mL in ddH2O with 1:10 calibration beads (EQ Four Element Calibration
Beads, Fluidigm). Samples were analyzed at a flow rate of 0.03mL/min
with the Helios mass cytometer (Fluidigm) of the National Cytometry
Platform (LIH). Initial data processing and quality control were per-
formed. Flow cytometry standard (FCS) files were normalized with EQ
beads using the HELIOS instrument acquisition software (Fluidigm).

As a first analysis step, samples were pre-gated as follows: gates
were placed on cells (Beads vs. Ir191), singlets (Ir193 vs. Ir191) and live
cells (Pt195-). Next, non-B immune cells (CD19- CD45+ ) and CD3+ T cells
(CD3+ CD56-) were selected and exported as fcs files.

Raw fcs data files were merged into a flowSet object using flow-
Core package87. Signal intensities for each marker were arcsinh-
transformed using a co-factor of 5 (default)88. Sample quality was
assessed based on cell counts per sample and samples with less than
1500 cells were excluded. Multi-dimension scaling (MDS) plotting
using median arcsinh-transformed marker expression for all cells in
each sample was used for sample clustering analysis.

Cytometry data analysis tools (CATALYST) R package89 con-
taining FlowSOM90 and ConsensusClusterPlus91 metaclustering
methods was used for cell cluster identification using all cells from all
samples. Clustering was performed using arcsinh-transformed
expression of 33 markers, i.e., excluding the markers DNA content
and cisplatin viability, which were used to select viable, single cells,
and CD19 and HLA-DR, which were used to exclude B cells (Supple-
mentary Data 2). TIM3, LAG3, GITR, CD47 and 4-1BB were excluded
from the analysis due to low signal and likely adding noise in the
cluster generation process.

Themaximumnumber of clusters allowed to be evaluatedwas set
to maxK = 30, after biological relevance of obtained clusters was
assessed, and k < 30 and k > 30 were verified to be underfitting or
overfitting, respectively. Cell clustering was visualized using the UMAP
algorithm, displaying 1 × 103 random cells from each sample. The
robustness of this approach was evaluated by repeatedly plotting an
increasing number of randomly picked cells from each sample, with a
range of 200 to 1000 cells, and evaluating the similarity of the
30 subpopulations recognized in the respective UMAP plots. Sample
#HD3 was excluded as an outlier.

Cell sorting for single-cell RNA and TCR sequencing
Single-cell suspensions fromPB and LNs of CLL patientswere retrieved
by partially thawing vials of cryopreserved cells in order to preserve
unused cells. Sampleswere stained for cell surface proteins for 30min.
After washing with PBS, cells were resuspended in PBS+ 5% FBS con-
taining 0.2μg/mL DAPI prior cell sorting. The gating strategy for
CD3+ T-cell and CLL-cell sorting is depicted in Supplementary Fig. 5A.
Cells were sorted in PBS + 2% FBS using a BD FACSAria II or BD FAC-
SArisa Fusion (both from BD Biosciences) cell sorters. The purity of
cells after sorting was above 95%.

Single-cell RNA sequencing library construction using the 10x
Genomics Chromium platform
FiveCLL LN andfive PB sampleswereprocessed for single-cell TCR and
5’ gene expression profiling of CD3+ T cells and CLL cells using the
Chromium Next GEM Single Cell V(D)J Solution from 10X Genomics
following the manufacturer’s instructions. Briefly, for a target
cell recovery of 5000 cells, the concentration of T cellswas adjusted to
1 × 103 cells/μL and tumor cells were added at a ratio of 1:20. Cells were
then loaded into the Single Cell A Chip (10X Genomics). GEX libraries
were sequenced on a HiSeq 4000machine (Illumina) or on a NovaSeq
6000 (Illumina), and V(D)J-enriched libraries were sequenced on a
NextSeq 550 (Illumina).

Single-cell RNA-Seq data processing
Sequencing reads were aligned by Cell Ranger (5.0.1) to reference
version hg38(2020-A) for human data and to reference version
mm10(2020-A) for mouse data92. Raw count matrices were processed
by the quality control pipeline to determine the optimal cut-offs for
filtering. Cells were filtered by read counts and mitochondrial RNA
content. Lower cut-off for read counts were determined by read-
counts distribution for samples in each dataset and were set at 350 for
human and 500 for mouse, mitochondrial RNA content should be
lower than 10%.

Raw gene count matrices were processed by Seurat(v4.1.0)21, and
expression values were normalized and scaled. Doublets were filtered
by DoubletFinder(2.0.3)93. Dimensional reduction was performed by
Principle Component Analysis (PCA). Datasets were integrated by
HARMONY 94 to reduce batch bias on calculated principal compo-
nents. Sample identity was used as the batch variable for HARMONY
integration. Uniform Manifold Approximation and Projection (UMAP)
was used for dimensional reduction on the first 23 HARMONY com-
puted cell-embeddings.

Cluster were defined by the Louvain method at the resolution of
0.8, clusters defined at this step were used for annotation by manual
curation. Markers for each cluster were produced by differential
expression analysis searching for overexpressing markers of each
cluster.

Pseudotime analysis
Diffusion pseudotime analysis of LN T cells was performed using
destiny (3.8.1)25. Cells expressing CD4 and CD8 were analysed sepa-
rately. To retrieve the pseudotime of each marker differentiated cell
groups, DPT function from destiny was used for computing the dif-
fusion pseudotime on each cell. For each cell type, the root nodeswere
placed within the corresponding naïve cell type cluster.

To performed differential gene expression analysis on pseudo-
time, the diffusion pseudotime values of cells in trajectories were
analysed together with their transcript expression values by
tradeSeq95. Differentially expressed genes were plotted against ranked
diffusion pseudotime for illustration.

TCR data analysis
V(D)J transcripts from single cells were aligned and counted using the
Cell Ranger pipeline (5.0.1). GRCm38 VDJ Reference 5.0.0 from 10X
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Genomics was used for mouse data and GRCh38 VDJ Reference 5.0.0
from 10X Genomics was used for human data. In addition, an output
file containing TCR α- and β-chain CDR3 nucleotide sequences and a
cell barcode for all single cells was generated. Only productive rear-
rangementswereevaluated, and 2ormore cells containing the sameα-
and β-chain CDR3 consensus nucleotide sequences were considered
cell clones. scRepertoire96 was used to process contig and clonotype
information from Cell Ranger. The summarized TCR information per
cell was merged with Seurat object using the shared cell barcodes
between the TCR library and the RNA-Seq library for integrated ana-
lysis. The Shannon diversity index was computed to represent the
diversity of the TCR repertoire in each single-cell cluster. Cells with
expanded TCRs were categorized by their expansion level and then
illustrated by UMAP plots.

Prediction of tumor-reactive TCR clonotypes
Our recently developed pipeline predicTCR27 was applied to annotate
tumor-reactive TCR clonotypes using Seurat. Briefly, the gene
expression was normalized using SCTransform. Normalized data was
then imported into Python and reactivity was predicted using pre-
dicTCRmodel. The probability of reactivitywas then averaged for each
TCR clonotype (as predicTCR score) and the threshold was deter-
mined using Jenk-Fisher natural break optimization. Clonotypewith an
average probability of reactivity higher than the threshold was desig-
nated as tumor-reactive and vice versa.

In silico HLA typing from RNA-seq data
The arcasHLA tool97 was used to perform in silico human leukocyte
antigen (HLA) typing using the single-cell sequencing fastq files
as input.

Immune repertoire sequencing
The TCR repertoire for T cells from the lymph nodes was generated
using the DriverMap Adaptive Immune Receptor (AIR) TCR-BCR pro-
filing kit fromCellecta, following themanufacturer’s instructions. DNA
libraries could be constructed for material from patients BC0, BC1,
BC3, and BC9. Libraries were sequenced on an Oxford Nanopore
Technologies PromethIONFlowCell. TCR sequenceswere constructed
using miXCR v4.6.098.

Immune repertoire analysis
TCR repertoires were screened for known reactivities using exact
CDR3 matches using VDJdb99, and Immunewatch detect v1.0 (Immu-
neWatch DETECT, Version 1.0. Developed by ImmuneWatch BV. 2024.
Available at: https://www.immunewatch.com/detect), using a mini-
mum score of 0.2 as in the developer’s instructions.

Convergent groups of TCRs were calculated using the GLIPH2
algorithm28 as implemented in R v4.4.1 (R Core Team, 2022) using the
turboGliph package (https://github.com/HetzDra/turboGliph) using
the default settings. Data were collated in R using custom scripts and
visualised using Cytoscape v3.10.3100.

Ligand–receptor interaction analysis
CellChat32 was used to infer and visualize the cell-cell communication
network in CLL LNs. To find differential ligand–receptor interactions
between CLL LNs and control LNs, a control dataset derived from 5
reactive lymph nodes34 was added for comparison. The reactive lymph
nodedatasetwas independentlyprocessedby the samequality control
pipeline and single-cell analysis pipeline. CellChat was used for dif-
ferential cell-cell communication analysis. Ligand–receptor interac-
tions from the OmnipathR database101 were included as candidates.
CellChat analysis was first performed independently on the two data-
sets using LIANA102. The results were then contrasted by CellChat for
differential interactions. Labels from the two comparing datasets were

harmonized to 8major cell types (CLL/B, CD4TCM, TREG, CD4TEM, CD8
TEM, CD4 TN, CD8 TN, TFH) for comparison. Differential Interactions
with p-values below 0.01 were visualized by the dot plot functions of
CellChat.

Expression of galectin-9 protein and its impact on
survival in CLL
Galectin-9 protein levels in leukemic cells from the blood of CLL
patients were obtained from Herbst et al.50. Mean relative galectin-9
levels were compared between IGHV-mutated and -unmutated CLL
patients using a two-sided Wilcoxon signed-rank test. Time to next
treatment (TTNT) was calculated from the date of sample collection to
subsequent treatment initiation. Proportional hazards regression (Cox
regression) was used to calculate the impact of galectin-9 abundance
on TTNT using the R package survival (version 3.2-3). Kaplan–Meier
curves were plotted for all samples and for IGHV-mutated and
-unmutated CLL patients separately.

Expression of LGALS9 and its impact on survival in TCGA
samples
Expression of LGALS9 in TCGA samples was gathered with R
(4.3.1) and Bioconductor using library RTCGA.rnaseq (1.3.0,2015-
11-01) and RTCGA.clinical (1.3.0,2015-11-01). Survival curves were
prepared by survminer (0.4.9), splitting the samples based on the
median LGALS9 expression into two groups. Differences in sur-
vival were assessed using the Cox proportional hazard model and
multiple testing was corrected using Benjamini-Hochberg FDR.
Using a standard processing pipeline and the default cut-off
GEPIA2 was used to compare tumor and normal samples from
TCGA and the GTEx projects103.

Expression of LGALS9 in single-cell RNA-seq data sets
The expression of LGALS9 was assessed in renal cell carcinoma
(SCP1288)104 and glioblastoma (SCP1985)105. Data was collected from
(https://singlecell.broadinstitute.org/single_cell) and processed in R
using Seurat (4.9.9.9044). In short, datawas loadedusingRead10X and
after the creation of a Seurat object (min.cells=3, min.features=200)
processed using default values with NormalizeData, FindVaria-
bleFeatures, ScaleData, RunPCA, FindNeighbours, FindClusters, and
RunTSNE. Figures were prepared using FeaturePlot and DimPlot,
highlighting cell types. Violin plots were prepared using
ggplot2 (3.4.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human single-cell RNA- andTCR-sequencing data includingmatrix
files generated in this study have been deposited in the European
Genome-phenome Archive (EGA) under the accession ID
EGAS00001006864. The sequencing raw data are available under
restricted access, which can be obtained by request to the Data Access
Committee. Mouse single-cell RNA- and TCR-sequencing data are
available on Gene Expression Omnibus under the accession ID
GSE221395. The CyTOF data used in this study are available in the
Zenodo database under the https://doi.org/10.5281/zenodo.15606759.
All other data are available in the article and its Supplementary files or
from the corresponding author upon request. Source data are pro-
vided with this paper.

Code availability
All code related to CyTOF and scRNA-seq analyses is available on
GitHub (https://github.com/mzapatka/Tcell_CLL).
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