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Addendum: Unified framework for open quantum dynamics
with memory

Ruojing Peng, Felix Ivander, Lachlan P. Lindoy & Joonho Lee

This Addendum presents a detailed analysis of the discretization error
in time-integration and time-derivative that appear in the Nakajima-
Zwanzig equation. This was brought to our attention by Makri et al.
[arXiv:2410.08239]. Our analysis in the Addendum shows that the
relationship derived in our earlierwork [Nat. Commun. 15, 8087 (2024)]
is valid within the choice of discretization and is not contaminated by
the discretization error.

A recent commentary piece1 by Makri et al. raised a concern on the discretization error of the
discrete-time Nakajima-Zwanzig (NZ) equation employed in our recent work2. In light of this,
this Addendum provides a detailed analysis on the discretization error in the NZ equation and
whether it affects our original analysis.

The continuous-time homogeneous NZ equation3–5 for the system propagator U(t) is

_UðtÞ= � iLsUðtÞ+
Z t

0
dτKðτÞUðt � τÞ ð1Þ

where Ls = [Hs, ⋅ ] andU(t) is defined by ρ(t) =U(t)ρ(0). For the subsequent analysis, it is useful to
write its second-order derivative as derived in ref. 6 (see Supplementary Note I for detail)

€UðtÞ= ð�iLsÞ2UðtÞ+KðtÞ+
Z t

0
dτF ðτÞUðt � τÞ ð2Þ

where

F ðtÞ= fKðtÞ, � iLsg+
Z t

0
dτKðτÞKðt � τÞ, ð3Þ

and the third-order derivative (see Supplementary Note II for detail)

U⃛ðtÞ= ð�iLsÞ3 + fK0, � iLsg+ _K0

h i
UðtÞ

+
Z t

0
dτRðt � τÞUðτÞ

ð4Þ

where

RðtÞ= ð�iLsÞ2 +K0

h i
K� iLs _K+ €K

h i
ðtÞ: ð5Þ

We note that F ðtÞ � OðjjKðtÞjjÞ (∣∣ ⋅ ∣∣ denotes Frobenius norm of the matrix) from Young’s
convolution inequality7,8. Furthermore, _KðtÞ, €KðtÞ, and henceRðtÞ are also OðjjKðtÞjjÞ from the
projection of full system-and-bath evolution9,10.

We now consider the discrete-time version of Eqs. (1), (2) and (4). Following the same
convention as our original manuscript, let t = NΔt, L = 1 − iΔtLs, ρN = ρ(NΔt), UN = U(NΔt),
Km =KðmΔtÞ be the continuous-timememory kernel in Eq. (1) evaluated at discrete time steps,
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and the discrete-time memory kernel, Km, be defined by discrete time
relations

UN + 1 = ðI � iΔtLsÞUN +Δt2
XN
m=0

KN�mUm, ð6Þ

from ref. 2 and the discrete-time memory kernel, {Km}, is the central
quantity used in our original article. Our goal is to demonstrate how
thediscretization error in the discreteNZ equationpropagates into the
relationship between Km and Km and whether the time-translational
invariance of Km is, in fact, incorrectly assumed and contaminated by
the discretization error.

We begin by considering the time-derivatives of the system pro-
pagator at t = 0 (i.e., N = 0),

€U0 = ð�iLsÞ2 +K0, ð7Þ

U⃛0 = ð�iLsÞ3 + fK0, � iLsg+ _K0: ð8Þ

The expansion of U1 at t = 0 follows

U1 = I +Δt _U0 +
Δt2

2
€U0 +

Δt3

6
U⃛0 +OðΔt4Þ: ð9Þ

We can use Eqs. (9) and (6) to obtain

K0 =
1
2

ð�iLsÞ2 +K0

� �
+
Δt
6

U⃛0 +OðΔt2Þ: ð10Þ

This reveals that our K0 is related to K0 up to an additive
error OðΔtÞ.

For N > 0, we discretize the time-convolution integral in Eqs. (2)
and (4) with the left Riemann sum,

€UN = ð�iLsÞ2UN +KN +Δt
XN�1

m=0

FN�mUm

+OðNΔt2Þ,
ð11Þ

U⃛N = U⃛0UN +Δt
XN�1

m=0

RN�mUm +OðNΔt2Þ: ð12Þ

Next, the integral in Eq. (1) is approximatedby the trapezoidal rule,

_UN = � iLsUN +Δt
1
2
KN +

XN�1

m= 1

KN�mUm +
1
2
K0UN

" #

+OðNΔt3Þ:
ð13Þ

Similarly to Eq. (9), the expansion of UN+1 at t = NΔt follows (see
Supplementary Note III for detail)

UN + 1 =UN +Δt _UN +
Δt2

2
€UN +

Δt3

6
U⃛N +OðΔt4Þ

= ðI � iΔtLSÞUN +Δt2
XN�1

m=0

KN�mUm +K0UN

" #

+
Δt3

2

XN�1

m=0

FN�mUm +OðNΔt4Þ

+
Δt4

6

XN�1

m=0

RN�mUm +OðNΔt5Þ:

ð14Þ

Finally, by comparing Eqs. (6) and (14), we observe

KN =KN +
Δt
2
FN +OðΔt2Þ, ð15Þ

which reveals how the discretization error used in Eq. (6) propagates
into the discrete-time memory kernel. From Eqs. (10) and (15), we see
that the discrete-time memory kernel KN agrees with the continuous-
timememory kernelKN up to a discretization error ofOðΔtÞ for N > 0,
and they are related up to an additive error of OðΔtÞ by Ls at N = 0.
Furthermore, the discrete-time memory kernel obeys time-
translational invariance up to OðΔt2Þ since FN is time-translationally
invariant. Hence, our analysis in the original manuscript is valid up to
the discretization error OðΔtÞ, and the discretization error does not
change our analysis. We also note that Cao et al. numerically
demonstrated the convergence of KN to KN when taking the limit of
Δt → 0 in ref. 11, which is consistent with our analysis.

Our original work presented a formal, explicit one-to-one
mapping between memory kernel and influence functions for var-
ious open-quantum system settings including spin, fermionic, and
bosonic baths with commuting/non-commuting or diagonalizable/
non-diagonalizable system-bath coupling. As mentioned in our ori-
ginal work as well as its supplementary materials and also in ref. 1,
there are similarities among our analysis, Cao’s transfer tensor
method11, and Makri’s small matrix method12, especially for the
simplest setting of a bosonic bath with commuting, diagonalizable
system-bath coupling. Our work presents a unified framework for
open quantum dynamics for various settings beyond the available
analyses and a quantum sensing protocol for a system coupled to
Gaussian baths (i.e., learning spectral density from reduced system
dynamics).

Data availability
Data generated in this study is fully presented in the main text and
Appendices.

Code availability
No code has been used to generate the data.
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