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Sequence-based virtual screening using
transformers

Shengyu Zhang 1,3, Donghui Huo1,2,3, Robert I. Horne 1,3, Yumeng Qi1,3,
Sebastian Pujalte Ojeda1, Aixia Yan2 & Michele Vendruscolo 1

Protein-ligand interactions play central roles in myriad biological processes
and are of key importance in drug design. Deep learning approaches are
becoming cost-effective alternatives to high-throughput experimental meth-
ods for ligand identification. Here, to predict the binding affinity between
proteins and small molecules, we introduce Ligand-Transformer, a deep
learning method based on the transformer architecture. Ligand-Transformer
implements a sequence-based approach, where the inputs are the amino acid
sequence of the target protein and the topology of the small molecule to
enable the prediction of the conformational space explored by the complex
between the two. We apply Ligand-Transformer to screen and validate
experimentally inhibitors targeting the mutant EGFRLTC kinase, identifying
compounds with low nanomolar potency. We then use this approach to pre-
dict the conformational population shifts induced by known ABL kinase inhi-
bitors, showing that sequence-based predictions enable the characterisation
of the population shift upon binding. Overall, our results illustrate the
potential of Ligand-Transformer to accurately predict the interactions of small
molecules with proteins, including the binding affinity and the changes in the
free energy landscapes upon binding, thus uncoveringmolecular mechanisms
and facilitating the initial steps in drug design.

Recent reports are revealing that deep learning approaches exhibit
capabilities beyond their original function of predicting protein
structures, including the possibility to infer protein dynamics and
protein interactions1–13. These developments have opened the way to
the use of deep learning in early-stage drug design14–20 to help address
the problem of the progressive inefficacy of drug discovery
pipelines21,22. One important aspect of this problem is the identification
of ligands using high-throughput screening, which is resource-inten-
sive, requiring substantial financial investment, extensive time, and
specialized equipment. Additionally, the process can be inefficient due
to the high rate of false positives and negatives, necessitating further
validation steps that add to the overall cost and time burden. These
limitations have driven the development of computational methods

for drug design in the last several decades23–26. The advent of deep
learning is now creating novel opportunities for more efficient, accu-
rate, and cost-effective approaches to predict protein-ligand interac-
tions by significantly reducing the experimental workload.

Here, we explore the idea of sequence-based drug design to use
deep learning to predict how a protein target explores its conforma-
tional space when in complex with a candidate ligand. The goal with
sequence-based drug design is to go beyond structure-based18,23,25,26

and ligand-based27,28 drug design methods, which largely rely on the
conformations of the interaction partners in their free states. By taking
as input the amino acid sequence of the protein target and the struc-
ture of the ligand, this approach offers as output a prediction of the
conformational space of the complex and the corresponding binding
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affinity.We thus report Ligand-Transformer, a deep learning approach
designed to model protein-ligand interactions.

The architecture of Ligand-Transformer is presented in Fig. 1.
Briefly, Ligand-Transformer is based on the transformer framework of
AlphaFold26 to generate protein representations from their sequences,
and the Graph Multi-View Pre-training (GraphMVP) framework29 to
generate ligand representations. Instead of using the final predicted
protein structure, we leverage the intermediate outputs. For the ligands,
during pre-training, GraphMVP injects the knowledge of 3D molecular
geometry into a 2D molecular graph encoder, allowing downstream
tasks to benefit from the implicit 3D geometric prior. By leveraging the
prior knowledge encoded in these high-dimensional representations,we
capture the structural featuresofprotein-ligand interactions, resulting in
an accurate modelling of the bound states. The representations are
further processed by the main structure of Ligand-Transformer, which
consists of three parts (Fig. 1). The first part is the feature encoders to re-
process the representations of proteins and ligands. The second part is
the cross-modal attention network to exchange the information
between representations of the protein and ligand. The third part is
composed of two downstream predictors, the first head for affinity
predictions and the second head for distance predictions.

Here, we describe Ligand-Transformer, a sequence-based deep
learning framework that models protein-ligand interactions by pre-
dicting both the binding affinity and the conformational space of
protein-ligand complexes. We apply it to identify inhibitors of the
drug-resistant EGFRLTC kinase, achieving a hit rate of 58%, with two
ligands exhibiting low-nanomolar affinity in validation binding
experiments. We further show that Ligand-Transformer accurately
predicts ligand-induced conformational population shifts of ABL
kinase, consistent with experimentally determined conformational
states. These results illustrate how Ligand-Transformer enables out-of-
distribution predictions and captures the free energy landscape upon
binding, offering a scalable and efficient alternative to high-
throughput experimental assays in early-stage drug discovery.

Results
Performance comparison against state-of-the-art affinity pre-
diction methods
WeconductedaperformancecomparisonofLigand-Transformer against
other affinity prediction methods30–32 utilizing the PDBbind2020 dataset

(Table S1). Our results indicate that Ligand-Transformer achieves com-
parably better correlations with experimentally-measured values when
compared to baseline methods.

To evaluate the predictive accuracy of Ligand-Transformer on
both binding affinity and distancematrices, we used the PDBbind2020
dataset. We curated a subset of 13,420 complexes (Supplementary
Data 1), ensuring manageable computational loads by limiting the
maximum length of protein sequences to 384 residues, and the max-
imum number of atoms in each ligand to 128. Each complex in the
dataset has an experimentally measured binding affinity (pKd), allow-
ing us to compare predicted values directly against themeasured data.
We randomly split the dataset into training (10,375 complexes), vali-
dation (640), and test (936).

To compare Ligand-Transformer to competing approaches, we
also trained three other deep learning-based affinity prediction
models30–32 on the samedata partitions. Table S1 and Fig. S1 summarize
these comparisons, showing that Ligand-Transformer achieves higher
or on-par correlation with experimentally measured affinities relative
to all three baseline methods. Furthermore, Ligand-Transformer
effectively predicts protein-ligand distances. We found that approxi-
mately 95% of the residue-residue distance errors were below 0.5Å,
while ~95% of the residue-ligand atom distance errors were within 2 Å
(Fig. S2). These results suggest that Ligand-Transformer is able to
capture structural aspects of protein-ligand complexes that are useful
for both binding affinity and distance matrix predictions. Additional
details of these comparisons, as well as the ability of the model to
estimate its own error and to generalize to unseen protein-ligand
combinations (Figs. S3 and S4), are provided in the “Methods” and the
Supplementary Methods.

Identification of EGFRLTC ligands
We illustrate the potential of Ligand-Transformer for the identification
of initial hits in drug discovery pipelines by screening ligands targeting
EGFRLTC, a mutant form of the EGFR kinase. EGFR is a key target in
cancer therapy due to its role in cell growth33. As mutations in EGFR,
such as L858R/T790M/C797S (LTC), can lead to resistance against all
current EGFR inhibitors, there is a need for novel drugs to target this
triple-mutant34. We first collected a dataset, called EGFRLTC-290 (Sup-
plementary Data 2), consisting of 290 existing inhibitors with their
measured half maximal inhibitory concentration (IC50) values, along
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Fig. 1 | Model architecture of Ligand-Transformer. Ligand-Transformer repre-
sents a protein-ligand complex as a heterogeneous graph, incorporating residue
and atom sets from the protein and ligand, respectively, along with pairwise fea-
tures. The graph is formed from inputs generated by AlphaFold2 for proteins and
GraphMVP for ligands, which are then re-encoded into an initial complete graph.
This graph is subsequently refined through a 12-layer transformer-like network.

This network updates both node and edge representations via self-attention with
pair bias. Theoutput is processed by the affinity head for binding affinity prediction
and by the distance head for distance distribution prediction. Components within
dotted-line boxes have fixed parameters, whereas those within solid lines are
trainable.
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with annotations indicating whether they are allosteric or orthosteric
(see “Methods”). We found that Ligand-Transformer could predict the
binding affinity with a Pearson’s correlation coefficient (R) value of
0.57 (Fig. 2a). To fine-tune themodel on this specific dataset to achieve
higher accuracy, we randomly split the EGFRLTC-290 dataset into ten
parts, and conducted a tenfold cross validation to evaluate the per-
formance and obtain an ensemble of fine-tunedmodels (Model FT1 to
FT10, see “Methods”). The value of R of this test increased to 0.88 after
fine tuning (Fig. 2b).

We identified notable differences in the binding modes of the
predicted orthosteric and allosteric inhibitors. Statistical analysis
using the t-test revealed no significant differences in activity dis-
tribution between the orthosteric and allosteric groups (p = 0.66)

and the dual group (p = 0.39) (Fig. 2c). However, the predicted dis-
tance distributions exhibited significant variations (p < 10−21 for
allosteric, p = 0.0025 for dual). The predicted distance between
residues E762 and G857 was significantly greater when binding to
allosteric inhibitors compared to orthosteric inhibitors. This dis-
tance can serve as an indicator of the αC-helix-in and αC-helix-out
states (Fig. 2d), consistent with previous studies35,36. Specifically, the
αC-helix-in state represents the active conformation, while allosteric
inhibitors tend to bind to αC-helix-out state, which is the inactive
conformation. Moreover, the residue-wise distance between the
kinase and ligand indicates that the binding sites of allosteric inhi-
bitors are situated in closer proximity to the αC-helix region rather
than the ATP-binding sites and the active site (Fig. 2e).
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a b c
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Fig. 2 | Identification of ligands targeting EGFRLTC. a, b Correlation between the
experimental pIC50 values and the binding parameters (pKd and pIC50 values) using
Ligand-Transformer for complexes in the EGFRLTC-290 dataset; all binding para-
meters are in molar units: a predicted pKd values without transfer learning (base
model), and b predicted pIC50 values post tenfold validation with transfer learning.
c Distribution of predicted distances between E762 and G857 of EGFRLTC in various
ligand-binding states. y-axis: predicted distance between the E762 Cβ and G857 Cα
atoms; x-axis: experimental pIC50 values of the ligands. Data points are colored
based on their reported binding sites in the literature: orthosteric (blue), allosteric
(green), and dual (orange). The kernel density estimations (KDE) plots for the
distributions of predicted distances are indicated adjacent to y coordinates.
d Comparison of the EGFR kinase domain X-ray structures in the active (PDB ID
2ITX) and inactive (PDB ID 2GS7) states. The αC-helix is shown as a ribbon in light
blue and gray, representing the active and inactive states, respectively. The AMP-
PNP ligandbound to PDB ID2ITX is visualizedas a stick-and-ball structure. Residues

E762 and G857 of EGFR (corresponding to residues E738 and G833 in PDB ID 2GS7)
are shown as sticks. Nitrogen, oxygen, phosphorus, and carbon atoms are colored
dark blue, red, orange, and light blue, respectively. e Line graph of the predicted
binding modes of an orthosteric inhibitor (8r54, colored in red) and an allosteric
inhibitor (4i55, colored in blue)with EGFRLTC. The line graph illustrates the predicted
minimal distances between each residue and the ligand. The error bars represent
the predicted confidence scores (pMAE, see Algorithm 8 in Supplementary
Information). The bottom part shows sequence annotation of EGFR based on
UniProt P00533. ATP binding sites are shown in red dots, active site is shown in
green dot, and the region of αC-helix is shown in blue box. f In vitro kinase inhi-
bition assays for selected compounds, depicted as a percentage of activity relative
to a DMSO control. The graph presents the mean of duplicate measurements for
each ligand. The corresponding IC50 values are presented for each compound.
Source data are provided as a Source Data file.
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We then used the predicted affinities and distances obtained from
Ligand-Transformer to screen a subset of TargetMol containing 9090
compounds in stock (“Methods” and Supplementary Data 3). We
selected candidates with the criteria that they are predicted to have
high binding affinity by all of the 11 models (Table S3). Finally, we
obtained 12 candidates (Table S4) with predicted IC50 between 1 and
100nM). These candidates included a compound (brigatinib) pre-
viously identified as effective inhibitor targeting EGFRLTC with a
reported IC50 of 1–38 nM37. To our knowledge, among the remaining 11
compounds, C1, C4, C5, C10, and C11 have not been reported to target
EGFR, while C7 is known to target EGFR but not to EGFRLTC.

We then tested experimentally the inhibitory potency of these 11
candidates, and found six active compounds. Out of these six active
compounds, three fell within the predicted IC50 range of 1 to 100 nM,
with two of them, C1 andC10, exhibiting high potency, with IC50 values
of 5.5 and 1.2 nM, respectively (Fig. 2f). C1 is a naphthyridine derivative,
which is a non-traditional scaffold for EGFR inhibitors. Based on our
predictions, the naphthyridine moiety may be capable of competing
with the purine ring of ATP and forming hydrogen bonds with the
backbone of M793, thereby stabilizing the ligand within EGFR pocket.
C10 and C4 show Tanimoto similarities (based on Morgan
fingerprints38, radius = 2, 2048 bits) of 0.77 and 0.35, respectively, to
brigatinib. These compounds exhibit a high degree of pharmacophore
overlap, particularly the aniline-pyrimidine scaffold. This structural
motif may compete with the purine ring of ATP, occupying the EGFR
pocket. Additionally, the pyrimidinemoiety can form hydrogen bonds
with backbones of M793 and P794, thereby enhancing its binding
affinity. C5,C7, andC11 exhibit inhibitory activity against EGFRLTC in the
range of 100nM–10μM, indicating relatively weak inhibitory potency.
C11 is a pyridine compound, which consists of only two aromatic rings.
From a structural perspective, it represents a novel EGFR inhibitor. C5
is a pyrimidine-2,4-dione derivative and features a quinoline ring,
which is a classic structural motif commonly found in EGFR inhibitors.
On the other hand, C7 has a complex structure and a relatively high
molecularweight, which does not alignwith the characteristics of ATP-
competitive inhibitors targeting EGFR.

To provide further insights into the binding modes of EGFRLTC

inhibitors, we analyzed the predicted distances between residues E762
and G857 for the 11 newly identified candidate compounds (C1 to C11),
as shown in Fig. S14a.Mostpositive inhibitors (C1, C4, C7, C10, andC11)
exhibit distances below 5.3 Å, indicating that the αC-helix is in the “in”
state. In contrast, C5 displays a slightly longer distance of 5.75 Å, sug-
gesting a possible “out” or intermediate state of the αC-helix. This
observation is further illustrated in the distance probability distribu-
tions (Fig. S14b), where two distinct peaks, corresponding to the “in”
and “out” conformations of the αC-helix, are observed when the αC-
helix binds to C5.

In addition to the E762–G857 distances, we analyzed the binding
regions of these compounds to assess their interaction with the αC-
helix region. As shown in Fig. S14c, all candidates are predicted to bind
near the active site, consistent with our objective to identify inhibitors
that directly target this region (“Methods”). Within this configuration,
most positive inhibitors (C1, C4, C7, C10, and C11) are predicted to
remain relatively distant from the αC-helix (minimum distance > 6 Å),
aligning with the expected orthosteric binding mode. However, C5 is
predicted to interact more closely with the αC-helix (minimum dis-
tance <5 Å), suggesting again that it may act as a dual inhibitor by
interactingwith both the active site and theαC-helix region (Fig. S14d).
We modeled the complex structures using Protenix (v0.4.4)39

(Figs. S18–S23). The results confirmour prediction that C1, C4, C7, C10,
and C11 predominantly occupy the orthosteric binding pocket,
whereas C5 engages both the orthosteric and allosteric pockets.
Additionally, when bound to C5, the αC-helix tends to adopt an “out”
conformation (Fig. S24).

Conformational selectivity of ABL kinase inhibitors
Kinases are dynamic, interconverting between different conforma-
tional states40. Monitoring these transitions and characterizing the
conformational states that a kinase populates has proven to be a sig-
nificant challenge41. Kinases typically maintain highly conserved active
states to ensure the accurate positioning of essential catalytic
regions35. In contrast, their inactive states can be distinct among dif-
ferent kinases42. Examining how small molecules selectively bind
individual kinases could be instrumental in developing inhibitors
specifically targeting these unique inactive states42. Here, we investi-
gated whether Ligand-Transformer can be used to predict the ligand
binding-induced conformational population shift of the ABL kinase,
which plays a pivotal role in several signalling pathways, governing
crucial cellular processes such as growth, survival, invasion, adhesion,
and migration43,44.

ABL has three major conformational states, one active state (A)
and two inactive states (I1 and I2)

41. To investigate the ability of
Ligand-Transformer to capture the change of the conformation
ensemble of ABL after binding, we collected 12 inhibitors of this
kinase, each with a predominant state of ABL when bound, as
determined by nuclear magnetic resonance (NMR) spectroscopy41. A
total of 60 possible structures of ABL were obtained from the
PDB IDs 6XR6, 6XR7, and 6XRG, with 20 structures corresponding to
each of the three states A, I1 and I2 (Fig. 3a). We then used the pre-
dicted distances between the residues of ABL as constraints to
reweight the conformational ensemble consisting of the 60 struc-
tures and calculate the population of each conformational state (see
“Methods”). Upon binding, the predicted predominant states are in
accordance with experimental measurements for 11 of 12 compounds
(Fig. 3b). Furthermore, when grouping the inhibitors by their labelled
predominant state, we found that each group had a significantly
higher population within the corresponding state compared to the
other two groups.

We conducted a detailed exploration of the predicted distance
distributions that illustrate the distinct conformation ensembles of
ABL when bound with various inhibitors. Our analysis (Fig. 4) focuses
on the spatial positioning of the αC-helix (residues 299–311), the
phosphate-binding loop (P-loop, residues 267–275), and the activa-
tion loop (A-loop, residues 400–424) of ABL. These elements are
pivotal in differentiating the three states of ABL41. We chose four
representative residue pairs, selected for their high F-statistics indi-
cating their effectiveness in distinguishing between the three states,
which enabled us to investigate the distances between critical pro-
tein components.

The ability of Ligand-Transformer to characterise the conforma-
tional space of the protein target and its ligand in their complex state
can be appreciated by analyzing the distance between V308 and F401,
which represents the distance between the αC-helix and the DFG
motif, comprising residues D400, F401, and G402, at the start of the
activation loop (Fig. 5). The increased distance in states A, I1, and I2 is
notable, reflecting theDFG-out conformation in states I1 and I2, and the
DFG-in state in state A41. The distance between residues V275 and F401
represents the gap between the DFG motif and the P-loop (Fig. S15).
This distance is significantly reduced in state I2, which adopts a P-loop
stretched conformation, as opposed to the P-loop kinked conforma-
tion in states A and I1

41. Predictions from Ligand-Transformer corro-
borate this trend. The distance between residues H380 and G402
represents the span from the active site to the activation loop
(Fig. S16). In state I2, which adopts an A-loop closed conformation41,
this distance is larger than in the other states, and the measured
structures show that the distance in state I1 is slightly shorter than in
state A. In state I2, the A-loop-closed conformation results in a shorter
distance between L403 and L406, indicating a more compact activa-
tion loop (Fig. S17).
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Fig. 3 | Conformational selectivity of inhibitors targeting ABL kinase. aAverage
distance maps and structural ensembles for ABL kinase states A (blue), I1 (orange),
and I2 (green), corresponding to PDB IDs 6XR6, 6XR7, and 6XRG, respectively.
b Conformational selectivity prediction of different inhibitors. Twelve molecules
were divided into three groups based on their conformational selectivity as
determined in the literature41: Group A (blue, n = 6), Group I1 (orange, n = 2), and
Group I2 (green, n = 4). The grouped bar graph illustrates the differences in

predicted population of binding state conformations of ABL when interacting with
inhibitors from different groups. The red triangle represents the population of ABL
conformations predicted by AlphaFold2 in the apo state. Population estimations
are derived from predicted distance matrices (see “Methods” for details of calcu-
lations). The predicted populations of ABL state bound with each individual ligand
are listed in Table S5. Source data are provided as a Source Data file.
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These conformational changes are all reflected in the distance
predictions of Ligand-Transformer. Specifically, when ABL in the
holo state is bound with an inhibitor selective to a specific state, it
tends to favor a distance distribution pattern that aligns with the
measured distribution of that particular state (Figs. 5 and S15–S17).
Moreover, the predicted distance distributions from Ligand-
Transformer exhibit a wide range with multiple peaks, differing
from the apo state predictions by AlphaFold2. This suggests that
Ligand-Transformer can provide information about the structural
ensembles of a protein-ligand complex. These conformational
changes upon binding are central to the biological regulation of
kinase activity. For instance, the active conformation (state A) of ABL
is associated with substrate phosphorylation and downstream sig-
naling, while the inactive states (I1 and I2) serve as key regulatory
checkpoints. Small molecules that preferentially stabilize specific
conformations can either inhibit or activate the kinase, influencing
cell fate decisions such as proliferation, apoptosis, and migration.
Therefore, the ability to predict conformational population shifts has
important implications for understanding drug mechanism of
action and for the design of selective inhibitors that avoid off-target

effects by exploiting unique features of inactive states. This cap-
ability is particularly relevant for kinases like ABL, where mutations
can confer drug resistance by altering the accessible conformational
landscape.

Discussion
We described a sequence-based virtual screening method of predict-
ing the conformational space of a target protein and a ligand in their
complex state, thus overcoming the limitations of relying on the
structures of the binding partners in their free states. In this way, this
approach provides the binding affinity and the corresponding binding
mode, represented as distance matrices between the target protein
and the ligand.

Through comparisons with baseline models30–32 and ablation
experiments, we observed that Ligand-Transformer performs well in
affinity predictions (Table S1, Supplementary Discussion). This result
can be attributed to the protein and molecular representations pro-
vided by pre-trained AlphaFold26 and GraphMVP29, as well as the
structural information learned from the distance matrices of protein-
ligand complexes during the training.

Fig. 4 | Comparative analysis of distance matrices of the states of ABL. a–c
Differencedistancematrices illustrating the structural variations between the three
states of ABL: a Difference distance matrix of state I1 minus state A. b Difference
distance matrix of state I2 minus state A. c Difference distance matrix of state I1
minus state I2. d F-statistic values derived from the one-way ANOVA to assess

variations in distance distributions across each pair of residues among the three
states (n = 20 per state). This test is two-sided. No adjustments were made for
multiple comparisons. The color intensity correlates with the significance of the
distance variation, with the accompanying scale indicating p-values. Source data
are provided as a Source Data file.
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We illustrated the use of Ligand-Transformer by predicting
ligands for themutant EGFRLTC kinase with a hit rate of over 50% in this
particular case (7/12 positive compounds, Table S4), finding novel
high-affinity ligands, showing that Ligand-Transformer enables out-of-
distribution predictions for specific protein targets. Notably, Ligand-
Transformer achieves this accuracy while being over two orders of

magnitude faster than state-of-the-art co-folding (Boltz-1)45 and
structure-based docking (Vina-GPU 2.1)46 methods (Fig. 6).

Next, as the free energy landscape of a protein is crucial in
determining its behavior47–49, we investigated the problem of predict-
ing conformational ensembles, which remains an open problem in the
development of next-generation structural prediction algorithms50.
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In this context, Ligand-Transformer offers an approach towards
understanding the impact of ligand binding on conformational
ensembles using predicted distance matrices. Specifically, the rational
design of allosteric modulators of kinases, particularly type-4
inhibitors42 and activators51, often encounters challenges with the tra-
ditional lock-and-key paradigm. Our methodology proposes a poten-
tial solution, enabling the design of ligands that modulate kinase
activity by influencing the population distribution across various
conformational states.

The results that we presented indicate that Ligand-Transformer
can accurately predict the interactions of small molecules with pro-
teins, including binding affinities and population shifts, thus helping
understandmolecularmechanisms, andoffering a tool to replacehigh-
throughput experimental assays in the initial steps in drug design
pipelines.

Methods
Protein representations generated by AlphaFold2
We utilized AlphaFold2, a pre-trained model to extract protein
representations6. The protein representation consists of three key
components. Firstly, we generated the single sequence representation
ffmsa

i g, where fmsa
i 2 Rcmsa , cmsa = 384, and i 2 f1:::Nresg. This repre-

sentation is derived by linearly projecting the first row of the multiple
sequence alignment (MSA) representation. The MSA representation is
the output of the final layer of the Evoformer and serves as the input to
the structure module in AlphaFold26. Secondly, we established pair
representations ffpairij g for each pair of residues i and j, where
fpairij 2 Rcpair , cpair = 128. The pair representations ffpairij g are also outputs
of the Evoformer and the input to the structure module in AlphaFold2
and are used in predicting inter-residue distances in AlphaFold2.
Lastly, the structure representation ff struci g was obtained from the final
layer of the structure module in AlphaFold2, where f struci 2 Rcstruc ,

cstruc = 384, and i 2 f1:::Nresg. This structure representation is employed
in AlphaFold2 for predicting side-chain dihedral angles and model
confidence prediction. The MSA searching was conducted by
MMseqs2 (default setting) on BFD/MGnify and Uniclust30 (2021_03).
No structural template was fed during the prediction. Model 1.1.1 of
AlphaFold2 was used for the inference, and no structural template
was used.

Ligand representations generated by GraphMVP
For obtaining a stereospecific molecular geometry representation, we
used GraphMVP, a pre-trained molecule encoder that transforms 2D
ligands into graph representations29. GraphMVP is trained via self-
supervised learning (SSL) using auxiliary tasks. Here, both the input
atoms and chemical bonds underwent a one-hot encoding process
before being input into GraphMVP. The outputs generated include the
atom representation, denoted as ffatomk g, where fatomk 2 Rcatom ,
catom = 100, and k 2 f1:::Natomg, and the bond representation, repre-
sented as fbondkl

n o
, where fbondkl 2 Rcbond , cbond = 100, for each chemical

bond formed between atom k and atom l.

Datasets
PDBbind2020-subset. We utilized the publicly accessible PDBbind
v2020 dataset37, which provides the structures of 19,443 protein-
ligand complexes along with their experimentally measured binding
parameters. We eliminated structures with more than one ligand and
those whose ligand structures could not be read by RDKit (http://
www.rdkit.org/). Additionally, to enhance the training efficiency, we
initially limited the dataset to complexes where the ligand atom
count was 128 or fewer, and the protein sequence length was
restricted to 384 amino acids or fewer. For sequences exceeding 384
amino acids in length, we applied a truncation strategy (see Sup-
plementary Methods and Discussion) by eliminating domains that

Fig. 5 | Analysis of distances between the Cβ atom of residue V308 and the Cβ
atom of residue F401 of ABL. a Structural overlay highlighting the distance
between residues V308 and F401 in the conformations of states A (PDB ID 6XR6,
blue), I1 (PDB ID 6XR7, orange), and I2 (PDB ID 6XRG, green) of ABL. Residues are
represented by spheres at the Cβ atoms, and the proteins are depicted as ribbons.
b Depiction of the spatial positioning of residues V308 and F401 within the ABL
kinase state A (PDB ID 6XR6). The sequence annotation is based on UniProt entry
P00519, with the ATP binding site,αC-helix, active site, and activation loop colored
in teal, violet, red, andmagenta, respectively. Theproteinbackbone is rendered asa
cartoon, the active site residues as sticks, and the Cβ atoms of residues V308 and
F401 as spheres. c Distance distributions between residues V308 and F401 for ABL

in complex with 12 different inhibitors. Kernel density estimations (KDE) plots for
the distances from 20 measured structures are shown for state A (blue), state I1
(orange), and state I2 (green). Predicted distance probability distribution of the apo
state, derived from AlphaFold2 (AF2), is depicted as grey bars with a bin width of
0.3 Å. The Ligand-Transformer predicted distanceprobabilities for the 12 inhibitors
are displayed as colored bars with a bin width of 0.19 Å. The mean values of pre-
dicted distances are plotted as solid lines, with dashed lines representing the
standard deviation. The symbol in the upper right corner denotes which con-
formational state of ABL the inhibitor selectively binds to as determined by NMR
analysis41.

a b

Fig. 6 | Ligand-Transformer demonstrates greater efficiency than other state-of-the-art dockingmethods. Estimated time to screen 10,000molecules using Ligand-
Transformer (a) and other popular docking methods (b). Observe that Ligand-Transformer is two orders of magnitude faster than Boltz-1.
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were distant from the binding site. This resulted in a subset dataset
(PDBbind2020-subset) consisting of 13,420 data points. We subse-
quently randomly divided the dataset into training, validation, and
testing sets, containing 10,375, 640, and 936 data points, respectively
(see Supplementary Data 1). During model training, we initially con-
ducted warm-up training with 4480 complexes (PDBbind_4k) that
only included single chains with lengths less than 384. Following this,
we proceeded to train with the complete training set (PDBbind_10k)
of 10,375 data points (see Supplementary Methods and Discussion
for training details).

For activitydata, the PDBbinddataset includesdissociation constant
(Kd), halfmaximal inhibitory concentration (IC50), and inhibitionconstant
(Ki) measurements. As prediction labels, we took the negative logarithm
of these values (inmolar units), resulting in thepKd, pIC50, andpKi values,
respectively. We considered Ki and Kdmeasurements without distinction
to train Ligand-Transformer to predict Kd values. The IC50 data are assay-
specific and only comparable under certain conditions. Based on litera-
ture research52, augmenting mixed public IC50 data with public Ki data
does not deteriorate the quality of the mixed IC50 data if the Ki is cor-
rected by an offset. Therefore, we did not explicitly distinguish among
the three types of activity data. Instead, we corrected all IC50 values by
dividing them by a factor 2.3. That is, we added 0.35 log units to all pIC50

values to obtain their pKd equivalents for use as prediction labels. Ligand-
Transformer can thus predict Kd, IC50, and Ki values.

For the distance data, the ground truth distances are computed
from the PDB files using Biopython. As the distance prediction has a
lower limit of 1 Å and an upper limit of 20Å, all labels are truncated
within this range when calculating the absolute error between the
predicted distances and true distances.

EGFRLTC-290. We collected 400 inhibitors targeting the L858R/
T790M/C797S triple-mutant EGFR from ChEMBL53 and SciFinder (as
of November 2022). These inhibitors were obtained from about 90
literature sources, and all data were double-checkedwith the original
publications to ensure some important information, e.g., tested with
human protein, and L858R/T790M/C797S triple-mutant EGFR form.
For duplicates, we retained the one with higher bioactivity, resulting
in a final set of 290 inhibitors with IC50 values ranging from 0.08 nM
to 150 μM. We classified the inhibitors into orthosteric inhibitors,
allosteric inhibitors, or those that bind to both sites, based on
information from their originally published literature.

TargetMol library for screening EGFRLTC inhibitors. The library used
for virtual screening for EGFRLTC inhibitors in this study contained a
total of 9090 compounds, all sourced from TargetMol. This collection
encompassed 2040 approved drugs, 5370 bioactive compounds, and
1680 natural compounds. Following the deduplication process, the
final count of unique compounds in the librarywas reduced to 5600, as
detailed in Supplementary Data 3.

Screening strategy of EGFRLTC inhibitors
When selecting candidate ligands from the TargetMol library for
binding to EGFRLTC, we first considered the predicted binding activ-
ity. We normalized the predicted affinities from 11 models, including
the base model (training with hyperparameters described in
Table S3) and fine-tuned models (Model FT1 to FT10), and defined an
overall affinity score as the minimal predicted affinity (normalized)
among the 11 models (see Supplementary Methods and Discussion).
In screening the candidate ligands, we also took into account the
binding location of the ligands. We calculated the predicted dis-
tances of the ligand to residues K745, E762, D855, the three func-
tional residues of EGFR, and normalized these distances to obtain a
distance score. We screened molecules based on the following cri-
teria: overall affinity score > 0.3 (i.e., top 50 results) or affinity score
of anymodel rank <10; and all distance scores <0.5, to ensure that the

binding location of the small molecule is not too far from the target
region. Following these criteria, we obtained 12 candidates
(Table S4).

Reweighting state populations of the ABL kinase
ABL exists in three different states, with state A corresponding to
PDB ID 6XR6, state I1 corresponding to PDB ID 6XR7, and state I2
corresponding to PDB ID 6XRG. Each PDB file contains a set of
Nconf = 20 conformations. We use the average residue distance among
the 20 conformations in each state as the distance matrix {ds

ij}. Speci-

fically, ds
ij =

1
Nconf

PNconf
n= 1 d

sðnÞ
ij , where state s 2 A, I1, I2

� �
, and

i, j 2 f1, . . . ,Nres = 287g. The conformational ensemble of the ABL
kinase can be simplified and represented by the weights
w= ½wA,wI1 ,wI2 � of the three states. Consequently, the distance matrix
�dijðwÞ

n o
of the conformational ensemble can be expressed as a

weighted average: �dij wð Þ=Psd
s
ijw

s. During the reweighting process,

we optimize the weightsw to minimize the mean squared error (MSE)

between the protein distance matrix fd̂ijg predicted by Ligand-

Transformer and the distance matrix f�dij wð Þg of the conformational
ensemble. The optimized weights w* are considered to represent the
conformational population corresponding to the Ligand-Transformer
predicted distance matrix. Specifically, we use Sequential Least
Squares Programming (SLSQP) from SciPy to solve the following
optimization problem with constraints and bounds:

min
w

MSE wð Þ= 1
N2

res

P
i, jð Þ

�dij wð Þ � d̂ij

� �2

s:t:0<ws < 1fors 2 A, I1, I2
� �

P
sw

s = 1

ð1Þ

Baselines
HAC-Net. We obtained the code for HAC-Net from the official repo-
sitory at https://github.com/gregory-kyro/HAC-Net, and used their
pre-processed input HDF files for the PDBbind2020 dataset. We
adjusted the dataset split to align with the division we utilized for
training and testing. The training process and hyperparameters
adhered to their default settings.

TankBind. We sourced the code for TankBind from https://github.
com/luwei0917/TankBind. Using their dataset construction script, we
constructed a dataset split for PDBbind2020 consistent with what we
used in our study. We adhered to their default training settings to
retrain their model on our version of the dataset.

MONN. We obtained the code from https://github.com/lishuya17/
MONN. Their dataset pre-processing discards complexes with mole-
cules like nucleic acids and polypeptides. Therefore, we made certain
modifications to their data handling code to accommodate all the data
we required. We rebuilt the dataset to align with the split we used in
our paper and retrained their model using their default parameters.

In vitro EGFRLTC inhibition assays
The HTRF KINASE-TK assay kit (Cat#62TK0PEJ) was purchased from
PerkinElmer for evaluating compound inhibition against EGFR L858R/
T790M/C797S kinase. Compounds were serially diluted in DMSO to
achieve a final assay concentration 200-fold lower than the detection
concentration, maintaining a consistent final DMSO content of 0.5% in
the assay system. A total of 25 nL of each compoundwas transferred to
a 384-well reaction plate (Greiner, Cat#784075) using an Echo655
acoustic dispenser. The EGFR L858R/T790M/C797S kinasewas used at
a working concentration of 0.7 nM, chosen within the linear range
where the reaction rate remains constant to ensure accurate activity
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measurements. The kinase solution was prepared in 1× kinase reaction
buffer (comprising 5mM MgCl₂, 1mM DTT, and 1mM MnCl₂), and
2.5μL of this solution was added to each well. The plate was cen-
trifuged at 140 g for 1min and incubated at 25 °C for 10min. To initiate
the reaction, a substrate-ATPmixture was prepared in the same kinase
reaction buffer, containing TK substrate at a saturating working con-
centration of 1μM and ATP at 0.2μM, a concentration approximately
equal to the Km value. This ATP level was selected in accordance with
the Cheng-Prusoff equation (where ATP =Km, IC50 = 2Ki) to accurately
reflect the inhibitory potency of test compounds. Then, 2.5μL of the
substrate-ATP mixture was added to each well, followed by cen-
trifugation at 140 g for 1min. The plate was sealed and incubated at
25 °C for 50min. Subsequently, a 2× detection reagent mixture con-
taining XL665 and anti-phospho-tyrosine antibody in detection buffer
was prepared, and 5μL of this solution was added to each well. The
plate was centrifuged again (140 g, 1min) and incubated at 25 °C
for 60min.

Fluorescence emissions at 620 nm (Cryptate) and 665 nm (XL665)
were measured using a microplate reader. Each assay condition was
tested in duplicate. The percentage of kinase inhibition induced by the
compounds was quantified using the equation:

%Inhibition= 100%� compound response� positive controlð Þ
negative control� positive controlð Þ

� �
× 100 ð2Þ

To evaluate the potency of the inhibitors, IC50 values and dose-
response curves were generated using GraphPad Prism 7.0 software.
This was achieved by fitting the calculated percentage inhibition and
the logarithm of the compound concentrations to a variable slope
(four-parameter) nonlinear regression model. The model is expressed
by the equation:

Y =Bottom+
Top� Bottomð Þ

1 + 10 LogIC50�Xð Þ×Hill slope ð3Þ

where X denotes the log of the inhibitor concentration and Y repre-
sents the percentage inhibition. Furthermore, the percentage of
enzymatic activity in the presence of inhibitors, expressed as % Con-
trol, is derived by subtracting the % Inhibition from 100%.

Screening efficiency
To evaluate the computational efficiency of Ligand-Transformer
compared to other state-of-the-art docking methods, we estimated
the runtime required for a typical virtual screening task of 10,000
molecules against protein targets of varying lengths. For Ligand-
Transformer, we screened a subset of FDA-approved drugs (n = 2500)
against all proteins in the human proteome with fewer than 565 resi-
dues, while for Boltz-1 we evaluated a reduced set of 11 proteins ran-
ging from 50 to 550 amino acids in length (sampled every 50 amino
acids) with 100molecules due to its substantial computational cost; in
both cases,weextrapolated these results to estimate the time required
for screening 10,000molecules. For traditional dockingmethods such
as Vina, runtime depends primarily on docking box size rather than
protein length. Therefore, we used the average runtime across pro-
teins in the AutoDock-GPU 140 benchmark46 set as an estimate of
typical performance, treating this as a constant independent of protein
length.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All structural models predicted by Protenix (v0.4.4, https://protenix-
server.com) are available at the ModelArchive Database (https://

modelarchive.org) with the identifiers ma-2zc19, ma-e6x11, ma-sjtz3,
ma-7o3rc, ma-jzm4l, and ma-3jjn5. Additional data generated in this
study are provided in the Supplementary Information. Source data are
provided with this paper.

Code availability
The code used to develop the model, perform the analyses, and gen-
erate the results in this study is Ligand-Transformer (v0.1.0, https://
github.com/zshengyu14/LigandTransformer), publicly available and
free for academic use under the MIT License (snapshot archived at
Zenodo, https://doi.org/10.5281/zenodo.15467622). Third-party soft-
ware used includes ColabFold (v1.3.0, https://github.com/sokrypton/
ColabFold)—MIT License; GraphMVP (https://github.com/chao1224/
GraphMVP)—MIT License; HAC-Net (v1.4.2, https://github.com/
gregory-kyro/HAC-Net)—MIT License; TankBind (v0.5.0, https://
github.com/luwei0917/TankBind)—MIT License; and MONN—avail-
able for non-commercial research use only. Original license headers
and copyright statements have been retained in all source files.
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