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Cell-free DNA testing for the detection and
prognosis prediction of pancreatic cancer

Jianmin Wu1,2,11, Xiongfei Xu 3,4,11, Qingzheng Zhang5,11, Peilong Li 6,11,
Tong Wu7,11, Shiwei Guo 3,4, Lutao Du 8, Dongdong Xue2, Siyun Shen2,
Fuming Sun9, Ji Hu2, Lu Zheng9, Xuan Wu10, Jian Bai9, Yin Wang9, Lin Wu9 ,
Weiwei Liu 10 , Hongyang Wang 1,2 , Gang Jin 3,4 & Lei Chen 2

Pancreatic cancer is known for its lethal condition, with most cases being
diagnosed at advanced stage. Recently, liquid biopsy has emerged as a pro-
mising tool in cancer detection. Here we develop both an early detection
model and a prognostic model for pancreatic cancer using cell-free DNA
(cfDNA) end motif, fragmentation, nucleosome footprint (NF), and copy
number alteration (CNA) features from plasma cfDNA. A total of 975 indivi-
duals were enrolled in our study. We developed an integrated model that
demonstrated superior performance in distinguishing patients with early-
stage pancreatic cancer from non-cancer controls. Moreover, we find that
cfDNA features are associated with prognostic outcomes among pancreatic
cancer patients. In this study, a cfDNA-based liquid biopsy signature is estab-
lished for the early detection and prognostic prediction of pancreatic cancer.
CfDNA may become a valuable tool for enhancing early diagnosis and prog-
nosis assessment in this challenging disease.

Pancreatic cancer is one of the most aggressive cancers in China with
only a 10% 5-year survival rate1,2. With its high malignancy, pancreatic
cancer remains a major cause of cancer-related mortality3,4. Pan-
creatic ductal adenocarcinoma (PDAC) accounts for 90% of all pan-
creatic cancer cases2,5. Smoking, nonhereditary or chronic
pancreatitis, chronic diabetes mellitus, obesity, nontype O blood
group, and age could be risk factors for PDAC3. Besides, germline
mutations in genes such as BRCA2, BRCA1, CDKN2A, ATM, STK11,
PRSS1, MLH1, and PALB2 are associated with pancreatic adenocarci-
noma (PAAD)3. To date, there’s no reliable screening test for pan-
creatic cancer, while most patients with pancreatic cancer do not

have evident symptoms until the advanced stage6. Surgical resection
remains the main therapeutic method for the treatment of pan-
creatic cancer, but only 10–20% of patients are eligible for surgical
resection6. Carbohydrate antigen 19-9 (CA19-9), and carcinoem-
bryonic antigen (CEA), are considered biomarkers of pancreatic
cancer7. CA19-9 also plays an important role in guidance of surgery
decisions, the use of adjuvant therapy, and detection of post-
operative tumor recurrence, but its effect is limited because 10% of
patients do not secrete the antigen8. As for biomarker, CA19-9 is lack
of sensitivity and specificity, and is elevated in pancreatic benign
diseases and other gastrointestinal malignancies9. CEA is also neither
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sensitive nor specific, and it is elevated in alcoholic cirrhosis, hepa-
titis, and biliary disease10,11.

Cell-free DNA (cfDNA) is fragmented (approximately 150–350
bases), and typically double-stranded12. Most of the cfDNA is released
fromhematopoietic cells, and there is also a portion of cfDNA released
from cancer cells13,14. It was found that cfDNA was more abundant in
patients with gastrointestinal cancer than in healthy controls, and the
level of cfDNA in the malignant group was higher than in the benign
group15. CfDNA features are closely related to the early genesis of
cancer16, therefore, multiple studies indicated that cfDNA can be uti-
lized for early detection of cancer, including liver cancer17–20, lung
cancer21,22, breast cancer23, urothelial bladder carcinoma24, colorectal
cancer25, Hodgkin’s lymphoma26, and pancreatic cancer27–29.

CfDNA levels are elevated in pancreatic cancer16, providing a
potential diagnostic biomarker for diagnosing pancreatic cancer.
CfDNA offers several advantages: its detection technology is well
established, and its relative stability enables consistent testing30–32.
Several studies have investigated various cfDNA-based features, such
as fragmentomics, mutations, and methylation, to develop diag-
nostic models for pancreatic cancer. For instance, one study devel-
oped a cancer diagnostic model using cfDNA fragmentation profiles,
achieving sensitivities ranging from 57% to 99%, with a specificity of
98%33. Additionally, copy number alterations (CNAs) detected via
cfDNA have been applied to identify various cancers, including
pancreatic cancer34. In methylation-based approaches, leveraging
cfDNA 5-hydroxymethylcytosine (5hmC) features has shown strong
performance in identifying early-stage pancreatic cancer29. Combin-
ing circulating tumor DNA (ctDNA) with protein biomarkers has
yielded high diagnostic accuracy for detecting PDAC35. These find-
ings highlight the potential of cfDNA-based approaches as valuable
tools for the early detection and diagnosis of pancreatic cancer.
However, relying solely on a single biomarker for diagnosis presents
inherent limitations. Integrating multiple cfDNA-based features has
the potential to significantly enhance diagnostic accuracy and miti-
gate these constraints.

In this work, we performed a multi-center, large-scale cohort
study and employed a state-of-the-art next generation sequencing
(NGS) technology to acquire plasma cfDNA end motif36, nucleosome
footprint (NF)13, fragmentation33,37,38 profiles, and copy number
alteration of cfDNA from all enrolled cases. Predictive features were
filtered out using the least absolute shrinkage and selection operator
(LASSO). Based on these features, we developed aweighted diagnostic
model (PCM score) and a prognostic evaluation model (PCP score).

Results
Characteristic signatures of cfDNA
CfDNA fragment size was measured in plasma samples from patients
with pancreatic cancer, pancreatic benign tumor (PBT), chronic pan-
creatitis (CP), and healthy controls (HC). The fragmentation profiles
showed consistency among non-cancer cases (PBT, CP, and HC), but
exhibited significant variability in patients with pancreatic cancer
(Fig. 1a, Supplementary Fig. 1a). Notably, cfDNA fragments in pan-
creatic cancer patientswere shorter compared to those in PBT,CP, and
healthy controls, and the median cfDNA fragment size of pancreatic
cancer were 175 bp (range 154 bp to 197 bp) while in CP + PBT and
healthy controls were 182bp (range 165 bp to 198 bp) and 186 bp
(range 160bp to 203 bp) (Fig. 1a, Supplementary Fig. 1a). Among
patients in pancreatic cancer, fragment size was not influenced by age,
gender, or level of CA125, CA19-9, and CEA but showed significant
associations with AJCC stage (Supplementary Fig. 1b). In the PBT
group, cfDNA fragment size remained unaffected by age, gender, level
of CA125, CA19-9, and CEA (Supplementary Fig. 1c).

KEGG pathway analysis revealed that differentially expressed NF
gene were enriched in several cancer-related pathways, including the
hedgehog signaling pathway, VEGF signaling pathway, MAPK signaling

pathway, TGF-β signaling pathway, and Wnt signaling pathway
(Fig. 1b). Unsupervised hierarchical clustering demonstrated a clear
distinction between healthy controls, CP, PBT, and pancreatic cancer
(Fig. 1c). Fragment lengths were observed to decrease progressively
with increasing malignancy (Fig. 1d). Additionally, CNA analysis
showed that pancreatic cancer patients exhibited a higher number of
CNAs compared to PBT and CP patients, with healthy individuals dis-
playing the lowest CNA numbers (Fig. 1e).

Patients and cohorts
All cases were divided into 4 cohorts, including Training cohort (432
cases), Testing cohort (267 cases), External Validation cohort 1 (129
cases), and External Validation cohort 2 (139 cases) (Fig. 2). Training
cohort was designed for the construction of PCM and PCP scoring
System. Among 422 patients with pancreatic cancer or PBT, five sub-
types were included: PDAC, ade nosquamouscarcinoma of the pan-
creas (ASCP), intraductal papillary mucinous neoplasm (IPMN),
pancreatic neuroendocrine tumor (PNET), serous cystic neoplasm
(SCN). Pancreatic cancer cases comprised PDAC and ASCP, while PBT
cases included IPMN, PNET, and SCN. We used computer-generated
random numbers to assign patients from Changhai Hospital to Train-
ing cohort (n = 272) and Testing cohort (n = 98). External Validation
cohort 1 consists of patients from the Affiliated Hospital of Qingdao
University, and External Validation cohort 2 consists of patients from
TheSecondAffiliatedHospital of ShandongUniversity andTheSecond
Hospital, Cheeloo College of Medicine, Shandong University. The
healthy controls were randomly distributed into the Training cohort,
the Testing cohort, and the Validation cohorts. The levels of CA19-9,
CA125, and CEA across different patient groups are presented in Sup-
plementary Fig. 2, while the TNM stage distribution for all patients is
detailed in Supplementary Fig. 3.

Establishment of PCM score
The workflow for constructing the diagnosis model was shown in
Fig. 2. All participants were divided into four cohorts: Training cohort,
Testing cohort, and two External Validation cohorts. In Training
cohort, cfDNAwas analyzed using low-pass whole-genome sequencing
(WGS), and the PCM score were constructed with CNA, fragment sig-
natures,motif signatures, andNF signatures.We constructed 4models
to identify malignant pancreatic cancer from non-cancer patients
(PBT, CP, and healthy individuals). In the Training cohort, the com-
bined model (PCM score) showed an AUC of 0. 975 (95% CI:
0.961–0.988), compared with NF (AUC: 0.973, 95% CI: 0.959–0.986),
motif (AUC: 0.858, 95% CI: 0.823–0.894), fragment (AUC: 0.968, 95%
CI: 0.952–0.983) (Fig. 3a). In the Testing cohort, the combined model
showed anAUCof0.979 (95%CI: 0.961–0.998) (Fig. 3b). In the External
Validation cohort 1 and the External Validation cohort 2, our combined
model showed AUC of 0.992 (95% CI: 0.983–1) and 0.986 (95% CI:
0.97–1) (Fig. 3c, d). The combinedmodel outperformed the individual
feature models across all four cohorts. The detailed information of
performance of CNA in distinguishing different types of groups were
shown in Supplementary Table 1.

Our combined model (PCM score) could distinguish pancreatic
cancer from healthy controls (HC) with an AUC of 0.990 (95% CI:
0.983–0.997) in the Combined cohort (Testing cohort plus two
External Validation cohorts) (Fig. 4a), and resectable stage (stage I/II)
from healthy controls, with an AUC of 0.994 (95% CI: 0.989–0.999) in
the Combined cohort (Fig. 4b). Fig. 4c shows that the PCM score was
able to distinguish pancreatic cancer from PBT, with an AUC of 0.886
(95% CI: 0.835–0.936), compared with CA19-9 with an AUC of 0.819
(95%CI: 0.755–0.883). The model distinguished CA19-9 negative pan-
creatic cancer from HC with an AUC of 0.990 (95%CI:
0.977–1) (Fig. 4d).

The performance of the PCM score for staged pancreatic cancer
versus non-cancer (including PBT, CP, and HC) and pancreatic cancer
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versus healthy is summarized in Table 1. Additionally, Table 2 com-
pares the performance of the PCM score and CA19-9 in differentiat-
ing staged pancreatic cancer from benign pancreatic diseases (PBT
and CP). As shown in Table 2, the PCM score outperformed CA19-9
across both the Testing cohort and the two External Validation
cohorts. Notably, the PCM scoring system demonstrated a superior
ability to accurately differentiate early-stage pancreatic cancer

compared to CA19-9, highlighting its potential as a more reliable
diagnostic tool.

The PCM score demonstrated high sensitivity in detecting pan-
creatic cancer, with positive detection rates of 92% for PDAC patients
and 100% for ASCP patients. In contrast, the positive detection rates
for PBT subtypes and HC were below 40% (Supplementary Fig. 4).
Additionally, the PCM score was significantly higher in pancreatic
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cancer cases compared to non-cancer groups (Supplementary Fig. 5).
Plasma samples from patients with other cancer types revealed that
the Logistic scorewas notably elevated in pancreatic cancer compared
tobothother cancers andHC (Supplementary Fig. 6).When combining
CA19-9 with the PCM score, the diagnostic performance improved
further. The PCM score and CA19-9 combination distinguished pan-
creatic cancer from PBT and CP with AUCs of 0.936, 0.968, and 0.864
in the Training, Testing, and External Validation cohorts, respectively,
compared to AUCs of 0.888, 0.942, and 0.841 for the PCM score alone
(Supplementary Fig. 7a). This combination also exhibited superior
performance in identifying early-stage (stage I and II) pancreatic can-
cer from PBT and CP (Supplementary Fig. 7b) and in distinguishing
pancreatic cancer from CP (Supplementary Fig. 7c).

Establishment of PCP score
We investigated the relationship between cfDNA features and prog-
nosis in pancreatic cancer using both the Training cohort and the
Combined cohort (which included the Testing cohort and twoExternal
Validation cohorts). Utilizing end motif, fragment, and nucleosome
footprint features, we developed a prognostic model and introduced
the Pancreatic Cancer Prognostic (PCP) score. Kaplan–Meier survival
analyseswere conducted for both cohorts based on the PCP score. The
results demonstrated a significant difference inmedianoverall survival
between the high and low PCP score groups in both the Training
cohort (p < 0.0001) and the Combined cohort (p <0.0001) by the log-
rank test (Fig. 5a, b). Similarly, recurrence-free survival was sig-
nificantly longer in the low PCP score group compared to the high PCP
score group in both the Training cohort (p < 0.0001) and the Com-
bined cohort (p <0.0001) (Fig. 5c, d). If we defined patients who
experienced death or recurrence within 1 year as high-risk patients,
then in External validation cohort 1, there were 19 patients in high risk,
of whom 17 were correctly identified based on our threshold, resulting
in an identification accuracy of 89.5%. In External validation cohort 2,
there were 18 high-risk patients, and all patients were correctly iden-
tified using our threshold, yielding an accuracy of 100%. The associa-
tion of PCP score, clinicopathological characteristics with overall
survival and recurrence-free survival was shown in Supplementary
Tables 2 and 3.

Discussion
Pancreatic cancer is notorious for its high malignancy and poor
prognosis39, with the majority of patients diagnosed at an advanced
stage due to the lack of early symptoms. As such, early detection is
crucial for reducingmortality rates. Currently, the blood-basedmarker
CA19-9 is the most widely used biomarker for pancreatic cancer
diagnosis. However, its relatively low sensitivity (79%–81%) and speci-
ficity (82%–90%) limit its effectiveness, particularly in early-stage
detection40.

CfDNA levels are elevated in pancreatic cancer16, providing a
potential diagnostic biomarker for diagnosing pancreatic cancer.
CfDNA offers several advantages: its detection technology is well
established, and its relative stability enables consistent testing30–32.
Several studies have investigated various cfDNA-based features, such
as fragmentomics, mutations, and methylation, to develop diagnostic
models for pancreatic cancer. For example, Bie et al. adapt an enzyme-

mediated methylation sequencing method and developed a genome-
wide cfDNA methylation, fragmentation, and copy number alteration
(CNA) characteristics integrated model for cancer detection41. Ju et al.
investigated the cfDNA fragmentomic characteristics against nucleo-
some positioning patterns in hematopoietic cells and developed a
cancer diagnostic model based on the cfDNA fragmentomicmetrics42.
Christopher et al. developed A-plus, which can enhanced sensitivity
over that achieved for aneuploidy alone atmatched specificities43. DNA
methylation can also affect the length of cfDNA fragments, An et al.
found that DNA methylation might regulate cfDNA fragmentation,
then they developed a cfDNA end-preference-based metric for cancer
diagnosis44. Another study using methylation-based cfDNA features
constructed a four-gene methylation panel, with a sensitivity of 100%
and specificity of 90%27. Additionally, Liu,M.C et al. enrolledmore than
50 types of cancer (including pancreatic cancer), through using
methylation signatures in cfDNA, achieved high sensitivity in detecting
early stage of pancreatic cancer45. Another study used methylation
signature of cfDNA, achieved sensitivity of 83.7% in detecting pan-
creatic cancer46. Combining cfDNA methylation markers with protein
biomarkers, such as CA19-9 and TIMP1, significantly improved diag-
nostic accuracy47. Zill et al. conducted a prospective analysis of five
genes (KRAS, TP53, APC, FBXW7, and SMAD4) in tumor tissues and
ctDNA from26pancreatic cancer patients, and thediagnostic accuracy
of ctDNA sequencing was 97.7%, with an average sensitivity of 92.3%
and a specificity of 100% for the five genes48.

In this study, we developed a cfDNA-based diagnostic and prog-
nostic model using four different cfDNA features: fragment length,
nucleosome footprint, end motif, and CNA. These features demon-
strated significant differences among groups, with shorter cfDNA
fragment lengths observed in pancreatic cancer patients compared to
those with benign pancreatic tumors, suggesting increased cfDNA
fragmentation with tumor malignancy. The PCM score effectively
distinguished between pancreatic cancer and PBT, as well as early-
stage pancreatic cancer from healthy individuals. Importantly, the
cfDNA features correlated with prognosis, with a high PCP score
indicating high risk.

Previous studies on early pancreatic cancer diagnosis have
focusedprimarilyonPDAC, excludingother benignpancreatic tumors.
However, distinguishing between malignant and benign pancreatic
tumors is challenging using imaging techniques, often requiring
pathological confirmation. Traditional liquid biopsy methods, includ-
ing CA19-9, show poor performance in distinguishing pancreatic can-
cer from benign tumors. In our analysis, the AUC of CA19-9 for
differentiating pancreatic cancer from PBT was 0.819, with 26.7% of
pancreatic cancer patients testing negative and 19.1% of chronic pan-
creatitis patients testing positive for CA19-9. Misdiagnosis based on
CA19-9 alone is a significant concern, as elevated levels are observed in
many benign conditions. By incorporating cfDNA features, our model
achieved an AUC of 0.886 for distinguishing pancreatic cancer from
PBT, representing a promising approach for differentiating pancreatic
cancer from other pancreatic diseases.

Although cfDNA has shown promise in early pancreatic cancer
detection, other biomarkers, such as circulating tumor cells (CTCs)
and ctDNA, have also been explored. However, the low abundance of
CTCs in early-stage cancer and the lack of validated biomarkers for cell

Fig. 1 | cfDNA fragment, motif, nucleosome footprint signatures in healthy
controls, CP, PBT and pancreatic cancer patients. a Size distributions of cfDNA
fragments in participants of healthy controls, CP+ PBT and pancreatic cancer (The
Z-score indicates the ratio of short fragments to long fragments); b KEGG pathway
analysis of NF difference between healthy controls and pancreatic cancer. Hyper-
geometric test was used to detect whether a specific gene set is significantly enri-
ched; c Plasma cfDNA endmotif features distribution in healthy controls, CP + PBT
and pancreatic cancer. d Size distributions of cfDNA fragments in different

subtypes of pancreatic cancer, PBT, CP, and healthy controls. Box plots indicate
median (middle line), 25%, 75% percentile (box) and minimum and maximum
(whiskers) as well as outliers (single points). e CNA features in participants of
healthy controls, CP + PBT, and pancreatic cancer. Source data are provided as a
Source Data file. PDAC pancreatic ductal adenocarcinoma, ASCP adenosquamous
carcinoma of the pancreas, IPMN intraductal papillary mucinous neoplasm, PNET
pancreatic neuroendocrine tumor, SCN serous cystic neoplasm.
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selection limit their utility49. Similarly, ctDNA is unstable and present in
low concentrations in early-stage cancer, further constraining its
diagnostic potential15. This leads to the current techniques for using
ctDNA as a standalone diagnostic marker for early-stage pancreatic
cancer being insufficiently developed50. Additionally, others have uti-
lized various biomarkers for the diagnosis of pancreatic cancer. For
instance, some studies have investigated extracellular vesicle long
RNA51 and exosomal microRNAs for pancreatic cancer diagnosis52.
Based on extracellular vesicles long RNA profiling, Shulin Yu et al.
developed a d-signature model for PDAC detection, the d-signature
was able to identify early stage of pancreatic cancer (stage I/II) with an
AUC of 0.94951. Compared with other studies, our study has the fol-
lowing advantage: 1. While others often focus on PDAC in their
research, we have collected somepancreatic benign tumor, andwenot
only detect pancreatic cancer but also differentiate between cancer
and non-cancer cases. 2. We validate our model in multicenter cohort;
3. PCP score is associated with overall survival, allowing for prognostic
prediction; 4. Our study utilized four different types of features of
cfDNA, allowing for a more comprehensive reflection of the differ-
ences in cfDNA among different populations. However, there are lim-
itations, first of all, our study was a retrospective study, lack of
perspective cohort; Secondly, although we have multicenter cohort
that covered patients from different regions of China, extending vali-
dation to other countries or ethnic populations would enhance the
model’s applicability.

Pancreatic cancer patients generally have poor prognosis. Our
PCP score, based on cfDNA features, was associated with survival
outcomes, with higher scores indicating worse prognosis. which con-
firms that cfDNA features are related to prognosis. However, we did

not investigate which specific features contribute most to poor out-
comes, that is an avenue for future research.

In conclusion, we developed a cfDNA-based diagnostic and
prognostic model for pancreatic cancer, validated across multiple
independent cohorts. Our PCM score system, integrating CNA, NF,
fragmentation, and endmotif features, demonstrated high accuracy in
distinguishingmalignant frombenign conditions andwas predictive of
patient outcomes. Additionally, combining PCM score with CA19-9
significantly improved diagnostic performance, reinforcing the
importance of CA19-9 as a biomarker in pancreatic cancer diagnosis.

Methods
Patients
FromApril 2021 through November 2021, we retrospectively collected
a total of 975 cases for this study. Eight cases were excluded from the
study according to eligibility criteria (Fig. 2). Finally, 967 cases were
analyzed in our study. Including 422 pancreatic cancer or PBT, 47 CP,
and 498 healthy controls. Among them, 370 patients were recruited
from Changhai Hospital (Shanghai, China), 45 patients were recruited
from The Affiliated Hospital of Qingdao University (Shandong pro-
vince, China), 54 patients were recruited from The Second Affiliated
Hospital of Shandong University and The Second Hospital, Cheeloo
College of Medicine, Shandong University (Shandong Province,
China). Healthy controls were recruited in five geographically centers
for regular physical examination and had no history of pancreatic or
other systematic diseases. The size of the training cohort was deter-
mined to have a power of 80% at a two-sided type I error rate of 0.05,
which required at least 174 participants per group (actual enrollment:
432 participants). Detailed information of all patients and healthy

— 422 pancreatic cancer + PBT, 
— 47 CP, 
— 498 healthy controls,
— 8 samples excluded (other 
cancer or QC fail)

Training cohort
— 247 pancreatic 
cancer+PBT,
— 25 CP,
— 160 healthy controls

Testing cohort
— 84 pancreatic cancer+ 
PBT,
— 14 CP,
— 169 healthy controls

External Validation 
cohort 1

— 42 pancreatic cancer 
+ PBT,
— 3 CP,
— 84 healthy controls

External Validation 
cohort 2

— 49 pancreatic cancer 
+ PBT,
— 5 CP,
— 85 healthy controls

Low-pass WGS

CNA

LASSO

Fragment Motif NF

SVM

Diagnositc 
model 
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Fig. 2 | Model construction of PCM score. Patients from 3 hospitals were enrolled in our study, CNA, fragment size, motif and NF features of plasma cfDNA were used to
build a classifier.
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controls was listed in Supplementary Data 1. Institutional review board
at all participating hospitals reviewed and approved the study proto-
col. We conducted follow-up on all pancreatic cancer patients until
January 2023, with a median follow-up duration of 443 days.

Plasma sample collection and cfDNA isolation
Blood samples were collected from patients and healthy controls in
10ml EDTA-coated Vacutainer tubes. For all patients enrolled in our
study, blood samples were collected before treatment. The plasma
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Fig. 3 | Performance evaluation of NF,motif, fragment features, and combined
model (PCM score) in classification of pancreatic cancer to non-cancer sub-
groups. a ROC curve analysis for the NF, motif, fragment and combined model

(PCMscore) in Training cohort. b ROC curve analysis for the NF,motif, fragment or
combined model in Testing cohort. c External validation cohort 1. d External vali-
dation cohort 2. Source data are provided as a Source Data file.
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sample was centrifuged at the speed of 1600 × g for 10mins and then
at 16,000× g for 10mins (Eppendorf 5810R/5427 R, Germany). The
plasma samples were stored at −80 °C. The MagMAX Cell-Free DNA
Isolation Kit (Thermo Fisher Scientific, USA) was used to isolate cfDNA
according to the product instructions with the help of DNA purifica-
tion instrument (Thermo Kingfisher FLEX, USA). The concentration of

DNA product was then measured with Qubit3 Fluorometers (Thermo,
USA). The size of DNA fragments was detected by fragment analyzer
(Agilent, USA). The research protocol was approved by Shanghai
Changhai Hospital Ethics Committee (CHEC2018-112) and Research
Ethics Committee of The Second Hospital of Shandong University
(KYLL2024446), and written informed consent was provided by every
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Source Data file. HC healthy control.
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participant. Institutional review board at all participating hospitals
reviewed and approved the study protocol.

Whole-genome sequencing and data processing
Sequencing librarieswerepreparedusing 5 ngDNA.DNAsampleswere
then subjected to end-repair/dA-tailing (5X ER/A-Tailing Enzyme Mix)
and adaptor ligation (WGS Ligase). The adaptor sequence was speci-
fically designed for Illumina CN500 platform. After purified by Agen-
court AMPure XP beads (Beckman Coulter, USA), Libraries were
quantified by the KAPA Library Quantification Kit (Kapa Biosystems,
USA) and size was confirmed using Bioanalyzer (Agilent, USA).
Sequencing libraries were pooled at equal amount. WGS at an average

coverage of 1.5X was performed on Illumina CN500 platform using
2 × 36 bp paired-end sequencing.

Fastq files were processed by fastp software (https://github.com/
OpenGene/fastp) to remove adaptor and end sequence together with
sequences below 25 bp to acquire clean data. Clean data were aligned
to human reference genome GRCh37 using bwa-aln (https://github.
com/lh3/bwa). Duplicate reads were marked by sambamba (https://
github.com/biod/sambamba/). Samtools (http://samtools.sourcefor
ge.net/) was used to calculate mapping rate, duplicate rate and gen-
ome coverage. Reads with mapping rate above 90%, duplicate rate
below 25% and coverage above 50% passed the quality control. The
bam files were further filtered by Samtools, removing unmapped
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reads, low quality reads, marked duplicates and sequences with no
perfect match between read1 and 2.

We conducted low-pass whole-genome sequencing with all col-
lected samples. The sequencing data allowed us to analyze multiple
features, including CNA, nuclear footprint, end motif, and fragmen-
tation. Individuals from each cohort were randomly assigned into
training and testing cohorts. In the training process, we performed
LASSO regression algorithm for each genomic feature to reduce
dimensionality and extract markers, and further employed SVM algo-
rithm to build the optimal model of each genomic features. At last, a
logistic model was used to integrate three genomic features CNA.

Procedure of feature selection was as follows; all steps were
conducted in Training cohort.

Procedure for quantifying fragments33,53

(1) The whole genome was divided to 3055 regions; the length of
every region is 1 Mbp.

(2) After aligning with the reference genome, the genomic location
of each DNA fragment is identified and corrected.

(3) Fragments between 90 and 150 bp are defined as short frag-
ments, and those between 151 and 220bp are defined as long
fragments.

(4) Calculate the ratio of short fragment to long fragment.

Feature selection results: Regions on the Y chromosome and
regions with no detected DNA fragment coverage were removed from
the initial 3055 regions, leaving 2890 regions. LASSOwas then used for
feature selection, resulting in 154 regions, which were used to con-
struct the model.

Procedure for quantifying end motif36,54

(1) Align the DNA fragments with the reference genome to deter-
mine the start and end positions of each fragment, and perform
correction.

(2) Count the 4-mer nucleotide sequence at the 5′ end of each
fragment.

(3) There are 256 possible types of 4-mer sequences; calculate the
proportion of each type.

Feature selection: LASSO was used for feature selection, resulting
in 33 motifs, which were used to construct the model.

Procedure for quantifying nucleosome footprint 13,55

(1) Acquisition of the promoter regions of the whole genome:
Promoter regions were identified using transcription start sites
(TSS) of themain transcripts of reference genes published in the
UCSC database are used (https://genome.ucsc.edu/), with
2500bp extended upstream and downstream as the promoter
region of the gene;

(2) Defining the Central and Peripheral Regions: The central region
of the promoter is defined as the 250 bp immediately adjacent
to the transcription start site of the gene, while the peripheral
region was extended 2500 bp on either side of the central
region. This classification is based on the observation that
actively transcribed genes tend to have sparser nucleosome
distribution near the TSS, making them more susceptible to
degradation once in the bloodstream. As a result, sequencing
depth is expected to be lower in the central region compared to
the peripheral region;

(3) Obtaining Region Coverage and Sequencing Depth: The soft-
ware “Bedtools” (v1.6.2) was used to calculate region coverage,
while “featureCounts” (v2.19.1) was employed to determine

sequencing depth for each region, which was then converted
to FPKM;

(4) Quantifying theDifferences inNucleosomeDistribution for Each
Gene: The nucleosome distribution difference score is calcu-
lated as the sequencing depth of the peripheral region (FPKM)
minus the central region (FPKM). This score represents the
distribution of nucleosomes and the transcriptional activity of
the gene;

(5) Filter Genes and Model Construction: In the Training cohort,
after removinghousekeepinggenes and silencedgenes fromthe
whole genome, 20315 genes remained. Genes covered in at least
90% of the samples were retained, and the rank-sum test was
applied to calculate p-values. Genes with p ≤0.01 were further
filtered, resulting in 428 genes. LASSO was then used for
dimensionality reduction, ultimately selecting 102 genes for
model construction.

Procedure for CNA score calculation56

The human genome was divided into numerous 20Kbp regions. In
order to avoid the high variations of CNAs related to small bins, we
have connected adjacent small bins that meet the requirements. A
certain margin of error is allowed during the connection process, and
the final reported length is at least 2Mbs. Any length below 2Mbs will
befilteredout. The average sequencing depth of eachwascounted and
GC content corrected (the GC correction process was calculating the
average depth of bins for eachGC content, then computing the overall
average depth of all bins to correct the sequencing depth). A baseline
threshold was established for each region with the mean and variance
of the average sequencing depth from the data of healthy population
in the training cohort. Each region used the above calculatedmean and
variance to calculate the Zscore. According to the distribution of the
Zscore of healthy people in the training cohort in the region, defined
that Zscore greater than 2 or less than -2 was the baseline threshold
with significant difference. Thosewith Zscore greater than 2were copy
number amplification, and those with Zscore less than −2 were copy
number deletion. Adjacent regions with the same copy number
alteration direction will be connected. When adjacent regions were
connected, the tolerance was set for regions that were not covered by
sequencing data. The CNA region should contain at least 70% of the
copy number alteration in the samedirection andwith a length greater
than 2Mbp were reported. The tumor suppressor (TSG) and oncogene
(OG) of CNA score was then calculated using the equation reported
previously56. The equation of CNA score was shown in Supplementary
Table 4.

The LASSO implementation process is as follows: By constructing
a penalty function, a more refined model was obtained, so that it
compressed some coefficients and sets some coefficients to zero. It
compressed the variables with large parameter estimates to 0, while
the variables with small parameter estimates were compressed to 0, so
as to achieve the effect of feature dimensionality reduction. This
processwas implemented using the LassoCV() function of the ‘sklearn’
package in Python. The LASSO inputs for NF, fragment, and end motif
features were derived exclusively from the training cohort samples.
For the NF input, we used the expression values of each gene per
sample after filtering for a p-value less than 0.01. The fragment input
was defined as the ratio of short to long fragments within each geno-
mic region per sample, also filtered by a p-value threshold of <0.01. For
the motif input, we calculated the proportion of various end motifs in
each sample after filtering for a p-value less than 0.05. Features with
non-zero coefficients in the ‘lasso.coef’ output were retained as the
final selected features after dimensionality reduction.

The SVMmethod (support vector machine) was implemented for
individual genomic feature-based model construction, based on three
parameters: (1) C: Penalty coefficient; (2) Kernel function; and (3)
Gamma. The input was the sample data of the training cohort, and the
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features of each dimension were filtered by LASSO dimensionality
reduction. The GridSearchCV() function of the ‘sklearn’ package in
python was used to find the optimal combination of three parameters
in the training cohort, and the determination process of the optimal
parameter combination used the 10X cross-validationmethod, that is,
the training cohort samples were divided into 10 equal parts, of which
9were used for parameter trainingfitting and the remaining 1was used
to verify the performance. Each dimension was trained separately to
determine the optimal combination of parameters. The identified
optimal parameters were applied directly to independent validation
cohort samples. Finally, the predicted value of each sample in each of
the three dimensions was the output.

Construction of PCM score
We integrated the fragment model, motif model, NF model, and CNA
score using logistic regression method to construct a combined
method—PCM scoring system (Fig. 2). The PCM score includes three
components. The first component is the CNA score, which was pre-
viously introduced in the text. The second component is a logistic
regression formulawhich allows the biomarkers, as a group, to be used
to discriminate between pancreatic cancer and non-pancreatic cancer
cases. Generally, theWilcoxon rank-sum test was used to compare two
datasets, pancreatic cancer vs non-pancreatic cancer. LASSO was
applied to feature selection in the Training cohort. Features used for
model construction was shown in Supplementary Tables 5–7. Data
normalization was done using Z-score on Python. Support vector
machine (SVM) was implemented for individual genomic feature-
based model construction, based on three parameters: (1) C: Penalty
coefficient; (2) Kernel function; and (3) Gamma. For the Training
cohort, 10-fold cross-validation was employed to figure out the best
combination of the parameters. The cutoff value was set at the point
with the best diagnostic accuracy in testing cohort. To obtain the best
diagnostic model, logistic regression model was generated using the
results of the three individual models as input features. The Logistic
Score was calculated as below.

Logistic Score= expðZÞ=ð1 + expðZÞÞ, where Z = � 4:58 + ð2:13*NFÞ
+ ð3:26*MotifÞ+ ð2:85*FragmentÞ

The third component is individual genomic feature score (Single
Score), calculated with the below formula.

Single Score=
X

ijiϵfNF,Motif, Fragmentg0:25*ðsignðscorei � cutoffiÞ+ 1Þ
�

Finally, CNA Score, Logistic Score and Single Score are subjected
to a multivariate linear equation which generated the final PCM Score.
The optimal cutoff of PCM Score was 0.75, determined by Youdens’
index. PCM Score ≥ 0.75 was regarded as positive, otherwise negative.

PCMScore =0:5*ðsignðLogistic Score� cutoffLogistic ScoreÞ+ 1Þ
+0:5 × ðsignðCNA Score� cutoffCNA ScoreÞ+ 1Þ+ Single Score

The detailed calculation equation of PCM score was shown in
Supplementary Table 4.

The equation of PCM combined with CA19-9 model was: PCM
score + log10(CA19-9), the unit of CA19-9 was U/ml.

Construction of PCP score
We constructed PCP scoring system using fragment, motif, and NF
features of cfDNA. Pancreatic cancer patients with follow-up data were
included in the analysis. Samples were separated to two groups, with
recurrence or death within 1 year were classified as high-risk, while
those without recurrence or death were classified as low-risk. Filtering
features with significant p-values (p-value < 0.01), then further feature
selection with LASSO. The samples in the Training cohort were

comparable to those used in the PCM scoremodel. Due to the absence
of prognostic information in some samples, the remaining samples
were grouped into the Combined cohort. The selected features used
for model construction are listed in Supplementary Tables 8–10. Each
of the three indicators wasmodeled independently using SVM, and the
final integration was achieved through logistic regression.

PCP score= expðZÞ=ð1 + expðZÞÞ, whereZ= � 1:97+ ð2:75*NFÞ
+ ð0:47*MotifÞ+ ð0:51*FragmentÞ

Statistical analysis
Wilcoxon rank-sum test was applied to compare two groups of con-
tinuous variables and Fisher’s exact test was applied to categorical
variables. P value was calculated using Python software (version 2.7.14),
and p<0.05 was considered as statistically significant. Area Under
Curve (AUC) was applied to evaluate model performance. ROC curves
were generated by using ‘pROC’package (v1.16.2) in R software (v.3.6.3),
‘datatable’ (v1.14.2) was used to process the data and ‘pwr’(v1.3.0) was
used to process the power analysis in R software (v.3.6.3). Survival
curves were generated according to the Kaplan–Meier method and
compared using the log-rank test. LASSO and SVM algorithms were
performed with ‘sklearn’ in Python software (version 2.7.14).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data have been deposited in Genome Sequence
Archive in National Genomics Data Center (BioProject ID:
PRJCA037852), under accession number HRA011014, accessible at
https://ngdc.cncb.ac.cn/gsa-human. Sourcedata areprovidedwith this
paper. The minimum data set has been uploaded to Zenodo with
https://doi.org/10.5281/zenodo.15123508. Source data are provided
with this paper.

Code availability
The codes are available on GitHub (https://github.com/
JimmyWu2024/PAAD_pipline). The repository has been linked to
Zenodo, with https://doi.org/10.5281/zenodo.15100396.
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