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Imaging transcriptomics has become a power tool for linking imaging-derived
phenotypes (IDPs) to genomic mechanisms. Yet, its potential for guiding CNS
drug discovery remains underexplored. Here, utilizing spatially-dense repre-
sentations of the human brain transcriptome, we present an analytical fra-
mework for the transcriptomic decoding of high-resolution surface-based
neuroimaging patterns, and for linking IDPs to the transcriptomic landscape of
complex neurotransmission systems in vivo. Leveraging publicly available
Positron Emission Tomography (PET) data, we initially validated our approach
against molecular targets with a high correspondence between gene expres-
sion and protein binding. Subsequently, we used the cortical gene expression
profiles of candidate genes to dissect two discrete classes of GABA,-receptor
subunits, each characterized by a distinct cortical expression pattern, and to

link these to specific behavioural symptoms and traits. Our approach thus
represents a future avenue for in vivo pharmacotranscriptomics that may
guide the development of targeted pharmacotherapies and personalized

interventions.

Imaging transcriptomics, the study of correlations between gene-
expression patterns and spatially varying properties of brain
structure and function', has become a powerful tool for exploring
the putative molecular underpinnings of neurotypical and neuro-
diverse brain organization. Here, large open-access repositories
featuring genome-wide expression profiles sampled across the
brain, e.g., the Allen Human Brain Atlas (AHBA?), are used to identify
genes with an expression signature that spatially aligns with a
structural or functional imaging phenotype. These gene sets are
then functionally annotated or tested for an enrichment of

candidate gene sets and/or genetic pathways®. In so-called virtual
histology studies, for example, imaging-derived phenotypes (IDPs)
are tested for an enrichment of cell-type specific genes to probe
their cellular composition®. Other studies have examined genes
within co-expression modules underpinning typical brain develop-
ment to explore the role of transcriptional developmental programs
on IDPs in neurodevelopmental conditions (e.g’.). Imaging tran-
scriptomics thus represents a promising avenue for bridging the
gap between molecular mechanisms and macroscopic patterns of
brain organization.

A full list of affiliations appears at the end of the paper.
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With the release of spatially-dense (i.e., vertex-level) cartographic
representations of the human brain transcriptome (e.g.’,), imaging
transcriptomics also holds promise for dissecting the cortical archi-
tecture of complex neurotransmission systems and neuromodulatory
pathways®. While there is often no 1:1 relationship between gene
expression and receptor density’, evidence suggests that patterns of
regional variations in gene expression can provide important insights
into the functional role of a molecular target (e.g'°".). For example,
genes encoding y-aminobutyric acid receptor (GABAAR) isoforms have
been reported to be differentially expressed across specific brain
regions”, which may explain their distinct behavioral effects when
targeted pharmacologically. Specifically, isoforms containing the a,
subunit appear to be predominantly expressed in limbic brain regions
and exhibit anxiolytic effects when targeted (reviewed in”). Con-
versely, isoforms containing the a; subunit are expressed throughout
the cortex, and have been shown to have primarily sedative, amnesic,
and anticonvulsive effects™. This implies that the cortical expression
profiles of specific molecular targets may reflect their functional sig-
nificance, which could be investigated by spatially aligning (i.e., cor-
relating) IDPs with candidate gene expression patterns. However,
assessing spatial correlations between embedded high-resolution sig-
nals - such as associating IDPs with genome-wide expression patterns
(i.e., transcriptomic decoding) or linking a large number of IDPs to a
target pattern - remains a significant computational and statistical
challenge’.

In the current study, we therefore explored different strategies for
linking high-resolution surface-based IDPs to gene expression patterns
using spatially-dense representations of the human brain tran-
scriptome generated from the AHBA” These approaches were initially
validated against publicly available Positron Emission Tomography
(PET) atlas data of the human serotonergic (5-HT) system, which is
known to strongly correlate with the mRNA expression levels of
respective serotonergic genes in cortical brain tissue'*". Subsequently,
we utilized the vertex-level gene expression signatures to (i) decom-
pose the complex transcriptomic landscape of genes encoding dif-
ferent GABAAR isoforms, and (ii) explore their functional role by
aligning their gene expression profiles with neuroanatomical imaging
data from N =279 children, adolescents and adults exhibiting varying
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Fig. 1| Workflow diagram for generating high-resolution surface-based tran-
scriptomic signatures for all cortically expressed genes with reliable mRNA
microarray data in the Allen Human Brain Atlas (AHBA). The AHBA data was
initially quality assessed and normalized across genes and donors using the abagen
toolbox®. Samples were then mirrored across hemispheres and assigned to the
FreeSurfer fsaverage6 standard-space surface template (-41,000 vertices) via mesh
representations of the donor brains. To derive spatially-dense (i.e., vertex-level)
gene expression profiles across the entire cortical surface, the mRNA expression

Validation

levels of affective symptoms, such as anxiety and depression. The
individuals’ imaging phenotypes were characterized based on mea-
sures of cortical thickness (CT), a morphometric feature demonstrated
to be modulated by variability in both genes and gene expression'®".

Results

Comparison of decoding techniques using PET atlas data of the
serotonergic (5-HT) system

To link high-resolution IDPs with gene expression patterns, we initially
evaluated multiple strategies for the statistical assessment of spatial
correlations between surface-based imaging patterns and genome-
wide expression signatures, subsequently referred to as gene expres-
sion decoding. All techniques are described in detail in the Methods
section. In brief, these included: (i) a vertex-level approach using
spatial autocorrelation (@) preserving null models™ of large-scale co-
expression gradients, (ii) a Linear Mixed Effects (LME) model” (Sup-
plementary Data Fig. 1a), and (iii) General Least Squares (GLS) decod-
ing (Supplementary Data Fig. 1b). Notably, for the vertex-level
decoding approach, we generated spatially-dense gene expression
signatures across the cortical surface (Fig. 1), which were subsequently
decomposed into a smaller set of co-expression gradients, for which
spatial null models were generated (Fig. 2) (also see®'®*°). The sensi-
tivity and specificity of the different techniques were assessed using a
high-resolution in vivo PET atlas of the human serotonergic (5-HT)
system®, which included the serotonergic receptors 5-HT4R, 5-HT 4R,
and 5-HT4R.

For these molecular targets, all approaches reliably detected a
significant association between mRNA expression levels and PET pro-
tein binding, based on a nominal (uncorrected) pperm-value <0.05
(two-tailed). Consistent with previous findings®, the strongest spatial
correlation between protein binding and mRNA expression was
observed for the 5-HT14R gene (HTRIA), followed by the 5-HT,4R gene
(HTR2A) and the 5-HT4R gene (HTR4) (Fig. 3a, Supplementary Data
Figs. 2, 3a). All techniques also accurately identified the target gene
within the gene background based on p,q;<0.05, except for the
gradient-based decoding of HTR4, which did not reach genome-wide
statistical significance. The different techniques also resulted in a
similar relative ranking of individual genes with respect to the target
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patterns were spatially interpolated using Gaussian Process Regression (i.e.,
ordinary Kriging), predicting mRNA levels for vertices without AHBA representa-
tions using existing samples within a geodesic vertex neighborhood of 40 mm.
Spatial interpolation was performed for each of 15,633 quality assessed genes,
resulting in a spatially-smooth vertex-level representation of the Human brain
transcriptome. The figure shows the predicted transcriptomic signature of the
serotonin (5-HT) 1A receptor (5-HT1A), which was subsequently compared to
available PET atlas data of the same molecular target (see®).

Nature Communications | (2025)16:6727


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61927-3

a | Single Value Decomposition
X X™X \ > A
genes genes Koradient K ragiont genes
-—
H
2
0 8 g
cov(X) ° ” & &
JEN
5 2
%) Q
o) o
2 - -
5 Eigenvalues Left singular
> values
Covariance matrix
Right singular
values
Predicted vertex-level Optimization knn-parameter o-preserving surrogate maps
gene expression o Burt et al. (2020)
06 o
ugJ 0.4 g °
4 best fit 5 0
. . 02 ...
b | Co-expression gradients = knn = 40,000
10000 20000 30000 ADéOO 0 50 100 150
knn Spatial separation distance
XV
015
m 0.12. 8 2
% 009 5
2 5
xg Z o0 >1
knn = 10,000
0.03 o
10000 20000 30000 40000 0 20 40 60
knn Spatial separation distance
vertices .
Gene co-expression 06
gradients w 8
= 009 s 04
5
Z 00 =02
= knn = 10,000
3
0o 10000 20000 30000 40000 o 20 40 60
. . knn Spatial separation distance
¢ | Permutation testing
Terget P [T I | T
L
G1 . . 150
K Spatial null correlations (r,)
'Gradient 7y (:)‘ 1 pperm
-— Q
5] . surrogates (n = 1,000) g™
= » /' 3
: o J
=]
[z
3 0
S 8 1.0 05 0.0 05 10
o X r
G9 1
150
g SN BN B Ens BN
. s \ S 100 Pperm.adi
Loadings (L) 3 T g
% [
0 T — T T T
. -0.5 0.0 0.5 1.0
vertices maxR

Fig. 2 | Transcriptomic decoding of high-resolution surface-based imaging-
derived phenotypes (IDPs). a Singular Value Decomposition (SVD) was employed
to reduce the spatially-interpolated mRNA expression signatures of all N=15,633
genes in cortical brain tissue to a smaller subset of nine spatially-dense co-
expression gradients (G1 to G9), which together captured -41% of total variability in
gene expression across the surface (see Supplementary Data Fig. 13a,b). b A total of
N=1000 spatial autocorrelation ()-preserving null models (so-called surrogates'®)
were generated for each gradient pattern using the optimal k-nearest-neighbor
(knn) parameter for each pattern (also see Supplementary Data Fig. 13c). These
surrogate maps exhibit a similar degree of smoothness as the original patterns and
were employed to testing the hypothesis of a significant spatial association

between a target pattern and the predicted cortical expression signature of a gene.
Data are presented as mean values +/- standard deviation (across N =100 surrogate
fits). ¢ Genes were allocated to co-expression gradients based on their maximum
absolute loadings (L) on gradient (G) patterns (G1 to G9). For each observed spatial
correlation between a target IDP and a gene’s cortical expression profile, a non-
parametric a-corrected p-value (pperm, two-tailed) was identified based on the
distribution of spatial null correlations (ro) with the respective gradient pattern. To
correct for multiple comparisons, pperm-values were adjusted for (Pperm,aqj) based
on the empirical cumulative density function of the extreme value distribution (i.e.,
maximal spatial correlation or maxR) across gradient null-models (also see MaxT
algorithm?®).

pattern, as evidenced by significant Spearman Rank correlations
between gene weights (Fig. 3¢, Supplementary Data Figs. 2, 3c).
Overall, the gradient-based approach provided the best trade-off
between sensitivity and specificity across various levels of statistical
stringency, identifying a reasonable number of significant genes sui-
table for downstream enrichment analysis (between 100 and 2000 at
Paqj < 0.001) (Fig. 3b, Supplementary Data Figs. 2, 3b). In comparison,

LME-decoding identified the largest number of significant tran-
scriptomic associations at p,q;<0.05. Yet, this number decreased
rapidly when more conservative p-value thresholds were applied
(Fig. 3b, Supplementary Data Figs. 2, 3b). Thus, although LME-
decoding has substantial exploratory potential for detecting tran-
scriptomic associations, it is also prone to generating false positives,
likely due to spatial autocorrelations within the embedded
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Fig. 3 | Surface-based transcriptomic decoding of the serotonergic 1A receptor
(5-HT;4R). a Spatial correlations between the average receptor density (Byax) of the
5-HT;4R based on the high-resolution in vivo Positron Emission Tomography (PET)
atlas of the human serotonergic system provided by ref. 15 (upper panel) and the
predicted mRNA expression profile of the HTRIA gene (lower panel). b False
positive rate (FPR) of the a-null (blue), Linear Mixed Effects (LME, red), and General
Least Squares (GLS, yellow) decoding techniques across different adjusted p-value
thresholds (pag;). For LME- and GLS-decoding, p-values were adjusted for multiple
comparisons using False Discovery Rate (FDR) adjustments. For o-null decoding,
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adjusted permutation p-values (Pperm,aqj) Were used. ¢ Spearman rank correlations
between the gene weights across approaches. Gene weights were determined by
the slope of the regression line (i.e., beta) for the LME- and GLS-decoding approach,
and by the spatial Pearson correlation between receptor density and gene
expression maps for the o-null decoding approach. ” p-value < 0.001 (two-tailed).
d Intersection of gene sets with a significant transcriptomic association with the
target pattern across various decoding methods. Gene set intersections and total
set sizes are shown at an adjusted p-value threshold of 0.05 (left panel), 0.01
(middle panel), and 0.001 (right panel).

transcriptomic maps®. In contrast, GLS-decoding resulted in the lowest
false positive rate (FPR) and yielded findings that were both sensitive
and specific. However, incorporating the full spatial autoregressive
correlation structure alongside stringent FDR adjustments may result
in overly conservative findings, especially at more conservative levels
of statistical stringency, where only a few significant genes were
observed (Fig. 3d, Supplementary Data Figs. 2, 3d). Thus, while GLS-
decoding seems well suited for hypothesis and enrichment testing, it is
less optimal for broader exploratory analyses. Vertex-level decoding is
therefore expected to be particularly effective for examining IDPs
characterized by highly variable (i.e., high-frequency) signal

fluctuations across the cortical surface, which cannot be fully captured
by the native resolution of the AHBA.

Last, we compared the gradient-based approach with pre-
computed spatial nulls against a model where N=1000 variogram
matching permutations'® or spins® of the target pattern were gener-
ated. We observed a strong correspondence between the genes iden-
tified as significant by the gradient- and permutation-based approach.
More specifically, all genes identified by permuting the target patterns
were also identified by the gradient-based approach. In contrast, the
spin model was not sufficiently conservative to reliably distinguish the
target gene from the gene background, even at more conservative p-
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value thresholds (see Supplementary Data Figs. 4-6). Given its high
sensitivity, specificity, and computational efficiency, we employed the
gradient-based approach as the method of choice for all subsequent
analyses.

Two classes of GABA,-receptor subunits with different mRNA
expression signatures

Next, we transcriptomically decoded a high-resolution, surface-based
in vivo PET atlas of GABA-receptors (GABAARs) targeting benzodia-
zepine (BZ) binding sites (Fig. 4a)*>. GABAARs are encoded by 13 sub-
unit genes that are reliably expressed in cortical brain tissue (i.e., a;.5,
Bi3, V13, 0, € see Methods for details). Across decoding techniques,
seven GABA,R subunit genes significantly correlated with BZ binding
sites based on their cortical expression signatures (Fig. 4d). More
specifically, a significant vertex-level spatial correlation was observed
for the y5-subunit gene GABRG3 (r = 0.48, pperm.aqj < 0.005), and for the
Bo-subunit gene GABRB2 (r = 0.395, pperm.adgj < 0.05). The LME-decoding
approach also established a significant (i) positive correlation between
mRNA expression and receptor density for the y,- and a,-subunit
genes GABRG2 and GABRA4, and (ii) a negative association for the ;-
subunit gene GABRB4 and the a, s-subunit genes GABRA2 and GABRAS
(Fig. 4d). However, while the mRNA expression patterns of these
subunit genes all correlated with BZ-binding sites, there was con-
siderable regional variation within subunit expression signatures
across the cortex. (Supplementary Data Fig. 7a). This indicates that
different GABAAR subunits spatially align with distinct neural systems
and, thus, specific behavioral outcomes. We therefore subsequently
stratified GABAAR subunits based on their gene expression profiles.

To delineate the neural systems with high expression levels of
specific GABAAR subunits, we employed a hierarchical clustering
approach that grouped subunits based on similarities in their vertex-
level mRNA expression profiles. The clustering algorithm identified
two classes of GABAAR subunit genes, each with a distinct cortical
expression pattern (Fig. 4e), with a mean bootstrapped Jaccard simi-
larity index exceeding 0.9 (see Methods for details). The first cluster
(Cluster 1) contained GABAAR subunits a5 5, 13, as well as € and ;.
This cluster was characterized by (i) elevated mRNA levels primarily in
limbic brain regions, including the anterior temporal lobes, entorhinal
cortex, anterior insular cortex, and medial orbitofrontal cortex”, and
(ii) low expression in the occipital lobes and the precentral gyrus
(Fig. 4e). The second cluster (Cluster 2) included subunits ay 4, 55, V23,
and 6 (Fig. 4e), and displayed elevated mRNA expression across the
cortical hemisphere, particularly in the occipital lobes, except in
regions where Cluster 1 subunits were highly expressed. GABAAR
subunits can thus be subdivided into two distinct co-expression clas-
ses, each defined by a unique mRNA expression signature across the
cortical surface.

Notably, while the spatial interpolation increased the magnitude
of the correlations between the 13 GABARs subunits overall, it did not
alter the relative positioning of genes. This indicates that the differ-
ential stability of genes at the vertex-level accurately reflects their
stability at AHBA sample resolution (i.e., prior to interpolation) (Sup-
plementary Data Fig. 8).

Stratification of imaging phenotypes based on their tran-
scriptomic alignment with GABAAR subunit genes

To link genes within GABAAR co-expression clusters to behavioral
variation in vivo, we examined the spatial correlations between the
IDPs of N=279 males and females, aged 7-31 years, who had available
anxiety and depression scores, and the expression patterns of the 13
GABA4R subunit genes. Sample characteristics are provided in the
Methods section. To make individuals comparable, IDPs were stan-
dardized within the normative (i.e., neurotypical) range to account for
the effects of age, sex, full-scale 1Q (FSIQ), and other measures
affecting brain structure (see Methods for details). Hence, instead of

analyzing absolute CT metrics, all datasets were standardized relative
to the canonical trajectory of brain development (Fig. 5a). Using hier-
archical clustering, IDPs were then stratified according to their spatial
similarity (i.e., neuroanatomical affinity) with GABAAR subunit classes.

Across multiple validity indices (see Methods), we discerned an
optimal bifurcated clustering solution with a mean bootstrapped Jac-
card similarity index of 0.714 for the primary cluster, and of 0.591 for
the secondary cluster. Accordingly, our cohort was divided into two
neuroanatomically distinct subgroups, each showing a different neu-
roanatomical association with the limbic and cortical expression sig-
natures of GABAAR subunit Clusters 1 and 2 (Fig. 5a). Subgroup 1
consisted of 178 individuals (65 females, 113 males) where positive CT
deviations (i.e., greater CT than expected) were associated with
increased mRNA levels in the limbic GABAAR subunit Cluster 1, and (ii)
negative CT deviations (i.e., less CT than predicted) were associated
with increased mRNA levels in the cortical GABAAR subunit Cluster 2.
Subgroup 2 consisting of 101 individuals (36 females, 65 males) and
was characterized by positive correlations with the cortical Cluster 2,
and by negative correlations with the limbic GABA4R subunit Cluster 1.
IDPs can therefore be distinguished based on their spatial alignment
with the cortical expression signatures of two GABAAR subunit clus-
ters: one with a more limbic pattern of expression, and the other with
an unspecific, region-overarching pattern of expression.

Differences in transcriptomic alignment with GABAR subunit
genes are associated with distinct behavioral phenotypes

To link the transcriptomically-derived subgroups to distinct clinical/
behavioral phenotypes, we performed a comparative subgroup ana-
lysis using measures of anxiety and depression, both of which can be
modulated through pharmacological interventions targeting
GABAergic and/or serotonergic signaling pathways. Individuals in
Subgroup 1 exhibited significantly elevated self-reported levels of
anxiety (¢(74)=2.52, p<0.01, p,q;=0.03, one-tailed) and depression
(€(73) =3.65, p<0.001, p,qj<0.01, one-tailed) compared to those in
Subgroup 2 (Fig. 5b). No significant differences in self-reported anxiety
or depression levels were observed between subgroups among ado-
lescents, nor in parent-reported measures for children (Fig. 5b). Sub-
groups also did not differ significantly in terms of age (¢(193) = 0.35,
p=0.36, one-tailed), FSIQ (#(215)=-0.07, p=0.52, one-tailed), sex
(¥*(1) <0.001, p > 0.99), or age-groups (x*(3) =0.284, p=0.96).

In adults, we observed a significant positive correlation between
levels of anxiety and neuroanatomical diversity within the limbic
GABA,R subunit Cluster 1 mask, which contained subunits a, 3 5, B1.3, €,
and y; (r=0.26, t(80)=2.41, p<0.01, one-tailed). Here, as predicted
from the subgroup analyses above (see Fig. 5b), more positive
deflections from the typical CT trajectory were associated with ele-
vated self-reported levels of anxiety (Fig. 5c, left panel). This relation-
ship was absent within the mask representing the more unspecific (i.e.,
region-overarching) cortical expression pattern of GABAsR subunit
Cluster 2, which contained subunits a4, 5, V23, and 6 (r=0.005,
t(80) = 0.04, p=0.48) (Fig. 5c, right panel; see Supplementary Data
Fig. 9 for model’s generalization performance). No significant corre-
lations were observed between variation in CT for levels of depression,
and for anxiety/depression scores in children and adolescents (all p-
values > 0.05).

Discussion

Here, we utilized an analytical framework for the fast (i.e., computa-
tionally efficient) genome-wide transcriptomic decoding of high-
resolution surface-based IDPs, using spatially-dense, vertex-level
representations of the human brain transcriptome provided by the
AHBA. This framework was initially validated against PET targets with a
well-documented, strong correspondence between cortical mRNA
transcript and protein binding (5-HTRs). We then compared our
gradient-based approach to alternative techniques operating at the
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native resolution of the AHBA. Subsequently, we used the vertex-level
mRNA expression signatures to dissect two discrete classes of GABAAR
subunits, which were spatially aligned with IDPs to probe their specific
functional role. Our findings indicate that the cortical transcriptomic
landscape of genes encoding for specific pharmacological targets may
be indicative of their clinical or behavioral relevance, and so guide the
development of targeted pharmacotherapies in the future.
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Our study builds on previous work by Gryglewski et al. (2018),
who were the first to provide mRNA expression signatures for all
protein-coding genes across the entire cortical surface, at a resolution
that is comparable to conventional surface-based IDPs°®. This is abso-
lutely vital as it enables the seamless integration of in vivo imaging data
with ex vivo gene expression patterns. Unlike Gryglewski et al. (2018),
we performed spatial interpolation based on AHBA samples identified
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Fig. 4 | Surface-based transcriptomic decoding of the Benzodiazepine (BZ)
binding sites. a A high-resolution in vivo atlas of the human brain’s BZ binding site
of GABAARs provided by ref. 22. b False positive rate (FPR) of the a-null (blue),
Linear Mixed Effects (LME, red), and General Least Squares (GLS, yellow) decoding
techniques across different adjusted p-value thresholds (pag;). For LME- and GLS-
decoding, p-values were adjusted for multiple comparisons using False Discovery
Rate (FDR) adjustments. For a-null decoding, adjusted permutation p-values
(Pperm.adj) Were used. ¢ Upper panel: Transcriptomic associations between BZ
binding sites and mRNA expression signatures of individual GABAAR subunits for
different decoding approaches. o-null: spatial autocorrelation preserving null
model; LME: Linear Mixed Effects model; GLS: General Least Squares model. Lower

panel: predicted mRNA expression profile of significant subunits across the cortical
surface. " adjusted p-value < 0.05 (two-tailed). d Hierarchical clustering of GABA\R
subunits based on their vertex-level transcriptomic associations. Subunits were
allocated to two classes with a distinct pattern of expression. The first cluster
(Cluster 1) contained subunit genes GABRA3, GABRA2, GABRAS, GABRBI, GABRE,
GABRB3, and GABRGI with high predicted expression levels in the limbic circuitry.
The second cluster (Cluster 2) contained subunit genes GABRG3, GABRA4, GABRD,
GABRB2, GABRA1, and GABRG2 with high predicted expression levels across the
cortical surface. The left panel shows the predicted mean expression signatures
across genes within each subunit cluster.

within a geodesic—rather than Euclidean—vertex neighborhood
(see**” for geodesic distance mapping). While the resulting surface-
based gene expression signatures are expected to be theoretically
more accurate, as they account for the highly complex pattern of
cortical folding, they were also highly correlated with the mRNA
expression profiles published by Gryglewski et al. (2018). Additionally,
the maps showed strong agreement with the spatially-smoothed dense
expression patterns recently released by Wagstyl et al. (2023) on a
lower-resolution (30 k) surface template’®. The convergence of pat-
terns across different analytical strategies thus underscores the
robustness of these maps and highlights they potential for linking IDPs
to underlying mechanisms.

However, linking spatially-dense gene expression patterns to
highly variable IDPs, both across individuals and brain regions, is a
computational and statistical challenge. Our study shows that spatial
interpolation significantly enhanced the spatial correlations between
gene expression signatures overall. However, the relative positioning
of genes with respect to each other, or their differential stability,
remained unchanged. The observed increase in spatial correlations is
likely driven by the increase in spatial autocorrelation (i.e., smooth-
ness) within the interpolated patterns. This can lead to an inflation of
false-positives when establishing transcriptomic associations between
IDPs and genome-wide expression signatures’. This was addressed by
placing all genome-wise analysis within the spatial null modeling
framework?, where spatial null models are generated to derive an
empirical distribution of spatial correlations under the null hypothesis.
To overcome the computational challenges associated with the gen-
eration of reliable spatial nulls, we reduced the gene expression sig-
natures of all protein-coding genes to a smaller subset of gene co-
expression gradients, for which spatial null models were subsequently
precomputed. These co-expression gradients closely mirror the tran-
scriptional developmental programs that shape human brain
organization” and that have recently been described in detail by
Wagstyl et al. (2023)*. Notably, these large-scale canonical expression
patterns of modules not only align with the diverse spatial scales and
temporal epochs of human brain organization—ranging from
cytoarchitectonic boundaries to markers of neuronal subtypes—but
also seems to be functionally relevant®. Given the biological plausi-
bility of the model and the large degree of spatial covariation in gene
expression patterns, a gradient-based approach represents a valuable
alternative to the genome-wide analyses of transcriptomic
associations.

In particular, using 5-HTR PET maps® as target patterns, we
demonstrated that that the sensitivity and specificity of the gradient-
based approach compared well to (i) alternative techniques relying on
existing AHBA samples exclusively (e.g., LME or GLM decoding that do
not employ spatial interpolation), or (ii) approaches where the target
pattern is spatially permuted® or rotated (see spin model*). Moreover,
the gradient-based approach is expected to be more reliable than
traditional region-based decoding techniques when dealing with IDPs
that are characterized by highly variable signal fluctuations across the
cortical surface, which cannot fully be captured by the native resolu-
tion of the AHBA. This is particularly relevant when examining IDPs in

neuropsychiatric and neurodevelopmental conditions that are marked
by highly diverse and individualized neuroanatomical and functional
variations in the brain (e.g”,). In the current study, we focused on
neuroanatomical variations in cortical brain tissue exclusively given
their particular importance to neuropsychiatric disorders. Moreover,
in vertex-level decoding, spatial correlations are computed across
thousands of vertices (>41k), whereas the number of subcortical brain
regions is considerably smaller (-6-10 per hemisphere). Conse-
quently, the relative the influence of subcortical brain regions on
spatial correlations across the brain would be minimal overall.

Next, we examined the cortical mRNA expression signature of the
GABAergic system based on 13 subunit genes that encode GABAAR
isoforms. Notably, it has previously been shown that GABAR isoforms
exhibit a highly region-specific expression pattern and are differen-
tially correlated with BZ binding sites'>*. This allowed us to test the
hypothesis that the specific regional expression pattern of a molecular
target may be indicative of its functional correlates. Here, we
demonstrated that GABAAR subunits genes can be grouped into two
distinct classes based on their cortical expression signatures. The first
class (Cluster 1) represented the transcriptomic signature of subunits
(235, P13, € and y; and was confined to brain regions within the limbic
circuitry. The second class (Cluster 2) encompassed genes encoding
for subunits a; 4, B>, V2,3, and 6 and exhibited a more general, unspecific
expression signature across the cortical surface. These findings agree
with previous reports noting a strong co-distribution of subunits a;, 55,
and y, across the brain, which was also consistent across donors™.
Moreover, different GABAAR isoforms show a region-specific pattern
of expression, and so may be linked to different behavioral domains'.
For instance, the high expression of Cluster 1 in the broader limbic
neurocircuitry, often referred to as the emotional brain®, indicates
that genes within this cluster are involved in processes subserving
socio-emotional functioning. In contrast, the expression of genes in
Cluster 2 was not confined to any specific set of brain regions or neural
system, indicating that heteromeric GABAAR isoforms containing
a8,y subunits may be essential for mediating a broader spectrum of
neurocognitive functions.

To probe the putative functional role of GABAAR subunit classes,
we aligned the neuroanatomical IDPs of 279 individuals to their cor-
tical expression gradients by means of spatial correlation. Using hier-
archical clustering, we established that IDPs can be subdivided based
on their differential neuroanatomical association with GABAR subunit
expression patterns. Individuals in Subgroup 1 displayed a pattern of
CT variability that positively correlated with the limbic GABAR sub-
unit Cluster 1. IDPs of individuals in Subgroup 2 were positively cor-
related with the co-expression signatures of cortically-expressed
GABA4R subunit genes in Cluster 2. As the developmental trajectory
of CT has an inverted U-shape across the human life span®, positive
deviations from the typical trajectory of CT are commensurate with
delayed brain maturation. In line with this, individuals - and adults in
particular - with more atypical CT in the limbic brain circuitry, which
was characterized by high expression of the a,-containing GABAAR
subunit Cluster 1, also had significantly higher levels of anxiety and
depression than adults falling into the a;-containing GABAAR subunit
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Cluster 2. Several factors could explain why these correlations were
observed in adults but not in children and adolescents. One possibility
is a discrepancy between self-reported and parent-reported levels of
depression and anxiety, which appears to diminish with age”. Addi-
tionally, both the AHBA and PET atlas data are derived from adult

samples. Thus, transcriptomic associations

adult populations compared to younger age groups.

mean abs A, cluster 1

may be more accurate in

mean abs A, cluster 2

Our finding also aligns with previous evidence suggesting that
BZ binding sites can be categorized based on a subunit isoforms
and their specific behavioral implications (reviewed in ref. 13). In
brief, the a; subunit is associated with BZ type 1 (BZ1) pharmacology
and has been shown to have primarily sedative, amnesic, and antic-
onvulsive effects. The a, subunit, on the other hand, is associated with
BZ type Il (BZ2) pharmacology and mediates the anxiolytic actions of
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Fig. 5 | Stratification of imaging phenotypes based on their transcriptomic
association with GABA,-receptor subunits. a Upper panel: Standardization of
neuroanatomical imaging-derived phenotypes (IDPs) based on the neurotypical
trajectory of cortical thickness (CT). All IPs were transformed to unit standard
deviations relative to the canonical trajectory of CT (Acr). Data are presented as
mean * standard deviation of residuals across individuals. Note. For illustration
purposes only. Lower panel: hierarchical clustering of IPs based on their tran-
scriptomic association with GABA4R subunits. b Differences in levels of anxiety and
depression between subgroups with a differential transcriptomic association with
GABA4R subunits. BAI: Beck Anxiety Inventory; BYI-II: Beck Youth Inventories 2nd

Edition; BDI-II: Beck Depression Inventory 2nd Edition; self: self-reports; parents:
parent-reports. Error bars present mean values + standard deviations. ¢ Brain-
behavioral correlations between self-reported measures of anxiety in adults and the
individuals’ total degree of neuroanatomical diversity in CT within brain regions
with high mRNA expression levels of GABAAR subunit Cluster 1 and Cluster 2. Masks
were generated by applying a threshold to the mean expression patterns of genes
within each cluster, anchored at the 80th percentile of their distribution across the
cortex. Shaded area indicates the 95% confidence interval around the

regression line.

benzodiazepines. Our study of cortical gene expression patterns
extends this previous evidence by proposing that the distinct beha-
vioral effects of a; and a, may be mediated through two different
neural systems. This means that the cortical expression signatures of a;
and a, subunit genes are largely non-overlapping (negatively corre-
lated), with &, predominantly affecting limbic system functions, and a;
impacting on more general, region-overarching neural motives. It is
important to note, however, that the magnitude of the spatial corre-
lations in gene expression primarily depends on the degree of spatial
coherence in mRNA levels across the cortical surface (i.e., coherence in
regional variations), rather than similarities in absolute mRNA
expression levels. A gene with persistently high expression levels
across the cortical surface may therefore exhibit only a weak correla-
tion with a regionally highly variable IDP, yet still have a significant
impact on a phenotype. Thus, the impact of a gene on a phenotype
cannot be inferred solely based on spatial correlation.

Along the same lines, although CT variability has previously been
related to genetic variation in GABA-ergic genes®, this does not
necessarily imply a causal relationship between GABA-ergic regulation
and the development of this particular aspect of the neural archi-
tecture (i.e., thickness of the cortical mantle). In the future, it will
therefore be important to explore the causal mechanisms and path-
ways that link genes to IDPs more closely, also based on other mor-
phometric features that are under close genetic and/or transcriptional
control®. Additionally, it is important to recognize that the associa-
tions between IDPs and target patterns, as well as their relationships
with behavioral profiles, are currently derived from in-sample esti-
mates from a cross-sectional cohort, rather than out-of-sample pre-
dictions. The crucial next step will be to apply our model to
longitudinal datasets, both before and after pharmacotherapy, to
assess its potential for guiding personalized treatment and interven-
tion strategies.

Methods

Ethical approvals

The study was approved by national and local ethics review boards at
each site, and was carried out to Good Clinical Practice (ICH GCP)
standards. More specifically, at each recruitment center, namely (i)
King’s College London & University of Cambridge, London-Central and
Queen Square Health Research Authority, Research Ethics Committee
(Ref. Nr. 13/L0O/1156), (ii) Radboud University Medical Centre & Uni-
versity Medical Centre Utrecht, Institute Ensuring Quality and Safety
Committee on Research Involving Human Subjects Arnhem-Nijmegen
(Ref. Nr. 2019-5942), (iii) Medical University Mannheim, Medical Ethics
Commission II (Ref. Nr. 2020-547 N), and (iv) Bio-Medical University
Campus Rome, Ethics Committee De Roma (Ref. Nr. 18/14 PAR ComET
CBM). Written informed consent was obtained for all participants.
Participants received compensation for study visits.

Statistics and reproducibility

AHBA microarray data normalization and FreeSurfer
fsaverage6 surface alignment. Regional microarray expression data
was obtained from the six post-mortem brains (1 female, aged
24-57 years) provided by the Allen Human Brain Atlas (AHBA, https://

human.brain-map.org?). The expression data was initially pre-
processed with the abagen toolbox (version 0.1.1; https://github.
com/rmarkello/abagen) using the FreeSurfer fsaverage6 (41k) as
standard-space MRI template. The toolbox has been described in detail
elsewhere (see refs. 1,32). In brief, probes were initially re-annotated
using gene annotations provided by ref. 1. As we restricted our analyses
to cortically expressed genes, all tissue samples not assigned to the
fsaverage6 cortical mask label were discarded. Inter-donor variation
was addressed by normalizing expression values across genes using a
robust sigmoid function®:

1

X = —_—
i P exp <_ );51(1?) @

where (x) is the median and IQR, is the normalized interquartile range
of the expression of a single tissue class (e.g., cortex) across genes.
Normalized expression values were then rescaled to unit interval using

Xnorm — min(xnorm)
MaX(Xporm) — MIN(Xporm)

Xscaled = (2)

Gene expression values were then normalized across tissue sam-
ples using an identical procedure. This resulted in a normalized mRNA
expression matrix of N=1670 samples (i.e., spatial locations or well
IDs) and N=15,633 genes across donors.

The normalized AHBA data was then mapped onto the
fsaverage6 surface using an optimized mapping approach via Free-
Surfer surface reconstructions of each of the six donor brains (down-
loaded from https://www.repository.cam.ac.uk/handle/1810/265272).
Details of this approach are provided elsewhere (see https://surfer.
nmr.mgh.harvard.edu/fswiki/CoordinateSystems). The medial wall
label (i.e., subcortical regions and ventricles) was masked out, so that
samples were only assigned to cortical vertices. Given the asymme-
trical distribution of AHBA samples between hemispheres (i.e., only 2
out of 6 donors have right-hemisphere data), samples were mirrored
across hemispheres to maximize the number of data points per
hemisphere for spatial interpolation. FreeSurfer xhemi tools were
used to map each vertex from one hemisphere to the other via the
spherical symmetric fsaverage6 hemispheric surface template (see
fsaverage_sym**). mRNA expression values of samples assigned to
identical vertices were averaged across samples and donors.

Spatial interpolation of mMRNA expression levels across the cortical
surface. For the transcriptomic decoding of surface-based IDPs, we
initially generated a spatially-dense representation of the AHBA human
brain transcriptome. To generate smooth vertex-level mRNA expres-
sion patterns, we adopted a similar approach as described by Grygle-
wski et al. (2018)°, whereby mRNA expression values for vertices
without AHBA representation are predicted through spatial inter-
polation using Gaussian Process Regression (i.e., ordinary kriging®).
To account for the highly complex pattern of cortical folding, we
performed spatial interpolation using existing AHBA samples located
within a 40 millimeters geodesic distance from each vertex on the
FreeSurfer fsaverage6 (41k) surface template (Fig. 1, also see ref. 24).
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This distance was chosen to obtain a sufficient number of data points
for the prediction of data at unsampled vertices (i.e., Nsampies > 30)
while maintaining computational efficiency. At each cerebral vertex
not represented in the AHBA, mRNA expression values were then
predicted using the 3D coordinates and mRNA data of existing samples
within the patch using R for statistical computing (www.r-project.org,
version 4.1.2). To this end, we used the autofitVariogram function
implemented in the R automap package (version 1.0.14°°) with a
Gaussian kernel and a minimum number of 10 data points per distance
bin to automatically fit a variogram based on the existing data. The
best-fitting model was subsequently used for the prediction of the
estimated mRNA intensity at that vertex. To evaluate the robustness of
the predicted mRNA profiles, spatial interpolation was conducted
separately for the left and right hemispheres. This resulted in two
almost identical matrices, each containing N=40,962 predicted (i.e.,
spatially interpolated) mRNA expression values at every vertex on the
left and right hemisphere, for each of N=15,633 genes (see Supple-
mentary Data Fig. 10). The resulting patterns were smoothed within a
5mm vertex neighborhood to reduce the effect of outliers.

Our approach utilizing geodesic distances thus converged from
that of Gryglewski et al. (2018), who conducted spatial interpolation
using the nearest AHBA samples in Euclidean space. Despite these
methodological differences, however, the resulting mRNA expression
profiles were highly consistent across approaches (see Supplementary
Data Fig. 11) and also showed strong agreement with the spatially
smoothed dense expression patterns reported by Wagstyl et al. (2023)
at a 30k vertex resolution® (Supplementary Data Fig. 12).

Transcriptomic decoding of surface-based IDPs using spatial
autocorrelation-preserving null models. Given the sensitivity and
technique-dependent nature of examining spatial associations
between gene expression patterns and IDPs*, we implemented and
compared various analytical approaches for the statistical assess-
ment of spatial correlations between high-resolution imaging pat-
terns and genome-wide expression profiles (i.e., gene expression
decoding). For the vertex-level decoding using whole-brain mRNA
expression patterns, we placed hypothesis testing within the general
framework of a-preserving null modeling®, which is designed to
account for the large degree of spatial autocorrelation (a) inherent to
spatially-embedded signals. Here, values in the target pattern are
either randomly permuted and subsequently smoothed to reintro-
duce a characteristics of the original non-permuted data (see vario-
gram matching surrogates'), or randomly rotated across the cortical
surface (see spin model”). Given the high computational demands of
the variogram matching approach, it was not easily possible to
generate surrogate mRNA expression patterns for each of 15,633
abagen genes. We therefore employed Principal Component Analysis
(PCA) to decompose the normalized mRNA signatures of 15,633
genes into a smaller subset of nine co-expression gradients with an
Eigenvalue larger than one, capturing -41% of the total variability in
gene expression across the cortex (see Supplementary Data Fig. 13a,
b). Genes were subsequently assigned to gradients according to their
highest absolute loadings, i.e., spatial correlation between each gene
and gradient patterns.

For each gradient pattern, a total of N=1000 a-preserving null
models were then precomputed according to'® to characterize the
empirical distribution of spatial correlations under the null hypothesis
(Fig. 2b). More specifically, gradient null models were computed using
the BrainSMASH toolbox (https://github.com/murraylab/brainsmash)
with resampling under the exclusion of vertices in the medial wall
label. Notably, for each gradient, we optimized the k,,, parameter by
minimizing the Normalized Root Mean Squared Error (NRMSE)
between the fitted variograms of 100 surrogate maps and the target
map’s variogram across k,, € {1000; 5000; 1000; 20,000; 30,000;
40,000}. This optimization step is vital, as the k,, parameter

determines the number of nearest neighbors (i.e., data points) for
variogram fitting, and so directly impacts on the quality of the spatial
prediction. We identified an optimal &, of 40,000 for PC;.,, of 30,000
for PC;, of 20,000 for PCs.7, and of 10,000 for PC, g.9 (Supplementary
Data Fig. 13¢). To validate the use of gradient-based nulls as proxies
for individual gene expression patterns, we compared the
empirical variograms of the nine co-expression gradients with those of
individual gene’s expression signatures. The analysis across a random
subset of genes revealed a strong alignment between variograms,
indicating that the spatial autocorrelation inherent in gradient pat-
terns and their surrogates closely mirrors the spatial dependence
observed in individual gene expression signatures (see Supplementary
Data Fig. 14). These findings support the use of co-expression gra-
dients as surrogates for individual gene expression signatures to
derive an empirical distribution of spatial correlations under the null
hypothesis.

A non-parametric a-corrected p-value estimate (pperm) for each
gene was therefore derived based on the null distribution of spatial
correlations with its target map across the pre-computed nulls for the
respective gradient pattern (Fig. 2c). Gene-level p-values were adjusted
for multiple comparisons (Pperm.aqj) Using the empirical cumulative
density function of the extreme value distribution of spatial correla-
tions across genes within gradient permutations (Fig. 2c). This
approach is comparable to the maxT algorithm proposed by Westfall &
Young (1993)* and the fast permutation inference approach published
by ref. 39. However, instead of selecting the maximal test statistic
across feature permutations, we modeled the empirical extreme value
distribution across gradient patterns.

To evaluate the statistical rigor of the model with precomputed
gradient surrogates, we also generated N =1000 spatial null models for
the target pattern (i.e., mRNA expression signatures of 5-HTsR,
5-HT,4R, and 5-HT4R) according to (i) Burt et al. (2020) with optimi-
zation of the k,, parameter’, and (ii) employing the spatial permuta-
tion null or spin modeling approach proposed by Alexander-Bloch
et al. (2018)*. This allowed us to adjust permutation p-values based on
the empirical cumulative density function of the extreme value dis-
tribution of spatial correlations across genes, rather than gradient
patterns. Moreover, to estimate the impact of the spatial interpolation
on the magnitude of spatial correlations between genes and the rela-
tive differential stability of genes, we compared the matrix of spatial
correlations of the mRNA expression patterns for the 13 GABAAR
subunit genes examined in the present study before and after spatial
interpolation.

Transcriptomic decoding using Linear Mixed Effects (LME) and
General Least Squares (GLS) modeling. To assess the effects of the
spatial interpolation and the robustness of our findings, we compared
the gradient-based approach to alternative techniques that were based
solely on existing AHBA data (i.e., without spatial interpolation). This
included a Linear Mixed Effects (LME) model and General Least
Squares (GLS) decoding. Here, the abagen preprocessed AHBA data
was initially mapped onto the FreeSurfer fsaverage6 as described
above. To align the MRI and gene expression data, the target pattern
was downsampled to match the native resolution of the AHBA by
averaging vertex values within a 5 mm geodesic neighborhood around
each of N=1670 AHBA sampling sites (Supplementary Data Fig. 1a). To
identify genes significantly correlated with the target pattern, a Linear
Mixed Effects (LME) model with random intercept and slope grouped
by donor (LME-decoding) was fitted for each gene using the Ime4
package in R (version 1.1.28). This approach was originally proposed by
ref. 19 and implemented within the Neurosynth platform (https://
neurosynth.org), and highlights genes that are consistently highly
correlated with the target pattern across donors (Supplementary
Data Fig. 1b). Uncorrected gene p-values associated with the fixed
effect of mRNA expression were identified using the Satterthwaite

Nature Communications | (2025)16:6727

10


http://www.r-project.org
https://github.com/murraylab/brainsmash
https://neurosynth.org
https://neurosynth.org
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61927-3

approximation for degrees of freedom as implemented in the R
package afex (version 1.0.1).

The LME model does not account for spatial autocorrelations, as
statistical effects are based on consistencies across donors. As a result,
fewer (i.e., within-donor) samples that are further apart are considered
when quantifying the relationship between gene expression and target
patterns. We therefore also implemented a Generalized Least Squares
(GLS) decoding approach that accounted for the full spatial auto-
correlation structure. This model predicted the target map by the
mRNA profile of each gene, covarying for a Gaussian autoregressive
spatial correlation structure defined by vertex x,y,z coordinates, and
donor as grouping factor (Supplementary Data Fig. 1c). The GLS model
was fitted using the R package nlme (version 3.1.153). Gene-level p-
values were obtained based on the main effect of mRNA expression.
For both LME- and GLS-decoding, gene-level p-values were corrected
using a False-Discovery Rate (FDR) adjustment (p,g;).

Comparison of decoding techniques using in vivo PET atlas data. To
assess the validity of the predicted vertex-level mRNA expression
maps, and to examine the sensitivity and specificity of the various
models, we utilized publicly available Positron Emission Tomography
(PET) atlas data of molecular targets that (1) are highly expressed in
cortical brain tissue, and (2) display a significant high correlation
between mRNA expression and protein density (e.g refs. 14,40.). This
includes high-resolution in vivo PET atlas data of the human ser-
otonergic (5-HT) system, which has been released on the FreeSurfer
fsaverage surface for four 5-HT receptors (i.e., 5-HTya, 5-HTyg, 5-HT>4,
5-HT,), and for the 5-HT transporter (5-HTT)". We did not examine the
5-HT transporter (5-HTT), which is predominantly expressed in sub-
cortical brain regions. The 5-HTgR gene (HTR1B) did not survive aba-
gen quality assessments and was also excluded from the analyses.
Moreover, we utilized an in vivo PET atlas of the human brain’s ben-
zodiazepine (BZ) binding sites located on postsynaptic GABAsRs?.
GABA4Rs have a highly complex pentameric structure formed by 19
different genes that encode eight distinct subunit classes (reviewed in
ref. 41). Of the 19 subunit genes encoding GABA4-Rs (i.e., a1., B13, V13,
P13, 0, €, 9, m; see Fig. 5b), we were able to reliably quantify and analyze
the cortical mRNA expression signatures of 13 subunits (i.e., ay.s, B3,
Y13, 0, € via the AHBA. The remaining six subunits are mostly
expressed in non-cortical brain tissues (see Human Protein Atlas (HPA)
for information on regional expression patterns, www.proteinatlas.
org). Data was downloaded from https://xtra.nru.dk/BZR-atlas/ and
https://xtra.nru.dk/FS5ht-atlas/ respectively.

For these molecular targets, we initially examined the quality of
the predicted vertex-level mRNA expression maps by assessing their
spatial correlation (rspacal) With the target’s non-displaceable binding
potential (BPND). The significance of each spatial correlation was
established as described above. The sensitivity and specificity of the
models were then evaluated based on a model’s ability to detect a
significant correlation if it exists (i.e., p(rspatiar) < 0.05), and the model’s
ability to detect a significant correlation in the context of all other
genes (i.e., Paqj(Fspatiar) <0.05), respectively. Moreover, for each model,
we examined the number of false positives across different levels of
statistical stringency, based on the probability of obtaining significant
genes, i.e., P(p < Paq).

Hierarchical clustering of GABAAR subunits genes based on their
cortical expression patterns. A hierarchical clustering approach was
employed to cluster 13 cortically expressed GABA4R subunits (i.e., a;.5,
B3, Vi3 6, €) based on the normalized predicted mRNA expression
profile of corresponding subunit genes (i.e., GABRAI to GABRAS,
GABRBI to GABRB3, GABRD, GABRE, and GABRGI to GABRG3) across
the cortical hemisphere. A distance matrix D(ij)=1-r;; was then
computed to serve as input for hierarchical clustering, where r;;
denotes the Pearson correlation between the expression patterns of

subunits i and j. The spatial correlation matrix of GABAsR subunit
genes is shown in Supplementary Data Fig. 7b. The optimal number of
clusters was identified using the R package NbClust (version 3.0.1)
through the complete aggregation method, which evaluates clustering
solutions for different numbers of clusters across multiple validity
indices (frey, mcclain, cindex, silhouette, and dunn index). The stabi-
lity of the clustering solution was evaluated using the clusterboot
function implemented in the R package fpc (version 2.2.9). This func-
tion performs bootstrap resampling of the data and evaluates the
stability of each cluster by calculating Jaccard coefficients, which
represent the similarity between the original clustering and the boot-
strapped clustering. Note that a Jaccard similarity value of 0.75 or more
generally indicates a stable clustering solution.

Transcriptomic alignment between IDPs and GABA,R gene
expression patterns. To probe the putative functional involvement of
GABA4R subunits, we spatially aligned the cortical mRNA expression
signatures of the respective genes with the neuroanatomical IDPs of
279 individuals. These data were derived from participants enrolled in
the EU-AIMS Longitudinal European Autism Project (LEAP; www.aims-
2-trials.eu)*?. They included 254 typically developing participants (90
female, 164 male) and 25 individuals with mild intellectual disability
(ID; 11 female, 14 male; defined by a Full-Scale IQ (FSIQ) between 50 and
74) between the ages of 7 and 31 years (mean age =17.32 + 5.91 years).
Note that we relied on self-reported measures of biological sex, rather
than gender. The original study’s sample size was derived through
power calculations tailored to that study’s aims and objectives*’ here,
we restricted our sample to those participants with high-quality
structural magnetic resonance imaging and clinical data. Hence, no
statistical method was used to predetermine sample size. The experi-
ments were not randomized and the investigators were not blinded to
allocation during experiments and outcome assessment.

For children younger than 1lyears, parents completed the
depression and anxiety subscales of the Beck Youth Inventories (BYI-
1I%). Adolescents (aged 12-17 years) were given the depression and
anxiety subscales of the BYI-II as self-report. In adults, self-reports of
symptoms associated with depression and anxiety were measured
using the Beck Depression Inventory—Second Edition (BDI-II**), and
the Beck Anxiety Inventory (BAI*), respectively. Further details on
summary scores, medication status, and co-occurring mental health
conditions (e.g., ref. 46) are provided in Supplementary Tables 1-3.
The T;-weighted structural Magnetic Resonance Imaging (MRI) data
(see ref. 5 for acquisition parameters) was initially preprocessed using
the default pipeline implemented in the FreeSurfer v6.0.0 software
(http://surfer.nmr.mgh.harvard.edu/), and quality assessed as outlined
in ref. 5. We examined measures of cortical thickness (CT), which
represent the closest distance from the outer (i.e., pial) to the inner
(i.e., white) matter boundary at each vertex on the tessellated surface*’,
smoothed using a 15-mm kernel.

To make individuals comparable, IDPs were initially standardized
within the neurotypical (i.e., non-ID) range by means of a General
Linear Model (GLM) that included age, sex, FSIQ, acquisition site, and
total brain volume as predictors. The model coefficients were subse-
quently used to predict CT across the cortex for all individuals in our
sample, and the resulting residuals were centered and scaled. Thus,
instead of employing absolute CT metrics, all datasets were normal-
ized to unit standard deviations relative to the canonical develop-
mental trajectory. Here, positive values indicated increased CT relative
to the expected neurotypical range, while negative values indicated
decreased CT. This approach was motivated by so-called normative
modeling frameworks*®, which place each individual within a norma-
tive range of expected neurotypical variation. These studies show that
a person’s neuroanatomy is marked by highly individualized patterns
of neuroanatomical variability, which may serve as a distinct neuroa-
natomical fingerprint that may be utilized for stratification purposes
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(e.g. refs. 49, 50). The standardized IDPs were subsequently mapped
onto the mRNA expression patterns of GABAAR subunit genes via
vertex-level spatial correlations; i.e., Pearson correlation coefficients
across the entire cortical surface. To stratify individuals based on their
spatial alignment with GABA,-receptor subunit genes, the matrix of
spatial correlations was then subjected to hierarchical clustering as
outlined above, i.e., using NbClust to identify the optimal number of
clusters, and clusterboot to establish their stability. Notably, this
approach diverged from using a correlation matrix as input to the
clustering algorithm but instead identified consistent patterns of high/
low spatial correlations across individuals.

Utilizing the composite expression signatures of the GABAAR
subunit Cluster 1 and 2, we also generated a binary mask to demarcate
cortical regions with high levels of mRNA expression for cluster
(Fig. 5c), allowing us to test the hypothesis that neuroanatomical
variability within these regions is associated with differences in beha-
vioral phenotypes. These masks were constructed by applying a
threshold to the mean mRNA expression patterns of genes within each
cluster, anchored at the 90th percentile of their distribution across the
cortical surface. For each participant, we subsequently identified the
mean degree of neuroanatomical diversity, quantified as the average
difference from the neurotypical CT trajectory across vertices within
each mask. These network-specific composite measures of neuroana-
tomical variation were subsequently correlated with anxiety and
depression levels using a linear model. To assess the model’s gen-
eralization performance (i.e., predictive value), we also placed model
fitting within a machine learning (ML) framework. Here, the dataset
was randomly split into a training set (75%) and a test set (25%). A linear
regression model was initially fitted based on the training set, with the
intercept optimized via 3-fold cross-validation. The model’s predictive
performance was then assessed on the test set. BAI scores were pre-
dicted using two models: (i) based on the matrix of spatial correlations
between IDPs and the mRNA expression signatures of the 13 GABAsR
subunit genes, and (ii) based on the individuals’ total degree of neu-
roanatomical diversity in CT within brain regions with high mRNA
expression levels of GABAAR subunit Cluster 1 (see Supplementary
Data Fig. 9).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw clinical and neuroimaging data from the LEAP study are pro-
tected under data privacy regulations and cannot be publicly shared.
The complete dataset generated by the AIMS-2-Trials consortium has
been deposited in the Institut Pasteur’s secure data repository, Owey
(https://dataset.owey.io/doi). Access to the data can be requested on
reasonable grounds; for details, please refer to the contact information
provided at https://www.aims-2-trials.eu/. Anonymized, pre-processed
standardized imaging phenotypes, associated phenotypic data, and
spatially interpolated mRNA expression patterns presented and ana-
lyzed in this study are provided in a publicly accessible repository (see
https://gin.g-node.org/sphache/DecodeGABAData).

Code availability

All code used for the analyses presented in this study is publicly
available on github. The ‘fsnulls’ package, which implements spatially-
constrained null models for surface-based brain imaging data, is
available at https://github.com/christineecker/fsnulls. The ‘fsdecode’
package, which supports gene expression decoding of imaging phe-
notypes using data from the Allen Human Brain Atlas, is available at
https://github.com/christineecker/fsdecode. Both packages are
openly licensed and include documentation and example scripts to
facilitate reproducibility. All scripts for clustering IDPs based on their

neuroanatomica affinity to GABA-ergic genes can be assessed at
https://gin.g-node.org/sphache/DecodeGABA/src/main.
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