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Machine learning-guided evolution of
pyrrolysyl-tRNA synthetase for improved
incorporation efficiency of diverse
noncanonical amino acids

Qunfeng Zhang1,3, Ling Jiang 1,2,3, Yadan Niu1, Yujie Li1, Wanyi Chen1,
Jingxi Cheng1, Haote Ding1, Binbin Chen1,2, Ke Liu1, Jiawen Cao1, Junli Wang1,
Shilin Ye1, Lirong Yang 1,2, Jianping Wu 1,2, Gang Xu1, Jianping Lin 1 &
Haoran Yu 1,2

The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate non-
canonical amino acids (ncAAs) into proteins. However, the yields of most
ncAA-containing protein remain low due to the limited activity of PylRS var-
iants. Here, we apply machine learning to engineer the tRNA-binding domain
of PylRS. The FFT-PLSRmodel is first applied to explore pairwise combinations
of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase
in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v,
Mutcompute, and ProRefiner are then used to identify additional mutation
sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a
30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the
catalytic efficiency (kcat/Km

tRNA). Transplanting these mutations into 7 PylRS-
derived synthetases significantly improves the yields of proteins containing 6
types of ncAAs. This paper presents improved PylRS variants and a machine
learning framework for optimizing the enzyme activity.

Genetic code expansion enables site-specific incorporation of non-
canonical amino acids (ncAAs) into proteins by suppressing an amber
stop codon (UAG) using a suppressor tRNA paired with an engineered
aminoacyl-tRNA synthetase (aaRS)1. The pyrrolysyl-tRNA synthetase
(PylRS)/tRNAPyl

CUA pair from Methanosarcina barkeri and Methano-
sarcinamazei is one of themostwidely used systems for incorporating
ncAAs in bacteria and eukaryotes2. Over 300 ncAAs have been incor-
porated into proteins by utility of MmPylRS and MbPylRS variants3.
However, the incorporation efficiency for most ncAAs remains low,
leading to reduced expression of ncAA-containing proteins compared
to the wild-type proteins. A powerful directed evolution strategy
involving positive and negative selection hasbeen developed to evolve

PylRS for new or more efficient ncAA incorporation4. Despite its
effectiveness, the method is time- and labor-intensive, requiring mul-
tiple rounds of selection for each target ncAA.

PylRS catalyzes a two-step reaction process5. In the first step,
pyrrolysine is activated through adenylation with ATP. In the second
step, the resulting aminoacyl-adenylate acts as a substrate for the
formationof aminoacyl-tRNAPyl.MmPylRSorMbPylRS is organized into
two conserved domains connected by a variable linker, including an
N-terminal domain (NTD) of around 90 residues and a C-terminal
domain (CTD) of around 270 residues, which harbors the catalytic
sites. The tRNA-binding domain (TBD) includes NTD, the linker, and
part of CTD, around 240 amino acids in total. Both TBD and the

Received: 12 November 2024

Accepted: 7 July 2025

Check for updates

1Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China. 2ZJU-HangzhouGlobal
Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China. 3These authors contributed equally: Qunfeng Zhang, Ling Jiang.

e-mail: yuhaoran@zju.edu.cn

Nature Communications |         (2025) 16:6648 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0391-6941
http://orcid.org/0000-0002-0391-6941
http://orcid.org/0000-0002-0391-6941
http://orcid.org/0000-0002-0391-6941
http://orcid.org/0000-0002-0391-6941
http://orcid.org/0000-0002-6378-8451
http://orcid.org/0000-0002-6378-8451
http://orcid.org/0000-0002-6378-8451
http://orcid.org/0000-0002-6378-8451
http://orcid.org/0000-0002-6378-8451
http://orcid.org/0000-0002-9924-7307
http://orcid.org/0000-0002-9924-7307
http://orcid.org/0000-0002-9924-7307
http://orcid.org/0000-0002-9924-7307
http://orcid.org/0000-0002-9924-7307
http://orcid.org/0000-0003-3767-3711
http://orcid.org/0000-0003-3767-3711
http://orcid.org/0000-0003-3767-3711
http://orcid.org/0000-0003-3767-3711
http://orcid.org/0000-0003-3767-3711
http://orcid.org/0000-0001-9012-4688
http://orcid.org/0000-0001-9012-4688
http://orcid.org/0000-0001-9012-4688
http://orcid.org/0000-0001-9012-4688
http://orcid.org/0000-0001-9012-4688
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61952-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61952-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61952-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61952-2&domain=pdf
mailto:yuhaoran@zju.edu.cn
www.nature.com/naturecommunications


catalytic domain (CD), the remaining part in CTD, are required to
create a functional PylRS/tRNAPyl pair6. When carrying out the directed
evolution of PylRS for the incorporation of structurally diverse ncAAs,
mutations were commonly constructed in the CD to expand the sub-
strate scope. Although mutations in the TBD are not directly involved
in catalysis, they have been shown to affect the efficiency of ncAA
incorporation in variants of MmPylRS, MbPylRS, and their chimeras.
For example, a chimeric PylRS variant, IPYE (V31I/T56P/H62Y/A100E),
was obtained through a phage-assisted continuous evolution (PACE)
selection, and exhibited a 45.2-fold improvement in catalytic efficiency
(kcat/Km

tRNA) compared to the parent enzyme7. Transplanting the
evolved mutations into MbPylRS AcK3RS and MmPylRS AcK3RS var-
iants increased expression of reporter proteins by 9.7-fold and 2.2-
fold, respectively, compared to unmodified PylRS counterparts. In
another study, a N-terminal mutation of MmPylRS R19H/H29R/T122S
was found to enhance the incorporation of ncAA and the yieldof ncAA-
containing proteins by almost 4-fold compared to wild-type PylRS8.
Interestingly, since the mutations located in the TBD of PylRS were
separated from its CD, they could be introduced to other PylRS
mutants to improve the incorporation efficiency of their correspond-
ing ncAAs. This makes the N-terminal engineering of PylRS a general
strategy to enhance the incorporation efficiency of various ncAAs9.
However, available N-terminal mutations of PylRS are still relatively
rare, and their impact on enhancing the efficiency of ncAA incor-
poration remains limited.

Recently, a class of highly active PylRS enzymes lacking an NTD
has been identified and characterized10,11. These PylRS enzymes func-
tion with their cognate PyltRNA and could also be used to direct the
incorporation of ncAAs. One of such enzymes is the PylRS from
Methanomethylophilus alvus (Ma), which showed a similar amino acid-
binding pocket with MmPylRS, and transplanting mutations from
MmPylRS to MaPylRS expanded the substrate specificity7,12. MaPylRS/
MaPyltRNA was also engineered to be mutually orthogonal to the
Mb/MmPylRS system11. However, since these PylRS enzymes were only
recently identified, the number of ncAAs incorporated by them was
significantly lower than the number directed by Mb/MmPylRS.

Various strategies have been developed to engineer enzymes for
improved activity, including directed evolution, rational design,
computational design using Rosetta, and machine learning. In the
enzyme engineering process, some single mutants are combined with
thegoalof creating variantswith enhancedperformance.However, the
contributions of these single mutants are affected by mutations made
at other sites in the protein, which is known as epistasis13. When
mutations that contribute positively on their own are combined into a
single protein, two or more mutations often interact in a non-additive
manner. Epistatic effects can decrease the efficiency of enzyme engi-
neering by altering the shape of the protein fitness landscape, and it
remains challenging to predict this kind of epistatic behavior14.
Recently, machine learning has been demonstrated to be useful for
navigating an epistatic fitness landscape that covers a small sequence
space15. A machine learning-assisted directed evolution strategy has
been developed to evolve an enzyme to enhance and invert the ste-
reoselectivity of a putative nitric oxide dioxygenase, in which the
machine learningmethod avoids some local fitness traps or long paths
to the global optimum for the combinatorial library16. Additionally, an
innov’SAR model was developed to predict the enantioselectivity of
512 combinatorial variants based on combinations of 9 single-point
mutations for an epoxide hydrolase17. Innov’SAR uses the indexes of
the AAindex database to encode the primary protein sequence into a
numerical chain, which is then converted to a protein spectrum using
Fast Fourier Transform (FFT). With the protein spectrum as the
encodings of the protein sequence, along with the experimental
values, regression models were then trained. Innov’SAR has also been
used to predict the thermostability of combinatorial variants18,
including a limonene epoxide hydrolase and a transaminase. Despite

these advancements, it remains unclear whether these machine
learning methods are broadly effective for engineering different
enzymes. This uncertainty arises because the protein fitness landscape
can vary significantly across different proteins and even among dif-
ferent mutation sites within a single protein.

In this study, we apply machine learning to engineer the TBD of
PylRS, aiming to develop highly improved variants. We anticipate that
these variants could be broadly applicable to other catalytic domain
variants, thereby enhancing the incorporation efficiency of corre-
sponding ncAAs. A MmPylRS variant named IFRS (N346I/C348S) is
selected as the model for protein engineering, as it was obtained by
screening libraries against 3-iodo-Phe (3IF) and also shows a broad
substrate range. Supervisedmachine learning is first applied to predict
the highly active combinatorial variants of 12 single-point mutations.
The improved variant is then used as the input for three deep learning
models to predict additional single variants, which are then combined
again to obtain the combinatorial variant with the highest activity. The
best mutations are then combined with various C-terminal variants to
test the generality of these mutations in improving the incorporation
efficiency of various ncAAs. We also carry out molecular dynamics
(MD) simulations to explore the mechanism behind the enhanced
performance of these variants.

Results
Design of combinatorial variants of PylRS using the
FFT-PLSR model
Mutations in the TBDofMmPylRS have beendemonstrated to improve
the efficiency of ncAA incorporation. It was also shown that N-terminal
mutationsdidnot significantly influence the substrate specificity of the
PylRS and could be transferred to different variants19. We here tested
four sets of mutations obtained previously in the TBD of MmPylRS to
improve catalytic efficiency of IFRS, which include R61K/H63Y/S193R,
R19H/H29R/T122S, D2N/K3N/T56P/H62Y, and V31I/T56P/H62Y/
A100E6–8,20 (Supplementary Table 1). Based on sequence alignment, we
introduced these N-terminal mutations into IFRS and tested their
activity for incorporating 3-bromo-Phe (3BrF), a cheaper substrate
than 3IF (Fig. 1a, Supplementary Fig. 1). Expression of IFRS was driven
by the constitutive, mid-strength E. coli glutaminyl-tRNA synthetase
(glnS) promoter, and expression of PylT was controlled by the E. coli
lpp gene promoter. Amber suppression of the sfGFPS2TAG gene by
3BrFwas investigated bymeasuring the fluorescence intensity, and the
ncAA-containing protein yield was presented by the ratio of fluores-
cence intensity to optical density OD600 (Flu/OD) of cells expressing
sfGFP and PylRS. The normalized protein yield was calculated by
subtracting the Flu/OD ratio of cells cultured in the presence of ncAA
with that of in the absence of ncAA (Supplementary Fig. 2). We found
that R19H/H29R/T122S did not achieve the expected increase in stop
codon suppression (SCS) efficiency, and the IPYE (V31I/T56P/H62Y/
A100E) from chPylRS did not increase the SCS efficiency of IFRS either.
Although R61K/H63Y/S193R in IFRS did achieve a modest increase in
sfGFPS2TAG expression yield compared to the IFRS alone, the effect
was still lower than that observed for the mutations in wild-type
MmPylRS. Interestingly, the D2N/K3N/T56P/H62Y from chPylRS
increased the SCS efficiency of IFRS by around 7-fold, confirming that
tRNA binding domain mutations can indeed enhance the activity of
catalytic domain mutants (Supplementary Fig. 2b). We also tested the
activity of 12 single-point mutations and found that only D2N, R61K,
and H62Y enhanced the activity of IFRS, with D2N being the most
active, exhibiting 3-fold improved SCS efficiency compared to the wild
type (Fig. 1b, Supplementary Fig. 2a). In the combinatorial mutant
D2N/K3N/T56P/H62Y, D2N and H62Y enhanced the SCS efficiency of
IFRS, while K3N and T56P reduced the SCS efficiency, indicating a
positive sign epistasis among the mutations (Supplementary Table 2).

We then attempted to use machine learning to explore the com-
binatorial space of these 12 single-pointmutations, a total of 4096 (212)
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variants. The FFT-partial least squares regression (PLSR) approachwas
applied for predicting the fitness of combinatorial variants, which uses
FFT for the protein sequence encoding and PLSR as the algorithm of
theMLmodel. The FFT-PLSRmodel has demonstrated the ability to be
trained on a small dataset of enzymemutant activity data to accurately
predict the activity across the entire combinatorial space. The variant
sequences were first transferred into numerical features and then
transformed into a two-dimensional energy versus frequency repre-
sentation using FFT (Supplementary Fig. 3). Based on the transformed
data, a PLSR model was trained to predict the activities of other
mutants. We first trained the FFT-PLSR model using dataset 1, com-
posed of 12 single variants datasets. By scoring with leave-one-out
cross-validation (LOOCV), we screened 566 amino acid encodings
from the AAindex database and selected the index with the best score
to encode the amino acid sequences and build the PLS regression
model (Supplementary Figs. 4 and 5). We constructed 6 double and 19
triplemutants, andmeasured their SCS efficiency to formdataset 2 as a
test set (N = 25) (Fig. 1c). The trainedmodel achieved anR2 of 0.843 and
anMSEof 2.887 on the test set, indicating that themodel showed good

prediction ability for high-activity combinatorial mutants (Fig. 1d).
Interestingly, the best combinatorial mutant predicted by the model
wasD2N/R61K/H62Y, whichwas also the variantwith highest activity in
the test set (Supplementary Table 3).

In dataset 2, we observed epistasis between mutations. For
example, T56P showed a decreased amber codon suppression effi-
ciency, while H62Y improved the amber codon suppression efficiency
compared to the IFRS. However, the T56P/H62Y showed a normalized
fluorescence intensity significantly higher than that of H62Y, which led
to a positive sign epistasis between T56P and H62Y. The positive sign
epistasis effect was also found for R61K and H63Y, and D2N and K3N
(Supplementary Table 2). By contrast, R19H and H29R showed a
positive reciprocal sign epistasis (Supplementary Table 2). To help the
model gain a more thorough understanding of epistasis between
mutants, we added dataset 2 to the training set, which raised the total
number of mutants in the training set to 38. Additionally, we rationally
designed and constructed an additional test dataset 3 (N = 56)
including 56 combinatorial mutants, mainly based on combination of
improved variants (Fig. 1e). The retrained model achieved an R2 of
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Fig. 1 | Machine learning to guide the design of high-activity combinatorial
variants. a Structure of IFRS used for engineering TBD of PylRS, and 3BrF was
selected as the substrate of IFRS. b Dataset 1 is composed of activities of 12 single-
point mutants. c Dataset 2 is composed of activities of double and triple mutants
used as a test set. d Accuracy of MLmodel in Dataset 2. e Dataset 3 is composed of

activities of quadruple and multiple-point mutants used as a test set. f Accuracy of
ML model in Dataset 3. g The SCS efficiency of the top 8 variants predicted by the
ML model. h Experimental data and predicted data presented in a 2-dimensional
sequence space. Error bars represent ±standard deviation of the mean over three
independent replicates. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-61952-2

Nature Communications |         (2025) 16:6648 3

www.nature.com/naturecommunications


0.835 on the test set, still showing high accuracy for predicting the
activities of combinatorial mutants (Fig. 1f). We then constructed the
top 8 mutants predicted by the model and tested their SCS efficiency
(Fig. 1g and Supplementary Table 4). All eight variants showed a sig-
nificant increase in the activity compared to the IFRS, with the mutant
Z7 (D2N/V31I/T56P/R61K/H62Y/T122S/S193R, Com1-IFRS) exhibiting
the highest SCS efficiency, which was 11-fold higher than the IFRS
(Fig. 1g). We then attempted to apply the ML model to predict single-
point variants in the TBD to improve the activity of Com1-IFRS. Fifteen
single-point variants were predicted by the model to be more active
than Com1-IFRS, with 12 of them located at previously unseen posi-
tions. However, all 15 variants failed to further improve the activity of
Com1-IFRS, indicating the model’s limited ability to predict effects of
mutations at unseen positions (Supplementary Fig. 6). The outcome is
reasonable, given that the training set was small, only containing 38
variants across the 12 positions.

We utilized the Uniform Manifold Approximation and Projection
algorithm, along with one-hot encoding for sequence representation,
to reduce the dimensionality of the 12 single-point mutations combi-
national space and visualized it as a two-dimensional scatter plot. Our
analysis revealed that mutations with similar activities clustered clo-
sely together (Fig. 1h). The mutants from the training set were dis-
tributed across the entire sequence space, which was crucial for
developing an accurate machine learning model (Fig. 1h). Further-
more, our model’s predictions aligned well with the experimental data
with high-activity variants in the outer clusters and low-activity var-
iants in the inner clusters (Fig. 1h). This indicates that the model
accurately mapped the fitness landscape, allowing us to identify
mutants with significantly increased activity in the high-activity
clusters.

Further improvement of IFRS activity by deep learning models
To further improve IFRS activity,weexplored additionalmutation sites
in TBD with Com1-IFRS as the template, by employing three deep
learning models that enable zero-shot prediction of high-fitness var-
iants, including ESM-1v, MutCompute, and ProRefiner (Fig. 2a, Sup-
plementary Fig. 7 andTable 5). EMS-1v is a protein languagemodel that
was trained on extensive datasets of protein sequences spanning the
evolutionary tree of life, and hence learned the fundamental principles
of protein structure and function21. Given the sequence of Com1-IFRS,
each amino acid in the TBD region was individually masked and ana-
lyzedby theESM-1vmodel to predict the impactof potentialmutations
at that site. We constructed and characterized 16 single-point mutants
that were predicted to have a higher likelihood than wild type (Sup-
plementary Figs. 7 and 8). MutCompute is a structure-based three-
dimensional self-supervised convolutional neural network model that
was trained to associate local protein micro-environments with their
central amino acid22. Given the N-terminal and C-terminal structures of
MmPylRS (5UD5.pdb & 4TQD.pdb), MutCompute predicted single-
point mutations optimizing the protein structure, and we character-
ized the top 44 mutants based on the probability predicted (Supple-
mentary Figs. 7 and 8). ProRefiner is a global graph attentionmodel for
inverseprotein folding thatdesigns sequences compatiblewith a given
backbone structure23. We restrict the candidate mutation sites to the
TBD of PylRS and leverage sequence design models to compute a
quality score for every candidate site. For each site to be examined, we
masked this site in the sequence to get the input partial sequence, and
the input backbone structure is from the Com1-IFRS structure pre-
dicted by Alphafold 324. The model then predicted the identity of the
masked site in the formof a probability distributionover all amino acid
types, and the top 42 single-point mutants were selected for char-
acterization (Supplementary Figs. 7 and 8). Interestingly, 7 mutants
were predicted to have improved activities by both Mutcompute and
ProreRiner (Supplementary Fig. 7). Based on three methods, a total of
95 single-point mutants were constructed on 85 amino acids of COM1-

IFRS and assayed for enzyme activity (Fig. 2b and Supplemen-
tary Fig. 7).

Since the enzyme activity is represented by the fluorescence
intensity of sfGFP incorporated with 3BrF, the maximum activity that
could be detected is the fluorescence intensity of wild-type sfGFP. The
fluorescence intensity of sfGFPS2TAG in the presence of Com-1-IFRS
reached 45% of wild-type sfGFP. Among all the single-point variants
constructed, we did obtain several variants with higher activities than
the Com1-IFRS (Fig. 2b), which were I176S predicted by ESM-1v, D76A,
T68V, H28K, T20S predicted by MutCompute, K67S, N7S, V74I pre-
dicted by ProRefiner, and H63N predicted by both MutCompute and
ProRefiner. The best variant D76A, designed by MutCompute, showed
a 31% improvement in activity compared to Com-1-IFRS. However,
most of the variants designed by the three approaches exhibited
reduced or even lost activity, such as W16E, showing a 99.7% decrease
in activity compared to IFRS.

We then wondered if these data are useful for training a super-
vised MLmodel to predict high-fitness single-point variants across the
protein. With the above single-point mutants’ activity data as the
training set (N = 96, including Com1-IFRS), the FFT-PLSR model was
built. There are 566 amino acid encodings in the AAindex database,
and we tested the performance of the models trained with different
numbers of amino acid encodings. To optimize the amino acid
encoding, we first screened the single AAindex encoding, which was
then fixed foroptimizing the secondencoding. The third encodingwas
optimized with the first two encodings fixed. When screening two or
three indices, the protein sequence was first subjected to FFT sepa-
rately, and then the results were combined to train the model. When
one index was used, the R2 of the model was only 0.452, while when
three amino acids encodings were used, the R2 of the model increased
to 0.926 (Supplementary Fig. 9). We then used the three-index model
to predict fitness of all single-pointmutations in the PylRS TBD region,
and the top 20 variants were constructed and characterized for
enzyme activity (Fig. 2b, Supplementary Fig. 10). The best variant,
K67G, showed a 31.9% improvement in activity, which was even higher
than D76A predicted by MutCompute and K67S predicted by Pro-
Refiner, indicating that the FFT-PLSR model was effective in exploring
sequence space (Fig. 2c).

To further explore the sequence space, we constructed the
saturation mutagenesis on the nine sites where the improved variants
were obtained, to build amutability landscape (Fig. 2d). Themutability
landscape is defined by the impact of all possible point mutations on
protein function by substituting the native amino acid at each residue
position with each of the 19 non-native amino acids, one at a time25,26.
The mutability landscape showed that most of the improved variants
were found at positions D76, H63, and K67, and the mutations at sites
T20, H28, and I176 weremostly detrimental. We screened the variants
that showed over a 10% improvement in SCS efficiency compared to
Com1-IFRS (Fig. 2e). Therewere 3, 7, 5, 1, 2, 9mutations at positionsN7,
H63, K67, T68, V73, D75, respectively,meeting this criterion.We hence
attempted to use the FFT-PLSR model to explore this sequence space
containing 11,520 (4× 8 × 6 × 2 × 3 × 10)mutations. To achieve epistasis
information, the top 3 variants at eachmutation site were combined to
construct double variants, resulting in a total of 92 combined variants
to be used formodel training (Fig. 2f). Combination of improved single
variants did generate further improved variants, with the best double
mutant of N7E/T68F showing a SCS 70% higher than the Com1-IFRS
(Fig. 2f). However, the variants with decreased activities were also
observed, indicating a strong epistasis among several mutations. For
example, both V74W and K67G improved the SCS efficiency, while
V74W/K67G showed a significant decrease compared to the Com1-
IFRS,which resulted in a strongnegative reciprocal sign epistasis effect
between V74W and K67G. The antagonistic effect was also observed
for V74W and single variants including K67L, D76F, D76L, and D76Y
(Supplementary Table 6).
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Fig. 2 | Design of variants to further improve the activity of IFRS. a Design of
single variants using models including ESM-1v, MutCompute, and ProRefiner.
b Fitness of single variants is designed. The size of the circle indicates the activity
ratio of mutants to Com1-IFRS. The mutants designed by different methods are
colored differently. c Activities of nine improved single variants. d The mutability
landscape constructed by saturation mutagenesis at nine amino acid sites. The
color bar indicates the activity ofmutants relative toCom1-IFRS.eThe sequences of
mutants with at least 10% improved SCS efficiency are higher than Com1-IFRS. The
height of each character indicates the relative fitness of the mutant. f The relative

activities of double variants constructed by combining the top 3 single variants at
each mutation site. The mutants include N7H, N7E, N7Y, T68F, K67G, K67S, K67L,
H63L, H63M, H63C, V74F, V74W, D76L, D76F, D76Y. g Accuracy of the FFT-PLSR
model built. The R2 value was calculated on the test set, which consisted of 15
double-point mutants. h The SCS efficiency of the top 20 combinatorial variants
predicted by the FFT-PLSR model. Error bars represent ±standard deviation of the
mean over three independent replicates. Source data are provided as a Source
Data file.
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We then conducted another round of FFT-PLSR building for pre-
dicting high-activity combinatory mutations. There were 27 single-
point mutations and 92 combinatorial mutations, plus Com1-IFRS, 120
data points in total in the training dataset. Thesewere used to train the
FFT-PLSRmodel. We first used 10-fold cross-validation to evaluate and
identify the optimal single-index model. However, this model only
achieved an R2 score of 0.558 on the training set, indicating a poor
performance. To improve the model performance, multiple indices
were used for encoding amino acids, which improved the R2 score to
0.668 for the two-index model and 0.677 for the three-index model,
respectively (Supplementary Fig. 11 and Table 7). The retrained FFT-
PLSRmodel achieved an R2 of 0.729 on the test set, which consisted of
15 double-point combinatory mutants not included in the training set
(Fig. 2g, Supplementary Fig. 12). Based on the three-index model, we
predicted the activity data of 11520 mutations, and the top 20 com-
binatorial variants were selected for experimental verification (Sup-
plementary Table 8). All the variants showed comparable or higher
activities than the Com1-IFRS, with 15 of them possessing activities
improved by more than 2-fold, suggesting the great effect of the ML
model. The best Z7-3 variant (N7Y/H63L/K67N/V74W, Com2-IFRS)
showed a 2.8-fold increase in SCS efficiency compared to Com1-IFRS,
more than 30-fold higher than IFRS, reaching fluorescence intensity
comparable to wild-type sfGFP (Fig. 2h). Biochemical characterization
of IFRS, Com1-IFRS and Com2-IFRS using 3BrF confirmed that the
catalytic efficiency (kcat/Km)ofCom1-IFRSandCom2-IFRS for tRNAwas
improved by 1.4-fold and 5.6-fold, respectively, compared to IFRS
(Supplementary Table 9). Additionally, we tested if the mutations
H20S, H28K, I176N, and I176S, which were not selected for making
combinatory mutations, could further improve the activity of Com2-
IFRS. It was found that none of these single-point mutations improved
the activity of Com2-IFRS (Supplementary Fig. 13).

Combination of tRNA-binding domain mutations with catalytic
domain mutations to generally enhance the incorporation
efficiency of diverse ncAAs
As the IFRS is polyspecific and could accept various phenylalanine
derivatives27, we hence tested if Com1-IFRS and Com2-IFRS improved
the incorporation efficiency ofother ncAA substrates. It was found that
normalized fluorescence of sfGFPS2TAG incorporated with 12 diverse
ncAAs was significantly increased by the two variants compared to
IFRS, with the largest 101.9-fold improvement for 3FF enabled by
Com2-IFRS (Fig. 3a). However, since IFRS is a promiscuous enzyme
with a certain degree of misincorporation of canonical amino acids
(cAAs), Com1-IFRS and Com2-IFRS also increased the incorporation
efficiency of cAAs, and different extent of misincorporation was
observed in presence of different ncAAs (Fig. 3a). Subtracting fluor-
escence intensity of sfGFP2TAG inpresenceof 3FFwith that in absence
of 3FF revealed a 3944.8-fold improvement in SCS efficiency for Com2-
IFRS compared to IFRS (Supplementary Fig. 14a). Biochemical char-
acterization of IFRS, Com1-IFRS and Com2-IFRS using 3FF confirmed
that the catalytic efficiency (kcat/Km) of Com1-IFRS and Com2-IFRS for
tRNAwas improved by 1.8-fold and 8.8-fold, respectively, compared to
IFRS (Supplementary Table 9).

CTD of PylRS containing the catalytic sites has evolved to accept
various ncAAs. The mutations Com1 and Com2 were then combined
with different catalytic domain (CD) mutations to enhance the incor-
poration efficiency of the corresponding ncAAs. To test the uni-
versality of Com1 and Com2 in enhancing the incorporation efficiency
of various ncAAs, we selected CD mutations with large sequence
diversity that could accept ncAAs with significantly different side
chains, including Phe derivatives, Tyr derivatives, Trp derivatives, Cys
derivatives, His derivatives, and Lys derivatives (Supplementary
Table 10). CD mutant NACA was combined with Com1 and Com2 to
test the incorporation of three Phe derivatives, including 3-bromo-L-
phenylalanine (3BrF),2-chloro-L-phenylalanine (2ClF), and 3-L-

phenyllactic acid (PLA). The two variants significantly improved effi-
ciency of NACA to incorporate these three ncAAs, and the Com2 led to
improvement of 38.9-fold, 29.2-fold and 7.7-fold, for 3BrF, 2ClF, and
PLA respectively (Fig. 3b). When the fluorescence intensity was nor-
malized to cAA incorporation, the fold change was 61.1-fold, 68.1-fold
and 9.9-fold, for 3BrF, 2ClF, and PLA, respectively (Supplementary
Fig. 14b). IFRS could also accept 3BrF and 2ClF, and Com1, Com2
mutations significantly improved the misincorporation of cAAs in
presence of 3BrF and 2ClF (Fig. 3a). Interestingly, when combinedwith
NACA, the two variants did not improve the incorporation efficiencyof
cAAs in presence of 3BrF and 2ClF, compared to IFRS (Fig. 3b). This
could be due to that NACA exhibited lower activity against cAAs than
IFRS, and Com1, Com2 did not influence substrate specificity and
generally enhanced the activity of CDmutations against all substrates.

This was further confirmed by the performance of Com1 and
Com2 introduced in wild-type MmPylRS. MmPylRS showed limited
misincorporation of cAAs, and the two variants did not increase the
misincorporation of cAAs either, compared to the wild type. On the
other hand, the two variants significantly increased the incorporation
efficiency of N6-(tert-butoxycarbonyl)-L-lysine (BocK) and N6-((ally-
loxy)carbonyl)-L-lysine (AlocK) and the best Com2 resulted in 40.2-
fold and 32.7-fold improvement for BocK and AlocK, respectively
(Fig. 3b, Supplementary Fig. 14b). This was further confirmed by the
huge increase in expression level of sfGFP incorporated with BocK in
presence of Com2-WT compared toWT (Supplementary Fig. 15). Mass-
spectra analysis also confirmed the correct incorporation of BocK and
nomisincorporation of cAAswas observed (Supplementary Fig. 16 and
Table 11). Interestingly, the incorporation efficiency of BocK directed
by Com2-WT was 2.7-fold higher than chPylRS-IPYE obtained
previously7. Additionally, the SCS efficiency of Com2-WT against BocK
was nearly 17.9-fold higher thanMaPylRS, the PylRS enzyme lacking an
NTD, although a previous study showed thatMaPylRS exhibited higher
activity than wild-type MmPylRS10 (Supplementary Fig. 17a). Bio-
chemical characterization of WT and Com2-WT using BocK confirmed
that the kcat of Com2-WT improved 2.6-fold, the Km for BocK weakly
increased, such that the catalytic efficiency (kcat/Km

BocK) of the evolved
variant was enhanced by 2.2-fold compared to wild-type MmPylRS
(Supplementary Fig. 18). The kinetic parameters were also measured
for tRNA, and the catalytic efficiency (kcat/Km

tRNA) of Com2-WT was
improved by 1.8-fold compared to wild type (Supplementary Table 9).
Interestingly, Km for tRNAwas increased by 1.4-fold for Com2-WT than
wild type. Similarly, the binding affinity of Com2-WT with tRNA was
around 2.1-fold lower than that of WT, suggesting that the mutations
on the TBD improved the enzyme activity by modifying the tRNA
binding conformation instead of enhancing the binding affinity (Sup-
plementary Fig. 19).

Com1 and Com2 also enhanced the activities of other CD muta-
tions toward their corresponding ncAAs. The addition of Com2
increased the incorporation efficiency of N-epsilon-Acetyl-L-lysine
(AcK) by 13.3-fold compared to the original CD mutations MLAF, and
the fold change was 32.2-fold when the incorporation efficiency was
normalized to cAA incorporation (Fig. 3b, Supplementary Fig. 14b).
The extent of improvement was significantly higher than the IPYE
variant tested previously7. The SDS-PAGE also revealed that the
amount of sfGFP expressed in presence of Com2-MLAF was sig-
nificantly higher than that in presence of MLAF (Supplementary
Fig. 15). Mass-spectra analysis confirmed the correct incorporation of
AcK in sfGFP, but a misincorporation of lysine was also observed
(Supplementary Fig. 16). Additionally, addition of Com2 improved
incorporation efficiency of GML mutant by 5.4-fold, 5.8-fold and 3.9-
fold against 3BrY, 3ClY and 3IY, respectively, while the fold change
reached 117.3-fold, 587.6-fold and 6.5-fold when the SCS efficiency was
normalized to cAA incorporation (Fig. 3b, Supplementary Fig. 14b).We
checked expression of sfGFP with 3IY incorporated, and found that
Com2-GML indeed significantly increased amount of expressed
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Fig. 3 | tRNA-binding domainmutations generally improved the incorporation
efficiency of various ncAAs. a The SCS activity of IFRS, Com1-IFRS, and Com2-IFRS
toward various substrates.bThe SCS activity of combinatorial variants against various
ncAAs. Light purple, absence of ncAAs in growth medium; Dark purple, presence of
ncAAs in growth medium. Error bars represent ±standard deviation of the mean over
4 independent replicates. NcAAs include 3-fluoro-L-phenylalanine (3FF), 2,3-difluoro-
L-phenylalanine (23FF), 2,4-difluoro-L-phenylalanine (24FF), 2,5-difluoro-L-phenylala-
nine (25FF), 3,4,5-trifluoro-L-phenylalanine (345FF), 2,3,6-trifluoro-L-phenylalanine

(236FF), 2,3,4,5,6-pentafluoro-L-phenylalanine (PFF), 5-bromo-2-chloro-L-phenylala-
nine (5Br2ClF), 2-chloro-L-phenylalanine (2ClF), 3,4-dichloro-L-phenylalanine (34ClF),
3-(2-thienyl)-L-alanine (2ThiA), 2-(5-bromothienyl)-L-alanine (BrThiA), N6-(tert-butox-
ycarbonyl)-L-lysine (BocK), N6-((allyloxy)carbonyl)-L-lysine (AlocK), N-epsilon-Acetyl-
L-lysine (AcK), 3-L-phenyllactic acid (PLA), 3-bromo-L-tyrosine (3BrY), 3-chloro-L-
tyrosine (3ClY), 3-iodo-L-tyrosine (3IY), 3-benzothienyl-L-alanine (Bta), 3-(1-naphthyl)-
L-alanine (1NaA), S-allyl-L-cysteine (Sac), 3-methyl-L-histidine (3MeH). Source data are
provided as a Source Data file.
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protein compared to GML. Mass-spectra analysis also confirmed the
correct incorporation of 3IY (Supplementary Fig. 16).

Com1 and Com2 mutations were also constructed in BtaRS to
explore their effect on the incorporation of the Trp derivatives28. The
addition of Com2 increased the incorporation efficiency of 3-
benzothienyl-L-alanine (Bta) and 3-(1-naphthyl)-L-alanine (1NaA) by
56.8-fold and 63.3-fold, respectively (Fig. 3b). SDS-PAGE revealed the
significantly improved amount of sfGFPwith Bta incorporated enabled
by Com2-BtaRS compared to BtaRS. Kinetic parameters measurement
using Bta revealed that the catalytic efficiency (kcat/Km) of Com2-BtaRS
for tRNAwas4-fold higher than that of BtaRS (Supplementary Table 9).
Mass-spectra analysis confirmed the correct incorporation of Bta and
no misincorporation of cAAs was observed (Supplementary Table 11).
However, misincorporation of cAAs was indeed observed when 1Na
was incorporated by Com2-BtaRS (Fig. 3b). To explore the effect of
Com1 and Com2 on the incorporation of Cys derivatives, Com1 and
Com2 were combined with CD mutation WS. Com1 did not exhibit
improved effect on fluorescence of sfGFP, while the addition of Com2
improvedfluorescence intensity of sfGFPwith Sac incorporatedby 2.8-
fold compared to WS (Fig. 3b), and the enhanced amount of sfGFP
expressed was confirmed on SDS-PAGE (Supplementary Fig. 15). WS
also showed a certain degree of misincorporation of cAAs, which was
also observed for Com2-WS (Fig. 3b).

Com1 and Com2were combined with two CDmutations, including
QF and IFGFF, to explore their effect on incorporating His derivatives,
including 3-(2-thienyl)-L-alanine (2ThiA), 2-(5-bromothienyl)-L-alanine
(BrThiA), and 3-methyl-L-histidine (3MeH). In the results, the addition of
Com2 increased the incorporation efficiency of 2ThiA, BrThiA, and
3MetH by 93.7-fold, 41.5-fold, and 40.9-fold, respectively, compared to
their CD variants. The fold change reached to 223.1-fold, 61.4-fold and
201.5-fold, respectively, when the amber codon suppression activitywas
normalized to cAA incorporation (Fig. 3b, Supplementary Fig. 14b). SDS-
PAGE revealed that Com2-QF and Com2-IFGFF indeed dramatically
enhanced the amount of purified sfGFP incorporated with 2ThiA and
3MetH, respectively, compared to CD mutations alone (Supplementary
Fig. 15). Kinetic parameters measurement using 3MetH confirmed that
the catalytic efficiency of Com2-IFGFF for tRNA was improved by 4.3-
fold compared to IFGFF (Supplementary Table 9). Moreover, according
tomass-spectra analysis, nomisincorporation of cAAs was observed for
GFP-2MetH and GFP-2ThiA (Supplementary Fig. 16).

To explore if the variants obtained were useful in improving the
expression of other proteins with ncAAs incorporated, we tested the
expression of myoglobin containing 3MetH (Fig. 4a). 3MetH has been
used as a heme ligand to enhance the activity of myoglobin or as a
catalytic residue of an artificial esterase possessing a non-canonical
organocatalytic mechanism29. Here, we used MmPylRS variant Com2-
IFGFF to incorporate 3MetH into the position His93 of myoglobin as a
ligand of heme. The protein expression was explored by carrying out
protein purification from the same amount of cells in the presence of
Com2-IFGFF and IFGFF. It was found that the concentration of 3MetH-
containing myoglobin was 28.3mg/L for Com2-IFGFF, 6.3-fold higher
than 4.5mg/L of IFGFF (Fig. 4b). We then measured the activities of
Mb-3MetH against guaiacol using the purifiedproteinwithout dilution.
The myoglobin catalyzes the oxidation of guaiacol by hydrogen per-
oxide to generate a stable tetrameric product whose formation can be
readily monitored by absorbance at 470 nm. The yield of product was
significantly higher for Com2-IFGFF compared to IFGFF (Supplemen-
tary Fig. 20). The ΔOD470 reached 0.063 in the reaction system con-
taining Com2-IFGFF after a 40-min reaction, 7.9-fold higher than that
using IFGFF (Fig. 4b, Supplementary Fig. 20), confirming the higher
expression of target protein aided by the Com2-IFGFF variant.

Suppression of multiple amber codons of PylRS variants
We then characterized the ability of Com1-IFRS and Com2-IFRS to
suppress multiple amber codons in sfGFP, which is important for

incorporatingmultiple unnatural aminoacids intoproteins.One tofive
consecutive amber codons were inserted second position of sfGFP
(Fig. 4c). Both Com1-IFRS and Com2-IFRS exhibited higher fluores-
cence intensity than IFRS in all situations, while Com2-IFRS showed
higher suppression ability than the Com1-IFRS, with 122.4-fold, 99.4-
fold, 91.2-fold and 53.3-fold improvement compared to IFRS, for
S2TAG× 2, S2TAG× 3, S2TAG× 4 and S2TAG× 5, respectively (Fig. 4d,
Supplementary Fig. 21a). It was also found that Com1-IFRS and Com2-
IFRS improved the incorporation efficiency against native amino acids
compared to IFRS. We also tested the incorporation efficiency of
multiple unnatural amino acids at different positions of sfGFP (Fig. 4e).
When 3BrF was incorporated at the position of D36 of sfGFP, the
fluorescence intensity was different from that of sfGFPwith 3BrF at the
second position, for both the wild-type IFRS and mutant Com1-IFRS
and Com2-IFRS (Fig. 4f, Supplementary Fig. 21b). Similar site-
dependent incorporation efficiency has previously been observed for
other ncAAs7. Despite this, Com2-IFRS still showed higher amber
codon suppression efficiency than Com1-IFRS and IFRS, with 3.8-fold,
7.9-fold, 27.3-fold, 4.7-fold and 5.2-fold improvement compared to
IFRS, for 1TAG, 2TAG, 3TAG, 4TAG and 5TAG, respectively.

MD simulations to explore the molecular change of PylRS
variants
The whole 3D structure of MmPylRS was not yet available as the full-
length protein is insoluble. Hence, AlphaFold3 was used to predict the
structures of MmPylRS (WT), Com1-WT, and Com2-WT in complex
with tRNAPyl (Supplementary Fig. 22). The predicted MmPylRS struc-
ture aligned well with the separate NTD structure and CTD structure
determined previously (Fig. 5a). 50-ns MD simulations were then
conducted for these structures in complex with Pyl-AMP to under-
stand how the mutations influenced the binding of tRNA and the
enzyme activity (Supplementary Figs. 23–25). The root-mean square
deviation (RMSD) values revealed that the trajectories were well
equilibrated at the last 10 ns, which were used for further analysis
(Supplementary Fig. 25a). The reaction distance between the 3′-OH of
tRNA A76 and the carboxyl carbon atom of amino acid Pyl was first
analyzed. It was generally shorter for Com2-WT than wild type and
Com1-WT (Fig. 5b, Supplementary Fig. 26). A total of 1000 snapshots
were analyzed, and the number of snapshots with a distance shorter
than 4Å was 462, which is 21-fold and 10-fold higher than that of wild
type and Com1-WT, respectively (Fig. 5c). These indicated that Com2
mutationsmediated the binding of tRNAPyl tomake the aminoacylation
reaction happen more easily. Interestingly, in the reaction conforma-
tions, we observed new hydrogen bonds formed between Pyl-AMP and
tRNA in the two variants compared to WT. Com1-WT showed a new
hydrogen bond formed between the main chain -NH2 of Pyl and 2′-OH
of tRNA A76, while Com2-WT exhibited a hydrogen bond formed
between themainchain -NH2of Pyl and the 3′-OHof tRNAA76.No such
hydrogen bonds were found in wild type (Supplementary Fig. 27).
These new hydrogen bonds will contribute to the interaction between
Pyl-AMP and tRNA, and hence accelerate the reaction.

The hydrogen bonds formed between tRNA and the protein were
also analyzed. In last 10-ns MD simulations, the number of hydrogen
bonds in PylRS TBD with occupancy over 60% was 22, 19, and 22 for
WT, Com1-WT, and Com2-WT, respectively (Supplementary Fig. 28).
Specifically, both Com1-WT and Com2-WT formed new hydrogen
bonds including LYS3-A58, ARG19-A46, ARG52-G52, ARG193-A5,
ARG193-C13 and ARG193-U12, while Com2 formed several extra
hydrogen bonds such as ARG55-C45, ARG55-A46, Arg58-A20 (Fig. 5d).
Additionally, several hydrogen bonds were disrupted in the variants,
such as ASN49-G47, ARG55-A46, ARG55-G21, ARG58-A58, R66-G21 and
so forth. Specifically, in the conserved Motif 2 loop that is responsible
for tRNA recognition, twohydrogenbonds Lys336-C71 and Lys336-C72
were disrupted, and a new hydrogen bond Asp334-C71 was formed in
both the Com1 and Com2 variants (Supplementary Fig. 29).
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Fig. 4 | Further characterization of PylRS variants. a Introduction of 3MetH at
His93 position of myoglobin as a ligand of heme. b Product yield of reaction cat-
alyzed by myoglobin-3MetH after 40-min reaction, and expression of myoglobin-
3MetH detected on SDS-PAGE. The incorporation of 3MetH was enabled by IFGFF
and Com2-IFGFF. +, with 3MetH added; −, no 3MetH added. Myoglobin-WT indi-
cates no ncAA incorporation in myoglobin. c Suppression of multiple amber
codons by PylRS variants, with multiple consecutive amber codons inserted at the

second position of sfGFP. d Fluorescence intensity of sfGFP with multiple 3BrF
inserted at the second position, enabled by IFRS, Com1-IFRS, and Com2-IFRS. e The
positions where multiple 3BrF are inserted in sfGFP. f Fluorescence intensity of
sfGFP with multiple 3BrF inserted at different positions, enabled by IFRS, Com1-
IFRS, and Com2-IFRS. Error bars represent ±standard deviation of the mean over
four independent replicates. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-61952-2

Nature Communications |         (2025) 16:6648 9

www.nature.com/naturecommunications


Fig. 5 | MD analysis for WT, Com1-WT, and Com2-WT. a TheMmPylRS structure
predicted by Alphafold 3. b The reaction distance between the 3′-OH of tRNA A76
and the Ca atomof amino acid Pyl, calculated through analysis of 10 ns equilibrated
trajectories. c The number of snapshots with a distance shorter than 4Å.
d Hydrogen bonds occupancy in WT, Com1-WT, Com2-WT, calculated through
analysis of 10 ns equilibrated trajectories. e The binding free energy of amino acids

within 4 Å of the tRNA as ligand and the tRNA bases. f Dynamics cross-correlation
map for theCα atomand tRNAP atompairswithinMmPylRS and variants calculated
with the last 150ns MD trajectory. Protein contains 454 amino acids, and the tRNA
contains 72 bases (Supplementary Fig. 34). The correlation coefficient (Cij) was
shown in different colors. Cij with values from 0 to 1 represents positive correla-
tions, whereas Cij with values from −1 to 0 represents negative correlations.
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Additionally, an extraH-bondGLU332-C74was formed inCom1 variant
but not in WT and Com2. This indicated that mutations reshaped the
interactions between tRNA and protein, and the Com1 and Com2
improved the tRNA binding in a different way. As a result, the inter-
action energy between tRNA and protein was different for the wild
type and variants.

The binding free energy between tRNA and different domains of
the protein was analyzed. Com1-WT and Com2-WT exhibited lower
binding free energy compared to the wild type, which was mainly
attributed to the decreased binding free energy of the tRNA binding
domain (Supplementary Fig. 30). Interestingly, the binding free energy
of full-length Com1-WT was lower than Com2-WT, while that of the
tRNA binding domain of Com1-WT was higher than Com2-WT. The
binding free energy determined in MD simulations seemed to con-
tradictwith binding affinity andKmvaluesmeasured forWTandCom2-
WT. This could be attributed to the different ncAA substrate used. In
the MD simulations, the substrate was native substrate pyrrolysine,
while the substrate used in biochemical characterization was BocK.
Kinetic parameters measurement using different ncAA did reveal that
Com2 influenced the Km for tRNA in a different way in the presence of
different ncAA (Supplementary Table 9).

Residue-level binding energy contribution analysis for both pro-
tein and tRNA was carried out. Several amino acids and tRNA bases
were indeed found to impact the binding free energy. For example,
GLU332 in Com1-WT exhibited reduced binding energy, while no sig-
nificant changes were observed in WT or Com2-WT, which might be
attributed to thenewly formedH-bondGlu332-C74 inCom1-WT. S193R
mutation formed new salt bridges with tRNA, including Arg193-A5,
Arg193-C13, Arg193-U12, which led to a significant decrease in the
binding free energy (Fig. 5e). Also, Arg55 of Com2-WT showed a sig-
nificantly low binding energy due to the T56P mutation, although it is
not the case for Com1-WT. As for the analysis of tRNA binding energy,
it was found that themutations significantly increased the binding free
energy for the last three bases C74, C75, and A76, which might facil-
itate the aminoacylation reaction (Fig. 5e).

Dynamics cross-correlation matrices (DCCMs) were also com-
puted for the WT and two variants to understand how the mutations
impact protein dynamics. Since the MD simulation systems are large
and complex, a robust coupling analysis of dynamic cross-coupling
correlation might need simulations of a longer timescale than 50ns.
We hence carried out 200-ns simulations for WT, Com1-WT, and
Com2-WT (Supplementary Figs. 31–33, SupplementaryNote 1), and the
last 150 ns trajectories were used to compute DCCM of the protein Cα

atompairs and tRNAPatompairs. Generally, the variants showedmore
dynamics cross-correlations between residue pairs compared to the
wild type, while Com1-WT and Com2-WT exhibited similar Cij values in
most of the regions (Fig. 5f). Specifically, it was found that the
dynamics correlation between NTD and CTD was more significant in
theCom1-WTandCom2-WT, compared toWT.AlthoughNTDandCTD
are distant from each other, they are connected together with the
tRNA. The mutations on tRNA binding domain hence impact the
dynamics of CTD through modification of interactions with tRNA. The
increased correlated dynamical network would help to maintain more
reaction conformations, thereby enhancing the enzyme activity of
Com1-WT and Com2-WT.

Discussion
This study utilized machine learning to explore the combinatorial
mutation space of MmPylRS TBD and identified great variants includ-
ing Com1-IFRS and Com2-IFRS (Supplementary Table 12), which
modified the tRNAbinding, enhanced the aminoacylation rate by up to
5.6-fold against 3BrF, and subsequently significantly improved SCS
efficiency by up to 101.9-fold improvement for 3FF. PylRS has been
engineered for improved activity through N-terminal mutations.
However, all previous studies applied directed evolution strategies for

the PylRS N-terminal engineering, and the methods used included
error-prone PCR to construct a library coupled with screening based
on GFP fluorescence or white/blue colony11, and a PACE7. Although
directed evolution is a powerful strategy for enzyme engineering, its
success relies on iterative cycles of library construction and screening,
and it can be trapped in local fitness optima due to taking one muta-
tion step at a time. In our study, we applied deep learning models
capable of zero-shot prediction of high-fitness variants to explore
mutation target sites in the whole TBD, and a supervised model, FFT-
PLSR, to explore the sequence space once the mutation target sites
were identified. Thanks to the ML models we used, the variants
obtained were significantly more active than the variants obtained
previously.

Due to epistatic interactions between mutations, combining
multiple mutations does not always result in positive effects. Investi-
gating the combinatorial effects ofmutants involves twomain tasks: (1)
pairwise combinations of specified mutations, and (2) exhaustive
combinations of 20 amino acids at specified mutation sites. Using the
FFT-PLSR model, we demonstrated that, by employing a training
dataset composed of 38 single, double, and triple mutants, it was
possible to identify multi-point combinatorial mutants with sig-
nificantly improved activity within the sequence space of 12 single-
point mutations and their pairwise combinations, totaling 4,096
mutants, thereby providing a solution to Task 1. We also attempted to
apply the ML model to tackle task 2 by restricting the mutant combi-
natorial space and focusing solely on combinations of single-point
improved mutations. We found that using multiple AA indexes to
encode protein sequences yielded better results than a single-index
model, with themodel achieving a fit of 0.729 for the test data set. The
advantage of the FFT-PLSR model lies in its effective utilization of
experimental mutant activity data, guiding the construction of the
next set of combinatorial mutants. With the Com1-IFRS as the parent
sequence, only 20 variants predicted by the ML model were tested.
Among them, the variant Com2-IFRS showed a 2.8-fold increase in
activity. In the future, the activity data of these variants could be fed
back and used to update the ML model, which would then be
employed to predict the next round of variants. Additionally, the
construction and characterization of PylRS variants could be carried
out by an automatic biofoundry, ensuring high reproducibility and
efficient data collection. This would accelerate the protein engineering
efficiency of PylRS, as successfully demonstrated with the Methano-
caldococcus jannaschii tyrosyl-tRNA synthetase30.

Zero-shot ML models learn general patterns in proteins and can
predict high-fitness protein variants without requiring any prior
knowledge other than protein sequence or structure. These models
can help to design an initial variant library or explore additional
potentialmutationswhen directed evolution reaches a localminimum,
opening additional evolutionary pathways. In our study, sequence-
based zero-shot model ESM-1V did not perform well, with mutations
predicted primarily located in the linker region 90–185 aa, and only a
positive mutant I176S was obtained, showing a minor improvement in
activity. The ESM model also suggested the low-activity C42N muta-
tion, while C42, C69, C72, and H24 are critical Zn-binding residues,
highlighting the model’s limitation in considering structural con-
straints (Supplementary Fig. 35). Previously, ESM models were suc-
cessfully applied to guide the affinity maturation of antibodies, and
optimization of an uracil-N-glycosylase variant activity that enables
programmable T-to-G and T-to-C base editing31. Several ESM models
are currently available, with each trainedondifferent protein sequence
datasets with varying numbers of parameters21,32,33. We also tested the
effect of ESM2_t33_650M_UR50D and ESM2_t36_3B_UR50D on the
prediction of high-fitness variants of IFRS, which predicted seven sin-
gle variants, and six of them have been predicted by ESM-1v, and none
of the six variants tested showed improved activity (Supplementary
Table 13). The poor performance of ESM models on engineering IFRS

Article https://doi.org/10.1038/s41467-025-61952-2

Nature Communications |         (2025) 16:6648 11

www.nature.com/naturecommunications


might indicate that although theprotein languagemodels, such asESM
trained on vast datasets of natural proteins, allowed zero-shot opti-
mization of specific proteins, it remains a challenge to generally select
promising variants for various enzymes possessing remarkable diver-
sity in termsof their classes and catalyticmechanisms. Insteadof being
used for zero-shot prediction of high-fitness variants, the protein large
languagemodels (PLMs) such as ESM could be used to encode protein
sequences for building ML models. EVOLVEpro, a few-shot active
learning framework that combines PLMs and regression models, has
been developed to rapidly improve protein activity34. The single-point
variant data of IFRS predicted by the zero-shot MLmodels could serve
as the input of EVOLVEpro, enabling further prediction of high-fitness
single-point variants. Through multiple rounds of this iterative pro-
cess, the model can generate variants with significantly improved
activity.

Structure-based model MutCompute predicted mutations to
optimize the protein structure, and six improved variants were
obtained using this method. Interestingly, MutCompute made pre-
dictions based on the crystal structure of wild-type PylRS, and muta-
tions beneficial to the wild-type PylRS do not necessarily work when
transferred to PylRS mutants. However, experimental results showed
that six mutations predicted by MutCompute still enhanced the
activity of the Com1-IFRS. Actually, MutCompute has been used to
improve activity and stability of several enzymes, including PET-
degrading enzymes35, DNA polymerase36, and haloalkane
dehalogenase37. ProRefiner, developed for inverse protein folding, also
predicted two improved Com1-IFRS variants. A similar model, Pro-
teinMPNN, has recently been used to generatemyoglobin and tobacco
etch virus protease designs with improved expression, elevated melt-
ing temperatures, and enhanced function38. However, these designs
contain multiple mutations and only have 41% to 85% sequence iden-
tity to the parent sequences. In contrast, the ProRefiner has been
validated for designing single-pointmutantswith improved activity for
transposon-associated transposase, which aligns closely with our
research task23.

The evolved PylRS TBD mutants have demonstrated exceptional
effectiveness in increasing the yield of ncAA-containing proteins. The
resulting TBD combinatorial mutants improved IFRS activity across its
substrate spectrum, and when combined with diverse CD mutants,
they enhanced the incorporation efficiency of six types of ncAAs.

MaPylRS, the enzyme lacking an NTD, has been shown to be
slightly more active than the wild-type MmPylRS10. However, the
incorporation efficiency of BocK directed by the Com2 variant of
MmPylRS was 17.9-fold higher than that of MaPylRS, indicating the
important role of theNTDofMmPylRS in catalysis. SinceMaPylRS lacks
the NTD, the strategy of engineering the NTD to enhance enzyme
activity might not be applicable to MaPylRS. Previously, Lin et al.
achieved efficient SCS by fusing theMmPylRS TBD region with the CD
of various cAARS, including histidine, phenylalanine, and alanine39.We
transplanted Com2 mutations to chHisRS, which contained an NTD
from MbPylRS-IPYE, MmPylRS, and a CTD from HisRS. The newly
formed variant Com2-HisRS exhibited a 6.8-fold improvement in SCS
efficiency characterized by fluorescence intensity of sfGFP2TAG,
compared to the chHisRS (Supplementary Fig. 17b). The TBD muta-
tions obtained in this study are hence promising to increase the
activities of diverse chimeric aaRS to enhance the incorporation effi-
ciency of more types of ncAAs into proteins. Moreover, these aaRS
obtained are expected to have a marked impact on the suppression of
multiple TAG stop codons, and hence make the genetic code expan-
sion technology more useful.

We carried out the aminoacylation reaction in vitro to character-
ize the activity and catalytic efficiency of PylRS variants. However, the
extent of improvement in catalytic efficiency (kcat/Km) of the Com2
variant relative to the wild type was not as high as the ncAA incor-
poration efficiency determined by sfGFP2TAG fluorescence intensity.

This might be because the mutations improved the PylRS expression,
which hence enhanced the suppression of the amber codon. There is a
mutation D2N in Com1-IFRS and Com2-IFRS, which showed a 3.6-fold
improvement in sfGFP2TAG expression yield compared to IFRS. Based
on theN-terminal rule that governs the rate of protein degradation, the
N-terminal amino acid of a protein determines its half-life in vivo40. The
first methionine of MmPylRS variant could be removed after transla-
tion, and the Asn2 became the N-terminal residue, which might
enhance the half-life of PylRS, and hence affect the protein expression
of sfGFP.

Additionally, the activity of PylRS was quantified based on the
production of AMP. However, we observed a strong AMP production
background during the measurement of kinetic parameters for tRNA
(Supplementary Fig. 36a).We tested the stability of ATP in the reaction
buffer and found that ATP was stable in the reaction buffer before
adding the enzyme, and hydrolysis only happen in presence of PylRS
(Supplementary Fig. 36b). Further characterization of WT and Com2-
WT revealed that the ATP hydrolysis led to the production of AMP, and
this could occur even in absence of tRNA and ncAA (Supplementary
Fig. 36c). And, interestingly, Com2-WT exhibited improved ATP
hydrolysis capability compared to WT. This might cause some error
when using the production AMP to quantify the enzyme activity, as
part of the AMP determined might be from ATP hydrolysis instead of
the aminoacylation reaction.

The wild-type PylRS exhibits poor solubility due to its hydro-
phobic NTD, which hinders crystallization of the full-length enzyme.
The latest protein-tRNA structure prediction tool, AlphaFold3, was
used tomodel the structure, allowing us to illustrate themechanismof
improved mutations. To better represent the binding conformation,
Zn²⁺ and ATP were included in the system. Analysis of the MD simu-
lation results suggested that the enhanced activity of Com2-IFRS likely
stems from themutations reshaping the binding interactions between
protein and tRNA, which reduced the reaction distance between tRNA
and Pyl-AMP, thereby enhancing aminoacylation efficiency. Addition-
ally, through DCCM analysis, we found that Com2-WT exhibited a
significantly enhanced overall dynamics network, implying that tRNA
binding strengthens both intra- and inter-domain couplings. To our
knowledge, this is the first study working on MD simulations of the
predicted MmPylRS structure containing both N-terminal and
C-terminal domains, paving the way for computational design of more
effective PylRS variants.

Methods
Reagents
Primers and genes were synthesized by Tsingke Biotechnology Co.,
Ltd. (Beijing, China). The high-fidelity DNA polymerase was from
Vazyme Biotech Co., Ltd (Nanjing, China), while the Dpn I enzyme was
obtained from Takara (Kusatsu, Japan). The T7 RNA polymerase was
from ABclonal Technology (Wuhan, China). The Easy RNA Cleanup Kit
was fromZhejiang Easy-Do Biotechnology Co., Ltd (Hangzhou, China).
The AMP-GloTM assay was from Promega (Beijing, China). The Ni NTA
Beads 6FF were from LABLEAD (Beijing, China). The pBK-PylRS plas-
mid and the pMyo4TAG-PylT plasmid are a kind gift from Dr. Jason
Chin, Medical Research Council Laboratory of Molecular Biology. All
ncAAs used in these studies were purchased from Aladdin (Shanghai,
China), Bidepharm (Shanghai, China), and Macklin (Shanghai, China).
The concentrations of tRNA, DNA, and protein were measured using
NanoDrop One (Thermo Fisher Scientific Inc., USA). Disposable fiber-
optic streptavidin-coated tips were purchased from ForteBio
Inc. (USA).

PCR-based methods for the construction of PylRS mutants
The gene sequences encoding each of the MmPylRS mutants were
codon-optimized for expression in E. coli andwere cloned between the
NdeI site and PstI sites of the pBK-PylS plasmid41. The pBK-MmPylRS
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plasmid was chosen as a template for mutant construction with the
plasmid PCR approach. The primer sequences used for PylRS variant
construction are supplied in the Supplementary Data. The polymerase
chain reaction (PCR) mix used was a high-fidelity DNA polymeraseMix
(P525, Vazyme). The PCR conditions are 95 °C 3min, (95 °C 30 s, 60 °C
30 s, 72 °C 90 s) × 30 cycles, 72 °C 10min. After PCR, 2μL Dpn I was
added to a 50μL PCR reaction mixture, and the digestion was carried
out at 37 °C for 2 h and 75 °C for 15min. After Dpn I digestion, 10μL of
PCR products were directly transformed into chemically competent E.
coli BL21(DE3) for the following experiments.

Superfolder GFP (sfGFP) reporter assay
The sfGFP expression plasmid, named pGFP-PylT, was constructed by
replacing the myoglobin gene in pMyo4TAG-PylT (a kind gift from Dr.
Jason Chin, Medical Research Council Laboratory of Molecular Biol-
ogy) with the sfGFP gene. The plasmids pGFP2TAG-PylT,
pGFPS2XTAG-PylT, and pGFPNTAG-PylT, containing multiple amber
codons, were constructed by multiple rounds of PCR using the pGFP-
PylT plasmid as a template. The plasmids encodingMmPylRS mutants
were co-transformed with pGFP2TAG-PylT, pGFPS2XTAG-PylT, or
pGFPNTAG-PylT into E. coli DH10B cells for assessment of PylRS
activity by the expression of sfGFP. After incubation in lysogeny broth
(LB)medium at 37 °C for 60min, the co-transformed cells were spread
onto LB agar containing 50μg/mL kanamycin and 12.5μg/mL tetra-
cycline. After cultivation for 12 h at 37 °C, individual colonies were
inoculated into 5mLLBwith required antibiotics at 37 °C and grown to
an OD600 of 0.4–0.6. The cells were harvested by centrifugation
(7104 × g, 10min), washed, and resuspended in antibiotics-
supplemented minimal medium. The sfGFP expression was induced
by arabinose with a final concentration of 0.2%. 200μL aliquots of
induced cells were transferred into the 96-well plates in the presence
or absence of the corresponding ncAAs in each well. After 12 h
induction at 37 °C, the fluorescence was quantified using a BioTek
Synergy H1 microplate reader (excitation/emission: 485/515 nm). Sig-
nals were background-corrected and normalized to cell density
(OD₆₀₀) measured on the same instrument.

Protein expression and purification for sfGFP
For sfGFP expression and purification, the DH10B cells containing
pBK-PylRS and pGFP2TAG-PylT were grown overnight in 5mL LBwith
required antibiotics at 37 °C. 2mL of cells were then inoculated into
200mL of fresh LBmedium supplemented with the same antibiotics,
and grown to an OD600 of 0.3. sfGFP expression was induced by
adding L-arabinose to a final concentration of 0.2%, followed by
incubation at 30 °C and 220 rpm for 20 h, either with or without the
corresponding ncAAs. Cells were harvested by centrifugation at
4000 × g, 10min, 10 °C. The pellets were resuspended in ice-cold
phosphate-buffered saline (PBS) buffer containing 20mM imidazole
(pH 8.0) and then sonicated. After centrifugation at 12,000× g, 4 °C
for 20min, the supernatant was loaded through Ni-NTA beads
equilibrated with PBS buffer containing 20mM imidazole, pH 8.0,
and then washed with PBS buffer containing 50mM imidazole, pH
8.0. The proteins were eluted with PBS buffer containing 500mM
imidazole, pH 8.0. The purified proteins were concentrated using an
Amicon Ultra 10,000 MWCO (Millipore) with PBS buffer pH 8.0, and
stored at −80 °C.

Protein expression and purification for myoglobin
Formyoglobin expression andpurification, the co-transformedDH10B
cells containing pBK-PylRS and pMyoglobin-93TAG were cultured
overnight and diluted at a ratio of 1:100 into 200mL of fresh LB
medium supplemented with the required antibiotics and 1mM 3-
methyl-L-histidine. Cells were grown until OD600 reached 0.3.
L-arabinose was added with a final concentration of 0.2% to induce
myoglobin expression (37 °C, 220 rpm, 12 h) with or without the

addition of 3MeH. Cells were harvested by centrifugation at 4000× g
for 10min at 4 °C. The resulting cell pellets were suspended in ice-cold
Tris-HCl buffer (50mM Tris-HCl, 300mM NaCl, 20mM imidazole, pH
7.6) and then sonicated. The suspension was centrifuged at 12,000× g
for 20min at 4 °C. For 6xHis tag fusion proteins, the resulting super-
natant was purified via Ni2+-affinity chromatography on chelating
Sepharose equilibrated with Tris-HCl buffer (50mMTris-HCl, 300mM
NaCl, 20mM imidazole, pH 7.6), and washed with 10 volumes of Tris-
HCl buffer (50mM Tris-HCl, 300mM NaCl, 50mM imidazole, pH 7.6).
The proteins were eluted with Tris-HCl buffer (50mM Tris-HCl,
300mM NaCl, 250mM imidazole, pH 8.0). The protein was con-
centrated using an Amicon Ultra 10,000 MWCO (Millipore) with Tris-
HCl buffer (50mM Tris-HCl, 300mM NaCl, pH 7.6), and stored
at −80 °C.

Myoglobin activity assay
The purified myoglobin was standardized to the same volume to
ensure that the activity differences were due to protein concentration.
Guaiacol was used as the reaction substrate at a final concentration of
2.5mM42. The reaction mixture had a total volume of 200 µL, consist-
ing of 10 µL of purifiedmyoglobin, 5 µL of 0.1M guaiacol, and 185 µL of
10mM H2O2-PBS solution. Product formation was monitored spec-
trophotometrically at 470 nm. TheODchanges of the reactionmixture
per minute were recorded using kinetic scanning by a BioTek
Synergy H1.

AARS variant expression and purification for
aminoacylation assay
The genes of PylRS and its variants were cloned into pET28a and
transformed into BL21(DE3) cells for expression. Cells were grown in
LB medium containing 50μg/mL kanamycin and 50μM ZnCl2 at 37 °C
until the absorbance at 600nm (OD600) reached 0.6. The protein was
then induced by the addition of isopropyl-β-D-l-thiogalactopyranoside
(IPTG) to a final concentration of 100μM and shifted to 18 °C for ~18 h
before harvesting. The cells were harvested and resuspended in Tris-
HCl buffer (50mM Tris-HCl, 300mMNaCl, 20mM imidazole, pH 7.6).
After sonication, the suspension was centrifuged at 12,000× g for
20min at 4 °C. The resulting supernatant was purified via Ni2+-affinity
chromatography on chelating Sepharose equilibrated with Tris-HCl
buffer (50mM Tris-HCl, 300mM NaCl, 20mM imidazole, pH 7.6) and
washed with 10 volumes of Tris-HCl buffer (50mM Tris-HCl, 300mM
NaCl, 50mM imidazole, pH 7.6). The proteins were eluted with Tris-
HCl buffer (50mMTris-HCl, 300mMNaCl, 250mM imidazole, pH7.6).
The protein was concentrated using an Amicon Ultra 10,000 MWCO
(Millipore), stored at −80 °C.

Preparation of tRNAPyl

The M.mazei tRNAPyl was transcribed using T7 RNA polymerase. The
DNA oligonucleotides used to construct double-stranded DNA
templates for tRNAPyl include 5′-primer TAATACGACTCACTATA
GGAAACCTGATCATGTAGATCGAATG, middle template CACTATAGG
AAACCTGATCATGTAGATCGAATGGACTCTAAATCCGTTCAGCCGGG
TTA and 3′-primer TGGCGGAAACCCCGGGAATCTAACCCGGCTGAAC
GGATTTAGAG (reverse), in which the T7 promoter sequence is shown
in bold. In vitro transcription was performed for 8 h at 37 °C in a
solution containing T7 RNA polymerase, NTPs (ATP, UTP, CTP, GTP),
and double-stranded DNA transcription templates obtained by PCR.
Transcribed tRNAs were purified with the Easy RNA Cleanup
Kit according to the manufacturer’s instructions. Purified tRNA
was dissolved in 10mM Tris-HCl, 10mM MgCl2 (pH 7.6) and
stored at −80 °C.

Aminoacylation assay
The transcribed tRNAPyl was first refolded by heating at 85 °C for 2min,
then at 37 °C for 15min. A 10μL reaction mixture was prepared by
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mixing 5μL 2× assay buffer (50mMTris pH 7.6, 40mM KCl, 4mMDL-
dithiothreitol, 20mM MgCl2, 0.2mg/ml bovine serum albumin in
RNAse-freewater), 1μLRNAse-freewater, 1μL 20mMncAA, 1μL tRNA,
1μL synthetases, and 1μL 1mM ATP. For WT and Com2-WT, synthe-
tases were diluted to 100nM in 1× assay buffer. For IFRS, Com1-IFRS,
Com2-IFRS, BtaRS, Com2-BtaRS, IFGFF, and Com2-IFGFF systems,
synthetases were diluted to 200 nM in 1× assay buffer. The reaction
was carried out at 37 °C for 30min. Various concentrations of tRNA
(0.5-32μM) were used to determine kinetic parameters for the corre-
sponding synthetases. Various concentrations of BocK (0–10mM)
were also used to determine kinetic parameters for WT and Com2-WT
with 5μM tRNA in the reaction system. The AMP generated by the
reaction was then measured with the AMP-GloTM assay43 by following
the instructions from the manufacturer.

Binding affinity measurement
The tRNAPyl with 5′ end RNA biotinylation was synthesized by Tsingke
Biotech. Wild-type PylRS (WT) and its Com2-WT variant were expres-
sed and purified as above. Before measurement, the tRNAPyl was
refolded by heating at 85 °C for 2min, followed by incubation at 37 °C
for 15min. Octet platform (ForteBio Inc. USA) was used tomonitor and
quantify the binding affinity between tRNAPyl and either WT or Com2-
WT. The procedure consisted of five sequential steps: (1) baseline; (2)
loading; (3) washing; (4) association; (5) dissociation. In a 96-well
microtiter plate, the following solutions were prepared (a total of
200μL per well) respectively: baseline solution (PBST buffer), loading
solution (PBST buffer with 200nM tRNA-Probe), washing solution (i.e.,
baseline solution), association solution (PBST buffer with various
synthetase concentrations), and dissociation solution (i.e., baseline
solution). A disposable fiber-optic streptavidin-coated sensor tip was
first dipped into the baseline solution for 60 s with gentle automated
shaking, then loaded in the tRNA-Probe solution for 300 s to allow
coupling of the biotinylated tRNAPyl. The probe-saturated tip was then
washed for 120 s to remove any nonspecifically adsorbed tRNA-Probe.
During the association phase, the sensor tip was immersed in the
solution containing target synthetase for 300 s, allowing it to bindwith
the immobilized tRNAPyl probe in a sandwich-like format involving the
tethered probe, pendant tRNA structure, and target protein. Finally,
the binding tip was in the dissociation solution for 300 s. The resulting
binding curves were analyzed using Octet Analysis Studio. Data from
control wells (without synthetase in the association step) were sub-
tracted as background, and KD values were determined based on the
known concentrations of the synthetases.

FFT-PLSR model training
For eachmodel, the process from training to prediction is divided into
three stages: data processing, encoding index searching, and com-
prehensive model training.

Data processing. The amino acid sequences of mutants are trans-
formed into 566 numerical sequences using 566 different AAindex
representations44,45. Prior to applying FFT, mean standardization is
performed, where each element in the numerical sequence is adjusted
by subtracting the sequence’s mean value. Subsequently, FFT is
applied to each numerical sequence, as represented by Eq. 146:

f j =
XN�1

k =0

xke
�2iπ
N �j�k ð1Þ

where fj is the protein output spectrum of complex numbers, j is an
index of the Fourier Transform. The numerical sequence includes N
value(s) denoted as xk, with 0 ≤ k ≤N−1 and N ≥ 1; k is the frequency in
the spectrum; i defines the imaginary number such that i2 = −1.

The output of the FFT is a complex sequence, with each element
represented as a + bi, where a is the real component, b is the

imaginary part, and i is the imaginary unit. From these two compo-
nents, both a real and imaginary protein spectrum can be derived,
along with an absolute spectrum (or power) spectrum46. The abso-
lute spectrum was the spectrum of choice for the encoding strategy
studied. Due to the symmetry of the transformed sequence, the
absolute spectrum of the first half is applied. The absolute spectrum
is represented as:

AS mð Þ= f j
���

���,m= 1, 2, 3, ��,M ð2Þ

Where fj is theoutput of the FFT,M is the number of protein sequences.
After FFT processing, a spectral form of the protein called the

protein spectrum is generated. The amplitudes of the spectrum were
then normalized to be between 0 and 1 by Min-max scaling. These
normalized protein spectra, along with protein activity data, formed
the ML model training set.

Encoding index searching. This stage aims to score the encoding
method for each AAindex. To enhance the model’s fit, a GridSearchCV
approach is employed to optimize the hyperparameter n_components
of PLSR, with a search range of 2 to 10. Depending on the dataset size,
either LOOCV or k-fold Cross-Validation (k-fold CV) is chosen. The
evaluation metrics include the cross-validated Mean Squared Error
(cvMSE) and the coefficient of determination (R2). Here, cvMSE is
derived from the average of mean squared errors during cross-vali-
dation, which facilitates the construction and selection of the most
robust models, while R2 quantifies the correlation between the pre-
dicted and observed values based on the optimal hyperparameter
model.

cvMSE=
Xn

i = 1

ðyi � ŷiÞ2
n

ð3Þ

R2 = 1�
Pn

i= 1ðyi � ŷiÞ2Pn
i = 1ðyi � �yÞ2

ð4Þ

Where yi is the measured activity of the ith sequence, ŷi is the pre-
dicted activity of the ith sequence, �y is the average of measured
activities, and n is the number of sequences.

Incorporating the aforementioned processwith different AAindex
encodingmethods allows us to retrain themodel and score each of the
566 indices. We then select the highest-scoring index to be used as the
final index for model construction.

Model training. Utilizing the optimal index selected in the previous
step, we encode the data and train the model using the entire dataset.
This trained model is subsequently employed for further exploration
of the prediction space.

Expansion of the FFT-PLSRmodel. An Extended Sequence (Ext_SEQ)
method has been proposed to enhance the FFT-PLSR model,
demonstrating improved model fitting capabilities. In this study, we
applied this method to models constructed using single and double
mutants data from Com1. The core of this approach lies in the
combination of sequences encoded by multiple indices. The best
index, index1, is identified as the one that yields the lowest cross-
validated Root Mean Square Error (cvMSE) and is selected as the first
index for constructing the Ext_SEQ. The protein sequence is encoded
using this index, generating a corresponding protein spectrum. In
the second iteration, another index, index2, is chosen to construct an
Ext_SEQ composed of two elemental sequences. The index2 is
selected based on a second ranking that excludes the previously used
index, index1. This process is repeated iteratively in each subsequent
iteration to identify the optimal index for modeling and to expand
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the Ext_SEQ to include three or more indices. Ultimately, this con-
catenation process is performed based on purely statistical criteria.

Molecular dynamics simulations
The full-length structure of the PylRS dimer was predicted by Alpha-
Fold3, includingPylRSs, tRNAs, zinc ions, andATPs. The structureof Pyl-
AMP was obtained from the crystal structure of the CTD of PylRS (PDB:
2ZIM). Upon alignment, it was found that the position of AMP in Pyl-
AMP closely overlaps with the position of ATP in the predicted struc-
ture. Therefore, Pyl-AMP was directly substituted for ATP. All simula-
tions were performed using GROMACS 2022.0247 using an Amber14sb/
parmbsc1 force field48. The force field parameters of the substrate (Pyl-
AMP) were constructed using ACPYPE49. Periodic boundary conditions
were applied in all simulations. The initial structure was solvated in a
cubic simulation box with a layer of water at least 10.0 Å from the
protein surface. Sufficient counter ions (Na+) were added to neutralize
the system. The protonation states of titratable residues (histidine,
glutamic acid, and aspartic acid) were assigned based on the default
setting of the program pdb2gmx in GROMACS in combination with
careful visual inspection of local hydrogen-bonded networks. Pdb2gmx
took the protonation states of amino acids free in solvent at pH 7 as the
default. The Lys and Arg were protonated, while the Asp and Glu were
unprotonated. For His, the proton could be either on δ position, on ε
position, or on both, and the selections were done automatically based
on optimal hydrogen bonding conformations. Histidines 63 and 392 in
both chain A and chain B were protonated at the δ position. Histidines
28, 29, 45, 62, 338, 369, and 432 at both chain A and chain B were
protonated at the ε position. Cysteines 42, 69, and 72 in both chain A
and chain B were deprotonated due to their binding to Zn2+.

The simulations were carried out for three systems at 300K,
including WT, Com1-WT, and Com2-WT. At the beginning, the entire
system was minimized using the steepest descent method with no
positional restraints. Theminimization processwas configured to stop
when themaximum force acting on any atom in the system fell below a
threshold of 1000 kJmol−1 nm−1. An initial step size of 0.01 nm was set
for the minimization process. The maximum number of minimization
steps allowed was set to 5000. No other constraints were applied
during the minimization. In the pre-equilibrium stage, the system was
gradually heated to 300K over 1 ns in the NVT ensemble, followed by
2 ns in the NPT ensemble at 1 atm. The potential energy curve and
RMSDof theproteinwere analyzed to confirm theproper equilibration
and stabilization of the system. During the production run, the NPT
ensemble was employed for 50 ns, at 300K and 1 atm. The RMSD of
protein backbone atoms was calculated using the initial structure of
the equilibrium run as the reference. Due to the irregularmotion of the
linker region affecting the RMSDcalculation, as well as the fact that the
linker area does not influence catalysis, the linker region was excluded
from the RMSD calculation. The reaction distance, hydrogen bonds
occupancy, andbinding free energywere analyzed for the single chain,
maintaining correct conformations of tRNA and substrate, using the
last 10 ns equilibrated trajectories. The NPT ensemble was further
employed for another 200ns production simulations, and the
dynamics cross-correlation map (DCCM) was calculated from the tra-
jectory spanning from 50 to 200 ns, with data collected at 150ps
intervals.

The velocity-rescaling thermostat50 with a time constant equal to
0.1 ps was employed throughout the simulations to keep the tem-
perature constant. To maintain the pressure, the Parrinello-Rahman
pressure coupling51,52 was utilized in the equilibrium and production
run, with the pressure time constant and isothermal compressibility
set to 2 ps and 4.5 × 10−5 bar−1, respectively. A time step of 2 fs for
integration of the equations of motion was used throughout the
simulation. A cutoff of 10 Å was used for nonbonded interactions. The
particle mesh Ewald algorithm53 was used to calculate long-range
electrostatic interactions.

Mass spectrometry
Liquid chromatography-electrospray ionization mass spectrometry
(LC-ESI-MS) was applied to detect the incorporation of ncAAs into
sfGFP as described previously30. LC-ESI-MS analysis was performed on
an Agilent 1290 Infinity II LC system coupled with a 6545 Q-TOF mass
spectrometer (Agilent, UK). Protein samples (5 µL, 0.4 µg/µL) were
injected onto a PLRP-S column (50mm× 2.1mm, 1000Å, 5 µm) at
30 °C. A binary gradient using mobile phase A (5% MeCN, 0.1% formic
acid) and B (95% MeCN, 0.1% formic acid) was applied at 0.3mL/min.
The column was equilibrated at 15% B for 1.9min, held for 1min, then
ramped to 90% B over 16min, followed by a rapid return to 15% B in
0.1min. The Q-TOF scannedm/z 100–3100 using positive ESI with the
following settings: capillary voltage 4000V, nozzle 500V, fragmentor
175 V, skimmer 65 V, and octopole RF peak 750V. Nitrogenwas used as
nebulizer gas (45 psi, 5 L/min). Spectra were processed using Mas-
sHunter Bioconfirm (vB.10.00) and deconvolved via maximum
entropy.

Zero-shot prediction of high-fitness variants
For ESM prediction, the publicly available ESM-1v scripts were used to
retrieve “wt-marginals” for each of the five ESM-1v and ESM2 models.
Mutations exhibiting enhanced probability scores relative to wild-type
residues were systematically screened across all models. For Mut-
compute prediction, the target protein’s PDB ID was submitted to the
web server (https://mutcompute.com). Results were retrieved via
automated email delivery. Notably, the tool exclusively supports pre-
existing crystallographic structures from the PDB database and cannot
process custom-predicted structural models. For ProRefiner predic-
tion, the package was deployed locally via its GitHub repository
(https://github.com/veghen/ProRefiner). AlphaFold2-predicted var-
iants’ structures served as input to calculate mutant amino acid
probabilities. Mutants with scores exceeding wild-type thresholds
were prioritized for further analysis.

Analysis of epistasis between mutations
Equation (5) was used to quantify the epistasis between mutations.

ΔNFij =ΔNFexp � ðΔNFi +ΔNFjÞ ð5Þ

WhereNF is Normalized Fluorescence intensity of the sfGFPwith ncAA
incorporated at position 2 per OD600, resulting from aminoacylation
by PylRS and its mutants, ΔNFexp is the difference in NF between the
double variant and the wild type experimentally obtained, and ΔNFi
and ΔNFj are the differences in the NF between single variants and the
wild type. In any case, additivity occurs when ΔNFij = 0. Positive mag-
nitude epistasis (+ME) or negative magnitude epistasis (−ME) occurs
whenΔNFij > 0orΔNFij < 0, respectively. Positive sign epistasis (+SE) or
negative sign epistasis (−SE) occurs when ΔNFij > 0 if ΔNFi < 0 or
ΔNFj < 0, or ΔNFij < 0 if ΔNFi > 0 or ΔNFj > 0, respectively. Positive
reciprocal sign epistasis ( + RSE) or negative reciprocal sign epistasis
(-RSE) occurs when ΔNFij > 0 if ΔNFi < 0 and ΔNFj < 0, or ΔNFij < 0 if
ΔNFi > 0 and ΔNFj > 0, respectively54.

Statistics and reproducibility
Data were analyzed using Prism (GraphPad) and Origin 2025. Data are
presented as mean ± standard deviation with error bars. All experi-
ments were repeated independently with similar results at least three
times. No data were excluded from the analyses. The investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Authors declare that all data supporting the findings of this study are
available within the paper and its supplementary information files. The
PDB structures used in this work include 5UD5, 4TQD, and 2ZIM. The
LC-MS data underlying Supplementary Fig. 16 have been deposited to
the ProteomeXchange Consortium via the PRIDE55 partner repository
with the dataset identifier PXD065336 [https://www.ebi.ac.uk/pride/
archive/projects/PXD058768]. The enzyme data has been provided in
two JSON format files prepared with the EnzymeML tool56, which are
available at Github [https://github.com/zjuhaoran/FPFORCOM] and at
Zenodo57. Source data are provided with this paper.

Code availability
The source code employed for generating descriptors and trainingML
models in this research is available at https://github.com/zjuhaoran/
FPFORCOM. The source code has also been deposited to Zenodo57.
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