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Newly established forests dominated global
carbon sequestration change induced by
land cover conversions
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Lei Huang1,2 & Xiaoyang Zhang 16

Land cover conversions (LCC) have substantially reshaped terrestrial carbon
dynamics, yet their net impact on carbon sequestration remains uncertain.
Here, we use the remote sensing-driven BEPS model and high-resolution
HILDA+ data to quantify LCC-induced changes in net ecosystem productivity
(NEP) from 1981 to 2019. Despite global forest loss and cropland/urban
expansion, LCC led to a net carbon gain of 229 Tg C. Afforestation and
reforestation increased NEP by 1559 Tg C, largely offsetting deforestation-
driven losses (−1544 Tg C), with newly established forests in the Northern
Hemisphere driving gains that counterbalanced emissions from tropical
deforestation. Regional carbon gains were concentrated in East Asia, North
America, and Europe, while losses occurred mainly in the Amazon and
Southeast Asia. Although smaller in area, newly established forests exhibited
higher sequestration efficiency than degraded older forests, emphasizing the
role of forest age in shaping global carbon sink dynamics. These findings
highlight the critical importance of afforestation, forest management, and
spatially informed land-use strategies in strengthening carbon sinks and sup-
porting global carbon neutrality goals.

Since the industrial revolution,massive burning of fossil fuels and land
use activities have led to a surge in atmospheric levels of greenhouse
gases, particularly CO21. As the world’s primary carbon sink, terrestrial
ecosystems have captured about 20% of carbon dioxide (CO2) from
anthropogenic emissions during the past three decades2,3. Land cover
conversions (LCC) driven by anthropogenic land use modifications
and natural disturbances constitutes one of the most dynamic com-
ponents of global environmental change. Such alterations directly
disrupt terrestrial ecosystem functions, with cascading implications
for global carbon cycling. Notably, Land use/cover changes has exer-
ted a profound influence on carbon sequestration dynamics4, with
deforestation and forest degradation accounting for approximately

one-third of anthropogenic carbon emissions since the industrial
revolution5. Conversely, mitigation measures such as afforestation
initiatives demonstrate the potential to amplify terrestrial carbon sinks
and enhance atmospheric CO2 absorption6. The quantification of
carbon sink dynamics in terrestrial ecosystems relies on biopro-
ductivity parameters, among which Net Ecosystem Productivity (NEP)
serves as a critical metric for assessing net carbon flux between ter-
restrial systems and the atmosphere7. NEP ismathematically defined as
the residual of carbon assimilation through vegetation photosynthesis
minus carbon losses from autotrophic respiration (RA) in plants and
heterotrophic respiration (RH) in soil microbial communities8. Eluci-
dating LCC-induced NEP variations is therefore imperative for
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advancing mechanistic understanding of ecosystem functional
responses to environmental perturbations, and reducing uncertainties
in modeling global and regional carbon budgets. This dual focus holds
particular relevance for informing evidence-based climate mitigation
strategies.

Significant spatial heterogeneity exists in LCC across various
countries. Robust assessment of LCC-inducedNEP variations demands
modeling frameworks that explicitly resolve both spatial gradients and
temporal trajectories of land surface transformations. Current main-
stream methodologies, however, exhibit critical limitations in
addressing this complexity. Bookkeeping models, which dominate
historical carbon budget assessments, employ straightforward
accounting principles by integrating static carbon density coefficients
with land use/cover change areas derived from forest inventories or
aggregated statistics9,10. While offering computational efficiency and
policy-relevant simplicity, these models fail to incorporate transient
ecosystem responses to environmental changes and lack the spatial
resolution needed to capturing fine-scale LCC dynamics, thus partly
ignoring spatial heterogeneity and propagating biases in carbon flux
estimations. Process-based dynamic global vegetation models
(DGVMs) provide physiological mechanisms by simulating coupled
biogeochemical cycles across climate-vegetation-soil continua11,12.
Despite their capacity to account for environmental effects on tem-
poral carbon stock evolution, practical constraints persist: (1) Typical
spatial resolutions (0.25°–2°) remain insufficient to resolve landscape-
level LCC patterns; (2) Dependence on harmonized high-quality inputs
restrict their ability to resolve fine-scale LCC effects. These dual lim-
itations—oversimplification in bookkeeping models versus coarse
resolutions and implementation barriers in DGVMs, have sustained
persistent uncertainties in LCC-attributed carbon flux estimates.

Satellite remote sensing has emerged as a transformative tool for
providing spatially consistent coverage of land conditions and vege-
tation status, with both high spatial detail and temporal frequency
critical for resolving fine-scale ecosystem dynamics13. Remote sensing
driven ecosystem models enable high-resolution tracking of NEP
responses to LCC while incorporating ground-truthed vegetation
information, a synergy that significantly reduces uncertainties inher-
ent in conventional carbon flux estimations. Pioneering applications,
such as the Coupled Carbon-Water (CCW) model leveraging photo-
synthetic indices from satellite retrievals to quantify U.S. LCC-induced
GPP changes14, and Carnegie-Ames-Stanford Approach (CASA) model
assessing LCC-induced NEP changes in Northwest China15, demon-
strate the method’s capability to resolve regional heterogeneity.
However, there remains a dearth of global-scale implementations.
Furthermore, conventional remote sensing-based ecological models
predominantly employ light-use efficiency (LUE) paradigms that
derive GPP estimates from canopy-absorbed radiation and predefined
LUE parameters. These formulations typically disregard crucial phy-
siological regulators such as CO2 fertilization effects and nutrient
effects16, while oversimplifying environmental controls to climate
variables alone. Moreover, existing investigations have predominantly
concentrated on carbon flux quantification within either individual
ecosystem types (e.g., rice paddies, grasslands, or forests) or undif-
ferentiated composite systems, but comparisons of the conversions
between different ecosystems (land covers) are lacking. This knowl-
edge gap substantially impedes the formulation of spatially optimized
land management strategies tailored to specific ecological contexts.

This study aimed to investigate the impacts of global LCC, parti-
cularly across different conversion types, onNEPduring 1981–2019. To
achieve accurate quantification of LCC-induced NEP changes and
delineate their spatial heterogeneity, we employed the high-resolution
Historic Land Dynamics Assessment + (HILDA + ) dataset within the
Biosphere-atmosphere Exchange Process Simulator (BEPS) model
framework. The HILDA+ dataset, developed through a data-driven
reconstruction approach, synergistically integrates multi-source open

data streams including high-resolution remote sensing observations,
long-term land use reconstructions, and statistical records. As a global-
scale product with 0.01° × 0.01° spatial resolution encompassing
major LCC categories over six decades (1960–2019), it provides opti-
mal forcing data for carbon cycle modeling. The BEPS model, a
process-based diagnostic framework operating at 0.073° × 0.073°
resolution, which mechanistically includes the impacts of various dri-
vers on gross primary productivity (GPP) (climate, CO2 concentration,
and nitrogen deposition) and assimilates vegetation structure (LAI)
satellite data, has demonstrated robust capability in terrestrial carbon
sink monitoring17. Specifically, this research addresses three primary
objectives: (1) to characterize the spatiotemporal patterns of global
LCC from 1981 to 2019; (2) to quantify the effects of various land cover
conversions on NEP at global and national scales; and (3) to discuss
land management strategies for enhancing carbon sequestration
based on LCC-induced NEP results. By addressing these scientific
questions, our study would provide insights into dominant patterns of
LCC-driven carbon flux variations, thereby advancing understanding
of terrestrial carbon cycledynamics and informing the development of
carbon-neutral policies through optimized land management
practices.

Results
General patterns of land cover conversions from 1981 to 2019
Global land cover has experienced significant and accelerating trans-
formations since 198118, as evidencedby theHILDA+ land cover dataset
(Fig. 1). During the 1981–2019 period, forest coverage exhibited a gross
gain of 26.4 × 105 km2 and a gross loss of 34.3×105 km2, resulting in a net
decline of 7.9 × 105 km2. Cropland expanded by 7.1 × 105km² (gross
gain: 27.2 × 105 km2; loss: 20.1 × 105 km2). Pasture areas decreased by
3.6 × 105km² (gross gain: 39.0 × 105 km2; loss: 42.6 × 105 km2). Grass-
land/shrubland areas showed a net gain of 15.5 × 105 km2 (gross gain:
43.8 × 105 km2; loss: 28.3 × 105 km2). Urban areas expanded by
3.9 × 105 km2, while other land category contracted by 15.0 × 105km².
These patterns align with established trends of forest canopy loss, as
corroborated by the Food and Agriculture Organization of the United
Nations (FAO) reports documenting 12.9 × 105 km2 net forest loss from
1990 to 201519. Land cover conversions primarily involved bidirec-
tional conversions among forest, cropland, pasture, and grassland/
shrubland categories, with forest and pasture reductions pre-
dominantly driven by conversion to cropland and grassland/
shrubland.

Spatiotemporal analysis of fractional land cover conversions
reveals substantial geographic heterogeneity (Figs. S1–S2). From 1981
to 2019 at a spatial resolution of 0.073°, 58.7% of global land surfaces
experienced measurable LCC, with 30.1%, 19.1%, 12.8%, and 5.7% of
terrestrial areas exceeding 10%, 20%, 30%, and 50% change magni-
tudes, respectively. Major LCC hotspots emerged in Australia, China,
Europe, the United States, and tropical rainforest regions. Forest
regeneration predominated in northern temperate and boreal zones,
while tropical regions accounted for disproportionate deforestation.
This spatial dichotomy explains the global net forest loss, as gains in
temperate/boreal forests failed to offset tropical deforestation. Such
geographic disparities highlight the complex interplay between
regional land-use practices and biome-specific drivers of land cover
modification.

Global NEP change patterns driven by LCC
LCCexerted substantial and spatially heterogeneous impacts onglobal
terrestrial carbon sequestration (Fig. 2a). During 1981–2019, 31.3% of
global land areas experienced LCC-induced increases in NEP, with
pronounced spatial clustering in Europe, central-southern China, the
southeastern United States, northern Russia, and India. Conversely,
26.8% of terrestrial regions exhibited NEP reductions attributable to
LCC, predominantly concentrated in southern hemisphere tropics and
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humid zones, including Brazil, Indonesia, and southeastern Australia.
Spatiotemporal analysis revealed that 36.9% of global lands underwent
moderate LCC-induced NEP changes (±30 gC m⁻² yr⁻¹), while over
9.3% exhibited substantial changes exceeding ±100 gC m⁻² yr⁻¹.
Althoughmultiple drivers—including climate change, CO₂ fertilization,
and nitrogen deposition—modulate terrestrial carbon fluxes17,20, LCC
independently exerted significant influence onNEP dynamics (Fig. 2b).
Notably, LCC contributed >10% of total NEP changes across 25.7% of
global lands (14.1% exhibiting positive impacts; 11.6% negative
impacts), with 12.1% of areas showing >40% LCC-induced NEP changes
(6.7% positive; 5.4% negative).

Temporal analysis delineates a dynamic LCC-NEP relationship
characterized by phase transitions (Fig. 2c). Initial LCC impacts
(1980s–2000s) predominantly reduced NEP, with interannual com-
pensation between carbon gains and losses yielding minimal accu-
mulative effects. Subsequent decades witnessed a progressive shift
toward net NEP enhancement, potentially linked to expanding spatial
extents of land cover conversions and large-scale afforestation initia-
tives in northern hemisphere temperate zones21. However, given the
persistent global net forest decline with no abrupt forest area varia-
tions (Fig. 1a), we hypothesize that newly established forests gradually
offset carbon losses from degraded older forests. The observed tem-
poral transition likely reflects accelerated carbon sequestration

capacity in maturing regenerated forests, which eventually surpassed
legacy carbon losses by old destroyed forests. Detailed analyses of
these compensatory dynamics will be elaborated in the Discussion
section.

Regional and categorical variations in LCC-inducedNEP changes
Given the spatial heterogeneity of LCC patterns (Figs. S1–S2), a
comprehensive analysis was conducted to quantify LCC-induced
NEP changes at national/regional scales and across land conversion
types (Fig. 3 and Fig. S3). Globally, accumulative absolute NEP
changes attributable to LCC during 1981–2019 amounted to 4061 Tg
C, comprising a 2145 Tg C increase and a 1916 Tg C decrease,
yielding a net terrestrial carbon sequestration gain of 229 Tg C.
Forest-related conversions emerged as the dominant driver,
accounting for 81% of total NEP reductions induced by all conver-
sions of LCC. Specifically, conversions of forest to cropland, pas-
ture, and grass/shrubland decreased carbon sequestration by 402
Tg C, 595 Tg C, and 429 Tg C, respectively. Conversely, afforesta-
tion/reforestation activities which constituted 72.7% of total NEP
gains, enhanced carbon sequestration by 452 Tg C (cropland-to-
forest), 736 Tg C (pasture-to-forest), and 360 Tg C (grass/shrub-
land-to-forest). Notably, cropland-to-grass/shrubland conversions
also contributed significantly, increasing NEP by 230 Tg C,
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Fig. 1 | Temporal dynamics of global land cover conversions (1981–2019)
derived from the HILDA+ dataset. Annual area variations of six land cover cate-
gories: a forest, b cropland, c pasture, d grass/shrubland, e urban, and f other land.
The vertical axis represents the annual areal change relative to the 1981 baseline
(unit: 105km2), where positive values indicate gain through conversion to the focal

category and negative values denote loss via conversion from the category. Blue
and red lines respectively represent gross gains (total area converted into the
category) and gross losses (total area converted out), with the purple line showing
net change (gains minus losses).
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underscoring the importance of non-forest vegetation conversions
in regional carbon budget dynamics.

Deforestation (conversions from forests to other lands) exerted
pronounced negative impacts on NEP in tropical rainforest regions,
particularly across southeast Asia and south America (Fig. 3 and
Fig. S3). Indonesia exhibited themost severeLCC-inducedNEPdecline,
losing 278 Tg C during 1981–2019 due to extensive deforestation
activities such as large-scale deforestation including coastal peatland
drainage, montane rainforest logging, and agricultural expansion22,23.
These activities precipitated forest-to-grass/shrubland (–101 Tg C) and
forest-to-cropland (–73 Tg C) conversions, with urban sprawl24 further
reducingNEP by 67 TgC. Brazil ranked second in carbon sequestration
losses (–157 Tg C), predominantly due to Amazonian forest-to-pasture
conversion (-109 Tg C)—a consequence of synergistic pressures from
fossil fuel extraction logging25, agricultural expansion26, and infra-
structure development27. Similarly, the Democratic Republic of Congo
also experienced substantial NEP reductions (–120 Tg C) linked to
persistent deforestation.

Conversely, northern temperate zones demonstrated robust LCC-
induced NEP enhancements, with Europe (+310 Tg C), the United
States (+220 Tg C), China (+215 Tg C), Russia (+143 Tg C), and India
(+135 Tg C) emerging as primary beneficiaries (Fig. 3). Afforestation/
reforestation (conversions from other lands to forests) notably
pasture-to-forest conversions—accounted for 64.5%, 63.7%, and 30.5%
of national NEP gains in China, the U.S., and Europe, respectively.
Recent studies confirmed that the carbon sequestration during the
2000s was partially due to afforestation and forest regrowth in East
Asia and Europe28,29. European cropland/pasture-to-grass/shrubland
conversions further contributed 24.9% of regional NEP increases.

Russia’s gains stemmedpredominantly fromgrass/shrubland-to-forest
(56.7%) and cropland-to-forest (40.1%) conversions, which is likely a
result of the shift from a state command to a market-driven economy
after 1990, leading to widespread abandonment of agricultural land,
including both cultivated areas and grasslands30,31. India’s NEP
improvement derived largely from policy-driven cropland-to-forest
and cropland-to-grass/shrubland conversions under afforestation and
agricultural intensification initiatives32.

Globally, forest dynamicsdominated LCC-inducedNEP variations,
characterized by contrasting hemispheric patterns: northern affor-
estation/reforestation versus tropical deforestation. Newly established
forests increased accumulative NEP by 1559 Tg C (38.4% of total LCC-
driven absolute change), while deforestation reduced accumulative
NEP by 1544 Tg C (38.0% of total LCC-driven absolute change). Cru-
cially, carbon sequestration gains from afforestation/reforestation
effectivelyoffset 97.8%of deforestation-induced losses. Thesefindings
underscore the pivotal role of forest transition pathways in mediating
terrestrial carbon budget responses to anthropogenic land use. Our
national-scale analysis of linkages between net area changes in four
primary land categories (forest, cropland, pasture, and grass/shrub-
land) and accumulative LCC-induced net NEP changes (Fig. S4)
revealed distinct patterns: young forest area increase exhibited a
strong positive correlation with carbon sequestration (r = 0.71,
P <0.01), while cropland area conversions correlated negatively with
NEP changes (r = –0.65, P <0.01). Conversely, no statistically sig-
nificant relationships emerged between LCC- induced carbon seques-
tration dynamics and area changes in pasture or grass/shrubland
(P > 0.05). These results collectively demonstrate that terrestrial car-
bon flux responses to LCC at the national scale are predominantly

Fig. 2 | Spatiotemporal dynamics of land cover conversion (LCC)-driven
impacts on net ecosystem productivity (NEP) from 1981 to 2019. a Maps the
spatial distribution of LCC-induced NEP changes, while b illustrates the propor-
tional contribution of LCC to total NEP variations. The histogram denotes area

proportion; c statistically resolves interannual trends, with solid blue and red
curves representing annual and accumulative LCC-induced NEP changes, respec-
tively, complemented by dashed polynomial regression line characterizing
decadal-scale trajectories.
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mediated by forest and cropland conversion, with marginal contribu-
tions from pasture or grass/shrubland conversions.

Discussion
Comparison with TRENDY ensemble simulations
To assess the capability of land surface models in reproducing fine-
resolution NEP variations driven by LCC, we performed a systematic
comparison of outputs from 17 dynamic global vegetation models
(DGVMs) within the TRENDYv10 ensemble. Our analysis revealed
substantial inter-model variability among TRENDY simulations, with
only 10 of 17 models successfully capturing the globally positive LCC
effects (Fig. S7). Although the multi-model mean demonstrated an
overall positive LCC influence, the aggregated accumulative LCC-
induced NEP changes (76 Tag C) were markedly lower than those
simulated by the BEPS model (229 tag C). This discrepancy is parti-
cularly noteworthy given that TRENDY ensemble results from the
primary basis for the Global Carbon Budget estimates, which exhibit

considerable uncertainties in quantifying LCC-related carbon fluxes33.
The observed divergence between TRENDY and BEPS simulations may
stem from fundamental differences inmodel structural frameworks, or
implementation of LCC effects - where TRENDY models incorporate
both land-use change and management practices, while BEPS specifi-
cally focuses on land cover modifications. Furthermore, the BEPS
model integrates satellite-observed vegetation leaf area index data,
enablingmore realistic representationof vegetationdynamics through
parameters such as forest age. This critical factor, which has been
empirically demonstrated to significantly influence carbon sink capa-
city, remains unaccounted for in current TRENDY model para-
meterizations. Our findings highlight a substantial uncertainty source
in global carbon balance assessments, particularly regarding the
quantification of LCC impacts on terrestrial carbon fluxes. This meth-
odological discrepancy warrants urgent attention in future model
development and carbon budget estimations, as current DGVM
ensembles may systematically underestimate LCC-induced carbon

Fig. 3 | Statistics of land cover conversion-induced accumulative net ecosystem productivity changes across major countries and regions from 1981 to 2019.
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dynamics through inadequate representation of key ecological
processes.

Newly established forests predominantly drove LCC-induced
NEP changes
This study employed the remote sensing-driven BEPS carbon
model and HILDA+ land cover dataset to investigate the impacts
of LCC on NEP at global and regional scales from 1981 to 2019.
Despite a global decline in forest area during this period (Fig. 1),
LCC exerted an overall positive contribution to global NEP
changes (Fig. 3). Afforestation/reforestation induced an accumu-
lative carbon sequestration increase of 1559 Tg C, which sur-
passed deforestation-driven carbon losses (1544 Tg C). We
hypothesize that this net gain arises from the enhanced carbon
sequestration capacity of newly established forests outweighing
the losses from older forest degradation, highlighting the critical
role of forest age dynamics. Forest age is a pivotal intrinsic factor
governing carbon sequestration rates and storage34, primarily
through its regulation of maximum light-use efficiency35. For
instance, a study found that NPP in temperate and boreal forests
exhibits an age-dependent trajectory following stand-replacing
disturbances: NPP initially rises, peaks at maturity, and subse-
quently declines with aging36. Furthermore, unmanaged old-
growth forests may even transition into carbon sources37. To
investigate whether our conclusions were similarly attributable to
forest age, we analyzed the relationship between changes in NEP
resulting from forest changes and forest age.

Spatial analysis revealed that newly established forests pre-
dominantly occur in northern temperate regions, where forests
are relatively young (mostly <90 years; Fig. S5), whereas forest
losses concentrate in tropical zones with older forests (often >210
years). Statistically, the mean forest age in afforested areas (73
years) was substantially lower than in deforested regions (160
years; Fig. 4a). Quantitatively, forest gain elevated accumulative
NEP by 281 g C/m² during 1981–2019, while forest loss reduced it
by 192 g C/m² (Fig. 4b). This disparity underscores the superior
carbon sequestration efficiency of younger forests compared to
older ones, consistent with established forest age–carbon flux
relationships36–38. Temporal analysis of annual NEP changes
induced by forest gain/loss (Fig. S6) demonstrated that carbon
gains from afforestation were initially outweighed by deforesta-
tion losses before around 2010s, after which afforestation bene-
fits dominated. This temporal pattern mirrors the documented
parabolic relationship between forest age and carbon sequestra-
tion. Specifically, studies indicate that afforestation initially yields
near-neutral NEP values, reflecting ecosystems acting as weak

carbon sources or sinks during early stages. NEP then escalates to
a peak within 10–20 years post-afforestation38, consistent with
our findings (Fig. S6). This explains the delayed emergence of net
LCC-induced NEP increases around the 2010s (Fig. 2c). Collec-
tively, our results indicate that the carbon sequestration advan-
tage of younger forests, despite their smaller spatial extent,
compensates for the larger-scale loss of older, less efficient car-
bon sinks. These findings provide macro-scale validation of prior
research on carbon flux–forest age relationships.

Currently, approximately one-third of forests are under 20 years
old, including extensive woody regrowth in post-abandonment Eur-
opean lands39 and large-scale afforestation initiatives in China and
India32. These young forests, if sustainably managed, hold significant
potential to amplify global carbon sequestration in the coming dec-
ades. Their ongoing maturation could counterbalance carbon losses
from aging forests, particularly in tropical regions, emphasizing the
need for age-informed forest conservation and restoration strategies
to optimize climate mitigation outcomes.

Implications for boosting terrestrial carbon sequestration
According to the 2023 Global Carbon Neutrality Annual Progress
Report, over 130 countries worldwide have made commitments to
carbonneutrality (http://cntracker.jafly.net/report). To achieve carbon
neutrality goals, diverse strategies such as harnessing renewable
energy resources40, transforming food systems41, and implementing
carbon capture and storage42, have been explored or implemented.
Land-based carbon sequestration, particularly through afforestation/
reforestation to enhance terrestrial carbon sinks, is considered a reli-
able and cost-effective approach43 and plays a pivotal role in this
effort44. However, based onHILDA+data, recent land cover conversion
patterns, marked by continuous forest loss and urban/cropland
expansion, appear to contradict this objective. Given the critical
importance of carbon neutrality for ecological civilization and human
development, nations must urgently adopt effective land-use strate-
gies to reverse this trend.

Our findings reveal that conversions between forests and other
land types during 1982–2019 dominated global LCC-induced NEP
changes. Although afforestation/reforestation contributed to a sub-
stantial accumulative carbon sequestration gain (1,559 Tg C), this was
nearly offset by deforestation-driven losses (−1,544 Tg C), indicating
that destructive ecological exploitation persists in many regions
despite proactive carbon sink policies elsewhere. If these regions
implement climate action measures, terrestrial carbon sink capacity
could significantly improve. Tropical rainforest nations, such as Indo-
nesia, Brazil, and Colombia, which face the highest deforestation rates,
mustprioritize forest restoration throughnatural regeneration, native/

Fig. 4 | The relationship between forest age and net ecosystem productivity (NEP) changes induced by forest dynamics from 1981 to 2019. aQuantifies pixel-scale
frequency distributions of forest stand age across regions of forest gain and loss, while b quantifies NEP changes induced by forest conversions.
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commercial forest plantations45,46, and protected area establishment25.
Local policies such as granting indigenous land rights or incentivizing
sustainable logging in restored forests are critical46. While moderate
logging can enhance old forest productivity by increasing structural
complexity47, severe destruction must be prevented, as it sharply
reduces ecosystemproductivity and prolongs recovery48. Additionally,
unmanaged old-growth forests may transition into carbon sources37,
but their clearance reduces carbon stocks, which may re-enter the
atmosphere as CO2

49. Thus, old forest harvesting must be carefully
regulated, considering local ecological resilience and socioeconomic
conditions. For newly afforested stands, rapid carbon sequestration
growth suggests timber harvests should occur post-maturity to max-
imize benefits. Further research is needed to refine region-specific
carbon flux–forest age relationships for optimal management.

Our results also highlight the national-level significance of crop-
land area changes in LCC-induced NEP changes (Fig. S4). Global agri-
cultural expansion has driven substantial deforestation (Fig. S1).
Although only a small fraction of cropland-absorbed carbon remains
stored post-harvest50, enhancing productivity within existing crop-
lands can mitigate ecological losses from expansion. Intensified agri-
cultural management is key, endorsed by researchers and
policymakers for its potential to reduce cropland area51,52. For instance,
Brazil’s focus on soybean expansion in existing livestock areas could
prevent deforestation while achieving 162Mt production53, and India’s
agricultural intensification has significantly boosted cropland
greenery32. Practices like improved field management, crop rotation,
reduced tillage, straw returning, and organic fertilization further
enhance cropland carbon sequestration54,55.

Uncertainties
While our study provides a spatially explicit assessment of LCC-
induced NEP changes using a high-resolution, satellite-constrained
carbon flux dataset, it does not quantify uncertainty ranges, as the
analysis is based on a single set of model outputs and land cover
trajectories. As such, the reported values should be interpreted as
deterministic estimates conditional on the input data. Future research
incorporating multiple LCC scenarios, ensemble simulations, or
observational constraints would help to further evaluate the robust-
ness of these estimates.

This study isolated LCC-induced NEP changes by designing two
scenarios with either fixed or dynamic land cover data relative to the
initial year. We explored the results from the forest age perspective,
analyzing why carbon sequestration gains from smaller areas of newly
established forests outweigh losses caused by old forest depletion.
Although forest age is not directly parameterized in the model, we
contend that age-dependent effects are implicitly captured through
remote sensing-derived leaf area index (LAI) data. Since LAI is intrin-
sically linked to forest developmental stages (and thus age), its inte-
gration into the BEPS model indirectly accounts for age-related
physiological and structural changes. Hense, by leveraging LAI, the
model inherently reflects forest age dynamics, albeit through proxy
mechanisms. We therefore posit that the BEPS framework, grounded
in remote sensing observations, can reasonably capture age-driven
variations in carbon sequestration capacity, even in the absence of
explicit age parameterization. Future studies could prioritize inte-
grating forest age parameters into the BEPSmodel to comprehensively
evaluate age effects on carbon sequestration, which warrants further
investigation.

Methods
BEPS model overview
The Biosphere-atmosphere Exchange Process Simulator (BEPS) was
renamed from the Boreal Ecosystem Productivity Similator, which was
initially developed for boreal ecosystems56,57, but was subsequently
expanded to all ecosystems of the globe58. BEPS is a process-based

diagnostic model driven by climate, remotely sensed vegetation
parameters (LAI), clumping index, land cover, and soil data. BEPS
adopts the sunlit-shaded leaf stratification strategy in modeling
canopy-level photosynthesis. It includes a photosynthesis module56, a
land surface scheme for the computations of energy and water
balance59, and a soil biogeochemical module for soil carbon, nitrogen,
and heterotrophic respiration calculations based on a modified Cen-
tury model60. NEP is calculated as the difference between photo-
synthesis and respiration:

NEP =GPP � AR� HR ð1Þ

where GPP is the gross primary productivity, AR and HR are auto-
trophic respiration and heterotrophic respiration, respectively. For the
calculation of GPP, BEPS uses a two-leaf canopy photosynthesis
model56:

GPP =GPPsunLAIsun +GPPshadedLAIshaded ð2Þ

where GPPsun and GPPshaded are the GPP per unit area of sunlit and
shaded leaves, respectively. LAIsun and LAIshaded are the LAI of sunlit
and shaded leaves respectively, and are calculated as:

LAIsun =2cosθð1� e�0:5ΩLAI=cosθÞ

LAIshaded = LAI � LAIsun ð3Þ

where Ω is the clumping index and θ is the daily mean solar zenith
angle. GPP values of sunlit and shaded leaves are calculated using
Farquhar’s leaf biochemicalmodel. Thismodel canbe combinedwith a
physical model describing the CO2 flow from the free air to the inside
of the stomatal cavity for sunlit and shaded leaves separately56,61. The
simulated annual NEP by BEPS closely follows the trend and inter-
annual variability of the residual land sequestration estimated by the
Global Carbon Project17. Figure S8 illustrates the comparison between
the simulated land sequestration from the BEPS model and that from
17 Trendy models, which demonstrates a substantial concordance in
interannual variability between the BEPS and Trendy models
simulation.

Carbon cycle modeling methods
BEPS includes modules to calculate AR and HR62, the biomass carbon
stock is stratified into four pools (leaf, stem, root, and fine root pools),
and the soil carbon stock into nine pools (surface structural litter,
surface metabolic litter, soil structural litter, soil metabolic litter,
coarse woody litter, surface microbe, soil microbe, slow, and passive
carbon pools). These carbon pools are initially determined for the year
1901 by solving a set of equations describing the dynamics of carbon
pools under the assumption that the carbon cycle of terrestrial eco-
systemswas in dynamic equilibrium at that time63. Then, for the period
from 1901 to 1980, we run the model using historical data on climate,
LAI, CO2 concentration, and nitrogen deposition. Due to a lack of data,
we assumed that LAI in 1982–1986 represented that in 1901–1981.
Simulations suggest that the impact of LAI changes prior to 1981 on the
role of LAI after 1981was just within a fewpercent17. In thismodel, AR is
divided into maintenance respiration and growth respiration. Main-
tenance respiration depends on foliage, stem and root biomass, and
temperature, whereas growth respiration is calculated as 25% of GPP.
HR is computed as the sumof C released to the atmosphere during the
decomposition of five litter (surface structural litter, surfacemetabolic
litter, soil structural litter, soilmetabolic litter, and coarsewoody litter)
and four soil C (surface microbe, soil microbe, slow, and passive)
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pools, i.e.

Rh =
X9

j = 1
τjkjCj ð4Þ

where τj is a respiration efficiency equal to the percentage of decom-
posed C released from pool j to the atmosphere, kj the decomposition
rate of C pool j and Cj is the size of pool j and is updated at each
time step.

Input data for the BEPS model
The input data include LAI, meteorological data, soil data, nitrogen
deposition, and CO2 data. LAI data were from GIMMS LAI4g product64.
The spatial resolution of the LAI series was 0.0833° × 0.0833°.
Meteorological data included daily maximum and minimum tempera-
tures, downward solar radiation, relative humidity, and precipitation,
which were interpolated from the 0.5° × 0.5° CRUNCEP V8.0 dataset.
Except for relative humidity, which is calculated from temperatures,
specific humidity, and pressure, other meteorological data are directly
retrieved from theCRUNCEPV8.0dataset. The soil data are fractions of
clay, silt, and sand, and were retrieved from the harmonized global soil
database (http://www.fao.org/nr/lman/abst/lman_080701_en.htm).
Nitrogen deposition data were estimated from tropospheric NO2 col-
umn density retrieved from the Global Ozone Monitoring Experiment
and Scanning Imaging Absorption Spectrometer65.

Land cover data
Weused HILDA+ land cover data with 1 km resolution to investigate the
impact of LCC on NEP. Compared to higher-resolution remote sensing
datasets such as Hansen Global Forest Change (GFC; 2000–2020), ESA
Climate Change Initiative (CCI; 1992–2020), and MODIS
(2001–present), HILDA+ offers an extended temporal coverage
(1960–2019), which critically supports our long-term carbon seques-
tration analysis spanning 1981–2019. The dataset was generated by
integrating remote sensing, landuse reconstructions, and statistics, and
has been confirmed to be reliable. Since HILDA+ is built on multiple
heterogeneous datasets, errors inherent in single datasets are atte-
nuated during the change allocation procedure18. HILDA+ land cover
categories include urban, cropland, pasture, other forest, evergreen
coniferous forest, deciduous coniferous forest, evergreen broad-leaved
forest, deciduous broad-leaved forest, mixed forest, grass/shrubland,
and other land. In order tomatch the plant function types of NEP in the
BEPS simulation, we consider other forest in HILDA+ as mixed forest
and grass/shrubland as sparse shrubland. For the analysis of annual
global land cover dynamics, we generated land conversion matrices
(1982–2019 relative to 1981) at a spatial resolution of 0.073°. These
matrices quantify pixel-level conversion probabilities between distinct
land cover types from the baseline year (1981) to each subsequent year,
enabling systematic tracking of interannual conversion patterns.

Calculation of BEPS NEP changes caused by LCC
We employed the BEPS model to estimate of annual NEP associated
across13 plant function types (evergreen coniferous forest, deciduous
coniferous forest, evergreen broad-leaved forest, deciduous broad-
leaved forest, mixed forest, wooden savanna, savanna, closed shrub-
land, sparse shrubland, grassland, cropland, and other vegetation). To
isolate NEP changes driven by LCC, we conducted two simulations, S1,
which fixed land cover at the 1981 baseline while allowing other vari-
ables (e.g., climate, CO₂) to vary temporally, and S2, which incorpo-
rated both dynamic drivers and land cover conversions. The LCC-
inducedNEP changeswere quantified as the difference betweenS2 and
S1 outputs. To attribute NEP responses to specific land cover conver-
sions, we first derived annual land conversion matrices (1982–2019
relative to 1981) at a 0.073° spatial resolution, calculating pixel-level
conversion percentages Transyear, i!j between land cover types from
LCi to LCj between the initial year 1981 and dynamic year. For each grid

cell, the annual NEP change associated with a specific conversion
(LCi ! LCj) was computed as:

ΔNEPyear, i!j =Transyear, i!j*ðS2year, j � S1year, iÞ ð5Þ

where S1year, i and S2year, j represent NEP estimates for LCi and LCj

under their respective simulations. Cumulative cell-level NEP changes
over the study period were aggregated as:

ΔNEP =
X

year

X

ij

ΔNEPyear, i!j ð6Þ

Regional LCC-induced NEP changes were then scaled spatially by
summing grid-cell contributions weighted by their areas:

ΔNEPcum =
X

cell

ΔNEP ×Acell ð7Þ

where Acell is the latitude-adjusted grid cell area, calculated to account
for earth’s curvature using:

Acell =R
2 ×

π
180

× sinðlat2Þ � sinðlat1Þ
�� ��× lon2 � lon1

�� �� ð8Þ

whereR is the Earth radius, lat2, lat1, lon2 and lon1 are the values of the
boundary of the grid Acell .

Simulations of Trendy models. To evaluate the capacity of
DGVMs in replicating fine-resolution LCC-drivenNEP changes identified
through our analysis, we conduct a comparative analysis of outputs
from 17 DGVMs (TRENDYv10)66. The evaluated DGVM ensemble com-
prises CABLE-POP, CLASSIC, CLASSIC-N, CLM5.0, DLEM, IBIS, ISAM,
ISBA-CTRIP, JSBACH, LPJ-GUESS, LPJ, OCN, ORCHIDEE, ORCHIDEEv3,
SDGVM, VISIT, and YIBs. These models principally utilize the HYDEv3.3
historical land-use dataset67, offering global-scale annual agricultural
extent mapping with enhanced spatial allocation of farming systems.
Supplementary implementations in six models (CABLE-POP, CLM5.0,
JSBACH, LPJ-GUESS, LPJ, and VISIT) incorporate the LUH2-GCB2021
harmonized transition dataset68, which resolves sub-grid land conver-
sion dynamics. The method derives LCC-specific NEP responses
through differential analysis of two simulation scenarios: S3 (incorpor-
ating transient CO2, climate, and land use forcings) and S2 (maintaining
static land use with transient CO2/climate conditions). Modeled NEP
values were computed as the difference between net primary pro-
ductivity (NPP) and heterotrophic respiration (Rh) outputs. All simula-
tions were conducted at 1° spatial resolution. Given that TRENDY
protocols integrate both land-use modifications and management
practices across stable land cover regions - factors beyond the scope of
our HILDA+ -based LCC analysis, our evaluation was constrained to
areas exhibiting detectable LCC in the HILDA+ . To address resolution
inconsistencies between the original 0.073° HILDA+ and the 1° DGVM
outputs, we implemented a modal aggregation that resamples HILDA+
to 1° spatial resolution using majority-voting cell assignment.

Forest age map
This investigation employed a globally gridded forest age dataset
(circa 2010 reference year), synthesized through multivariate inte-
gration of national forest inventories, aboveground biomass observa-
tions, and bioclimatic parameters69. This dataset offers a
comprehensive estimation of global forest age at a resolution of 1 km,
with a notable precision of 0.81 and 0.99 for distinguishing between
old-growth and non-old-growth forests, respectively. To reconstruct
annual forest agedynamics from1982 to 2019,we implemented annual
temporal adjustments through linear extrapolation of the 2010 base-
line values. Specifically, forest age estimates were calculated using
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temporal offsets relative to the reference year:

Aget =Age2010 + ðt � 2010Þ ð9Þ

where positive temporal offsets (t > 2010) represent additive adjust-
ments and negative offsets (t < 2010) denote subtractive corrections.
Resultant negative age values were constrained to zero. Spatial har-
monization with BEPS model outputs was achieved through bilinear
interpolation resampling.

Data availability
The HILDA+ dataset, providing global land cover information, is
available at https://doi.org/10.1594/PANGAEA.921846. The global for-
est age map can be accessed from https://www.bgc-jena.mpg.de/
geodb/projects/Data.php. The TRENDYv10 ensemble carbon sink
simulations are available at https://zenodo.org/records/6884342. The
BEPS model-derived NEP estimates, along with reanalysis outputs,
have been deposited in Zenodo and are publicly accessible at https://
zenodo.org/records/15760904.

Code availability
The primary data analysis code used in this study is available on
Zenodo (https://zenodo.org/records/15760904). The BEPS model
code is not publicly available due to development constraints; how-
ever, interested researchers may contact the corresponding author to
discuss potential access.
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