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A collective intelligence model for swarm
robotics applications
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Swarm intelligencemodels represent a powerful tool to address complex tasks
by multi-agent systems, although they are rarely used in practical applications
as decentralized cooperation logic. Modern challenges include the improve-
ment of model reliability with small swarm sizes and enhancing performance
with minimal number of free parameters. Available techniques are generally
tuned for computational optimization, at the expense of the applicability to
real-world scenarios. Merging concepts from meta-heuristic methods and
consensus theory we propose a swarm cooperation model which can act both
as virtual optimizer and vehicle controller. The model shows a higher or equal
success rate with respect to benchmark methods on 22 out of 33 landscapes
when dealingwith less equal 16 agents and low dimensional problems. Beyond
multimodal optimization, a computational proof of concept shows that the
method can successfully drive the contaminant localization in a complex
marine environment by controlling a group of autonomous underwater
vehicles.

Swarm intelligence embraces all the emergent behaviors of groups of
social living beings, such as bird flocks, fish schools, ant colonies and
human groups1–3, which outperform the single individuals in a variety
of tasks of common concern. These comprise escape from predators,
foraging, migration and any joint decision-making processes. Any
intelligent collective behavior arises from the reaction of individuals to
a cognitive and a social stimulus4. The balance between these two
types of information drives the actions of the individual, and poten-
tially leads the group to the accomplishment of tasks that are beyond
the reach of any component operating alone5,6.

This paradigm has inspired several meta-heuristic methods to
address pure optimization problems, as well as to control multi-agent
robotic systems. Any search process, domain exploration or classifi-
cation procedure can be accomplished by a swarm of virtual or phy-
sical agents with the appropriate design of the individual perception
method and the group communication protocol7,8.

The most widespread algorithms encapsulating the key ingre-
dients of swarm intelligence are the Particle Swarm Optimization
(PSO), the Artificial Bee Colony (ABC), and the Differential Evolution

Method (DEM)9–11. They are often chosen to handle computationally
demanding problemswith few or no assumptions about the landscape
function. Similar algorithms, usually formulated as a sequence of dis-
crete updates, optimize aproblemby iteratively improving a candidate
solutionwith respect to a given qualitymeasure acrossmultiple search
rounds. As counterpart of their algorithmic simplicity, meta-heuristics
methods do not guarantee that the optimal solution is ever found.
Furthermore, their success and convergence rate strongly depends on
empirical coefficients12. The automatic adaptation of these tuning
coefficients to a specific case-study has collected extensive efforts in
the scientific computing community, resulting in hybrid strategies
involving multi-swarm approaches13, evolutionary state estimation14,
swarm size adaptation and re-initialization15, just to name a few.
Nevertheless, themajority of the algorithmic sophistication is typically
accompaniedby abroader arrayof coefficients or thresholds thatmust
be empirically determined.

Beyond computational optimization problems, swarm intelli-
gence has found rare applications to robotics16. Although groups of
robots are widely employed in industry, they still rely on centralized
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control strategies rather than swarm intelligence principles. This is
mainly attributed to the predictability of results and to the limits of
current communication architectures, which often do not sustain the
required information load17. When dealing with physical agents, many
of the algorithmic enhancements are not applicable, because the
swarm size is fixed and the agent motion is subjected to its own body
dynamics. The swarm size itself might represent a bottleneck for
applying meta-heuristic methods to physical agents, as the minimum
size required to ensure an high success rate can easily exceed the
number of available agents or result in unsustainable communication
loads. Empirical studies on a variety of multimodal test functions
showed that an acceptable compromise between success rate and
function evaluations can be achieved with 50÷ 7; 100 particles for the
PSO18 and 20÷ 7; 50 for the ABC19.

Successful examples of decentralized robot control rely on
consensus-driven methods20. These forms of swarm intelligence lead
multi-vehicle operations where a group of agents responds to unex-
pected situations or environmental changes when approaching a suf-
ficiently shared value about certain “coordination data”21. Consensus
based methods have been applied for formation stabilization and
maneuvering, rendezvous, payload transport,22. Although applications
of consensus based methods are now widespread (for instance to
unmanned air vehicles and satellites), they are limited to simple
environments and neighbor-constrained communications, whereas
exploration of multi-modal landscape and non-convex search pro-
blems are considered out of range for this coordination technology22.
The recently developed Consensus Based Optimization (CBO)23

exploits the principles of the consensus theory to raise a novel opti-
mizer, but it has been mainly developed in the mean-field limit, which
still move its applicability away from robotics.

Merging concepts from swarm intelligence approaches and
consensus-seeking methods, we introduce a Swarm Cooperation
Model (SCM) to address boundedmulti-modal optimization problems
for both virtual agents and physical vehicle groups. The SCMexploits a
time-continuous formulation, valid for both static and dynamic N-
dimensional landscape functions. The key novelties of this work
include:

• A self-regulating stochastic forcing governed by the swarm
consensus, allowing agents to explore any steady or unsteady
landscape with no prior topological information other than an
estimate of the characteristic domain size.

• A success rate higher or equal to that guaranteed by the bench-
mark methods on 22 out of 33 test cases for limited swarm sizes
(16 agents or less) on different two- and three-dimensional
landscapes. This ranks the SCM as an appealing option for
controlling a broad class of autonomous vehicles. Benchmark
methods include the Particle Swarm Optimization on behalf of
meta-heuristic approaches and the Multistart Interior Points
Algorithm (MIPA) as a gradient-based technique.

• The integration with a vehicle control scheme to run a search
problem by means of an agent fleet. We computationally prove
the effectiveness of the swarm cooperation model simulating the
localization of a contaminant in a realisticmarine environment, by
means of a swarm of Autonomous Underwater Vehicles (AUVs).

Swarm cooperation model
Assume an ensemble of M agents searching for the location of the
absolute maximum of a scalar landscape function ψ(x1, x2, . . . , xN, t),
with generic unit [φ], over an N-dimensional domain. Agents can share
at any time only their position in space xikðtÞ, with i = 1, . . . , N and
k = 1, . . . ,M, the perceived fitness about the landscape function, Vk, i.e.,
an estimate about the landscape function, and its gradient. Informa-
tion exchange involves the full agent network. Agent interactions take

place as a result of their level of disagreement about the mutual
location, without any memory of their evolution. In absence of other
stimuli, the social push induces the rendezvous of the swarm, with no
control about the meeting point.

The swarmcooperationprocess is assisted by a stochastic forcing.
Thus, the time-continuous process driving the emergence of a col-
lective behavior can be formulated, for the k-th agent, as an over-
damped Langevin equation. The characteristic domain length L [m],
the social interaction strength J [s−1] and the perceived fitness weight ρ
[s−1φ−1] can be used to make the problem dimensionless, such that the
governing equation reads:
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A complete derivation of Eq. (1) is provided in section 1 of Supple-
mentary Information (SI) for a generic decision variable.

The evolution of the agent position is thus governed by: i) the
gradient of the social interaction energy Ei

k , ii) the gradient of the
perceived landscapefitness, interpreted as a potential energy, and iii) a
standard Wiener process, Wk, such that ηi

kðtÞ=dWi
kðtÞ=dt. The sto-

chastic velocity fluctuations are needed to allow the agents to escape
local maxima when exploring non-convex landscapes. The first term
denotes a force proportional to the level of conflict of the k-th agent
with the full network about its i-th coordinate:
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with δhk being the Kronecker delta. The coefficient ξ = ρϕ/J balances
the contribution of perceived fitness and social interaction energy, i.e.,
cognitive stimulus and social interactions. Here ϕ denotes the scale
value of the landscape function. Sinceϕ is unknown, the coefficient ξ is
chosen as the inverse of the swarm-averaged L2 norm of the fitness
gradient (see section 2 in SI for further details), such that both the
social gradient and the fitness gradient are of order 1. Low-order finite
difference formulas can be used to approximate the landscape
gradient when its analytical expression is unknown.

The intensity of the stochastic forcing inherently represents a key
parameter in the search process. Hence, the robustness and the
effectiveness of themodel strongly depend on the ability of the swarm
to self-regulate the noise intensity. In this connection, we consider the
base random fluctuation ηi

kðtÞ to be modulated by an adaptive factor
μk(t). ηi

kðtÞ is drawn from a Gaussian distribution with null mean value,
hηi

kðtÞi=0, unitary variance, Var ηi
kðtÞ

� �
= 1, and time-independent

increment 〈ηk(t1)ηk(t2)〉 = δ(t1 − t2)24, with δ the Dirac delta. The factor
μk(t) is the product of a global variable σ(t) and an agent dependent
parameter λk: μk(t) = σ(t) λk(t). Both are assumed to depend on the
global swarm consensus C:

C = 1� 2
M
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whichmeasures the mean level of agreement among agents. Since the
success of the search process is inherently related to the agent clus-
tering, the global consensus C is built out of the distance dk, denoting
the distance of the k-th agent from the swarm centroid, xi

c. This is
intended as the fitness-weighted average location:
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The agent-dependent parameter λk simply yields:

λkðtÞ=
dk

dmax
C�1, ð5Þ

with dmax being the maximum reciprocal distance among agents.
According to this definition, the noise magnitude on the k-th agent
velocity is expected to increase if it is sensing a low relative fitness, in a
region far from the largest agent clusters.

The global noise coefficient σ(t) instead evolves by discrete
increments, according to the following differential equation:

dσðtÞ
dt

=ω
minfIðC, τÞ, 0g

IðC, τÞ δ t � τbt=τc� �
, ð6Þ

where ω is a coefficient denoting the increment magnitude, τ denotes
the minimum time interval for the σ(t) update. An incremental
approach is preferred to grant the agents enough time to exploit the
fluctuations to jump out of local optima or simply advance the search
process. The term I(C, τ) provides an integralmeasure of the consensus
trend:

IðC, τÞ=
Z t

t�τ=2
CðtÞdt �

Z t�τ=2

t�τ
CðtÞdt: ð7Þ

This formulation allows the global noise factor σ(t) to be increased in
case the swarmmanifests a nearly steady consensus in the past τ time
window, meaning that the agents are not able to escape local minima
with the current noise magnitude.

Although σ(t) grows monotonically, the amplitude of the asso-
ciatedfluctuations donot have anegative impactof the agentswith the
highest consensus Ck, because their social condition generate reduced
λk values, which counterbalance the increase in σ(t). The robustness of
this approach is enhanced by setting a limiter on σ(t), σmax, beyond
which it is restarted to the initial value σ0. In all simulations, the used
value is σmax =0:3.

The hyper-parameters ω and τ might affect the convergence rate
of the searchprocess. Largerω values, or smaller τ, accelerate thenoise
adaptation procedure, but increase the noise overshoot risk. The
sensitivity of the model to these hyper-parameters is investigated in
section 3 of the SI, showing clear trends which provide a rationale for a
robust choice. However, the self-regulation mechanism for the sto-
chastic forcing will be proved to be robust enough to guarantee the
research success with the same value of ω and τ on a variety of static
landscape functions.

Results
Optimization on static landscape functions
In first instance, the swarmmodel has been tested as optimization tool
against 6 landscape functions typically used as benchmark cases for
optimization algorithms. These feature dominant global maxima
(Ackley function), nearly-optimal local maxima (the global maxima of
the Rastrigin and Griewank functions take values 4.5% and 2% larger
than the adjacent local maxima, respectively), non isotropic spatial
modes (Griewank function) and a fractal pattern. Function expressions
and reference are provided in section 4 of SI. The locations of the
global optimum are displaced in diverse regions of the exploration
domain. All cases are computed with a global noise increment ω = 0.2,
initial global noise σ0 = 0.05 and time interval τ = 60Δt in light of the
outcomes of the sensitivity analyses reported in section 3 of SI. The
search process is marked as successful whether the swarm holds a
nearly unitary consensuswithin the τperiod, i.e., if

R t
t�τ CðtÞdt > γðMÞ τ,

with γðMÞ= 1� tanh M=100
� �� �

=20+0:9 being a threshold function
which allows to relax the target consensus for large swarms. When
increasing the swarm size, M, the achievement of a unitary consensus
becomes increasingly difficult even though the swarm centroid holds a
stable position. Therefore, the termination threshold is formulated as a
function ofM which tends asymptotically to 0.9 τ. Once the threshold
is achieved, the majority of the agents has gathered around estimated
global optimum. Numerical experiments will successively show that
this occurrence corresponds to an high success rate.

A pseudo-code for the SCM implementation is provided in sec-
tion 5 of SI.

Fig. 1 | Example of swarm cooperation process. Localization of the global max-
imum on the two-dimensional Rastrigin function with a 5 agents swarm. Con-
secutive snapshots of the agent position over the landscape function (a–c); the red
star symbol denotes the location of the global maximum. Pointwise agent

trajectory through the search process; the color is associated to time instants (d).
Black dots denote the initial agent positions. Time-traces of the global consensus C
and the global noise modulation factor σ (e), and of the perceived fitness value (f)
for each agent. For an animated version of this figure, see Supplementary movie 3.
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Fig. 2 | Performance benchmark. Histogram matrices of success rate SR (a) and
mean number of function evaluations 〈FE〉 (b). Each row corresponds to a land-
scape function (the reader is referred to section 4 of SI for landscape formulas),
whereas each column corresponds to a dimension, N. The single histogram

compares SR or 〈FE〉 of three methods, Particle Swarm Optimization (PSO), Multi-
start Interior-Point Algorithm (MIPA) and Swarm Cooperation Model (SCM), for
different swarm sizes,M. The boxplots about 〈FE〉 indicates themean value and the
corresponding standard deviation.
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To elucidate the model operation, we illustrate (see Fig. 1) the
evolution of the search process on the Rastrigin landscape with a few
agents, i.e.,M = 5. The agent initial position is picked from an uniform
randomdistribution (the reader is referred to the black dots in panel d
of Fig. 1). After a fast transient, the agents settle to the closest local
maxima. From then on, they share a nearly steady consensus, as nei-
ther the social interaction term, nor the stochastic forcing allow them
to escape the local optima. After a τ period without significant con-
sensus variations, the σ(t) Eq. (6) triggers two successive increments of
the global noise factor, until the stochastic fluctuations allow the agent
3 to join the agent 5 and the agent 2 to join the agent 4. In the formation
shown on panel b, agents 3 and 5 exert a larger social attraction force
with respect to agents 2 and 4 because they detect a larger fitness, thus
they shift the swarm centroid towards them. Therefore, the former
receive the smaller individual noise factor λk, whereas the latter receive
λk > 1. In this condition, agents 2 and 4 are more likely to jump out of
their local optima than agents 3 and 5 to change location. Figure 1f
shows how the convergence processes can successfully take place
even in presence of very similar fitness values. An animated version of
the search process with 5 agents is available, on all tested landscape
functions, in Supplementary movies 1–6.

Performance comparison
The performance of the swarmmodel are now compared on different
test functions with increasing dimensionality. For a fair comparison
the initial agent position is chosen solving the “circle packing in a
square” problem25 extended to an arbitrary dimensionality. This
guarantees the most uniform mutual separation among the agents,
which in turn provides the higher exploration potential ab initio.
Results are compared with those obtained with the PSO26 and the

MIPA27, whose setups are listed in the Methods section. The bench-
mark methods were chosen as well-established representatives of
meta-heuristic, gradient-free approaches and deterministic, gradient-
based approaches, respectively. The comparison, carried out in terms
of success rate, SR, and mean number of function evaluations 〈FE〉,
offers the full picture about the optimization performance. An ideal
approach would have a 100% success rate, with a minimum number of
function evaluations. In a swarm robotics scenario, aminimal 〈FE〉does
not represent a necessary requirement to run the optimization, since
the evaluation of the landscape corresponds to a sensor sampling,
unless the 〈FE〉 entails an optimization duration which is not compa-
tible with the robot range. The sampling of the landscape function is
performed sporadically during the robot locomotion (further details
are provided in the following paragraph), so neither the sampling
frequency nor the amount of samples affect the SCM convergence. On
the contrary, an high SR entails an increase of the reliability, which has
long hindered the growth of applied swarm robotics17. The SR and the
〈FE〉 are computed out of 100 replications, using 100 different Wiener
processes ηi

kðtÞ for both SCM and PSO. The success rate of all methods
is obtained by counting the number of replications in which the dis-
tance of the swarm centroid from the true global optimum is lower
than 0.05L. The stop criterion, described at the beginning of the pre-
ceding paragraph, finalizes the search only when the majority of the
agents converge to the swarm centroid. In case it does not match the
global optimum, the case is marked as unsuccessful. All SCM simula-
tions have been run with dimensionless time step-size JΔt = 0.1.

The comparisons are presented by means of the histogram
matrices in Fig. 2a, b. Each row corresponds to a landscape function,
whereas each column refers to a dimension N. The fractal landscape
has been tested in two dimensions only because it is hardly

Fig. 3 | Schematic of the AUV-integrated swarm model. Satellite view of the
region of interest, image courtesy of theU.S. Geological Survey (a). Snapshot of the
simulatedmarine current over the search area (b). Agent of the swarm illustrated as
AUV (c). Flowchart illustrating the logical sequence of AUV dynamics and swarm
cooperation step (d). Here the bluewindow delimits the operational steps involved
in the swarm intelligence procedure (SCM), which take place at discrete time

intervals once all agents have achieved the assigned target location. The super-
scripts n and m indicate the time advancement levels of the AUV dynamics model
and the swarm cooperation model, respectively. The parameter qnk denotes a
coordinate of the center of mass of the k-th AUV at the m-th time step. The coor-
dinate xTk represents the navigation target for the AUV set by the swarm model at
the n-th time step.
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generalizable to an arbitrary dimension while holding topological
similarity. The box plots in Fig. 2b indicate mean value and standard
deviation of 〈FE〉. The corresponding data are provided in Supple-
mentary Dataset 1–3.

Figure 2a shows that a clear ranking among the three methods
cannot be established regardless of the features of the landscape
function or its dimensionality. However, it is worth pointing out that,
when considering M ≤ 16 on two and three dimensions, the SCM out-
performs or matches the SR of other methods on 22 out of 33 cases.
This subset identifies the cases of interest in swarmrobotics, where the
decision variables correspond to the spatial coordinates in a two- or
three-dimensional search domain. A substantial difference in the SR
can be observed in the dependency on the number of agents,M. Both
PSO and MIPA show a monotonic increase with M, whereas the SCM
does not in a few cases. The benchmark methods comply with the
“best-known” criterion by which they hold in memory the best-known
position during the search process. The SCM agents do not hold any
global information apart from the swarm consensus, C(t), instead. This
makes the probability of finding the global optimum less sensitive to
the swarm size. It is worthmentioning that this also enables the SCM to
work on unsteady landscape functions without algorithmic complica-
tions, as shown in the following paragraph.

The most favorable comparison occurs on the Griewank land-
scape, where many nearly optimal stationary points surround the
global optimum (the reader is referred to Fig. 3 in the SI for a visual
interpretation), whereas the worst scenario occurs on the Schwefel
function, featuring a diverging envelope (the global maximum is
surrounded by the smallest local minima). On the latter, the SCM
requires the agent to receive significant fluctuations to counteract
the gradient-related force and jump over the local minima towards
the target. On similar landscapes, the PSO, which does not exploit
landscape gradients, is inherently advantaged in the convergence
process. A 100 % SR is guaranteed in any dimension on the Ackley
function, where the global maximum dominates over 35 local max-
ima. On this landscape, as soon as an agent passes by the global
optimum, the fitness-weighted centroid will be highly displaced,
stimulating the migration of other agents. The replications on the
fractal landscape foster the SCM in terms of SR, proving that the
numerical approximation of the landscape gradient by finite differ-
ences does not undermine the method advantage with few agents.
The fractal landscape is numerically generated as a randomly rough
surface with fractal dimension 1.8, tile wavelength 0.1m and null roll-
off wavelength over 512 pixels per side.

The SCM performance degrades with problems of high dimen-
sions on a peer swarm size basis, likewise any optimization algorithm.
PSO has been documented to reduce its SR with problems of high
dimensionality28. Furthermore, it has been shown that increasing the
swarm size might not be a sufficient solution, depending on the
landscape itself28. In our numerical experiments, scalability issues
occur in all analytical landscapes except the Ackley and the Griewank
functions.

The 〈FE〉 comparison in Fig. 2b, shows a monotonically increasing
trend with the number of agents, M. Such a dependence is approxi-
mately shifted towards higher values when increasing the problem
dimensionality. A clear ranking is shown in all cases beside the Ackley
function: the PSO offers the least 〈FE〉 and the SCM the largest. The
SCM generally presents a larger standard deviation on the 〈FE〉 due to
the coexistence of a gradient descent term and a stochastic forcing.
Furthermore, it is worth noting that the 〈FE〉, as well as the mean run
time, 〈tf J〉, can be further reduced by initializing the simulations with a
case-specific global noise value σ(0).

Numerical experiments have shown that the SCM can provide a
larger or equal SR with respect to PSO and MIPA when considering a
cohort of cases with reduced swarm size (M ≤ 16) and two- or three-
dimensional landscapes. However, the SR benefit comes at the cost of

nearly ten times more function evaluations. On the same case cohort,
the 〈FE〉 is significantly higher on 24 out of 33 landscapes. The 〈FE〉
comparison turns out to beunfavorable for SCM, and this shortcoming
should be considered when selecting on optimization tool. A larger
〈FE〉 is the result of the SCM not holding the best-known optimum in
the agent memory. This feature disadvantages the SCM on static
landscapes with respect to benchmark methods, but it allows the
model to work effectively on dynamic landscapes, where the topology
of the objective function evolve in time. A computational demonstra-
tion is provided in the following paragraph. The SCM can be con-
sidered as a competitive option for optimization problems where (i)
each function evaluation has a minimal or negligible cost, (ii) the
amount of available agents is constrained to M ≤ 16 and the problem
has three optimization variables at most, (iii) the optimization frame-
work must work on both steady and unsteady landscapes. All of these
conditions make the SCM theoretically compatible with swarm
robotics scenarios.

Application to a simulated marine environment
To verify the theoretical applicability of the SCM to a realmulti-vehicle
system, we simulate the localization of the maximum concentration
spot of a diffusive contaminant, within a convection-dominated mar-
ine environment. The search process is performed over a 6 km square
area by a swarmof communicatingAUVs. In this context, the simulated
marine current transports the contaminant as a passive scalarfield (see
the Method section for details), which herein plays the role of a
dynamic landscape function, and contextually imposes the hydro-
dynamics disturbances to the AUV navigation. The involved vehicles,
endowed with a contaminant sensor, can measure their fitness and
navigate seeking for the highest concentration. This problem is pro-
posed as a computational proof-of-concept for the application of the
swarm cooperation model to a real-world scenario.

Each AUV corresponds to an agent of the swarm, and the output
of the swarm model leads the swarm dynamics by means of the AUV
control system. At the n-th iteration of the swarm intelligence model,
each AUV receives an individual target point, which indicates the
spatial coordinates the agent must reach to measure the landscape
value and its gradient. The target information is used to compute the
rudder error in the AUV proportional-derivative control system. Once
the AUV, subjected to its own dynamics, hits the target point and
performs the measurements, it can fulfill the necessary network
communications and thus advance the swarm model to set the suc-
cessive target location. This sequence is visually described by the
sketch and the flowchart in Fig. 3. The AUV dynamics relies on a well-
established model29,30, typically used to design control schemes and
assessmission performance; related details are provided in the section
6 of SI.

The hydrodynamic environment is obtained from high-fidelity
numerical simulations performed with the high-resolution coastal
modeling system of the Taranto Gulf31, developed by the Euro-
Mediterranean Center on Climate Change (CMCC) Foundation.

We select, as searchdomain, a 6 km squarebox in theGallipoli bay
(approximate coordinates 40� 060 N, 17� 890 E), in the southern Italian
coastal area, where currents ranging from 0.05 to 0.2m/s acts at 4–6
meter depth. Additional information about the hydrodynamic simu-
lation are provided in the “Methods” section 2. The hydrostatic
approximation for the fluid motion generates vertically stratified flow
fields at the kilometer scale, meaning that themomentum transport in
the vertical direction is much limited with respect to the other spatial
directions. Owing to this condition, both the contaminant transport
and AUV dynamics are simulated on a two-dimensional domain at 4-6
meter below themean sea surface level. The size of the search domain
is chosen to allow for acoustic communications with commercial
hydro-acoustic telemetry, currently denoted as the best option
for AUVs32,33.
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Figure 4 provides an overview of the application, including the
initial contaminant concentration (panel e), five snapshots with the
evolution of the marine current and the advected phase, as well as the
time traces of the global consensus and perceived fitness. An animated
version of the figure is available at the Supplementary movie 7.

The test case shows howa successful search can be performedover
a broad area in a reasonable time (about 16.6 hours) over a landscape
with changing topology and peak values due to the advective and dif-
fusive process (this can be observed on the decreasing perceived fitness
in Fig. 4j. The same test, entailing a 5 AUV swarm initialized with the
circle packing method, has been replicated 100 times by sampling dif-
ferentηi

kðtÞ distributions to assess the SCMperformance. Theparameter
τwas set to 30Δt to get faster noise increments, such that the search can
be finalized before the contaminant is advected outside the search
domain. This setting guaranteed a 86% success rate with mean search
time equal to 20.8 ± 3.82 h, and mean traveled distance equal to
93.8 ± 17.3 km per agent. We emphasize that the swarm model requires
the agents communicate only their location, the perceived fitness value
and its gradient at each SCM iteration.

Discussion
We have shown how swarm intelligence can be used to systematically
address demanding optimization problems on bounded spaces or to
drive the cooperation of a multi-vehicle system in a search process.
The proposed Swarm Cooperation Model (SCM), formulated as an
overdamped Langevin equation, leverages the features of meta-
heuristic optimization and consensus information theory to operate

indistinctly on steady and unsteady landscapes. It is shown to out-
perform the success rate of the Particle SwarmOptimization (PSO) and
the Multistart Interior Points Algorithm (MIPA) on 22 out of 33 cases
whendealingwith a fairly limited swarm size (less equal to 16 agents) in
two- and three-dimensional problems, while avoiding algorithmic
techniques that would compromise the applicability to real-world
scenarios. This advantage comes at the cost of about 1 order of mag-
nitude more function evaluations with repect to the benchmark
methods, which does not represent an issue in applied robotics, where
a function evaluation corresponds to a sensor measurement.

Themodel is endowedwith a self-adapting stochastic forcing able
to settle the noise magnitude on the most suitable level for any land-
scape function. Differently from existing approaches, the SCM, in its
dimensionless form, operates on both steady and unsteady landscape
function and requires the choice of hyper-parameters which have
minor effects on the success rate.

The SCM has been applied, as a computational proof-of-concept,
to control a swarm of Autonomous Underwater Vehicles (AUV) in the
search of a generic contaminant transported by the sea current in a
coastal area. This scenario entails an unsolved applied problem, where
the contaminant concentration potentially represents liquid pollu-
tants,micro-plastics, harmful algae, or anythingwhosedetection is not
accessible to satellite measurements. In the proposed setting the
search process is further complicated by the advection/diffusion of
contaminant operated by sea current, which alters the landscape
topology during the research. The SCM still showed an high success
rate with a reasonable search time.

Fig. 4 | Synopsis of the contaminant search test by an AUV swarm.Marine
current magnitude and direction (a–d) at four consecutive instants. Contour plots
of contaminant distribution ψ, alias for a dynamic landscape function, with corre-
sponding agent location (e–h) on red triangles. Triangle size is magnified 30 times
with respect to the actual AUV size (~30m). Instantaneous configurations in panels
(a–h) refer to the physical time t*, expressed in hours:minutes. The red lines in

panels (e–h) intersect at the instantaneous global ψmaxima for reference. Panel (i)
shows the full history of consensus C and global noise coefficient σ as a function of
the swarm dimensionless time, whereas panel (j) shows the perceived fitness per
agent. Eventually, panel (k) displays the full agent trajectory with colors corre-
sponding to the legend in panel (j). For an animated version of this figure, see
Supplementary movie 7.
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The SCMcanbe possibly enhanced testing the effect of stochastic
fluctuations picked from a “thick-tailed" distribution, such as the Levy
distribution or the Cauchy distribution, rather than the Gaussian one.
Well-established meta-heuristic optimizers, such as the PSO34 and the
ABC35, have been randomized with these distributions, showing
superior convergence rates36.

Within an applied robotic scenario the Langevin Eq. (1) can pos-
sibly be mapped to the vehicle angular position rather than the center
of mass coordinates. This requires a re-formulation of the conflict
energy for the agents to be directed towards successive target loca-
tions. However, the effectiveness of this alternative deserves to be
investigated.

Beyondmodeling aspects, key agent communication factorsmust
be addressed in view of a practical implementation, especially when
considering the applied test case of AUV swarm. Location precision
canbe achievedwith an accuracy of 0.5% of the traveled distancewhen
using a dead reckoning navigation system33. Agent communication still
poses relevant challenges, instead. While commercial high-frequency
radio devices and radars can be used for communications among
ground agents, hydroacustic telemetry appears to be the only accep-
table option for underwater swarms at the kilometer scale33. Acoustic
waves travel long distances without significant attenuation, they can
transmit at a Baud rate up to 62 kbps at 150kHz, but they reflect on
hard surfaces, increasing the amountof noise in the communications32.
The former does not represent a limit indeed, since the agents must
communicate only position, fitness value and fitness gradient, whereas
the latter needs to be addressed by designing a dedicated noise filter.

The general counterpart of the SCM, derived in the section 1 of SI
for an unspecified decision variable, can be easily applied to optimize
other life-science applications of arbitrary dimensionality, such as
wireless networks, power supplies, risk assessment, software devel-
opment, training of artificial neural networks and any process which
can be formulated as a bounded optimization problem with a mea-
surable fitness function. The simplicity of the model and its effective-
ness with a small swarm size paves the way for the application of the
swarm intelligence paradigm to the control of multi-agent robotic
systems.

Methods
Numerical integration of the Langevin model
The governing Eq. (1) contains a nonlinearity in the social energy term,
thus explicit time-marching schemes are the most suitable options,
considering that integration period is a case-dependent quantity. In
this connection, the numerical integration is carried out by means of
the Euler-Maruyama scheme.

In the infinitesimal time step limit, the differential of a Wiener
process associated to the k-th agent takes the form37:

dWk � Wkðt + γΔtÞ �WkðtÞ=
ffiffiffiffiffiffiffiffiffi
γΔt

p
N kð0, 1Þ, ð8Þ

where N kð0, 1Þ is a normal distribution with null mean value and uni-
tary variance and γ is the time fraction depending on the chosen time
scheme. The agent coordinate is discretized at the time tn = nΔt, withΔt
being the time step size.Oncedropped thedecision superscript for the
sake of readability, the discrete counterpart of Eq. (1), at the time level
n + 1 reads:

xn+ 1
k = xnk +Δtf xnk , x

n
h

� �
+μn

k

ffiffiffiffiffiffi
Δt

p
N n+ 1

k ð0, 1Þ, ð9Þ

where

f xnk , x
n
h

� �
= � 2

πðM � 1Þ
XM
h= 1

1� δhk

� �
sin

π
2

xn
k � xnh

� �	 

+ ξ

4
π2

∂Vn
k

∂xn
k

:

ð10Þ

Although more accurate schemes are available, such as the Milstein
method or stochastic Runge-Kutta methods38, most of them require
additional evaluations of the state function f xαk , x

α
h

� �
. In a swarmmodel

where any landscape evaluation needs the agent to physically reach
the evaluation point, accurate methods would bring additional time
and energy consumption for each agent. Therefore, the search process
would not benefit froman increased time accuracy in real-world search
scenarios.

Benchmark methods
The performance of the SCM have been compared with two well-
established optimizers: the Particle Swarm Optimization (PSO)26 on
behalf of gradient-free, meta-heuristic optimizers and the Multistart
Interior Point Algorithm (MIPA)27 of behalf of gradient-based, deter-
ministic approaches.

The comparison with the PSO (see Fig. 2 and related discussion)
has been carried out by means of the built-in function particleswarm
available inMatlab39. This function runs anoptimization process based
on the original algorithm proposed by26, with the modifications sug-
gested by40. This represents an acknowledged compromise between
algorithm performance and versatility. The (steady) inertia coefficient
is set to 0.4, whereas the self-weight coefficient is set to 2.4 ans the
social-weight coefficient to 1.340. The particles are initialized with the
same circle packing method used for the SCM, whereas the con-
vergence conditions are determined by a relative optimality tolerance
equal to 10−4 over a 60 iterations span, consistently with the τ = 6 and
JΔt = 0.1 values used to integrate the SCM.

The other benchmark method was chosen among gradient-based
optimizers due to its effectiveness and reliability on unconstrained
problems over bounded search spaces. MIPA optimization has been
performed with the MultiStart function available in Matlab39. This
function provides parallel calls to the local solver Interior-Points, each
associated with a starting point, then it compares the fitness of each
point to estimate the location of the global optimum. The MIPA
attempts a solution of the linearized problem via Newton iterations,
thus relying on a second-order gradient descent method27. The ter-
mination tolerance for the first-order optimality (the so called KKT
residual) is set to 10−4. Gradients are estimated via forward differences
with a fixed step size of 10−8, as it was found to be the asymptotical
convergence value for the success rate over all tested landscapes. The
MIPA has a deterministic nature, thus, it must be initialized multiple
times with different starting point locations to optimize a multimodal
landscape. In the present comparison, each replication was performed
by picking the initial locations from a uniform random distribution.
The success rate of both benchmark methods relies on the same
definition used for the SCM, introduced in section 2.

Simulated marine environment
In order to recreate a realistic hydrodynamic environment we resort to
high-fidelity sea current models. The most widespread coastal ocean
circulation models are fully-baroclinic and rely on the hydrostatic and
Boussinesq approximations41. The circulation field has been simulated
across the entire Taranto Gulf. It is forced by well-established, high-
fidelity, data-assimilative modeling products, specifically by atmo-
spheric data from the ECMWF-IFS analysis42 (https://www.ecmwf.int/
en/forecasts/datasets/set-i#I-i-a) at the surface and by reanalysis data
from the Mediterranean Sea provided by the Copernicus Marine
Service43 (https://data.marine.copernicus.eu/product/MEDSEA_
MULTIYEAR_PHY_006_004) at the open-ocean boundary. The Tar-
anto Gulf modeling system is also set in operational forecastingmode,
and a glimpse of the forecasts over the area can be observed at the
website https://taranto.cmcc.it/. The core model is SHYFEM (System
for HYdrodynamic Finite Element Modules)44,45, an unstructured-grid
finite-element model based on a layer-integrated approach to the
primitive equations, where the fluid is discretized into vertical layers of
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specific thickness in which the variables are considered to be constant
(e.g., 2m thickness at layer depths between 4 and 6 meters, where the
AUV dynamics are simulated). Turbulence is modeled by means of the
Smagorinsky’s approach46, in conjunction with the GOTM k −ω
model47 for the parameterization of the horizontal and vertical eddy
viscosity. Details on the hydrodynamic formulation, as well as the
discretization, can be found in48–50, whereas the software is publicly
available at51https://zenodo.org/records/5596734. An animated ver-
sion of the simulated current used for the coupled swarm-AUV test is
available in Supplementary movie 8.

We recall that the scope of hydrodynamic simulation is to provide
a realistic transport scenario for an initial landscape function and
compute the drag force on the swimmer with space and time varia-
bility. We collect current fields in the 4–6m depth layer with hourly
frequency for 5 days. Thus, we model the transport of a passive scalar
functionψ, which plays the role of a dynamic landscape function in the
swarm scenario, by solving on the chosen depth layer the two-
dimensional transport equation:

∂ψ
∂t

+u � ∇ψ= kH∇
2ψ, ð11Þ

with homogeneous Neumann boundary conditions, i.e., n ⋅ ∇ψ `= 0. In
Eq. (11) the vector u denotes the local current, whereas kH is the hor-
izontal eddy diffusivity.

The planar transport hypothesis holds due to the stratified solu-
tionobtained for regional sea currents,which typically entails a vertical
momentum exchange orders of magnitude lower than the horizontal
one. Given thedomain scale,weneglect themolecular diffusivity of the
meanwhile relying on the gradient diffusion hypothesis (with constant
coefficients) to describe the turbulent diffusion process41. The eddy
horizontal diffusivity takes value kH =0.2m2/s, according to experi-
mental measurements52,53 in coastal areas with low wave orbital
velocity.

Data availability
The tables containing the performance comparison between the
optimization methods outlined in the main text are available on the
following GitHub repository: https://github.com/AleNit/Swarm-
Cooperation-Model.

Code availability
The scripts executing the Swarm Cooperation Model (SCM) used in
this work are available on the following GitHub repository: https://
github.com/AleNit/Swarm-Cooperation-Model. A. Nitti, I. Federico,
M.D. de Tullio, G. Carbone, “A collective intelligence model for swarm
robotics applications", AleNit/Swarm-Cooperation-Model/, DOI:
10.5281/zenodo.15629696, 2025.
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